11 #ifndef EIGEN_MATRIX_EXPONENTIAL
12 #define EIGEN_MATRIX_EXPONENTIAL
14 #include "StemFunction.h"
23 template <
typename MatrixType>
41 template <
typename ResultType>
42 void compute(ResultType &result);
57 void pade3(
const MatrixType &A);
66 void pade5(
const MatrixType &A);
75 void pade7(
const MatrixType &A);
84 void pade9(
const MatrixType &A);
93 void pade13(
const MatrixType &A);
104 void pade17(
const MatrixType &A);
119 void computeUV(
double);
125 void computeUV(
float);
131 void computeUV(
long double);
133 typedef typename internal::traits<MatrixType>::Scalar Scalar;
134 typedef typename NumTraits<Scalar>::Real RealScalar;
135 typedef typename std::complex<RealScalar> ComplexScalar;
138 typename internal::nested<MatrixType>::type m_M;
162 template <
typename MatrixType>
165 m_U(M.rows(),M.cols()),
166 m_V(M.rows(),M.cols()),
167 m_tmp1(M.rows(),M.cols()),
168 m_tmp2(M.rows(),M.cols()),
169 m_Id(MatrixType::Identity(M.rows(), M.cols())),
171 m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff())
176 template <
typename MatrixType>
177 template <
typename ResultType>
180 #if LDBL_MANT_DIG > 112 // rarely happens
181 if(
sizeof(RealScalar) > 14) {
186 computeUV(RealScalar());
189 result = m_tmp2.partialPivLu().solve(m_tmp1);
190 for (
int i=0; i<m_squarings; i++)
194 template <
typename MatrixType>
197 const RealScalar b[] = {120., 60., 12., 1.};
198 m_tmp1.noalias() = A * A;
199 m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
200 m_U.noalias() = A * m_tmp2;
201 m_V = b[2]*m_tmp1 + b[0]*m_Id;
204 template <
typename MatrixType>
205 EIGEN_STRONG_INLINE
void MatrixExponential<MatrixType>::pade5(
const MatrixType &A)
207 const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.};
208 MatrixType A2 = A * A;
209 m_tmp1.noalias() = A2 * A2;
210 m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
211 m_U.noalias() = A * m_tmp2;
212 m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
215 template <
typename MatrixType>
216 EIGEN_STRONG_INLINE
void MatrixExponential<MatrixType>::pade7(
const MatrixType &A)
218 const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
219 MatrixType A2 = A * A;
220 MatrixType A4 = A2 * A2;
221 m_tmp1.noalias() = A4 * A2;
222 m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
223 m_U.noalias() = A * m_tmp2;
224 m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
227 template <
typename MatrixType>
228 EIGEN_STRONG_INLINE
void MatrixExponential<MatrixType>::pade9(
const MatrixType &A)
230 const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
231 2162160., 110880., 3960., 90., 1.};
232 MatrixType A2 = A * A;
233 MatrixType A4 = A2 * A2;
234 MatrixType A6 = A4 * A2;
235 m_tmp1.noalias() = A6 * A2;
236 m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
237 m_U.noalias() = A * m_tmp2;
238 m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
241 template <
typename MatrixType>
242 EIGEN_STRONG_INLINE
void MatrixExponential<MatrixType>::pade13(
const MatrixType &A)
244 const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
245 1187353796428800., 129060195264000., 10559470521600., 670442572800.,
246 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
247 MatrixType A2 = A * A;
248 MatrixType A4 = A2 * A2;
249 m_tmp1.noalias() = A4 * A2;
250 m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2;
251 m_tmp2.noalias() = m_tmp1 * m_V;
252 m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
253 m_U.noalias() = A * m_tmp2;
254 m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
255 m_V.noalias() = m_tmp1 * m_tmp2;
256 m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
259 #if LDBL_MANT_DIG > 64
260 template <
typename MatrixType>
261 EIGEN_STRONG_INLINE
void MatrixExponential<MatrixType>::pade17(
const MatrixType &A)
263 const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
264 100610229646136770560000.L, 15720348382208870400000.L,
265 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
266 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
267 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
268 46512.L, 306.L, 1.L};
269 MatrixType A2 = A * A;
270 MatrixType A4 = A2 * A2;
271 MatrixType A6 = A4 * A2;
272 m_tmp1.noalias() = A4 * A4;
273 m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2;
274 m_tmp2.noalias() = m_tmp1 * m_V;
275 m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
276 m_U.noalias() = A * m_tmp2;
277 m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2;
278 m_V.noalias() = m_tmp1 * m_tmp2;
279 m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
283 template <
typename MatrixType>
284 void MatrixExponential<MatrixType>::computeUV(
float)
288 if (m_l1norm < 4.258730016922831e-001) {
290 }
else if (m_l1norm < 1.880152677804762e+000) {
293 const float maxnorm = 3.925724783138660f;
294 frexp(m_l1norm / maxnorm, &m_squarings);
295 if (m_squarings < 0) m_squarings = 0;
296 MatrixType A = m_M / pow(Scalar(2), m_squarings);
301 template <
typename MatrixType>
302 void MatrixExponential<MatrixType>::computeUV(
double)
306 if (m_l1norm < 1.495585217958292e-002) {
308 }
else if (m_l1norm < 2.539398330063230e-001) {
310 }
else if (m_l1norm < 9.504178996162932e-001) {
312 }
else if (m_l1norm < 2.097847961257068e+000) {
315 const double maxnorm = 5.371920351148152;
316 frexp(m_l1norm / maxnorm, &m_squarings);
317 if (m_squarings < 0) m_squarings = 0;
318 MatrixType A = m_M / pow(Scalar(2), m_squarings);
323 template <
typename MatrixType>
324 void MatrixExponential<MatrixType>::computeUV(
long double)
328 #if LDBL_MANT_DIG == 53 // double precision
330 #elif LDBL_MANT_DIG <= 64 // extended precision
331 if (m_l1norm < 4.1968497232266989671e-003L) {
333 }
else if (m_l1norm < 1.1848116734693823091e-001L) {
335 }
else if (m_l1norm < 5.5170388480686700274e-001L) {
337 }
else if (m_l1norm < 1.3759868875587845383e+000L) {
340 const long double maxnorm = 4.0246098906697353063L;
341 frexp(m_l1norm / maxnorm, &m_squarings);
342 if (m_squarings < 0) m_squarings = 0;
343 MatrixType A = m_M / pow(Scalar(2), m_squarings);
346 #elif LDBL_MANT_DIG <= 106 // double-double
347 if (m_l1norm < 3.2787892205607026992947488108213e-005L) {
349 }
else if (m_l1norm < 6.4467025060072760084130906076332e-003L) {
351 }
else if (m_l1norm < 6.8988028496595374751374122881143e-002L) {
353 }
else if (m_l1norm < 2.7339737518502231741495857201670e-001L) {
355 }
else if (m_l1norm < 1.3203382096514474905666448850278e+000L) {
358 const long double maxnorm = 3.2579440895405400856599663723517L;
359 frexp(m_l1norm / maxnorm, &m_squarings);
360 if (m_squarings < 0) m_squarings = 0;
361 MatrixType A = m_M / pow(Scalar(2), m_squarings);
364 #elif LDBL_MANT_DIG <= 112 // quadruple precison
365 if (m_l1norm < 1.639394610288918690547467954466970e-005L) {
367 }
else if (m_l1norm < 4.253237712165275566025884344433009e-003L) {
369 }
else if (m_l1norm < 5.125804063165764409885122032933142e-002L) {
371 }
else if (m_l1norm < 2.170000765161155195453205651889853e-001L) {
373 }
else if (m_l1norm < 1.125358383453143065081397882891878e+000L) {
376 const long double maxnorm = 2.884233277829519311757165057717815L;
377 frexp(m_l1norm / maxnorm, &m_squarings);
378 if (m_squarings < 0) m_squarings = 0;
379 MatrixType A = m_M / pow(Scalar(2), m_squarings);
384 eigen_assert(
false &&
"Bug in MatrixExponential");
385 #endif // LDBL_MANT_DIG
401 :
public ReturnByValue<MatrixExponentialReturnValue<Derived> >
403 typedef typename Derived::Index Index;
417 template <
typename ResultType>
418 inline void evalTo(ResultType& result)
const
420 const typename Derived::PlainObject srcEvaluated = m_src.eval();
425 Index rows()
const {
return m_src.rows(); }
426 Index cols()
const {
return m_src.cols(); }
429 const Derived& m_src;
435 template<
typename Derived>
436 struct traits<MatrixExponentialReturnValue<Derived> >
438 typedef typename Derived::PlainObject ReturnType;
442 template <
typename Derived>
443 const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp()
const
445 eigen_assert(rows() == cols());
446 return MatrixExponentialReturnValue<Derived>(derived());
451 #endif // EIGEN_MATRIX_EXPONENTIAL
void evalTo(ResultType &result) const
Compute the matrix exponential.
Definition: MatrixExponential.h:418
Class for computing the matrix exponential.
Definition: MatrixExponential.h:24
void compute(ResultType &result)
Computes the matrix exponential.
Definition: MatrixExponential.h:178
Stem functions corresponding to standard mathematical functions.
Definition: StemFunction.h:19
MatrixExponential(const MatrixType &M)
Constructor.
Definition: MatrixExponential.h:163
Proxy for the matrix exponential of some matrix (expression).
Definition: MatrixExponential.h:400
MatrixExponentialReturnValue(const Derived &src)
Constructor.
Definition: MatrixExponential.h:410