10 #ifndef EIGEN_MATRIX_FUNCTION
11 #define EIGEN_MATRIX_FUNCTION
13 #include "StemFunction.h"
14 #include "MatrixFunctionAtomic.h"
34 template <
typename MatrixType,
36 int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
59 template <
typename ResultType>
60 void compute(ResultType &result);
67 template <
typename MatrixType,
typename AtomicType>
72 typedef internal::traits<MatrixType> Traits;
73 typedef typename Traits::Scalar Scalar;
74 static const int Rows = Traits::RowsAtCompileTime;
75 static const int Cols = Traits::ColsAtCompileTime;
76 static const int Options = MatrixType::Options;
77 static const int MaxRows = Traits::MaxRowsAtCompileTime;
78 static const int MaxCols = Traits::MaxColsAtCompileTime;
80 typedef std::complex<Scalar> ComplexScalar;
81 typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
90 MatrixFunction(
const MatrixType& A, AtomicType& atomic) : m_A(A), m_atomic(atomic) { }
101 template <
typename ResultType>
102 void compute(ResultType& result)
104 ComplexMatrix CA = m_A.template cast<ComplexScalar>();
105 ComplexMatrix Cresult;
106 MatrixFunction<ComplexMatrix, AtomicType> mf(CA, m_atomic);
108 result = Cresult.real();
112 typename internal::nested<MatrixType>::type m_A;
113 AtomicType& m_atomic;
122 template <
typename MatrixType,
typename AtomicType>
123 class MatrixFunction<MatrixType, AtomicType, 1>
127 typedef internal::traits<MatrixType> Traits;
128 typedef typename MatrixType::Scalar Scalar;
129 typedef typename MatrixType::Index Index;
130 static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
131 static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
132 static const int Options = MatrixType::Options;
133 typedef typename NumTraits<Scalar>::Real RealScalar;
134 typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
135 typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType;
136 typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType;
137 typedef std::list<Scalar> Cluster;
138 typedef std::list<Cluster> ListOfClusters;
139 typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
144 template <
typename ResultType>
void compute(ResultType& result);
148 void computeSchurDecomposition();
149 void partitionEigenvalues();
150 typename ListOfClusters::iterator findCluster(Scalar key);
151 void computeClusterSize();
152 void computeBlockStart();
153 void constructPermutation();
155 void swapEntriesInSchur(Index index);
156 void computeBlockAtomic();
157 Block<MatrixType> block(MatrixType& A, Index i, Index j);
158 void computeOffDiagonal();
159 DynMatrixType solveTriangularSylvester(
const DynMatrixType& A,
const DynMatrixType& B,
const DynMatrixType& C);
161 typename internal::nested<MatrixType>::type m_A;
162 AtomicType& m_atomic;
166 ListOfClusters m_clusters;
167 DynamicIntVectorType m_eivalToCluster;
168 DynamicIntVectorType m_clusterSize;
169 DynamicIntVectorType m_blockStart;
170 IntVectorType m_permutation;
178 static const RealScalar separation() {
return static_cast<RealScalar
>(0.1); }
188 template <
typename MatrixType,
typename AtomicType>
190 : m_A(A), m_atomic(atomic)
200 template <
typename MatrixType,
typename AtomicType>
201 template <
typename ResultType>
204 computeSchurDecomposition();
205 partitionEigenvalues();
206 computeClusterSize();
208 constructPermutation();
210 computeBlockAtomic();
211 computeOffDiagonal();
212 result = m_U * (m_fT.template triangularView<Upper>() * m_U.adjoint());
216 template <
typename MatrixType,
typename AtomicType>
217 void MatrixFunction<MatrixType,AtomicType,1>::computeSchurDecomposition()
219 const ComplexSchur<MatrixType> schurOfA(m_A);
220 m_T = schurOfA.matrixT();
221 m_U = schurOfA.matrixU();
235 template <
typename MatrixType,
typename AtomicType>
236 void MatrixFunction<MatrixType,AtomicType,1>::partitionEigenvalues()
239 const Index rows = m_T.rows();
240 VectorType diag = m_T.diagonal();
242 for (Index i=0; i<rows; ++i) {
244 typename ListOfClusters::iterator qi = findCluster(diag(i));
245 if (qi == m_clusters.end()) {
247 l.push_back(diag(i));
248 m_clusters.push_back(l);
249 qi = m_clusters.end();
254 for (Index j=i+1; j<rows; ++j) {
255 if (abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) {
256 typename ListOfClusters::iterator qj = findCluster(diag(j));
257 if (qj == m_clusters.end()) {
258 qi->push_back(diag(j));
260 qi->insert(qi->end(), qj->begin(), qj->end());
261 m_clusters.erase(qj);
273 template <
typename MatrixType,
typename AtomicType>
274 typename MatrixFunction<MatrixType,AtomicType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,AtomicType,1>::findCluster(Scalar key)
276 typename Cluster::iterator j;
277 for (
typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) {
278 j = std::find(i->begin(), i->end(), key);
282 return m_clusters.end();
286 template <
typename MatrixType,
typename AtomicType>
287 void MatrixFunction<MatrixType,AtomicType,1>::computeClusterSize()
289 const Index rows = m_T.rows();
290 VectorType diag = m_T.diagonal();
291 const Index numClusters =
static_cast<Index
>(m_clusters.size());
293 m_clusterSize.setZero(numClusters);
294 m_eivalToCluster.resize(rows);
295 Index clusterIndex = 0;
296 for (
typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) {
297 for (Index i = 0; i < diag.rows(); ++i) {
298 if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) {
299 ++m_clusterSize[clusterIndex];
300 m_eivalToCluster[i] = clusterIndex;
308 template <
typename MatrixType,
typename AtomicType>
309 void MatrixFunction<MatrixType,AtomicType,1>::computeBlockStart()
311 m_blockStart.resize(m_clusterSize.rows());
313 for (Index i = 1; i < m_clusterSize.rows(); i++) {
314 m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1);
319 template <
typename MatrixType,
typename AtomicType>
320 void MatrixFunction<MatrixType,AtomicType,1>::constructPermutation()
322 DynamicIntVectorType indexNextEntry = m_blockStart;
323 m_permutation.resize(m_T.rows());
324 for (Index i = 0; i < m_T.rows(); i++) {
325 Index cluster = m_eivalToCluster[i];
326 m_permutation[i] = indexNextEntry[cluster];
327 ++indexNextEntry[cluster];
332 template <
typename MatrixType,
typename AtomicType>
333 void MatrixFunction<MatrixType,AtomicType,1>::permuteSchur()
335 IntVectorType p = m_permutation;
336 for (Index i = 0; i < p.rows() - 1; i++) {
338 for (j = i; j < p.rows(); j++) {
339 if (p(j) == i)
break;
341 eigen_assert(p(j) == i);
342 for (Index k = j-1; k >= i; k--) {
343 swapEntriesInSchur(k);
344 std::swap(p.coeffRef(k), p.coeffRef(k+1));
350 template <
typename MatrixType,
typename AtomicType>
351 void MatrixFunction<MatrixType,AtomicType,1>::swapEntriesInSchur(Index index)
353 JacobiRotation<Scalar> rotation;
354 rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
355 m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
356 m_T.applyOnTheRight(index, index+1, rotation);
357 m_U.applyOnTheRight(index, index+1, rotation);
366 template <
typename MatrixType,
typename AtomicType>
367 void MatrixFunction<MatrixType,AtomicType,1>::computeBlockAtomic()
369 m_fT.resize(m_T.rows(), m_T.cols());
371 for (Index i = 0; i < m_clusterSize.rows(); ++i) {
372 block(m_fT, i, i) = m_atomic.compute(block(m_T, i, i));
377 template <
typename MatrixType,
typename AtomicType>
378 Block<MatrixType> MatrixFunction<MatrixType,AtomicType,1>::block(MatrixType& A, Index i, Index j)
380 return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j));
390 template <
typename MatrixType,
typename AtomicType>
391 void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal()
393 for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) {
394 for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) {
396 DynMatrixType A = block(m_T, blockIndex, blockIndex);
397 DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex);
398 DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex);
399 C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex);
400 for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
401 C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex);
402 C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex);
404 block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C);
432 template <
typename MatrixType,
typename AtomicType>
433 typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<MatrixType,AtomicType,1>::solveTriangularSylvester(
434 const DynMatrixType& A,
435 const DynMatrixType& B,
436 const DynMatrixType& C)
438 eigen_assert(A.rows() == A.cols());
439 eigen_assert(A.isUpperTriangular());
440 eigen_assert(B.rows() == B.cols());
441 eigen_assert(B.isUpperTriangular());
442 eigen_assert(C.rows() == A.rows());
443 eigen_assert(C.cols() == B.rows());
447 DynMatrixType X(m, n);
449 for (Index i = m - 1; i >= 0; --i) {
450 for (Index j = 0; j < n; ++j) {
457 Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
466 Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
470 X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
489 :
public ReturnByValue<MatrixFunctionReturnValue<Derived> >
493 typedef typename Derived::Scalar Scalar;
494 typedef typename Derived::Index Index;
495 typedef typename internal::stem_function<Scalar>::type StemFunction;
510 template <
typename ResultType>
511 inline void evalTo(ResultType& result)
const
513 typedef typename Derived::PlainObject PlainObject;
514 typedef internal::traits<PlainObject> Traits;
515 static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
516 static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
517 static const int Options = PlainObject::Options;
518 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
519 typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
521 AtomicType atomic(m_f);
523 const PlainObject Aevaluated = m_A.eval();
528 Index rows()
const {
return m_A.rows(); }
529 Index cols()
const {
return m_A.cols(); }
532 typename internal::nested<Derived>::type m_A;
539 template<
typename Derived>
540 struct traits<MatrixFunctionReturnValue<Derived> >
542 typedef typename Derived::PlainObject ReturnType;
550 template <
typename Derived>
551 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(
typename internal::stem_function<
typename internal::traits<Derived>::Scalar>::type f)
const
553 eigen_assert(rows() == cols());
554 return MatrixFunctionReturnValue<Derived>(derived(), f);
557 template <
typename Derived>
558 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin()
const
560 eigen_assert(rows() == cols());
561 typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
562 return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
565 template <
typename Derived>
566 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos()
const
568 eigen_assert(rows() == cols());
569 typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
570 return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
573 template <
typename Derived>
574 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh()
const
576 eigen_assert(rows() == cols());
577 typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
578 return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
581 template <
typename Derived>
582 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh()
const
584 eigen_assert(rows() == cols());
585 typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
586 return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh);
591 #endif // EIGEN_MATRIX_FUNCTION
MatrixFunction(const MatrixType &A, AtomicType &atomic)
Constructor.
Class for computing matrix functions.
Definition: MatrixFunction.h:37
Proxy for the matrix function of some matrix (expression).
Definition: MatrixFunction.h:488
void compute(ResultType &result)
Compute the matrix function.
Helper class for computing matrix functions of atomic matrices.
Definition: MatrixFunctionAtomic.h:24
void evalTo(ResultType &result) const
Compute the matrix function.
Definition: MatrixFunction.h:511
MatrixFunctionReturnValue(const Derived &A, StemFunction f)
Constructor.
Definition: MatrixFunction.h:503