10 #ifndef EIGEN_SKYLINEINPLACELU_H
11 #define EIGEN_SKYLINEINPLACELU_H
24 template<
typename MatrixType>
27 typedef typename MatrixType::Scalar Scalar;
28 typedef typename MatrixType::Index Index;
30 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
37 : m_flags(
flags), m_status(0), m_lu(matrix) {
38 m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar > ();
39 m_lu.IsRowMajor ? computeRowMajor() :
compute();
80 void setOrderingMethod(
int m) {
84 int orderingMethod()
const {
90 void computeRowMajor();
98 template<
typename BDerived,
typename XDerived>
99 bool solve(
const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
100 const int transposed = 0)
const;
108 RealScalar m_precision;
110 mutable int m_status;
118 template<
typename MatrixType>
121 const size_t rows = m_lu.rows();
122 const size_t cols = m_lu.cols();
124 eigen_assert(rows == cols &&
"We do not (yet) support rectangular LU.");
125 eigen_assert(!m_lu.IsRowMajor &&
"LU decomposition does not work with rowMajor Storage");
127 for (Index row = 0; row < rows; row++) {
128 const double pivot = m_lu.coeffDiag(row);
131 const Index& col = row;
132 for (
typename MatrixType::InnerLowerIterator lIt(m_lu, col); lIt; ++lIt) {
133 lIt.valueRef() /= pivot;
137 typename MatrixType::InnerLowerIterator lIt(m_lu, col);
138 for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
139 typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
140 typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
141 const double coef = lIt.value();
143 uItPivot += (rrow - row - 1);
146 for (++uItPivot; uIt && uItPivot;) {
147 uIt.valueRef() -= uItPivot.value() * coef;
156 typename MatrixType::InnerLowerIterator lIt3(m_lu, col);
157 for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
158 typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
159 const double coef = lIt3.value();
162 for (Index i = 0; i < rrow - row - 1; i++) {
163 m_lu.coeffRefLower(rrow, row + i + 1) -= uItPivot.value() * coef;
169 typename MatrixType::InnerLowerIterator lIt2(m_lu, col);
170 for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
172 typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
173 typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
174 const double coef = lIt2.value();
176 uItPivot += (rrow - row - 1);
177 m_lu.coeffRefDiag(rrow) -= uItPivot.value() * coef;
183 template<
typename MatrixType>
185 const size_t rows = m_lu.rows();
186 const size_t cols = m_lu.cols();
188 eigen_assert(rows == cols &&
"We do not (yet) support rectangular LU.");
189 eigen_assert(m_lu.IsRowMajor &&
"You're trying to apply rowMajor decomposition on a ColMajor matrix !");
191 for (Index row = 0; row < rows; row++) {
192 typename MatrixType::InnerLowerIterator llIt(m_lu, row);
195 for (Index col = llIt.col(); col < row; col++) {
196 if (m_lu.coeffExistLower(row, col)) {
197 const double diag = m_lu.coeffDiag(col);
199 typename MatrixType::InnerLowerIterator lIt(m_lu, row);
200 typename MatrixType::InnerUpperIterator uIt(m_lu, col);
203 const Index offset = lIt.col() - uIt.row();
206 Index stop = offset > 0 ? col - lIt.col() : col - uIt.row();
210 Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
211 Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
214 Scalar newCoeff = m_lu.coeffLower(row, col) - rowVal.dot(colVal);
220 Scalar newCoeff = m_lu.coeffLower(row, col);
222 for (Index k = 0; k < stop; ++k) {
223 const Scalar tmp = newCoeff;
224 newCoeff = tmp - lIt.value() * uIt.value();
230 m_lu.coeffRefLower(row, col) = newCoeff / diag;
235 const Index col = row;
236 typename MatrixType::InnerUpperIterator uuIt(m_lu, col);
237 for (Index rrow = uuIt.row(); rrow < col; rrow++) {
239 typename MatrixType::InnerLowerIterator lIt(m_lu, rrow);
240 typename MatrixType::InnerUpperIterator uIt(m_lu, col);
241 const Index offset = lIt.col() - uIt.row();
243 Index stop = offset > 0 ? rrow - lIt.col() : rrow - uIt.row();
246 Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
247 Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
249 Scalar newCoeff = m_lu.coeffUpper(rrow, col) - rowVal.dot(colVal);
255 Scalar newCoeff = m_lu.coeffUpper(rrow, col);
256 for (Index k = 0; k < stop; ++k) {
257 const Scalar tmp = newCoeff;
258 newCoeff = tmp - lIt.value() * uIt.value();
264 m_lu.coeffRefUpper(rrow, col) = newCoeff;
269 typename MatrixType::InnerLowerIterator lIt(m_lu, row);
270 typename MatrixType::InnerUpperIterator uIt(m_lu, row);
272 const Index offset = lIt.col() - uIt.row();
275 Index stop = offset > 0 ? lIt.size() : uIt.size();
277 Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
278 Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
279 Scalar newCoeff = m_lu.coeffDiag(row) - rowVal.dot(colVal);
285 Scalar newCoeff = m_lu.coeffDiag(row);
286 for (Index k = 0; k < stop; ++k) {
287 const Scalar tmp = newCoeff;
288 newCoeff = tmp - lIt.value() * uIt.value();
293 m_lu.coeffRefDiag(row) = newCoeff;
305 template<
typename MatrixType>
306 template<
typename BDerived,
typename XDerived>
308 const size_t rows = m_lu.rows();
309 const size_t cols = m_lu.cols();
312 for (Index row = 0; row < rows; row++) {
313 x->coeffRef(row) = b.coeff(row);
314 Scalar newVal = x->coeff(row);
315 typename MatrixType::InnerLowerIterator lIt(m_lu, row);
317 Index col = lIt.col();
318 while (lIt.col() < row) {
320 newVal -= x->coeff(col++) * lIt.value();
324 x->coeffRef(row) = newVal;
328 for (Index col = rows - 1; col > 0; col--) {
329 x->coeffRef(col) = x->coeff(col) / m_lu.coeffDiag(col);
331 const Scalar x_col = x->coeff(col);
333 typename MatrixType::InnerUpperIterator uIt(m_lu, col);
338 x->coeffRef(uIt.row()) -= x_col * uIt.value();
345 x->coeffRef(0) = x->coeff(0) / m_lu.coeffDiag(0);
352 #endif // EIGEN_SKYLINELU_H
void compute()
Definition: SkylineInplaceLU.h:120
int flags() const
Definition: SkylineInplaceLU.h:76
Inplace LU decomposition of a skyline matrix and associated features.
Definition: SkylineInplaceLU.h:25
bool solve(const MatrixBase< BDerived > &b, MatrixBase< XDerived > *x, const int transposed=0) const
Definition: SkylineInplaceLU.h:307
bool succeeded(void) const
Definition: SkylineInplaceLU.h:103
void setFlags(int f)
Definition: SkylineInplaceLU.h:71
RealScalar precision() const
Definition: SkylineInplaceLU.h:59
SkylineInplaceLU(MatrixType &matrix, int flags=0)
Definition: SkylineInplaceLU.h:36
void setPrecision(RealScalar v)
Definition: SkylineInplaceLU.h:52