
Compiler
Copyright © 1997-2015 Ericsson AB. All Rights Reserved.

Compiler 5.0.4
March 31, 2015

Copyright © 1997-2015 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 31, 2015

Ericsson AB. All Rights Reserved.: Compiler | 1

2 | Ericsson AB. All Rights Reserved.: Compiler

1 Reference Manual

The Compiler application compiles Erlang code to byte-code. The highly compact byte-code is executed by the Erlang
emulator.

compile

Ericsson AB. All Rights Reserved.: Compiler | 3

compile
Erlang module

This module provides an interface to the standard Erlang compiler. It can generate either a new file which contains
the object code, or return a binary which can be loaded directly.

Exports

file(File)
Is the same as file(File, [verbose,report_errors,report_warnings]).

file(File, Options) -> CompRet
Types:

CompRet = ModRet | BinRet | ErrRet

ModRet = {ok,ModuleName} | {ok,ModuleName,Warnings}

BinRet = {ok,ModuleName,Binary} | {ok,ModuleName,Binary,Warnings}

ErrRet = error | {error,Errors,Warnings}

Compiles the code in the file File, which is an Erlang source code file without the .erl extension. Options
determine the behavior of the compiler.

Returns {ok,ModuleName} if successful, or error if there are errors. An object code file is created if the
compilation succeeds with no errors. It is considered to be an error if the module name in the source code is not the
same as the basename of the output file.

Here follows first all elements of Options that in some way control the behavior of the compiler.

basic_validation

This option is fast way to test whether a module will compile successfully (mainly useful for code generators that
want to verify the code they emit). No code will generated. If warnings are enabled, warnings generated by the
erl_lint module (such as warnings for unused variables and functions) will be returned too.

Use the strong_validation option to generate all warnings that the compiler would generate.

strong_validation

Similar to the basic_validation option, no code will be generated, but more compiler passes will be run
to ensure also warnings generated by the optimization passes are generated (such as clauses that will not match
or expressions that are guaranteed to fail with an exception at run-time).

binary

Causes the compiler to return the object code in a binary instead of creating an object file. If successful, the
compiler returns {ok,ModuleName,Binary}.

bin_opt_info

The compiler will emit informational warnings about binary matching optimizations (both successful and
unsuccessful). See the Efficiency Guide for further information.

compressed

The compiler will compress the generated object code, which can be useful for embedded systems.

compile

4 | Ericsson AB. All Rights Reserved.: Compiler

debug_info

Include debug information in the form of abstract code (see The Abstract Format in ERTS User's Guide) in the
compiled beam module. Tools such as Debugger, Xref and Cover require the debug information to be included.

Warning: Source code can be reconstructed from the debug information. Use encrypted debug information (see
below) to prevent this.

See beam_lib(3) for details.

{debug_info_key,KeyString}
{debug_info_key,{Mode,KeyString}}

Include debug information, but encrypt it, so that it cannot be accessed without supplying the key. (To give the
debug_info option as well is allowed, but is not necessary.) Using this option is a good way to always have
the debug information available during testing, yet protect the source code.

Mode is the type of crypto algorithm to be used for encrypting the debug information. The default type -- and
currently the only type -- is des3_cbc.

See beam_lib(3) for details.

encrypt_debug_info

Like the debug_info_key option above, except that the key will be read from an .erlang.crypt file.

See beam_lib(3) for details.

makedep

Produce a Makefile rule to track headers dependencies. No object file is produced.

By default, this rule is written to <File>.Pbeam. However, if the option binary is set, nothing is written
and the rule is returned in Binary.

For instance, if one has the following module:

-module(module).

-include_lib("eunit/include/eunit.hrl").
-include("header.hrl").

Here is the Makefile rule generated by this option:

module.beam: module.erl \
 /usr/local/lib/erlang/lib/eunit/include/eunit.hrl \
 header.hrl

{makedep_output, Output}

Write generated rule(s) to Output instead of the default <File>.Pbeam. Output can be a filename or
an io_device(). To write to stdout, use standard_io. However if binary is set, nothing is written to
Output and the result is returned to the caller with {ok, ModuleName, Binary}.

{makedep_target, Target}

Change the name of the rule emitted to Target.

compile

Ericsson AB. All Rights Reserved.: Compiler | 5

makedep_quote_target

Characters in Target special to make(1) are quoted.

makedep_add_missing

Consider missing headers as generated files and add them to the dependencies.

makedep_phony

Add a phony target for each dependency.

'P'

Produces a listing of the parsed code after preprocessing and parse transforms, in the file <File>.P. No object
file is produced.

'E'

Produces a listing of the code after all source code transformations have been performed, in the file <File>.E.
No object file is produced.

'S'

Produces a listing of the assembler code in the file <File>.S. No object file is produced.

report_errors/report_warnings

Causes errors/warnings to be printed as they occur.

report

This is a short form for both report_errors and report_warnings.

return_errors

If this flag is set, then {error,ErrorList,WarningList} is returned when there are errors.

return_warnings

If this flag is set, then an extra field containing WarningList is added to the tuples returned on success.

warnings_as_errors

Causes warnings to be treated as errors. This option is supported since R13B04.

return

This is a short form for both return_errors and return_warnings.

verbose

Causes more verbose information from the compiler describing what it is doing.

{source,FileName}

Sets the value of the source, as returned by module_info(compile).

{outdir,Dir}

Sets a new directory for the object code. The current directory is used for output, except when a directory has
been specified with this option.

export_all

Causes all functions in the module to be exported.

{i,Dir}

Add Dir to the list of directories to be searched when including a file. When encountering an -include or -
include_lib directive, the compiler searches for header files in the following directories:

compile

6 | Ericsson AB. All Rights Reserved.: Compiler

• ".", the current working directory of the file server;

• the base name of the compiled file;

• the directories specified using the i option. The directory specified last is searched first.

{d,Macro}
{d,Macro,Value}

Defines a macro Macro to have the value Value. Macro is of type atom, and Value can be any term. The
default Value is true.

{parse_transform,Module}

Causes the parse transformation function Module:parse_transform/2 to be applied to the parsed code
before the code is checked for errors.

from_asm

The input file is expected to be assembler code (default file suffix ".S"). Note that the format of assembler files
is not documented, and may change between releases.

from_core

The input file is expected to be core code (default file suffix ".core"). Note that the format of core files is not
documented, and may change between releases.

no_strict_record_tests

This option is not recommended.

By default, the generated code for the Record#record_tag.field operation verifies that the tuple Record
is of the correct size for the record and that the first element is the tag record_tag. Use this option to omit
the verification code.

no_error_module_mismatch

Normally the compiler verifies that the module name given in the source code is the same as the base name of
the output file and refuses to generate an output file if there is a mismatch. If you have a good reason (or other
reason) for having a module name unrelated to the name of the output file, this option disables that verification
(there will not even be a warning if there is a mismatch).

{no_auto_import,[{F,A}, ...]}

Makes the function F/A no longer being auto-imported from the module erlang, which resolves BIF name
clashes. This option has to be used to resolve name clashes with BIFs auto-imported before R14A, if one wants
to call the local function with the same name as an auto-imported BIF without module prefix.

Note:
From R14A and forward, the compiler resolves calls without module prefix to local or imported functions
before trying auto-imported BIFs. If the BIF is to be called, use the erlang module prefix in the call, not
{ no_auto_import,[{F,A}, ...]}

If this option is written in the source code, as a -compile directive, the syntax F/A can be used instead of
{F,A}. Example:

-compile({no_auto_import,[error/1]}).

compile

Ericsson AB. All Rights Reserved.: Compiler | 7

no_auto_import

Do not auto import any functions from the module erlang.

no_line_info

Omit line number information in order to produce a slightly smaller output file.

If warnings are turned on (the report_warnings option described above), the following options control what type
of warnings that will be generated. With the exception of {warn_format,Verbosity} all options below have
two forms; one warn_xxx form to turn on the warning and one nowarn_xxx form to turn off the warning. In the
description that follows, the form that is used to change the default value is listed.

{warn_format, Verbosity}

Causes warnings to be emitted for malformed format strings as arguments to io:format and similar functions.
Verbosity selects the amount of warnings: 0 = no warnings; 1 = warnings for invalid format strings and
incorrect number of arguments; 2 = warnings also when the validity could not be checked (for example, when the
format string argument is a variable). The default verbosity is 1. Verbosity 0 can also be selected by the option
nowarn_format.

nowarn_bif_clash

This option is removed, it will generate a fatal error if used.

Warning:
Beginning with R14A, the compiler no longer calls the auto-imported BIF if the name clashes with a local
or explicitly imported function and a call without explicit module name is issued. Instead the local or
imported function is called. Still accepting nowarn_bif_clash would makes a module calling functions
clashing with autoimported BIFs compile with both the old and new compilers, but with completely different
semantics, why the option was removed.

The use of this option has always been strongly discouraged. From OTP R14A and forward it's an error
to use it.

To resolve BIF clashes, use explicit module names or the {no_auto_import,[F/A]} compiler
directive.

{nowarn_bif_clash, FAs}

This option is removed, it will generate a fatal error if used.

Warning:
The use of this option has always been strongly discouraged. From OTP R14A and forward it's an error
to use it.

To resolve BIF clashes, use explicit module names or the {no_auto_import,[F/A]} compiler
directive.

warn_export_all

Causes a warning to be emitted if the export_all option has also been given.

compile

8 | Ericsson AB. All Rights Reserved.: Compiler

warn_export_vars

Causes warnings to be emitted for all implicitly exported variables referred to after the primitives where they
were first defined. No warnings for exported variables unless they are referred to in some pattern, which is the
default, can be selected by the option nowarn_export_vars.

warn_shadow_vars

Causes warnings to be emitted for "fresh" variables in functional objects or list comprehensions with the same
name as some already defined variable. The default is to warn for such variables. No warnings for shadowed
variables can be selected by the option nowarn_shadow_vars.

nowarn_unused_function

Turns off warnings for unused local functions. By default (warn_unused_function), warnings are emitted
for all local functions that are not called directly or indirectly by an exported function. The compiler does not
include unused local functions in the generated beam file, but the warning is still useful to keep the source code
cleaner.

{nowarn_unused_function, FAs}

Turns off warnings for unused local functions as nowarn_unused_function but only for the mentioned
local functions. FAs is a tuple {Name,Arity} or a list of such tuples.

nowarn_deprecated_function

Turns off warnings for calls to deprecated functions. By default (warn_deprecated_function), warnings
are emitted for every call to a function known by the compiler to be deprecated. Note that the compiler does not
know about the -deprecated() attribute but uses an assembled list of deprecated functions in Erlang/OTP.
To do a more general check the Xref tool can be used. See also xref(3) and the function xref:m/1 also accessible
through the c:xm/1 function.

{nowarn_deprecated_function, MFAs}

Turns off warnings for calls to deprecated functions as nowarn_deprecated_function but only for the
mentioned functions. MFAs is a tuple {Module,Name,Arity} or a list of such tuples.

nowarn_deprecated_type

Turns off warnings for uses of deprecated types. By default (warn_deprecated_type), warnings are emitted
for every use of a type known by the compiler to be deprecated.

warn_obsolete_guard

Causes warnings to be emitted for calls to old type testing BIFs such as pid/1 and list/1. See the Erlang
Reference Manual for a complete list of type testing BIFs and their old equivalents. No warnings for calls to old
type testing BIFs, which is the default, can be selected by the option nowarn_obsolete_guard.

warn_unused_import

Causes warnings to be emitted for unused imported functions. No warnings for unused imported functions, which
is the default, can be selected by the option nowarn_unused_import.

nowarn_unused_vars

By default, warnings are emitted for variables which are not used, with the exception of variables beginning with
an underscore ("Prolog style warnings"). Use this option to turn off this kind of warnings.

nowarn_unused_record

Turns off warnings for unused record types. By default (warn_unused_records), warnings are emitted for
unused locally defined record types.

compile

Ericsson AB. All Rights Reserved.: Compiler | 9

Another class of warnings is generated by the compiler during optimization and code generation. They warn about
patterns that will never match (such as a=b), guards that will always evaluate to false, and expressions that will always
fail (such as atom+42).

Note that the compiler does not warn for expressions that it does not attempt to optimize. For instance, the compiler
tries to evaluate 1/0, notices that it will cause an exception and emits a warning. On the other hand, the compiler is
silent about the similar expression X/0; because of the variable in it, the compiler does not even try to evaluate and
therefore it emits no warnings.

Currently, those warnings cannot be disabled (except by disabling all warnings).

Warning:
Obviously, the absence of warnings does not mean that there are no remaining errors in the code.

Note that all the options except the include path ({i,Dir}) can also be given in the file with a -
compile([Option,...]). attribute. The -compile() attribute is allowed after function definitions.

Note also that the {nowarn_unused_function, FAs}, {nowarn_bif_clash, FAs}, and
{nowarn_deprecated_function, MFAs} options are only recognized when given in files. They are not
affected by the warn_unused_function, warn_bif_clash, or warn_deprecated_function options.

For debugging of the compiler, or for pure curiosity, the intermediate code generated by each compiler pass can be
inspected. A complete list of the options to produce list files can be printed by typing compile:options() at the
Erlang shell prompt. The options will be printed in order that the passes are executed. If more than one listing option
is used, the one representing the earliest pass takes effect.

Unrecognized options are ignored.

Both WarningList and ErrorList have the following format:

[{FileName,[ErrorInfo]}].

ErrorInfo is described below. The file name has been included here as the compiler uses the Erlang pre-processor
epp, which allows the code to be included in other files. For this reason, it is important to know to which file an error
or warning line number refers.

forms(Forms)
Is the same as forms(File, [verbose,report_errors,report_warnings]).

forms(Forms, Options) -> CompRet
Types:

Forms = [Form]

CompRet = BinRet | ErrRet

BinRet = {ok,ModuleName,BinaryOrCode} |
{ok,ModuleName,BinaryOrCode,Warnings}

BinaryOrCode = binary() | term()

ErrRet = error | {error,Errors,Warnings}

compile

10 | Ericsson AB. All Rights Reserved.: Compiler

Analogous to file/1, but takes a list of forms (in the Erlang abstract format representation) as first argument. The
option binary is implicit; i.e., no object code file is produced. Options that would ordinarily produce a listing file,
such as 'E', will instead cause the internal format for that compiler pass (an Erlang term; usually not a binary) to be
returned instead of a binary.

format_error(ErrorDescriptor) -> chars()
Types:

ErrorDescriptor = errordesc()

Uses an ErrorDescriptor and returns a deep list of characters which describes the error. This function is usually
called implicitly when an ErrorInfo structure is processed. See below.

output_generated(Options) -> true | false
Types:

Options = [term()]

Determines whether the compiler would generate a beam file with the given options. true means that a beam file
would be generated; false means that the compiler would generate some listing file, return a binary, or merely check
the syntax of the source code.

noenv_file(File, Options) -> CompRet
Works exactly like file/2, except that the environment variable ERL_COMPILER_OPTIONS is not consulted.

noenv_forms(Forms, Options) -> CompRet
Works exactly like forms/2, except that the environment variable ERL_COMPILER_OPTIONS is not consulted.

noenv_output_generated(Options) -> true | false
Types:

Options = [term()]

Works exactly like output_generated/1, except that the environment variable ERL_COMPILER_OPTIONS is not
consulted.

Default compiler options
The (host operating system) environment variable ERL_COMPILER_OPTIONS can be used to give default compiler
options. Its value must be a valid Erlang term. If the value is a list, it will be used as is. If it is not a list, it will be
put into a list.

The list will be appended to any options given to file/2, forms/2, and output_generated/2. Use the alternative functions
noenv_file/2, noenv_forms/2, or noenv_output_generated/2 if you don't want the environment variable to be consulted
(for instance, if you are calling the compiler recursively from inside a parse transform).

Inlining
The compiler can do function inlining within an Erlang module. Inlining means that a call to a function is replaced
with the function body with the arguments replaced with the actual values. The semantics are preserved, except if
exceptions are generated in the inlined code. Exceptions will be reported as occurring in the function the body was
inlined into. Also, function_clause exceptions will be converted to similar case_clause exceptions.

When a function is inlined, the original function will be kept if it is exported (either by an explicit export or if the
export_all option was given) or if not all calls to the function were inlined.

compile

Ericsson AB. All Rights Reserved.: Compiler | 11

Inlining does not necessarily improve running time. For instance, inlining may increase Beam stack usage which will
probably be detrimental to performance for recursive functions.

Inlining is never default; it must be explicitly enabled with a compiler option or a -compile() attribute in the source
module.

To enable inlining, either use the inline option to let the compiler decide which functions to inline or {inline,
[{Name,Arity},...]} to have the compiler inline all calls to the given functions. If the option is given inside a
compile directive in an Erlang module, {Name,Arity} may be written as Name/Arity.

Example of explicit inlining:

-compile({inline,[pi/0]}).

pi() -> 3.1416.

Example of implicit inlining:

-compile(inline).

The {inline_size,Size} option controls how large functions that are allowed to be inlined. Default is 24, which
will keep the size of the inlined code roughly the same as the un-inlined version (only relatively small functions will
be inlined).

Example:

%% Aggressive inlining - will increase code size.
-compile(inline).
-compile({inline_size,100}).

Inlining of list functions
The compiler can also inline a variety of list manipulation functions from the stdlib's lists module.

This feature must be explicitly enabled with a compiler option or a -compile() attribute in the source module.

To enable inlining of list functions, use the inline_list_funcs option.

The following functions are inlined:

• lists:all/2

• lists:any/2

• lists:foreach/2

• lists:map/2

• lists:flatmap/2

• lists:filter/2

• lists:foldl/3

• lists:foldr/3

• lists:mapfoldl/3

compile

12 | Ericsson AB. All Rights Reserved.: Compiler

• lists:mapfoldr/3

Parse Transformations
Parse transformations are used when a programmer wants to use Erlang syntax but with different semantics. The
original Erlang code is then transformed into other Erlang code.

Error Information
The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It
has the following format:

{ErrorLine, Module, ErrorDescriptor}

ErrorLine will be the atom none if the error does not correspond to a specific line (e.g. if the source file does
not exist).

A string describing the error is obtained with the following call:

Module:format_error(ErrorDescriptor)

See Also
epp(3), erl_id_trans(3), erl_lint(3), beam_lib(3)

	Compiler
	Reference Manual
	compile
	file/1
	file/2
	forms/1
	forms/2
	format_error/1
	output_generated/1
	noenv_file/2
	noenv_forms/2
	noenv_output_generated/1

