
OSE
Copyright © 2014-2015 Ericsson AB. All Rights Reserved.

OSE 1.0.2
March 31, 2015

Copyright © 2014-2015 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 31, 2015

Ericsson AB. All Rights Reserved.: OSE | 1

1.1 Introduction

2 | Ericsson AB. All Rights Reserved.: OSE

1 OSE User's Guide

OSE.

1.1 Introduction
1.1.1 Features

1.1.2 Starting Erlang/OTP
Starting Erlang/OTP on OSE is not as simple as on Unix/Windows (yet). First of all you have to explicitly use the
beam (or beam.smp) executables found in erts-X.Y.Z/bin as the load module that you run. This in turn means that
you have to supply the raw beam arguments to the emulator when starting. Fortunately erl on Unix/Windows has a
undocumented flag called -emu_args_exit that can be used to figure out what the arguments to beam look like.
For example:

erl +Mut false +A 10 +S 4:4 +Muycs256 +P 2096 +Q 2096 -emu_args_exit
-Mut
false
-A
10
-S
4:4
-Muycs256
-P
2096
-Q
2096
--
-root
/usr/local/lib/erlang
-progname
erl
--
-home
/home/erlang
--

The arguments are printed on separate lines to make it possible to know what has to be quoted with ". Each line is
one quotable unit. So taking the arguments above you can supply them to pm_create or just execute directly on the
command line. For example:

rtose@acp3400> pm_install erlang /mst/erlang/erts-6.0/bin/beam.smp
rtose@acp3400> pm_create -c ARGV="-Mut false -A 10 -S 4:4 -Muycs256 -P 2096 -Q 2099 -- -root /mst/erlang -progname erl -- -home /mst/erlang --" erlang
pid: 0x110059
rtose@acp3400> pm_start 0x110059

Also note that since we are running erl to figure out the arguments on a separate machine the paths have to be updated.
In the example above /usr/local/lib/erlang was replaced by /mst/erlang/. The goal is to in future
releases not have to do the special argument handling but for now (OTP 17.0) you have to do it.

1.1 Introduction

Ericsson AB. All Rights Reserved.: OSE | 3

Note:
Because of a limitation in the way the OSE handles stdio when starting load modules using pm_install/create the
Erlang shell only reads every other command from stdin. However if you start Erlang using run_erl you do not
have this problem. So it is highly recommended that you start Erlang using run_erl.

1.1.3 run_erl and to_erl
In OSE run_erl and to_erl are combined into a single load module called run_erl_lm. Installing and starting the load
module will add two new shell commands called run_erl and to_erl. They work in exactly the same way as the unix
variants of run_erl and to_erl, except that the read and write pipes have to be placed under the /pipe vm. One additional
option also exists to run_erl on ose:

-block Name
The name of the install handle and block that will be created/used by installing and exectuting the first part of the
command. If nothing if given the basename of the load module will be used for this value. Example:

pm_install erlang /path/to/erlang/vm/beam.smp
run_erl -daemon -block erlang /pipe/ /mst/erlang_logs/ "beam.smp -A 1 -- -root /mst/erlang -- -home /mst --"

The same argument munching as when starting Erlang/OTP without run_erl has to be done. If -daemon is given then
all error printouts are sent to the ramlog. See also run_erl for more details.

Below is an example of how to get started with run_erl_lm.

rtose@acp3400> pm_install run_erl_lm /mst/erlang/erts-6.0/bin/run_erl_lm
rtose@acp3400> pm_create run_erl_lm
pid: 0x1c005d
rtose@acp3400> pm_start 0x1c005d
rtose@acp3400> mkdir /mst/erlang_log
rtose@acp3400> run_erl -daemon /pipe/ /mst/erlang_log/ "/mst/erlang/erts-6.0/bin/beam.smp -A 1 -- -root /mst/erlang -- -home /mst --"
rtose@acp3400> to_erl
Attaching to /pipe/erlang.pipe.1 (^C to exit)
os:type().
{ose,release}
2>
'to_erl' terminated.

Note that Ctrl-C is used instead of Ctrl-D to exit the to_erl shell.

1.1.4 epmd
In OSE epmd will not be started automatically so if you want to use Erlang distribution you have to manually start
epmd.

1.1.5 VM Process Priorities
It is possible to set the priorities you want for the OSE processes that thr emulator creates in the lmconf. An example
of how to do it can be found in the default lmconf file in $ERL_TOP/erts/emulator/sys/ose/beam.lmconf.

1.2 Interacting with Enea OSE

4 | Ericsson AB. All Rights Reserved.: OSE

1.2 Interacting with Enea OSE
1.2.1 Introduction
The main way which programs on Enea OSE interact is through the usage of message passing, much the same way as
Erlang processes communicate. There are two ways in which an Erlang programmer can interact with the signals sent
from other Enea OSE processes; either through the provided ose module, or by writing a custom linked-in driver.
This User's Guide describes and provides examples for both approaches.

1.2.2 Signals in Erlang
Erlang/OTP on OSE provides a erlang module called ose that can be used to interact with other OSE processes using
message passing. The api in the module is very similar to the native OSE api, so for details of how the functions work
please refer to the official OSE documenation. Below is an example usage of the API.

1> P1 = ose:open("p1").
#Port>0.344>
2> ose:hunt(P1,"p2").
{#Port>0.344>,1}
3> P2 = ose:open("p2").
#Port>0.355>
4> flush().
Shell got {mailbox_up,#Port>0.344>,{#Port>0.344>,1},852189}
ok
5> ose:listen(P1,[1234]).
ok
6> ose:send(P2,ose:get_id(P1),1234,>>"hello">>).
ok
7> flush().
Shell got {message,#Port>0.344>,{852189,1245316,1234,>>"hello">>}}
ok

1.2.3 Signals in a Linked-in driver
Writing Linked-in drivers for OSE is very similar to how it is done for Unix/Windows. It is only the way in which
the driver subscribes and consumed external events that is different. In Unix (and Windows) file descriptiors (and
Event Objects) are used to select on. On OSE we use signals to deliver the same functionality. There are two large
differences between a signal and an fd.

In OSE it is not possible for a signal number to be a unique identifier for a resource in the same way as an fd is. For
example; let's say we implement a driver that does an asynchronous hunt that uses signal number 1234 as the hunt_sig.
If we want to be able to have multiple hunt ports running at the same time we have to have someway of routing the
signal to the correct port. This is achieved by supplying a secondary id that can be retrieved through the meta-data
or payload of the signal, e.g:

ErlDrvEvent event = erl_drv_ose_event_alloc(1234,port,resolver);

The event you get back from erl_drv_ose_event_alloc can then be used by driver_select to subscribe to signals.
The first argument is just the signal number that we are interested in. The second is the id that we choose to use, in
this case the port id that we got in the start callback is used. The third argument is a function pointer to a function
that can be used to figure out the id from a given signal. The fourth argument can point to any additional data you
might want to associate with the event. There is a complete. You can examine the data contained in the event with
erl_drv_ose_event_fetch , eg:

1.2 Interacting with Enea OSE

Ericsson AB. All Rights Reserved.: OSE | 5

erl_drv_ose_event_fetch(event, &signal, &port, (void **)&extra);

example of what this could look like in the next section.

Note:
It is very important to issue the driver_select call before any of the signals you are interested in are sent. If
driver_select is called after the signal is sent, there is a high probability that it will be lost.

The other difference from unix is that in OSE the payload of the event (i.e. the signal data) is already received
when the ready_output/input callbacks are called. This means that you access the data of a signal by calling
erl_drv_ose_get_signal. Additionally multiple signals might be associated with the event, so you should call
erl_drv_ose_get_signal until NULL is returned.

1.2.4 Example Linked-in driver

#include "erl_driver.h"
#include "ose.h"

struct huntsig {
 SIGSELECT signo;
 ErlDrvPort port;
};

union SIGNAL {
 SIGSELECT signo;
 struct huntsig;
}

/* Here we have to get the id from the signal. In this case we use the
 port id since we have control over the data structure of the signal.
 It is however possible to use anything in here. The only restriction
 is that the same id has to be used for all signals of the same number.*/
ErlDrvOseEventId resolver(union SIGNAL *sig) {
 return (ErlDrvOseEventId)sig->huntsig.port;
}

static int drv_init(void) { return 0; };

static ErlDrvData drv_start(ErlDrvPort port, char *command) {
 return (ErlDrvData)port;
}

static ErlDrvSSizeT control(ErlDrvData driver_data, unsigned int cmd,
 char *buf, ErlDrvSizeT len,
 char **rbuf, ErlDrvSizeT rlen) {
 ErlDrvPort port = (ErlDrvPort)driver_data;

 /* An example of extra data to associate with the event */
 char *extra_data = driver_alloc(80);
 snprintf("extra_data, "Event, sig_no: 1234, and port: %d", port);

 /* Create a new event to select on */
 ErlDrvOseEvent evt = erl_drv_ose_event_alloc(1234,port,resolver, extra_data);

 /* Make sure to do the select call _BEFORE_ the signal arrives.
 The signal might get lost if the hunt call is done before the
 select. */
 driver_select(port,evt,ERL_DRV_READ|ERL_DRV_USE,1);

1.2 Interacting with Enea OSE

6 | Ericsson AB. All Rights Reserved.: OSE

 union SIGNAL *sig = alloc(sizeof(union SIGNAL),1234);
 sig->huntsig.port = port;
 hunt("testprocess",0,NULL,&sig);
 return 0;
}

static void ready_input(ErlDrvData driver_data, ErlDrvEvent evt) {
 char *extra_data;
 /* Get the first signal payload from the event */
 union SIGNAL *sig = erl_drv_ose_get_signal(evt);
 ErlDrvPort port = (ErlDrvPort)driver_data;
 while (sig != NULL) {
 if (sig->signo == 1234) {
 /* Print out the string we added as the extra parameter */
 erl_drv_ose_event_fetch(evt, NULL, NULL, (void **)&extra_data);
 printf("We've received: %s\n", extra_data);

 /* If it is our signal we send a message with the sender of the signal
 to the controlling erlang process */
 ErlDrvTermData reply[] = { ERL_DRV_UINT, (ErlDrvUInt)sender(&sig) };
 erl_drv_send_term(port,reply,sizeof(reply) / sizeof(reply[0]));
 }

 /* Cleanup the signal and deselect on the event.
 Note that the event itself has to be free'd in the stop_select
 callback. */
 free_buf(&sig);
 driver_select(port,evt,ERL_DRV_READ|ERL_DRV_USE,0);

 /* There could be more than one signal waiting in this event, so
 we have to loop until sig == NULL */
 sig = erl_drv_ose_get_signal(evt);
 }
}

static void stop_select(ErlDrvEvent event, void *reserved)
{
 /* Free the extra_data */
 erl_drv_ose_event_fetch(evt, NULL, NULL, (void **)&extra_data);
 driver_free(extra_data);

 /* Free the event itself */
 erl_drv_ose_event_free(event);
}

/**
 * Setup the driver entry for the Erlang runtime
 **/
ErlDrvEntry ose_signal_driver_entry = {
 .init = drv_init,
 .start = drv_start,
 .stop = drv_stop,
 .ready_input = ready_input,
 .driver_name = DRIVER_NAME,
 .control = control,
 .extended_marker = ERL_DRV_EXTENDED_MARKER,
 .major_version = ERL_DRV_EXTENDED_MAJOR_VERSION,
 .minor_version = ERL_DRV_EXTENDED_MINOR_VERSION,
 .driver_flags = ERL_DRV_FLAG_USE_PORT_LOCKING,
 .stop_select = stop_select
};

1.2 Interacting with Enea OSE

Ericsson AB. All Rights Reserved.: OSE | 7

2 Reference Manual

The Standard Erlang Libraries application, STDLIB, contains modules for manipulating lists, strings and files etc.

ose

8 | Ericsson AB. All Rights Reserved.: OSE

ose
Application

The OSE application contains modules and documentation that only applies when running Erlang/OTP on Enea OSE.

ose

Ericsson AB. All Rights Reserved.: OSE | 9

ose
Erlang module

Interface module for OSE messaging and process monitoring from Erlang

For each mailbox created through open/1 a OSE phantom process with that name is started. Since phantom processes
are used the memory footprint of each mailbox is quite small.

To receive messages you first have to subscribe to the specific message numbers that you are interested in with listen/2.
The messages will be sent to the Erlang process that created the mailbox.

DATA TYPES
attach_ref()

Reference from an attach request. This term will be included in the term returned when the attached mailbox
disappears.

hunt_ref()

Reference from a hunt request. This term will be included in a successful hunt response.

mailbox()

Mailbox handle. Implemented as an erlang port.

mailbox_id()

Mailbox ID, this is the same as the process id of an OSE process. An integer.

message_number() = 0..4294967295

OSE Signal number

Exports

attach(Port, Pid) -> Ref
Types:

Port = mailbox()

Pid = mailbox_id()

Ref = attach_ref()

Attach to an OSE process.

Will send {mailbox_down, Port, Ref, MboxId} to the calling process if the OSE process exits.

Returns a reference that can be used to cancel the attachment using detach/2.

raises: badarg | enomem

close(Port) -> ok
Types:

Port = mailbox()

Close a mailbox

This kills the OSE phantom process associated with this mailbox.

ose

10 | Ericsson AB. All Rights Reserved.: OSE

Will also consume any {'EXIT',Port,_} message from the port that comes due to the port closing when the
calling process traps exits.

raises: badarg

dehunt(Port, Ref) -> ok
Types:

Port = mailbox()

Ref = hunt_ref()

Stop hunting for OSE process.

If a message for this hunt has been sent but not received by the calling process, it is removed from the message queue.
Note that this only works if the same process that did the hunt does the dehunt.

raises: badarg

See also: hunt/2.

detach(Port, Ref) -> ok
Types:

Port = mailbox()

Ref = attach_ref()

Remove attachment to an OSE process.

If a message for this monitor has been sent but not received by the calling process, it is removed from the message
queue. Note that this only works of the same process that did the attach does the detach.

raises: badarg

See also: attach/2.

get_id(Port) -> Pid
Types:

Port = mailbox()

Pid = mailbox_id()

Get the mailbox id for the given port.

The mailbox id is the same as the OSE process id of the OSE phantom process that this mailbox represents.

raises: badarg

get_name(Port, Pid) -> Name | undefined
Types:

Port = mailbox()

Pid = mailbox_id()

Name = binary()

Get the mailbox name for the given mailbox id.

The mailbox name is the name of the OSE process with process id Pid.

This call will fail with badarg if the underlying system does not support getting the name from a process id.

raises: badarg

ose

Ericsson AB. All Rights Reserved.: OSE | 11

hunt(Port, HuntPath) -> Ref
Types:

Port = mailbox()

HuntPath = iodata()

Ref = hunt_ref()

Hunt for OSE process by name.

Will send {mailbox_up, Port, Ref, MboxId} to the calling process when the OSE process becomes
available.

Returns a reference term that can be used to cancel the hunt using dehunt/2.

raises: badarg

listen(Port, SigNos) -> ok
Types:

Port = mailbox()

SigNos = [message_number()]

Start listening for specified OSE signal numbers.

The mailbox will send {message,Port,{FromMboxId,ToMboxId,MsgNo,MsgData}} to the process that
created the mailbox when an OSE message with any of the specified SigNos arrives.

Repeated calls to listen will replace the current set of signal numbers to listen to. i.e

 1>ose:listen(MsgB,[1234,12345]).
 ok
 2> ose:listen(MsgB,[1234,123456]).
 ok.

The above will first listen for signals with numbers 1234 and 12345, and then replace that with only listening to 1234
and 123456.

With the current implementation it is not possible to listen to all signal numbers.

raises: badarg | enomem

open(Name) -> Port
Types:

Name = iodata()

Port = mailbox()

Create a mailbox with the given name and return a port that handles the mailbox.

An OSE phantom process with the given name will be created that will send any messages sent through this mailbox.
Any messages sent to the new OSE process will automatically be converted to an Erlang message and sent to the
Erlang process that calls this function. See listen/2 for details about the format of the message sent.

The caller gets linked to the created mailbox.

raises: badarg | system_limit

See also: listen/2.

ose

12 | Ericsson AB. All Rights Reserved.: OSE

send(Port, Pid, SigNo, SigData) -> ok
Types:

Port = mailbox()

Pid = mailbox_id()

SigNo = message_number()

SigData = iodata()

Send an OSE message.

The message is sent from the OSE process' own ID that is: get_id(Port).

raises: badarg

See also: send/5.

send(Port, Pid, SenderPid, SigNo, SigData) -> ok
Types:

Port = mailbox()

Pid = mailbox_id()

SenderPid = mailbox_id()

SigNo = message_number()

SigData = iodata()

Send an OSE message with different sender.

As send/4 but the sender will be SenderPid.

raises: badarg

See also: send/4.

ose_erl_driver

Ericsson AB. All Rights Reserved.: OSE | 13

ose_erl_driver
C Library

Writing Linked-in drivers that also work on Enea OSE is very similar for how you would do it for Unix. The difference
from Unix is that driver_select, ready_input and ready_output all work with signals instead of file descriptors. This
means that the driver_select is used to specify which type of signal should trigger calls to ready_input/ready_output.
The functions described below are available to driver programmers on Enea OSE to facilitate this.

DATA TYPES
union SIGNAL

See the Enea OSE SPI documentation for a description.
SIGSELECT

See the Enea OSE SPI documentation for a description.
ErlDrvEvent

The ErlDrvEvent is a handle to a signal number and id combination. It is passed to driver_select(3).
ErlDrvOseEventId

This is the id used to associate a specific signal to a certain driver instance.

Exports

union SIGNAL *erl_drv_ose_get_signal(ErlDrvEvent drv_event)
Fetch the next signal associated with drv_event. Signals will be returned in the order which they were received
and when no more signals are available NULL will be returned. Use this function in the ready_input/ready_output
callbacks to get signals.

ErlDrvEvent erl_drv_ose_event_alloc(SIGSELECT signo, ErlDrvOseEventId id,
ErlDrvOseEventId (*resolve_signal)(union SIGNAL* sig), void *extra)
Create a new ErlDrvEvent associated with signo, id and uses the resolve_signal function to extract the
id from a signal with signo. The extra parameter can be used for additional data. See Signals in a Linked-in
driver in the OSE User's Guide.

void erl_drv_ose_event_free(ErlDrvEvent drv_event)
Free a ErlDrvEvent. This should always be done in the stop_select callback when the event is no longer being used.

void erl_drv_ose_event_fetch(ErlDrvEvent drv_event, SIGSELECT *signo,
ErlDrvOseEventId *id, void **extra)
Write the signal number, id and any extra data associated with drv_event into *signo and *id respectively.
NULL can be also passed as signo or id in order to ignore that field.

SEE ALSO
driver_entry(3), erl_driver(3)

	OSE
	OSE User's Guide
	Introduction
	Features
	Starting Erlang/OTP
	run_erl and to_erl
	epmd
	VM Process Priorities

	Interacting with Enea OSE
	Introduction
	Signals in Erlang
	Signals in a Linked-in driver
	Example Linked-in driver

	Reference Manual
	ose
	ose
	attach/2
	close/1
	dehunt/2
	detach/2
	get_id/1
	get_name/2
	hunt/2
	listen/2
	open/1
	send/4
	send/5

	ose_erl_driver
	erl_drv_ose_get_signal()

	erl_drv_ose_event_alloc()

	erl_drv_ose_event_free()

	erl_drv_ose_event_fetch()

