ERLANG

SSH

Copyright © 2005-2017 Ericsson AB. All Rights Reserved.
SSH 4.6
September 25, 2017

Copyright © 2005-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 25, 2017

Ericsson AB. All Rights Reserved.: SSH | 1

1.1 Introduction

1 SSH User's Guide

The Erlang Secure Shell (SSH) application, ssh, implements the SSH Transport Layer Protocol and provides SSH
File Transfer Protocol (SFTP) clients and servers.

1.1 Introduction

SSH isa protocol for secure remote logon and other secure network services over an insecure network.

1.1.1 Scope and Purpose

SSH providesasingle, full-duplex, and byte-oriented connection between client and server. The protocol also provides
privacy, integrity, server authentication, and man-in-the-middle protection.

The ssh application is an implementation of the SSH Transport, Connection and Authentication Layer Protocolsin
Erlang. It provides the following:

» AP functions to write customized SSH clients and servers applications
e TheErlang shell available over SSH

* AnSFTPclient (ssh_sftp) and server (ssh_sftpd)

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of public keys.

1.1.3 SSH Protocol Overview
Conceptually, the SSH protocol can be partitioned into four layers:

SSH Client/Server Applications

Connection Protocol [Authentication Protocol

Transport Protocol

TCP/IP Stack

Figure 1.1: SSH Protocol Architecture

2 | Ericsson AB. All Rights Reserved.: SSH

1.1 Introduction

Transport Protocol

The SSH Transport Protocol is a secure, low-level transport. It provides strong encryption, cryptographic host
authentication, and integrity protection. A minimum of Message Authentication Code (MAC) and encryption
algorithms are supported. For details, see the ssh(3) manual pageinssh.

Authentication Protocol

The SSH Authentication Protocol is a general -purpose user authentication protocol run over the SSH Transport Layer
Protocol. The ssh application supports user authentication as follows:
e Using public key technology. RSA and DSA, X509-certificates are not supported.

» Using keyboard-interactive authentication. Thisis suitable for interactive authentication methods that do
not need any special software support on the client side. Instead, all authentication datais entered from the
keyboard.

« Using a pure password-based authentication scheme. Here, the plain text password is encrypted before sent over
the network.

Severa configuration options for authentication handling are available in ssh:connect/[3,4] and ssh:daemon/[2,3].

The public key handling can be customized by implementing the following behaviours from ssh:

e Module ssh_client_key api.
e Module ssh_server_key api.

Connection Protocol

The SSH Connection Protocol provides application-support services over the transport pipe, for example, channel
multiplexing, flow control, remote program execution, signal propagation, and connection forwarding. Functions for
handling the SSH Connection Protocol can be found in the module ssh_connection in ssh.

Channels

All terminal sessions, forwarded connections, and so on, are channels. Multiple channels are multiplexed into asingle
connection. All channels are flow-controlled. This means that no data is sent to a channel peer until a message is
received to indicate that window space is available. The initial window size specifies how many bytes of channel
data that can be sent to the channel peer without adjusting the window. Typically, an SSH client opens a channel,
sends data (commands), receives data (control information), and then closes the channel. The ssh_channel behaviour
handles generic parts of SSH channel management. This makesit easy to write your own SSH client/server processes
that use flow-control and thus opens for more focus on the application logic.

Channels come in the following three flavors:

e Subsystem - Named services that can be run as part of an SSH server, such as SFTP (ssh_sftpd), that is built
into the SSH daemon (server) by default, but it can be disabled. The Erlang ssh daemon can be configured to
run any Erlang- implemented SSH subsystem.

e Shdll - Interactive shell. By default the Erlang daemon runs the Erlang shell. The shell can be customized
by providing your own read-eval-print loop. Y ou can aso provide your own Command-Line Interface (CLI)
implementation, but that is much more work.

« Exec - One-time remote execution of commands. See function ssh_connection: exec/4 for more information.

1.1.4 Where to Find More Information
For detailed information about the SSH protocol, refer to the following Request for Comments(RFCs):

* RFC 4250 - Protocol Assigned Numbers
« RFC 4251 - Protocol Architecture
* RFC 4252 - Authentication Protocol

Ericsson AB. All Rights Reserved.: SSH | 3

href
href
href

1.2 Getting Started

* RFC 4253 - Transport Layer Protocol

* RFC 4254 - Connection Protocol

* RFC 4344 - Transport Layer Encryption Modes
 RFC 4716 - Public Key File Format

1.2 Getting Started

1.2.1 General Information

Thefollowing examples use the utility function ssh:start/0 to start all needed applications(cr ypt o, publ i ¢c_key,
andssh). All examplesareruninan Erlang shell, or in abash shell, using openssh toillustrate how the s s h application
can be used. The examples are run as the user ot pt est on alocal network where the user is authorized to log in
over ssh to the host tarlop.

If nothing else is stated, it is presumed that the ot pt est user has an entry in the authorized keys file of tarlop
(allowed tolog in over ssh without entering a password). Also, tarlop isaknown host in the known_host s file of
the user ot pt est . This means that host-verification can be done without user-interaction.

1.2.2 Using the Erlang ssh Terminal Client

Theuser ot pt est , which has bash asdefault shell, usesthessh: shel | / 1 client to connect to the openssh daemon
running on a host called tarlop:

1> ssh:start().

ok

2> {ok, S} = ssh:shell("tarlop").
otptest@tarlop:> pwd
/home/otptest

otptest@tarlop:> exit

logout

3>

1.2.3 Running an Erlang ssh Daemon

Thesyst em di r option must be a directory containing a host key file and it defaultsto / et ¢/ ssh. For details,
see Section Configuration Filesin ssh(6).

Note:
Normally, the/ et ¢/ ssh directory is only readable by root.

Theoptionuser _di r defaultsto directory users ~/. ssh.
Step 1. To run the example without root privileges, generate new keys and host keys:

$bash> ssh-keygen -t rsa -f /tmp/ssh daemon/ssh host rsa key
[...]

$bash> ssh-keygen -t rsa -f /tmp/otptest user/.ssh/id rsa
[...]

4 | Ericsson AB. All Rights Reserved.: SSH

href
href
href
href

1.2 Getting Started

Step 2. Create the file / t np/ ot pt est _user /. ssh/ aut hori zed_keys and add the content of /t np/
ot ptest _user/.ssh/id_rsa. pub.

Step 3. Start the Erlang ssh daemon;

1> ssh:start().
ok
2> {ok, Sshd} = ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"}1).
{ok,<0.54.0>}
3>

Step 4. Use the openssh client from a shell to connect to the Erlang ssh daemon:

$bash> ssh tarlop -p 8989 -i /tmp/otptest user/.ssh/id rsa\
-0 UserKnownHostsFile=/tmp/otptest user/.ssh/known hosts
The authenticity of host 'tarlop' can't be established.
RSA key fingerprint is 14:81:80:50:b1:1f:57:dd:93:a8:2d:2f:dd:90:ae:a8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'tarlop' (RSA) to the list of known hosts.
Eshell V5.10 (abort with ~G)
1>

There are two ways of shutting down an ssh daemon, see Step 5a and Step 5b.

Step 5a. Shut down the Erlang ssh daemon so that it stops the listener but leaves existing connections, started by
the listener, operational:

3> ssh:stop listener(Sshd).
ok
4>

Step 5b. Shut down the Erlang ssh daemon so that it stops the listener and all connections started by the listener:

3> ssh:stop _daemon(Sshd)
ok
4>

1.2.4 One-Time Execution

In the following example, the Erlang shell is the client process that receives the channel replies.

Ericsson AB. All Rights Reserved.: SSH | 5

1.2 Getting Started

Note:

The number of received messages in this example depends on which OS and which shell that is used on the
machine running the ssh daemon. See also ssh_connection: exec/4.

Do a one-time execution of aremote command over ssh:

1> ssh:start().

ok

2> {ok, ConnectionRef} = ssh:connect("tarlop", 22, [1).
{0k, <0.57.0>}

3>{ok, Channelld} = ssh connection:session channel(ConnectionRef, infinity).
{ok, 0}

4> success = ssh connection:exec(ConnectionRef, Channelld, "pwd", infinity).
5> flush().

Shell got {ssh cm,<0.57.0>,{data,0,0,<<"/home/otptest\n">>}}
Shell got {ssh cm,<0.57.0>,{eof,0}}

Shell got {ssh cm,<0.57.0>,{exit status,0,0}}

Shell got {ssh cm,<0.57.0>,{closed,0}}

ok

0>

Notice that only the channel is closed. The connection is still up and can handle other channels:

6> {ok, NewChannellId} = ssh connection:session_channel(ConnectionRef, infinity).
{ok, 1}

1.2.5 SFTP Server
Start the Erlang ssh daemon with the SFTP subsystem:

1> ssh:start().
ok
2> ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"},
{subsystems, [ssh sftpd:subsystem spec([{cwd, "/tmp/sftp/example"}])
131).
{ok,<0.54.0>}
3>

Run the OpenSSH SFTP client:

$bash> sftp -oPort=8989 -o IdentityFile=/tmp/otptest user/.ssh/id rsa\
-0 UserKnownHostsFile=/tmp/otptest user/.ssh/known hosts tarlop

Connecting to tarlop...

sftp> pwd

Remote working directory: /tmp/sftp/example

sftp>

6 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

1.2.6 SFTP Client
Fetch afile with the Erlang SFTP client:

1> ssh:start().

ok

2> {ok, ChannelPid, Connection} = ssh sftp:start channel("tarlop", []).
{o0k,<0.57.0>,<0.51.0>}

3> ssh sftp:read file(ChannelPid, "/home/otptest/test.txt").
{ok,<<"This is a test file\n">>}

1.2.7 SFTP Client with TAR Compression and Encryption

Example of writing and then reading atar file follows:

{ok,HandleWrite} = ssh sftp:open tar(ChannelPid, ?tar file name, [write]),

ok = erl tar:add(HandleWrite,),

ok = erl tar:add(HandleWrite,),

ok = erl tar:add(HandleWrite,),

ok = erl tar:close(HandleWrite),

%% And for reading

{ok,HandleRead} = ssh sftp:open tar(ChannelPid, ?tar file name, [read]),
{ok,NameValueList} = erl tar:extract(HandleRead, [memory]),

ok = erl tar:close(HandleRead),

The previous write and read example can be extended with encryption and decryption as follows:

%% First three parameters depending on which crypto type we select:
Key = <<"This is a 256 bit key. abcdefghi">>,

Ivec® = crypto:strong rand bytes(16),

DataSize = 1024, % DataSize rem 16 = 0 for aes cbc

%% Initialization of the CryptoState, in this case it is the Ivector.
InitFun = fun() -> {ok, IvecO, DataSize} end,

%% How to encrypt:
EncryptFun =
fun(PlainBin,Ivec) ->
EncryptedBin = crypto:block encrypt(aes cbc256, Key, Ivec, PlainBin),
{ok, EncryptedBin, crypto:next iv(aes cbc,EncryptedBin)}
end,

%% What to do with the very last block:
CloseFun =
fun(PlainBin, Ivec) ->
EncryptedBin = crypto:block encrypt(aes cbc256, Key, Ivec,
pad(16,PlainBin) %% Last chunk
),
{ok, EncryptedBin}
end,

Ericsson AB. All Rights Reserved.: SSH | 7

1.2 Getting Started

Cw = {InitFun,EncryptFun,CloseFun},
{ok,HandleWrite} = ssh sftp:open tar(ChannelPid, ?tar file name, [write,{crypto,Cw}]),
ok = erl tar:add(HandleWrite,),

ok erl tar:add(HandleWrite,),
ok = erl tar:add(HandleWrite,),
ok = erl tar:close(HandleWrite),

%% And for decryption (in this crypto example we could use the same InitFun
%% as for encryption):
DecryptFun =
fun(EncryptedBin, Ivec) ->
PlainBin = crypto:block decrypt(aes cbc256, Key, Ivec, EncryptedBin),
{ok, PlainBin, crypto:next iv(aes cbc,EncryptedBin)}
end,

Cr = {InitFun,DecryptFun},

{ok,HandleRead} = ssh sftp:open tar(ChannelPid, ?tar file name, [read,{crypto,Cw}]),
{ok,NameValueList} = erl tar:extract(HandleRead, [memory]),

ok = erl tar:close(HandleRead),

1.2.8 Creating a Subsystem

A small ssh subsystem that echoes N bytes can be implemented as shown in the following example:

-module(ssh echo server).
-behaviour(ssh _daemon channel).
-record(state, {
n,
id,
cm
3.
-export([init/1, handle msg/2, handle ssh msg/2, terminate/2]).

init([N]) ->
{ok, #state{n = N}}.

handle msg({ssh channel up, Channelld, ConnectionManager}, State) ->
{ok, State#state{id = Channelld,
cm = ConnectionManager}}.

handle ssh msg({ssh cm, CM, {data, Channelld, 0, Data}}, #state{n = N} = State) ->
M =N - size(Data),
case M > 0 of
true ->
ssh _connection:send(CM, Channelld, Data),
{ok, State#state{n = M}};
false ->
<<SendData:N/binary, /binary>> = Data,
ssh _connection:send(CM, Channelld, SendData),
ssh _connection:send eof(CM, Channelld),
{stop, Channelld, State}
end;
handle ssh msg({ssh cm, ConnectionManager,
{data, Channelld, 1, Data}}, State) ->
error _logger:format(standard error, " ~p~n", [binary to list(Data)l),
{ok, State};

handle ssh msg({ssh cm, ConnectionManager, {eof, Channelld}}, State) ->
{ok, State};

8 | Ericsson AB. All Rights Reserved.: SSH

1.3 Configuring algorithms in SSH

handle ssh msg({ssh cm, , {signal, , }}, State) ->
%% Ignore signals according to RFC 4254 section 6.9.
{ok, State};
handle ssh msg({ssh cm, , {exit signal, Channelld, , Error, }},
State) ->

{stop, Channelld, State};

handle ssh msg({ssh cm, , {exit status, Channelld, Status}}, State) ->
{stop, Channelld, State}.

terminate(Reason, State) ->
ok.

The subsystem can be run on the host tarlop with the generated keys, as described in Section Running an Erlang
ssh Daemon:

1> ssh:start().
ok
2> ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"}
{subsystems, [{"echo n", {ssh echo server, [10]}}1}1).
{ok,<0.54.0>}
3>

1> ssh:start().

ok

2>{ok, ConnectionRef} = ssh:connect("tarlop", 8989, [{user dir, "/tmp/otptest user/.ssh"}]).
{ok,<0.57.0>}

3>{ok, ChannelId} = ssh _connection:session channel(ConnectionRef, infinity).

4> success = ssh_connection:subsystem(ConnectionRef, Channelld, "echo n", infinity).

5> ok = ssh connection:send(ConnectionRef, Channelld, "0123456789", infinity).

6> flush().

{ssh msg, <0.57.0>, {data, 0, 1, "0123456789"}}

{ssh _msg, <0.57.0>, {eof, 0}}

{ssh msg, <0.57.0>, {closed, 0}}

7> {error, closed} = ssh connection:send(ConnectionRef, Channelld, "10", infinity).

Seedso ssh_channe (3).

1.3 Configuring algorithms in SSH
1.3.1 Introduction

To fully understand how to configure the algorithms, it is essential to have a basic understanding of the SSH protocol
and how OTP SSH app handles the corresponding items

Thefirst subsection will give ashort background of the SSH protocol whilelater sections describesthe implementation
and provides some examples

Ericsson AB. All Rights Reserved.: SSH | 9

1.3 Configuring algorithms in SSH

Basics of the ssh protocol's algorithms handling

SSH uses different sets of algorithms in different phases of a session. Which algorithms to use is negotiated by the
client and the server at the beginning of asession. See RFC 4253, "The Secure Shell (SSH) Transport Layer Protocol”
for details.

The negotiation is simple: both peers sends their list of supported alghorithms to the other part. The first algorithm
on the client's list that also in on the server's list is selected. So it is the client's orderering of the list that gives the
priority for the algorithms.

There are five lists exchanged in the connection setup. Three of them are also divided in two directions, to and from
the server.

Thelists are (named as in the SSH application's options):
kex
Key exchange.

An agorithm is selected for computing a secret encryption key. Among examples are: the old nowadays
week ' di ffi e-hel | man- gr oup- exchange- shal' and the very strong and modern ' ecdh- sha2-
ni st p512'.

public_key
Server host key

The asymetric encryption algorithm used in the server's private-public host key pair. Examplesinclude the well-
known RSA ' ssh-rsa' and dliptic curve' ecdsa- sha2-ni st p521'.

ci pher

Symetric cipher algorithm used for the payload encryption. This agorithm will use the key calculated in the kex
phase (together with other info) to genereate the actual key used. Examples are tripple-DES ' 3des- cbc' and
one of many AESvariants' aes192-ctr' .

Thislist isactualy two - one for each direction server-to-client and client-to-server. Thereforeit is possible but
rare to have different algorithms in the two directions in one connection.

nmec
M essage authentication code

"Check sum" of each message sent between the peers. Examplesare SHA ' hnac- shal' and SHA2' hmac-
sha2-512".

Thislist isalso divided into two for the both directions

conpr essi on
If and how to compress the message. Examples are none, that is, no compression and zl i b.
Thislist isalso divided into two for the both directions

The SSH app's mechanism
The set of algorithms that the SSH app uses by default depends on the algoritms supported by the:

* Crypto app,
* Thecryptolib OTPislinked with, usally the one the OS uses, probably OpenSSL,
e andfinaly what the SSH app implements

Dueto this, it impossible to list in documentation what algorithms that are available in a certain installation.
There isan important command to list the actual algorithms and their ordering: ssh:default_algorithms/O.

10 | Ericsson AB. All Rights Reserved.: SSH

href

1.3 Configuring algorithms in SSH

0> ssh:default algorithms().

[{kex, ['ecdh-sha2-nistp384', 'ecdh-sha2-nistp521"',
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512',
'diffie-hellman-groupl8-sha512',
'diffie-hellman-groupl4-sha256',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal']},

{public_key,['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521"',
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},
{cipher, [{client2server, ['aes256-gcm@openssh.com',
'aes256-ctr', 'aesl92-ctr', 'aes128-gcm@openssh.com',
'aesl28-ctr', 'aesl28-cbc', '3des-cbc']},
{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',
'aesl28-cbc', '3des-cbc'1}1},
{mac, [{client2server, ['hmac-sha2-256"', 'hmac-sha2-512"',
"hmac-shal'l},
{server2client, ['hmac-sha2-256"', 'hmac-sha2-512",
'hmac-shal'l}1},
{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},
{server2client, [none, 'zlib@openssh.com',zlib]}]}]

To change the algorithm list, there are two options which can be used in ssh:connect/2,3,4 and ssh:daemon/2,3. The
options could of course be used in all other functions that initiates connections.

The options are pr ef erred_al gori t hns and nodi fy_al gori t hns. The first one replaces the default set,
while the latter modifies the default set.

1.3.2 Replacing the default set: preferred _algorithms
See the Reference Manual for details
Here follows a series of examples ranging from simple to more complex.

To forsee the effect of an option there is an experimental function ssh: chk_al gos_opts(Opts). It
mangles the optionspr ef er r ed_al gori t hns and nodi fy_al gori t hns inthe sameway asssh: daneon,
ssh: connect and their friends does.

Example 1
Replace the kex agorithms list with the single algorithm ' di f fi e- hel | man- gr oup14- sha256' :

1> ssh:chk algos opts(
[{preferred algorithms,
[{kex, ['diffie-hellman-groupl4-sha256']}
]
b

1).
[{kex,['diffie-hellman-groupl4-sha256']},
{public_key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521',
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},
{cipher, [{client2server, ['aes256-gcm@openssh.com',
'aes256-ctr', 'aesl92-ctr', 'aes128-gcm@openssh.com',
'aesl28-ctr', 'aesl28-cbc', '3des-cbc']},
{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',

Ericsson AB. All Rights Reserved.: SSH | 11

1.3 Configuring algorithms in SSH

'aesl28-cbc', '3des-cbc'1}1},
{mac, [{client2server, ['hmac-sha2-256"', 'hmac-sha2-512"',
'hmac-shal'l},
{server2client, ['hmac-sha2-256"', 'hmac-sha2-512"',
'hmac-shal']l}1},
{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},
{server2client, [none, 'zlib@openssh.com',zlib]}]}]

Note that the unmentioned lists (publ i c_key, ci pher, nac and conpr essi on) are un-changed.

Example 2

In the liststhat are divided in two for the two directions (c.f ci pher) itis possibleto change both directions at once:

2> ssh:chk algos opts(
[{preferred algorithms,
[{cipher, ['aesl128-ctr']}
|

}
1).

[{kex, ['ecdh-sha2-nistp384', 'ecdh-sha2-nistp521",
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256"',
'diffie-hellman-groupl6-sha512',
'diffie-hellman-groupl8-sha512',
'diffie-hellman-groupl4-sha256',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal']},

{public key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521',
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},

{cipher, [{client2server,['aesl128-ctr']},

{server2client,['aes128-ctr']}1},
{mac, [{client2server, ['hmac-sha2-256"', 'hmac-sha2-512"',
"hmac-shal'l},
{server2client, ['hmac-sha2-256"', 'hmac-sha2-512"',
'hmac-shal']}1},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}]}1

Note that both listsin ci pher has been changed to the provided value (' aes128-ctr').

Example 3

Intheliststhat aredivided intwo for thetwo directions(c.f ci pher) itispossibleto change only one of the directions:

3> ssh:chk algos opts(
[{preferred algorithms,
[{cipher, [{client2server,['aes1l28-ctr']}1}
1
}
1.

[{kex, ['ecdh-sha2-nistp384', 'ecdh-sha2-nistp521",
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256"',
'diffie-hellman-groupl6-sha512',
'diffie-hellman-groupl8-sha512',
'diffie-hellman-groupl4-sha256',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal']},

12 | Ericsson AB. All Rights Reserved.: SSH

1.3 Configuring algorithms in SSH

{public_key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521',
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},

{cipher, [{client2server,['aes128-ctr']},

{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl192-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',
'aesl28-cbc', '3des-cbc'1}1},

{mac, [{client2server, ['hmac-sha2-256"', 'hmac-sha2-512",

"hmac-shal'l},
{server2client, ['hmac-sha2-256"', 'hmac-sha2-512",
'hmac-shal']l}1},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}]}]

Example 4

Itisof course possible to change more than one list:

4> ssh:chk algos opts(
[{preferred algorithms,
[{cipher,['aes128-ctr']},
{mac, ['hmac-sha2-256"'1},
{kex, ['ecdh-sha2-nistp384'1},
{public key,['ssh-rsa']},
{compression, [{server2client, [nonel},
{client2server, [zlib]}]}
1
}
1).
[{kex,['ecdh-sha2-nistp384'1},
{public key,['ssh-rsa'l},
{cipher, [{client2server,['aesl128-ctr']},
{server2client,['aes128-ctr']}]},
{mac, [{client2server, ['hmac-sha2-256'1},
{server2client, ['hmac-sha2-256'1}1},
{compression, [{client2server, [zlib]},
{server2client, [none]}]}]

Note that the ordering of the tuplesin the lists didn't matter.

1.3.3 Modifying the default set: modify_algorithms

A situation where it might be useful to add an algorithm is when one need to use a supported but disabled one. An
exampleisthe' di f fi e- hel | man- gr oupl-shal' which nowadaysisvery unsecure and therefore disabled. It
is however still supported and might be used.

The option pr ef erred_al gori t hns may be complicated to use for adding or removing single algorithms. First
one hasto list themwith ssh: def aul t _al gori t hns() and then do changesin thelists.

To facilitate addition or removal of algorithms the option modi fy_al gori t hns is available. See the Reference
Manual for details.

The option takes a list with instructions to append, prepend or remove algorithms:

{modify algorithms, [{append, ...},
{prepend, ...},

Ericsson AB. All Rights Reserved.: SSH | 13

1.3 Configuring algorithms in SSH

{rm, ...}
1}

Eachof the. .. canbeaal gs_I| i st () astheargument tothepr ef erred_al gori t hrs option.

Example 5
Asanexamplelet'sadd the Diffie-Hellman Groupl firstinthekex list. It issupported according to Supported algoritms.

5> ssh:chk algos opts(
[{modify algorithms,
[{prepend,
[{kex,['diffie-hellman-groupl-shal']}]

]
}

1).

[{kex, ['diffie-hellman-groupl-shal', 'ecdh-sha2-nistp384',
'ecdh-sha2-nistp521', 'ecdh-sha2-nistp256"',
'diffie-hellman-group-exchange-sha256"',
'diffie-hellman-groupl6-sha512',
'diffie-hellman-groupl8-sha512',
'diffie-hellman-groupl4-sha256',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal']},

{public key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521',
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},

{cipher, [{client2server, ['aes256-gcm@openssh.com',

'aes256-ctr', 'aesl92-ctr', 'aes128-gcm@openssh.com',
'aesl28-ctr', 'aesl28-cbc', '3des-chc']},

{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl128-ctr',
'aesl28-cbc', '3des-cbc'1}1},

{mac, [{client2server, ['hmac-sha2-256"', 'hmac-sha2-512"',

"hmac-shal'l},
{server2client, ['hmac-sha2-256"', 'hmac-sha2-512"',
'hmac-shal']}1},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}]}1

And the result shows that the Diffie-Hellman Groupl is added at the head of the kex list

Example 6

In this example, we in put the 'diffie-hellman-groupl-shal’ first and also move the ' ecdh- sha2- ni st p521' to
theend in the kex ligt, that is, append it.

6> ssh:chk algos opts(
[{modify algorithms,
[{prepend,
[{kex, ['diffie-hellman-groupl-shal']}
]}I
{append,
[{kex, ['ecdh-sha2-nistp521']}
1}

14 | Ericsson AB. All Rights Reserved.: SSH

1.3 Configuring algorithms in SSH

}

1.

[{kex,['diffie-hellman-groupl-shal', 'ecdh-sha2-nistp384"',
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512',
'diffie-hellman-groupl8-sha512',
'diffie-hellman-groupl4-sha256',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal', 'ecdh-sha2-nistp521']},

{public_key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521',

Note that the appended a gorithm is removed from its original place and then appended to the same list.

Example 7

In this example, we use both options (pr ef erred_al gori t hns and nodi fy_al gori t hns) and aso try to
prepend an unsupported algorithm. Any unsupported algorithm is quietly removed.

7> ssh:chk algos opts(
[{preferred algorithms,
[{cipher,['aes128-ctr'l]},
{mac, ['hmac-sha2-256"'1]1},
{kex, ['ecdh-sha2-nistp384']},
{public key,['ssh-rsa'l},
{compression, [{server2client, [nonel},
{client2server, [zlib]}]}
]

Yo
{modify algorithms,
[{prepend,
[{kex, ['some unsupported algorithm']}
1},
{append,
[{kex, ['diffie-hellman-groupl-shal']}
1}
|
}

1).
[{kex, ['ecdh-sha2-nistp384"', 'diffie-hellman-groupl-shal']},
{public_key, ['ssh-rsa']},
{cipher, [{client2server, ['aes128-ctr']},
{server2client,['aes128-ctr']}1},
{mac, [{client2server,['hmac-sha2-256"'1]},
{server2client, ['hmac-sha2-256"']1}1},
{compression, [{client2server, [zlib]},
{server2client, [none]}]}]

It is of course questionable why anyone would like to use the both these options together, but it is possible if an
unforeseen need should arise.

Ericsson AB. All Rights Reserved.: SSH | 15

1.3 Configuring algorithms in SSH

2 Reference Manual

The ssh application is an Erlang implementation of the Secure Shell Protocol (SSH) as defined by RFC 4250 - 4254.

16 | Ericsson AB. All Rights Reserved.: SSH

SSH

SSH

Application

Thessh applicationisanimplementation of the SSH protocol in Erlang. ssh offers API functionsto write customized
SSH clients and servers as well as making the Erlang shell available over SSH. An SFTP client, ssh_sft p, and
server, ssh_sft pd, areaso included.

DEPENDENCIES

The ssh application uses the applications public_key and crypto to handle public keys and encryption. Hence, these
applications must be loaded for the ssh application to work. In an embedded environment this means that they must
be started with application: start/1,2 before the ssh application is started.

CONFIGURATION

Thessh application does not have an application- specific configurationfile, as described in application(3). However,
by default it use the following configuration files from OpenSSH:

e known_host s

e authorized_keys

 authorized_keys2

e id_dsa

e id_rsa

e id_ecdsa

 ssh_host _dsa_key

e ssh_host _rsa_key

e ssh_host _ecdsa_key

By default, ssh looks for i d_dsa,id rsa,id ecdsa key, known_hosts, and aut hori zed_keys in

~/.ssh, and for the host key filesin / et ¢/ ssh. These locations can be changed by the options user _di r and
systemdir.

Public key handling can aso be customized through a callback module that implements the behaviors
ssh_client_key api and ssh_server_key_api.
Public Keys

i d_dsa,id_rsaandi d_ecdsa arethe users private key files. Notice that the public key is part of the private key
so the ssh application does not usethei d_<*>. pub files. These are for the user's convenience when it is needed
to convey the user's public key.

Known Hosts

The known_host s file contains a list of approved servers and their public keys. Once a server is listed, it can be
verified without user interaction.

Authorized Keys

Theaut hori zed_key file keeps track of the user's authorized public keys. The most common use of thisfileisto
let userslog in without entering their password, which is supported by the Erlang ssh daemon.

Ericsson AB. All Rights Reserved.: SSH | 17

SSH

Host Keys

RSA, DSA and ECDSA host keys are supported and are expected to befound in filesnamed ssh_host _rsa_key,
ssh_host dsa_key andssh_host ecdsa_key.

ERROR LOGGER AND EVENT HANDLERS

The ssh application uses the default OTP error logger to log unexpected errors or print information about special
events.

SUPPORTED SPECIFICATIONS AND STANDARDS
The supported SSH version is 2.0.

Algorithms

The actual set of algorithms may vary depending on which OpenSSL crypto library that is installed on the machine.
For the list on aparticular installation, use the command ssh:default_algorithms/0. The user may override the default
algorithm configuration both on the server side and the client side. Seethe option pr ef erred_al gori t hns inthe
ssh:daemon/1,2,3 and ssh: connect/3,4 functions.

Supported algorithms are:

Key exchange algorithms

e ecdh-sha2-nistp256

« ecdh-sha2-nistp384

e ecdh-sha2-nistp521

« diffie-hellman-group-exchange-shal

e diffie-hellman-group-exchange-sha256

e diffie-hellman-groupl4-shal

» diffie-hellman-group14-sha256

e diffie-hellman-group16-sha512

e diffie-hellman-group18-sha512

e (diffie-hellman-groupl-shal, retired: can be enabled with the pr ef er r ed_al gor i t hns option)
Public key algorithms

e ecdsa-sha2-nistp256

e ecdsa-sha2-nistp384

e ecdsa-sha2-nistp521

e sshrsa

e ssh-dss

e rsasha2-256

e rsasha2-512
MAC agorithms

e hmac-sha2-256
e hmac-sha2-512
e hmac-shal
Encryption algorithms (ciphers)
e aesl28-gcm@openssh.com
e aes256-gcm@openssh.com

18 | Ericsson AB. All Rights Reserved.: SSH

SSH

e aesl28-ctr
e aesloz-ctr
e aes256-ctr
e aesl28-chc
e 3des-chc

* (AEAD_AES 128 GCM, not enabled per default)
e (AEAD_AES 256 GCM, not enabled per default)

Seethetext at the description of the rfc 5647 further down for moreinformation regarding AEAD_AES * GCM.

Following the internet de-facto standard, the cipher and mac algorithm AEAD_AES 128 GCM is selected when
the cipher aes128-gcm@openssh.com is negotiated. The cipher and mac algorithm AEAD_AES 256 GCM is
selected when the cipher aes256-gcm@openssh.com is negotiated.

Compression agorithms

* none
« zZlib@openssh.com
« Zib

Unicode support

Unicode filenames are supported if the emulator and the underlaying OS support it. See section DESCRIPTION in
the file manual page in Kernel for information about this subject.

The shell and the cli both support unicode.

Rfcs

The following rfc:s are supported:

» RFC 4251, The Secure Shell (SSH) Protocol Architecture.
Except
e 9.4.6 Host-Based Authentication
* 9.5.2Proxy Forwarding
e 9.5.3 X11 Forwarding

* RFC 4252, The Secure Shell (SSH) Authentication Protocol.
Except
e 9. Host-Based Authentication: "hostbased"

e RFC 4253, The Secure Shell (SSH) Transport Layer Protocol.
Except

e 8.1 diffie-hellman-groupl-shal. Disabled by default, can be enabled with the
preferred_al gorithns option.

* RFC 4254, The Secure Shell (SSH) Connection Protocol.
Except

e 6.3. X11 Forwarding
e 7. TCP/IP Port Forwarding

* RFC 4256, Generic Message Exchange Authentication for the Secure Shell Protocol (SSH).

Ericsson AB. All Rights Reserved.: SSH | 19

href
href
href
href
href

SSH

Except

e numpronpts > 1

e password changing

» other identification methods than userid-password

* RFC 4419, Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport Layer Protocol.
* RFC 4716, The Secure Shell (SSH) Public Key File Format.

 RFC 5647, AES Galois Counter Mode for the Secure Shell Transport Layer Protocol.

There is an ambiguity in the synchronized selection of cipher and mac algorithm. Thisis resolved by OpenSSH
in the ciphers aes128-gcm@openssh.com and aes256-gcm@openssh.com which are implemented. If the explicit
ciphers and macs AEAD_AES 128 GCM or AEAD_AES 256 GCM are needed, they could be enabled with
the option preferred_algorithms.

Warning:

If the client or the server is not Erlang/OTP, it is the users responsibility to check that other implementation
hasthe sasmeinterpretation of AEAD_AES * GCM asthe Erlang/OTP SSH before enabling them. The aes* -
gcm@openssh.com variants are always safe to use since they lack the ambiguity.

The second paragraph in section 5.1 is resolved as:

e |f the negotiated cipher isAEAD_AES 128 GCM, the mac algorithm is set to AEAD_AES 128 GCM.
« |If the negotiated cipher iSAEAD_AES 256 _GCM, the mac algorithm is set to AEAD_AES 256 GCM.
* If themac agorithm is AEAD_AES 128 GCM, the cipher isset to AEAD_AES 128 GCM.
» |If themac algorithm isAEAD_AES 256 _GCM, the cipher isset to AEAD_AES 256 GCM.
The first rule that matches when read in order from the top is applied
* RFC 5656, Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer.
Except
e« 5 ECMQV Key Exchange
* 6.4 ECMQV Key Exchange and Verification Method Name

e 7.2. ECMQV Message Numbers
e 10.2. Recommended Curves

 RFC 6668, SHA-2 Data Integrity Verification for the Secure Shell (SSH) Transport Layer Protocol

Comment: Defines hmac-sha2-256 and hmac-sha?-512
e Draft-ietf-curdle-ssh-kex-sha2 (work in progress), Key Exchange (KEX) Method Updates and
Recommendations for Secure Shell (SSH).
Deviations:
e« Thediffie-hell man-groupl-shal isnot enabled by default, but is still supported and can be
enabled with the option pr ef er r ed- al gori t his

e The questionable shal-based algorithmsdi f f i e- hel | man- gr oup- exchange- shal anddi ffi e-
hel | man- gr oupl4- shal are still enabled by default for compatibility with ancient clients and servers.
They can be disabled with the option pr ef er r ed- al gori t hns

20 | Ericsson AB. All Rights Reserved.: SSH

href
href
href
href
href
href

SSH

* Draft-ietf-curdle-rsa-sha2 (work in progress), Use of RSA Keyswith SHA-2 256 and 512 in Secure Shell
(SSH).
e Draft-ietf-curdle-ssh-ext-info (work in progress), Extension Negotiation in Secure Shell (SSH).

Implemented are;

* The Extension Negotiation Mechanism
e Theextensonserver-si g-al gs

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: SSH | 21

href
href

ssh

ssh

Erlang module

Interface module for the ssh application.
See ssh(6) for details of supported version, algorithms and unicode support.

OPTIONS

The exact behaviour of some functions can be adjusted with the use of options which are documented together with
the functions. Generally could each option be used at most one time in each function call. If given two or more times,
the effect is not predictable unless explicitly documented.

The options are of different kinds:
Limits

which alters limitsin the system, for example number of simultaneous login attempts.
Timeouts

which give some defined behaviour if too long time elapses before a given event or action, for example time to
wait for an answer.

Cadlbacks

which givesthe caller of the function the possibility to execute own code on some events, for example calling an
own logging function or to perform an own login function

Behaviour
which changes the systems behaviour.

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both:

bool ean() =
true | false
string() =
[byte()]
ssh_daenon_ref() =
opaque() - asreturned by ssh: daenon/ [1, 2, 3]
ssh_connection_ref() =
opaque() - asreturned by ssh: connect/ 3
i p_address() =
inet::ip_address
subsystem spec() =
{subsystem nane(), {channel callback(), channel _init_args()}}
subsystem nane() =
string()

22 | Ericsson AB. All Rights Reserved.: SSH

ssh

channel _cal | back() =

at om() - Name of the Erlang module implementing the subsystem using the ssh_channel behavior, see
ssh_channel (3)

key cbh() =
atom() | {atom(), list()}

at om() - Name of the erlang module implementing the behaviours ssh_client_key api or ssh_client_key api
as the case maybe.

I'ist() -Listof optionsthat can be passed to the callback module.

channel _init_args() =

list()
algs_ list() =

list(alg entry())
alg entry() =

{kex, sinmple_algs()} | {public_key, sinmple algs()} | {cipher, double_ algs()}
| {mac, double algs()} | {conpression, double algs()}

sinmple_algs() =
list(atom())

doubl e_al gs() =
[{client2serverlist,sinple_algs()},{server2client,sinple_algs()}]
sinpl e_al gs()

nmodi fy algs list() =
list({append,algs list()} | {prepend,algs list()} | {rmalgs_list()})

Exports

close(ConnectionRef) -> ok
Types:

Connecti onRef = ssh_connection_ref()
Closes an SSH connection.

connect(Host, Port, Options) ->
connect(Host, Port, Options, Timeout) ->
connect(TcpSocket, Options) ->

connect(TcpSocket, Options, Timeout) -> {ok, ssh connection ref()} | {error,
Reason}

Types:
Host = string()
Port = integer()

22 is default, the assigned well-known port number for SSH.
Options = [{Option, Value}]
Timeout = infinity | integer()

Ericsson AB. All Rights Reserved.: SSH | 23

ssh

Negotiation time-out in milli-seconds. The default valueisi nf i ni t y. For connection time-out, use option
{connect _timeout, timeout()}.

TcpSocket = port()
The socket is supposed to be from gen_tcp: connect or gen_tcp:accept with option { act i ve, f al se}

Connects to an SSH server. No channel is started. Thisis done by calling ssh_connection: session_channel/[2, 4].
Options:
{inet, inet | ineté6}
IPversion to use.
{user _dir, string()}

Sets the user directory, that is, the directory containing ssh configuration files for the user, such as
known_hosts,id_rsa, id_dsa,andauthorized_key. Defaultsto the directory normally referred to
as~/ . ssh.

{dsa_pass_phrase, string()}

If the user DSA key is protected by a passphrase, it can be supplied with this option.
{rsa_pass_phrase, string()}

If the user RSA key is protected by a passphrase, it can be supplied with this option.

{silently_accept_hosts, bool ean()}

{silently_accept_hosts, CallbackFun}

{silently accept_hosts, {HashAl goSpec, Call backFun} }

HashAl goSpec = crypto:digest_type() | [crypto:digest_type()]
Cal I backFun = fun(Peer Nanme, FingerPrint) -> bool ean()

Peer Name = string()

FingerPrint = string() | [string()]

This option guides the connect function how to act when the connected server presents a Host Key that the
client has not seen before. The default is to ask the user with a question on stdio of whether to accept or reject
the new Host Key. See also the option user _di r for the path to the file known_host s where previously
accepted Host Keys are recorded.

The option can be given in three different forms as seen above:
« Thevaueisabool ean() . Thevauet r ue will make the client accept any unknown Host Key without
any user interaction. Thevaluef al se keeps the default behaviour of asking the the user on stdio.

e ACal I backFun will be called and the boolean return value t r ue will make the client accept the
Host Key. A return value of f al se will make the client to reject the Host Key and therefore also the
connection will be closed. The arguments to the fun are:

e Peer Nan® - astring with the name or address of the remote host.
e FingerPrint -thefingerprint of the Host Key as public_key:ssh_hostkey fingerprint/1 calculates
it.

« Atuple{HashAl goSpec, Call backFun}.TheHashAl goSpec specifieswhich hash agorithm
shall be used to calculate the fingerprint used in the call of the Cal | backFun. The HashALgoSpec
is either an atom or alist of atoms asthe first argument in public_key:ssh_hostkey fingerprint/2. If it
isalist of hash algorithm names, the Fi nger Pri nt argument inthe Cal | backFun will be alist of
fingerprints in the same order as the corresponding name in the HashAl goSpec list.

{user __interaction, boolean()}

If f al se, disablestheclient to connect to the server if any user interaction is needed, such as accepting the server
to be added to the known_host s file, or supplying a password. Defaultsto t r ue. Even if user interaction is

24 | Ericsson AB. All Rights Reserved.: SSH

ssh

alowed it can be suppressed by other options, suchassi | ent | y_accept _host s andpasswor d. However,
those options are not always desirable to use from a security point of view.

{di sconnectfun, fun(Reason:term()) -> _}
Provides afun to implement your own logging when a server disconnects the client.
{unexpectedfun, fun(Message:term(), Peer) -> report | skip }

Provides a fun to implement your own logging or other action when an unexpected message arrives. If the fun
returnsr eport the usual info report isissued but if ski p isreturned no report is generated.

Peer isintheformat of { Host , Port}.
{pref_public_key_ algs, list()}
List of user (client) public key algorithmsto try to use.
The default valueisthe publ i c_key entry in ssh:default_algorithms/O.

If thereis no public key of a specified type available, the corresponding entry is ignored. Note that the available
set is dependent on the underlying cryptolib and current user's public keys.

{preferred_algorithns, algs list()}

List of agorithms to use in the algorithm negotiation. The default al gs_|i st () can be obtained from
default_algorithms/O.

If analg_entry() ismissingin the algs list(), the default value is used for that entry.
Here is an example of this option:

{preferred algorithms,
[{public key,['ssh-rsa', 'ssh-dss']},
{cipher, [{client2server,['aes128-ctr'l]l},
{server2client,['aes128-cbhc', '3des-cbc']1}1},
{mac, ['hmac-sha2-256"', 'hmac-shal']l},
{compression, [none,zlib]}
1
}

The example specifies different algorithms in the two directions (client2server and server2client), for cipher but
specifies the same algorithms for mac and compression in both directions. The kex (key exchange) is implicit
but public_key is set explicitly.

For background and more examples see the User's Guide.

Warning:

Changing the values can make a connection less secure. Do not change unless you know exactly what you
are doing. If you do not understand the values then you are not supposed to change them.

{nmodify algorithns, nodify algs list()}

Modifiesthe list of algorithms to use in the algorithm negotiation. The modifications are applied after the option
preferred_al gorithms (if existing) is applied.

The algoritm for modifications works like this:

Ericsson AB. All Rights Reserved.: SSH | 25

ssh

e Input is the nodify_algs_list() and a set of algorithms A obtained from the
preferred_al gorithms option if existing, or else from the ssh:default_algorithms/O.

e Thehead of thenodi fy_al gs_|i st () modifiesAgiving theresult A" .
The possible modifications are:

e Append or prepend supported but not enabled algorithm(s) to the list of agorithms. If the wanted
agorithms already are in A they will first be removed and then appended or prepended,

e Remove (rm) one or more algorithms from A.
* Repeat the modification step with thetail of nodi fy_al gs_I i st () andtheresulting A" .

If an unsupported algorithmisinthenodi fy_al gs_li st (), it will besilently ignored
If there are more than one modify_algorithms options, the result is undefined.

Here is an example of this option:

{modify algorithms,
[{prepend, [{kex, ['diffie-hellman-groupl-shal']}],
{rm, [{compression, [nonel}]}
]

}

The example specifies that:

« the old key exchange agorithm 'diffie-hellman-groupl-shal' should be the main aternative. It will be the
main alternative sinceit is prepened to the list

e The compression algorithm none (= ho compression) is removed so compression is enforced
For background and more examples see the User's Guide.
{dh_gex_limts,{Mn=integer(),|=integer(), Max=i nteger()}}

Sets the three diffie-hellman-group-exchange parameters that guides the connected server in choosing a group.
See RFC 4419 for the function of thoose. The default valueis{ 1024, 6144, 8192}.

{connect _tineout, timeout()}
Setsatime-out on the transport layer connection. For gen_t cp thetimeisin milli-seconds and the default value
isinfinity.

{aut h_net hods, string()}

Comma-separated string that determines which authentication methods that the client shall support and in which
order they aretried. Defaultsto " publ i ckey, keyboar d-i nt eracti ve, passwor d"

{user, string()}

Provides ausername. If this option is not given, ssh reads from the environment (LOGNAME or USER on UNI X,
USERNAME on Windows).

{password, string()}

Provides a password for password authentication. If this option is not given, the user is asked for a password, if
the password authentication method is attempted.

{recv_ext_info, boolean()}

Tell the server that the client accepts extension negotiation. See Draft-ietf-curdle-ssh-ext-info (work in
progress) for details.

26 | Ericsson AB. All Rights Reserved.: SSH

href
href

ssh

Currently implemented extensionisser ver - si g- al gs whichisthelist of the server's preferred user's public
key algorithms.

Default valueist r ue.
{key_cb, key _cb()}

Module implementing the behaviour ssh_client_key api. Can be used to customize the handling of public keys.
If callback options are provided along with the module name, they are made availabl e to the callback module via
the options passed to it under the key 'key cb_private'.

{qui et _node, atonm() = bool ean()}
If t r ue, the client does not print anything on authorization.
{id_string, random| string()}

The string that the client presents to a connected server initialy. The default value is "Erlang/VSN" where VSN
is the ssh application version number.

The value r andomwill cause arandom string to be created at each connection attempt. Thisisto make it a bit
more difficult for amalicious peer to find the ssh software brand and version.

{fd, file_descriptor()}

Allows an existing file descriptor to be used (by passing it on to the transport protocoal).
{rekey limt, integer()}

Provides, in bytes, when rekeying is to be initiated. Defaults to once per each GB and once per hour.
{idle_time, integer()}

Sets atime-out on a connection when no channels are active. Defaultstoi nfinity.

{ssh_msg_debug_fun, fun(ConnectionRef::ssh connection_ref(),
Al waysDi spl ay: : bool ean(), Msg::binary(), LanguageTag::binary()) -> _}

Provideafun toimplement your ownlogging of the SSH message SSH_ MSG_DEBUG. Thelast three parameters
are from the message, see RFC4253, section 11.3. The Connect i onRef isthe reference to the connection on
which the message arrived. The return value from the fun is not checked.

The default behaviour is ignore the message. To get a printout for each message with Al waysDi spl ay
= true, use for example {ssh_nmsg_debug fun, fun(_,true,M)-> io:fornmat("DEBUG

~p~n", [M) end}

connection info(ConnectionRef, [Option]) ->[{Option, Value}]

Types:
Option = client_version | server_version | user | peer | socknane
Val ue = [option_val ue()]
option_value() = {{Major::integer(), Mnor::integer()},
VersionString::string()} | User::string() | Peer::{inet:hostname(),
{inet::ip_adress(), inet::port_nunber()}} | Socknane::{inet::ip_adress(),
i net::port_nunber()}

Retrieves information about a connection.

Ericsson AB. All Rights Reserved.: SSH | 27

ssh

daemon(Port) ->
daemon(Port, Options) ->
daemon(HostAddress, Port, Options) ->
daemon(TcpSocket) ->
daemon(TcpSocket, Options) -> {ok, ssh daemon ref()} | {error, atom()}
Types:
Port = integer()
Host Address = i p_address() | any | | oopback
Options = [{Option, Value}]
Option = aton()
Value = term))
TcpSocket = port()
The socket is supposed to be from gen_tcp: connect or gen_tcp:accept with option { act i ve, f al se}

Starts a server listening for SSH connections on the given port. If the Por t is 0, arandom free port is selected. See
daemon_info/1 about how to find the selected port number.

Please note that by historical reasons boththe Host Addr ess argument and the inet socket optioni p set thelistening
address. Thisis asource of possible inconsistent settings.

Therules for handling the two address passing options are;
« if Host Addr ess isan IP-address, that | P-address is the listening address. An 'ip'-option will be discarded if

present.

« if Host Addr ess isl oopback, thelistening addressis| oopback and an loopback address will be choosen
by the underlying layers. An 'ip'-option will be discarded if present.

» if Host Addr ess isany and no 'ip*-option is present, the listening addressisany and the socket will listen to
all addresses

e if Host Addr ess isany and an 'ip'-option is present, the listening address is set to the value of the 'ip'-option
Options:
{inet, inet | ineté6}
IP version to use when the host address is specified asany.
{subsystens, [subsystem spec()]}

Provides specifications for handling of subsystems. The "sftp" subsystem specification is retrieved by
calling ssh_sftpd: subsyst em spec/ 1. If the subsystems option is not present, the value of
[ssh_sftpd: subsystem spec([])] isused. The option can be set to the empty list if you do not want
the daemon to run any subsystems.

{shell, {Mdule, Function, Args} | fun(string() = User) - > pid() |
fun(string() = User, ip_address() = PeerAddr) -> pid()}

Defines the read-eval-print loop used when a shell is requested by the client. The default is to use the Erlang
shell: {shel |, start, []}

{ssh_cli, {channel _callback(), channel _init_args()} | no_cli}

Providesyour own CLI implementation, that is, achannel callback module that implements a shell and command
execution. The shell read-eval-print loop can be customized, using the option shel | . This means less work
than implementing an own CLI channel. If set to no_cl i , the CLI channels are disabled and only subsystem
channels are allowed.

28 | Ericsson AB. All Rights Reserved.: SSH

ssh

{user _dir, string()}

Sets the user directory. That is, the directory containing ssh configuration files for the user, such as
known_hosts,id_rsa, id_dsa,andauthorized_key. Defaultsto the directory normally referred to
as~/ . ssh.

{systemdir, string()}

Sets the system directory, containing the host key files that identify the host keys for ssh. Defaultsto / et ¢/
ssh. For security reasons, this directory is normally accessible only to the root user.

{aut h_met hods, string()}

Commarseparated string that determines which authentication methods that the server is to support and in what
order they aretried. Defaultsto " publ i ckey, keyboar d-i nteracti ve, passwor d"

Note that the client is free to use any order and to exclude methods.

{auth_nethod_kb_interacti ve_data, PronptTexts}

wher e:

Pronmpt Texts = kb_int_tuple() | fun(Peer::{IP::tuple(),Port::integer()},
User::string(), Service::string()) -> kb_int_tuple()

kb_int_tuple() = {Nane::string(), Instruction::string(), Pronpt::string(),
Echo: : bool ean() }

Sets the text strings that the daemon sends to the client for presentation to the user when using keyboar -
i nteracti ve authentication. If the fun/3 is used, it is called when the actual authentication occurs and may
therefore return dynamic data like time, remote ip etc.

The parameter Echo guides the client about need to hide the password.

The default value is. {aut h_nmet hod_kb_interactive data, {"SSH server", "Enter
password for \""++User++"\"" "password: ", false}>

{user_passwords, [{string() = User, string() = Password}]}

Provides passwords for password authentication. The passwords are used when someone tries to connect to
the server and public key user-authentication fails. The option provides a list of valid usernames and the
corresponding passwords.

{password, string()}

Provides a global password that authenticates any user. From a security perspective this option makes the server
very vulnerable.

{preferred_algorithns, algs list()}

List of agorithms to use in the algorithm negotiation. The default al gs_|i st () can be obtained from
default_algorithms/O.

If an alg_entry() ismissing in the algs_list(), the default value is used for that entry.
Hereis an example of this option:

{preferred algorithms,
[{public key,['ssh-rsa', 'ssh-dss']},
{cipher, [{client2server,['aes128-ctr'l},
{server2client,['aes128-cbhc', '3des-cbc']1}1},
{mac, ['hmac-sha2-256"', 'hmac-shal']l},
{compression, [none,zlib]}
1
}

Ericsson AB. All Rights Reserved.: SSH | 29

ssh

The example specifies different algorithms in the two directions (client2server and server2client), for cipher but
specifies the same algorithms for mac and compression in both directions. The kex (key exchange) is implicit
but public_key is set explicitly.

For background and more examples see the User's Guide.

Warning:

Changing the values can make a connection less secure. Do not change unless you know exactly what you
are doing. If you do not understand the values then you are not supposed to change them.

{nodify algorithns, nodify algs list()}

Modifiesthe list of algorithms to use in the algorithm negotiation. The modifications are applied after the option

preferred_al gorithms isapplied (if existing)

The possible modifications are to:

* Append or prepend supported but not enabled algorithm(s) to the list of algorithms.
If the wanted algorithms already are in the list of algorithms, they will first be removed and then appended
or prepended.

¢ Remove (rm) one or more algorithms from the list of algorithms.

If an unsupported algorithm isin thelist, it will be silently ignored
Here is an example of this option:

{modify algorithms,
[{prepend, [{kex, ['diffie-hellman-groupl-shal']}],
{rm, [{compression, [nonel}]}
]

}

The example specifies that:

« the old key exchange algorithm 'diffie-hellman-groupl-shal' should be the main aternative. It will be the
main alternative sinceit is prepened to the list

e The compression algorithm none (= ho compression) is removed so compression is enforced
For background and more examples see the User's Guide.

{dh_gex_groups, [{Size=integer(),Ginteger(),P=integer()}] |
{file,filename()} {ssh_noduli_file,filename()} }

Defines the groups the server may choose among when diffie-hellman-group-exchange is negotiated. See RFC
4419 for details. The three variants of this option are:

{Si ze=i nteger (), G=integer (), P=integer()}
The groups are given explicitly in thislist. There may be several elementswith thesame Si ze. Insuch a
case, the server will choose one randomly in the negotiated Size.

{file, filename()}
The file must have one or more three-tuples{ Si ze=i nt eger (), G=i nt eger (), P=i nteger ()}
terminated by a dot. Thefileis read when the daemon starts.

{ssh_nmoduli file,filenane()}
Thefile must be in ssh-keygen moduli file format. The file is read when the daemon starts.

30 | Ericsson AB. All Rights Reserved.: SSH

ssh

The default list is fetched from the public_key application.
{dh_gex_limts,{Mn=integer(), Max=i nteger()}}

Limits what a client can ask for in diffie-hellman-group-exchange. The limits will be { MaxUsed =
m n(Maxd i ent, Max), M nUsed = max(M nC i ent, M n)} whereMaxC i ent andM nCl i ent
are the values proposed by a connecting client.

The default valueis{ 0, i nfini ty}.
If MaxUsed < M nUsed inakey exchange, it will fail with a disconnect.
See RFC 4419 for the function of the Max and Min values.

{pwdf un, fun(User::string(), Password::string(), PeerAddress::
{ip_adress(), port_nunber()}, State::any()) -> boolean() | disconnect |
{bool ean(), any()} }

Provides afunction for password validation. This could used for calling an external system or if passwords should
be stored as a hash. The fun returns:
e trueif theuser and password is valid and
« fal se otherwise.
Thisfun can a so be used to make delaysin authentication tries for example by calling timer:sleep/1. To facilitate
counting of failed tries the St at e variable could be used. This state is per connection only. The first time the
pwdfun is called for a connection, the St at e variable has the value undef i ned. The pwdfun can return - in
addition to the values above - anew state as:
e {true, NewState:any()} if theuser and passwordisvalid or
« {false, NewsState:any()} iftheuseror passwordisinvalid
A third usage isto block login attempts from a missbehaving peer. The St at e described above can be used for
this. In addition to the responses above, the following return value is introduced:
e di sconnect if the connection should be closed immediately after sending a SSH_MSG_DISCONNECT
message.
{pwdfun, fun(User::string(), Password::string()) -> bool ean()}

Providesafunction for password validation. Thisfunction is called with user and password as strings, and returns
t r ue if the password isvalid and f al se otherwise.

This option ({ pwdf un, f un/ 2}) is the same as a subset of the previous ({ pwdf un, f un/ 4}). It is kept for
compatibility.

{negotiation_tinmeout, integer()}

Maximum time in milliseconds for the authentication negotiation. Defaults to 120000 (2 minutes). If the client
failsto log in within this time, the connection is closed.

{max_sessi ons, pos_integer()}

The maximum number of simultaneous sessions that are accepted at any time for this daemon. This includes
sessionsthat are being authorized. Thus, if set to N, and N clients have connected but not started the login process,
connection attempt N+1 is aborted. If N connections are authenticated and still logged in, no more logins are
accepted until one of the existing ones log out.

The counter is per listening port. Thus, if two daemons are started, onewith { max_sessi ons, N} and the other
with { max_sessi ons, M, in total N+ Mconnections are accepted for the whole ssh application.

Noticethat if paral | el _| ogi nisf al se, only one client at atime can be in the authentication phase.
By default, this option is not set. This means that the number is not limited.

Ericsson AB. All Rights Reserved.: SSH | 31

ssh

{max_channel s, pos_integer()}

The maximum number of channels with active remote subsystem that are accepted for each connection to this
daemon

By default, this option is not set. This means that the number is not limited.
{paral l el | ogin, boolean()}

If set to false (the default value), only oneloginis handled at atime. If set to true, an unlimited number of login
attempts are allowed simultaneously.

If the max_sessi ons option isset to Nand paral | el _| ogi n issettotrue, the maximum number of
simultaneous login attempts at any time is limited to N- K, where K is the number of authenticated connections
present at this daemon.

Warning:

Do not enable par al | el _| ogi ns without protecting the server by other means, for example, by the
max_sessi ons option or a firewall configuration. If set to t r ue, there is no protection against DOS
attacks.

{m ni mal _renote_nmax_packet _size, non_negative_integer()}

Theleast maximum packet size that the daemon will accept in channel open requests from the client. The default
valueisO.

{id_string, random| string()}

The string the daemon will present to a connecting peer initially. The default value is"Erlang/V SN" where VSN
is the ssh application version number.

The value r andomwill cause arandom string to be created at each connection attempt. Thisisto make it a bit
more difficult for amalicious peer to find the ssh software brand and version.

{send_ext _i nfo, bool ean()}

Send alist of extensions to the client if the client has asked for it. See Draft-ietf-cur dle-ssh-ext-info (work in
progress) for details.

Currently implemented extensionissendingser ver - si g- al gs whichisthelist of the server'spreferred user's
public key algorithms.

Default valueist r ue.
{key_cb, key _cb()}

Module implementing the behaviour ssh_server_key api. Can be used to customize the handling of public keys.
If callback options are provided along with the module name, they are made available to the callback module via
the options passed to it under the key 'key cb_private'.

{profile, atom)}

Usedtogether withi p- addr ess andpor t touniquely identify assh daemon. Thiscan beuseful inavirtualized
environment, where there can be morethat one server that hasthe samei p- addr ess and por t . If thisproperty
isnot explicitly set, it is assumed that thethei p- addr ess and port uniquely identifies the SSH daemon.

{fd, file_descriptor()}
Allows an existing file-descriptor to be used (passed on to the transport protocol).

32 | Ericsson AB. All Rights Reserved.: SSH

href
href

ssh

{failfun, fun(User::string(), PeerAddress::ip_address(), Reason::tern()) ->
_}

Provides afun to implement your own logging when a user failsto authenticate.
{connectfun, fun(User::string(), PeerAddress::ip_address(), Method::string())
- >_}
Provides afun to implement your own logging when a user authenticates to the server.
{di sconnectfun, fun(Reason:ternm()) -> _}
Provides afun to implement your own logging when a user disconnects from the server.
{unexpect edf un, fun(Message:term(), Peer) -> report | skip }

Provides a fun to implement your own logging or other action when an unexpected message arrives. If the fun
returnsr eport the usual info report isissued but if ski p isreturned no report is generated.

Peer isintheformat of { Host , Port}.
{idle_time, integer()}

Sets atime-out on a connection when no channels are active. Defaultstoi nfinity.
{ssh_msg_debug_fun, fun(ConnectionRef::ssh _connection_ref(),
Al waysDi spl ay: : bool ean(), Msg::binary(), LanguageTag::binary()) -> }

Provideafun toimplement your own logging of the SSH message SSH_MSG_DEBUG. Thelast three parameters
are from the message, see RFC4253, section 11.3. The Connect i onRef isthe reference to the connection on
which the message arrived. The return value from the fun is not checked.

The default behaviour is ignore the message. To get a printout for each message with Al waysDi spl ay
= true, use for example {ssh_msg_debug _fun, fun(_,true,M _)-> io:format("DEBUG

~p~n", [M) end}

daemon _info(Daemon) -> {ok, [DaemonInfol} | {error,Error}

Types:
Daermonl nfo = {port,Port::pos_integer()} | {listen_address, any|
i p_address()} | {profile,atom()}

Port = integer()
Error = bad_daenon_ref

Returns a key-value list with information about the daemon. For now, only the listening port is returned. This is
intended for the case the daemon is started with the port set to 0.

default algorithms() -> algs list()

Returns a key-vaue list, where the keys are the different types of algorithms and the values are the agorithms
themselves. An example:

20> ssh:default algorithms().
[{kex,['diffie-hellman-groupl-shal'l},
{public_key,['ssh-rsa', 'ssh-dss']},
{cipher, [{client2server,['aesl28-ctr', 'aesl128-cbc', '3des-cbc']},
{server2client,['aes128-ctr', 'aesl28-cbc', '3des-cbc']}1},
{mac, [{client2server, ['hmac-sha2-256"', 'hmac-shal'l},
{server2client, ['hmac-sha2-256"', 'hmac-shal']1}1},
{compression, [{client2server, [none,zlib]},
{server2client, [none,zlib]}]}]

Ericsson AB. All Rights Reserved.: SSH | 33

ssh

21>

shell(Host) ->

shell(Host, Option) ->
shell(Host, Port, Option) ->
shell(TcpSocket) ->

Types.
Host = string()
Port = integer()

Options - see ssh:connect/3
TcpSocket = port()
The socket is supposed to be from gen_tcp: connect or gen_tcp:accept with option { acti ve, f al se}

Starts an interactive shell over an SSH server on the given Host . The function waitsfor user input, and does not return
until the remote shell is ended (that is, exit from the shell).

start() ->
start(Type) -> ok | {error, Reason}
Types:

Type = pernanent | transient | tenporary
Reason = term()

Utility function that startsthe applicationscr ypt o, publ i ¢_key, andssh. Default typeist enpor ar y. For more
information, see the application(3) manual pagein Kernel.

stop() -> ok | {error, Reason}
Types:
Reason = term()
Stops the ssh application. For more information, see the application(3) manual page in Kernel.

stop daemon(DaemonRef) ->
stop_daemon(Address, Port) -> ok
Types:
DaenonRef = ssh_daenon_ref ()
Address = i p_address()
Port = integer()
Stops the listener and all connections started by the listener.

stop_listener(DaemonRef) ->
stop listener(Address, Port) -> ok
Types.
DaenonRef = ssh_daenon_ref ()
Address = i p_address()
Port = integer()
Stops the listener, but leaves existing connections started by the listener operational .

34 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel

ssh_channel

Erlang module

SSH services (clients and servers) are implemented as channels that are multiplexed over an SSH connection and
communicates over the SSH Connection Protocol. This module provides a callback API that takes care of generic
channel aspects, such as flow control and close messages. It lets the callback functions take care of the service
(application) specific parts. Thisbehavior a so ensuresthat the channel process honorsthe principal of an OTP-process
so that it can be part of a supervisor tree. Thisis a requirement of channel processes implementing a subsystem that
will be added to the ssh applications supervisor tree.

Note:

When implementing an ssh subsystem, use - behavi our (ssh_daenon_channel) instead of -

behavi our (ssh_channel). The reason is that the only relevant callback functions for subsystems are
init/ 1, handl e_ssh_nsg/ 2, handl e_nsg/ 2,andt er m nat e/ 2. So, thessh_daenon_channel

behaviour isalimited version of thessh_channel behaviour.

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both:

bool ean() =

true | fal se

string() =
list of ASCII characters
tinmeout() =
infinity | integer() inmilliseconds

ssh_connection_ref () =

opaque() -as returned by ssh: connect / 3 or sent to an SSH channel process
ssh_channel _id() =

i nteger ()
ssh_data_type code() =

1 ("stderr") | 0 ("norma") are the valid values, see RFC 4254 Section 5.2

Exports

call(ChannelRef, Msg) ->
call(ChannelRef, Msg, Timeout) -> Reply | {error, Reason}
Types.

Channel Ref = pid()

Asreturned by ssh_channdl:start_link/4

Meg = term)

Ericsson AB. All Rights Reserved.: SSH | 35

href
href

ssh_channel

Ti meout = timeout ()
Reply = term()
Reason = closed | tinmeout

Makes a synchronous call to the channel process by sending a message and waiting until areply arrives, or atime-
out occurs. The channel calls Module:handle_call/3 to handle the message. If the channel process does not exist,
{error, closed} isreturned.

cast(ChannelRef, Msg) -> ok
Types.
Channel Ref = pid()
Asreturned by ssh_channdl:start_link/4
Msg = term)
Sends an asynchronous message to the channel process and returns ok immediately, ignoring if the destination node
or channel process does not exist. The channel calls Module:handle_cast/2 to handle the message.

enter loop(State) ->
Types.

State = term)

asreturned by ssh_channel:init/1

Makes an existing process an ssh_channel process. Does not return, instead the calling process enters the
ssh_channel processreceiveloop andbecomeanssh_channel process. Theprocess must have been started
using one of the start functionsin proc_|I i b, see the proc_lib(3) manual page in STDLIB. The user is responsible
for any initialization of the process and must call ssh_channel:init/1.

init(Options) -> {ok, State} | {ok, State, Timeout} | {stop, Reason}
Types:

Options = [{Option, Value}]

State = term)

Ti meout = timeout ()

Reason = term()

The following options must be present:
{channel ch, atom()}

The module that implements the channel behaviour.
{init_args(), list()}

Thelist of argumentsto thei ni t function of the callback module.
{cm connection_ref()}

Reference to the ssh connection as returned by ssh:connect/3
{channel _id, channel _id()}

Id of thessh channel.

36 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel

Note:

This function is normally not called by the user. The user only needs to cal if the channel
process needs to be started with help of proc_|ib instead of caling ssh_channel : start/4 or
ssh_channel : start _|ink/ 4.

reply(Client, Reply) ->
Types:
dient = opaque()
Reply = term()
This function can be used by a channel to send areply to aclient that called cal | / [2, 3] when the reply cannot be
defined in the return value of Module:handle _call/3.

d i ent must be the Fr omargument provided to the callback function handl e_cal | / 3. Repl y is an arbitrary
term, which is given back to the client as the return value of ssh_channel:call/[2,3].

start(SshConnection, Channelld, ChannelCb, CbInitArgs) ->

start_link(SshConnection, Channelld, ChannelCb, CbInitArgs) -> {ok,
ChannelRef} | {error, Reason}

Types:
SshConnecti on = ssh_connection_ref()
Channel Id = ssh_channel _i d()
Asreturned by ssh_connection:session_channel/[2,4].
Channel Cb = at on()
Name of the module implementing the service-specific parts of the channel.
ColnitArgs = [term()]
Argument list for thei ni t function in the callback module.
Channel Ref = pid()

Starts aprocess that handles an SSH channel. It iscalled internally, by the ssh daemon, or explicitly by thessh client
implementations. The behavior setsthet rap_exit flagtot r ue.

CALLBACK TIME-OUTS

The time-out values that can be returned by the callback functions have the same semanticsasin agen_server. If the
time-out occurs, handle msg/2iscalled ashandl e_nsg(ti neout, State).

Exports

Module:code change(0ldVsn, State, Extra) -> {ok, NewState}
Types:
A dvsn = tern()

In the case of an upgrade, O dVsn isVsn, and in the case of adowngrade, A dVsn is{down, Vsn}.Vsn
is defined by the vsn attribute(s) of the old version of the callback module Mbdul e. If no such attributeis
defined, the version is the checksum of the BEAM file.

State = term)
Internal state of the channel.

Ericsson AB. All Rights Reserved.: SSH | 37

ssh_channel

Extra = tern()
Passed "as-is' fromthe{ advanced, Ext r a} part of the update instruction.

Converts process state when code is changed.

This function is called by a client-side channel when it is to update its interna state during a
release upgrade or downgrade, that is, when the instruction {updat e, Modul e, Change, ...}, where
Change={ advanced, Extra}, isgivenintheappup file. For more information, refer to Section 9.11.6 Release
Handling Instructions in the System Documentation.

Note:

Soft upgrade according to the OTP release concept is not straight forward for the server side, as subsystem channel
processes are spawned by the ssh application and hence added to its supervisor tree. The subsystem channels
can be upgraded when upgrading the user application, if the callback functions can handle two versions of the
state, but this function cannot be used in the normal way.

Module:init(Args) -> {ok, State} | {ok, State, timeout()} | {stop, Reason}
Types:

Args = term)

Last argumenttossh_channel : start _|i nk/ 4.

State = term)

Reason = term()
Makes necessary initializations and returnsthe initial channel stateif the initializations succeed.

For more detailed information on time-outs, see Section CALLBACK TIME-OUTS.

Module:handle call(Msg, From, State) -> Result
Types:

Msg = term()

From = opaque()

Isto be used as argument to ssh_channel:reply/2

State = term()

Result = {reply, Reply, NewState} | {reply, Reply, NewState, tineout()}
| {noreply, NewState} | {noreply , NewState, tineout()} | {stop, Reason,
Reply, NewState} | {stop, Reason, NewStat e}

Reply = term()
Will be the return value of ssh_channel:call/[2,3]
NewState = term)
Reason = term()
Handles messages sent by calling ssh_channel:call/[2,3]

For more detailed information on time-outs,, see Section CALLBACK TIME-OQUTS.

Module:handle cast(Msg, State) -> Result
Types:
Msg = term)

38 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel

State = term)

Result = {noreply, NewState} | {noreply, NewState, tinmeout()} | {stop,
Reason, NewGSt at e}

NewState = term)
Reason = term()
Handles messages sent by calling ssh_channel : cast/ 2.
For more detailed information on time-outs, see Section CALLBACK TIME-OUTS

Module:handle msg(Msg, State) -> {ok, State} | {stop, Channelld, State}
Types:

Msg = tineout | term()

Channel I1d = ssh_channel _i d()

State = term)

Handles other messages than SSH Connection Protocol, call, or cast messages sent to the channel.
Possible Erlang 'EXIT' messagesisto be handled by thisfunction and all channels are to handle the following message.
{ssh_channel _up, ssh_channel _id(), ssh_connection_ref()}

This is the first message that the channel receives. It is sent just before the ssh_channel:init/1 function returns
successfully. Thisis especially useful if the server wants to send a message to the client without first receiving
a message from it. If the message is not useful for your particular scenario, ignore it by immediately returning
{ok, State}.

Module:handle ssh msg(Msg, State) -> {ok, State} | {stop, Channelld, State}
Types.

Msg = ssh_connection: event ()

Channel Id = ssh_channel _id()

State = term))

Handles SSH Connection Protocol messages that may need service-specific attention. For details, see
ssh_connection: event().

The following message istaken care of by thessh_channel behavior.
{cl osed, ssh_channel _id()}

The channel behavior sends a close message to the other side, if such a message has not already been sent. Then
it terminates the channel with reason nor nal .

Module:terminate(Reason, State) ->
Types:
Reason = term()
State = term))
This function is called by a channel process when it is about to terminate. Before this function is called,

ssh_connection:close/2 iscalled, if it has not been called earlier. Thisfunction does any necessary cleaning up. When
it returns, the channel process terminates with reason Reason. The return value isignored.

Ericsson AB. All Rights Reserved.: SSH | 39

ssh_connection

ssh_connection

Erlang module

The SSH Connection Protocol is used by clients and servers, that is, SSH channels, to communicate over the SSH
connection. The API functions in this module send SSH Connection Protocol events, which are received as messages
by the remote channel. If the receiving channel is an Erlang process, the messages have the format { ssh_cm
ssh_connection_ref (), ssh_event _nsg()}.Ifthessh_channel behaviorisused toimplement the channel
process, these messages are handled by handle_ssh_msg/2.

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both:

bool ean() =

true | false
string() =

list of ASCII characters
timeout () =

infinity | integer() inmilliseconds
ssh_connection_ref() =

opaque() -as returned by ssh: connect / 3 or sent to an SSH channel processes
ssh_channel _id() =

i nteger ()
ssh_data_type_code() =

1 ("stderr*) | 0 ("normal") are valid values, see RFC 4254 Section 5.2.
ssh_request _status() =

success | failure
event () =

{ssh_cm ssh_connection_ref(), ssh_event _nsg()}
ssh_event _nsg() =

data_events() | status_events() | term nal _events()
reason() =

timeout | cl osed

data_events()
{data, ssh_channel _id(), ssh_data_type_code(), Data :: binary()}

Data has arrived on the channel. This event is sent asaresult of calling ssh_connection: send/[3,4,5].
{eof , ssh_channel _id()}

Indicates that the other side sends no more data This event is sent as a result of caling
ssh_connection: send_eof/2.

40 | Ericsson AB. All Rights Reserved.: SSH

href
href

ssh_connection

status_events()
{signal, ssh_channel _id(), ssh_signal ()}

A signal can be delivered to the remote process/service using the following message. Some systems do not
support signals, in which case they areto ignore this message. Thereis currently no function to generate this
event asthe signals referred to are on OS-level and not something generated by an Erlang program.

{exit_signal, ssh_channel _id(), ExitSignal :: string(),
ErrorMsg ::string(), LanguageString :: string()}

A remote execution can terminate violently because of a signal. Then this message can be received. For
details on valid string values, see RFC 4254 Section 6.10, which shows a special case of these signals.

{exit_status, ssh_channel _id(), ExitStatus :: integer()}

When the command running at the other end terminates, the following message can be sent to return the exit
status of the command. A zero exi t _st at us usually means that the command terminated successfully.
Thisevent is sent asaresult of calling ssh_connection: exit_status/3.

{cl osed, ssh _channel _id()}

Thisevent is sent as aresult of calling ssh_connection: close/2. Both the handling of this event and sending
it are taken care of by the ssh_channel behavior.

terminal_events()

Channels implementing a shell and command execution on the server side are to handle the following messages
that can be sent by client- channel processes.

Events that include a Want Repl y expect the event handling process to call ssh_connection:reply request/4
with the boolean value of Want Repl y asthe second argument.

{env, ssh_channel _id(), WantReply :: boolean(), Var ::string(), Value ::
string()}

Environment variables can be passed to the shell/command to be started later. This event is sent as a result
of calling ssh_connection:; setenv/5.

{pty, ssh_channel id(), WantReply :: boolean(), {Terminal :: string(),
CharWdth :: integer(), RowHeight :: integer(), PixelWdth :: integer(),
Pi xel Height :: integer(), Termi nal Modes :: [{Opcode :: atom() | integer(),
Value :: integer()}]}}

A pseudo-termina has been requested for the session. Ter mi nal isthe value of the TERM environment
variablevalue, that is, vt 100. Zero dimension parameters must be ignored. The character/row dimensions
override the pixel dimensions (when non-zero). Pixel dimensions refer to the drawable area of the window.
Opcode in the Ter ni nal Modes list is the mnemonic name, represented as a lowercase Erlang atom,
defined in RFC 4254, Section 8. It can also be an Opcode if the mnemonic nameis not listed in the RFC.
Example: OP code: 53, mmenonic nane ECHO erl ang atom echo. Thiseventissent as
aresult of calling ssh_connection: ptty_alloc/4.

{shell, WantReply :: bool ean()}

This message requests that the user default shell is started at the other end. This event is sent as a result of
calling ssh_connection:shell/2.

{wi ndow_change, ssh_channel _id(), CharWdth() :: integer(), RowHei ght
integer(), PixWdth :: integer(), PixHeight :: integer()}

When the window (terminal) size changes on the client side, it can send a message to the server side to
inform it of the new dimensions. No API function generates this event.

Ericsson AB. All Rights Reserved.: SSH | 41

href
href

ssh_connection

{exec, ssh_channel _id(), WantReply :: boolean(), Crd :: string()}

This message requests that the server starts execution of the given command. This event is sent as a result
of calling ssh_connection:exec/4 .

Exports

adjust window(ConnectionRef, Channelld, NumOfBytes) -> ok
Types.
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _id()
NumOF Byt es = integer()
Adjusts the SSH flow control window. Thisis to be done by both the client- and server-side channel processes.

Note:

Channels implemented with the ssh_channel behavior do not normally need to call this function as flow control
is handled by the behavior. The behavior adjusts the window every time the callback handle ssh _msg/2 returns
after processing channel data.

close(ConnectionRef, Channelld) -> ok
Types:
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _id()

A server- or client-channel process can choose to close their session by sending a close event.

Note:

This function is called by the ssh_channel behavior when the channel is terminated, see ssh _channel(3).
Thus, channels implemented with the behavior are not to call this function explicitly.

exec(ConnectionRef, Channelld, Command, TimeOut) -> ssh request status() |
{error, reason()}

Types.
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _id()
Command string()
Ti meout = timeout ()

Isto be called by aclient-channel process to request that the server starts executing the given command. Theresult is
several messages according to the following pattern. Thelast messageisachannel close message, astheexec request
is aone-time execution that closes the channel when it is done.

42 | Ericsson AB. All Rights Reserved.: SSH

ssh_connection

N x {ssh_cm ssh_connection_ref(), {data, ssh_channel _id(),
ssh_data_type_code(), Data :: binary()}}

The result of executing the command can be only one line or thousands of lines depending on the command.
0 or 1 x {ssh_cm ssh_connection_ref(), {eof, ssh_channel _id()}}
Indicates that no more data is to be sent.

0 or 1 x {ssh_cm ssh _connection_ref(), {exit_signal, ssh _channel _id(),
ExitSignal :: string(), ErrorMsg :: string(), LanguageString :: string()}}

Not al systems send signals. For details on valid string values, see RFC 4254, Section 6.10

0 or 1 x {ssh_cm ssh_connection_ref(), {exit_status, ssh_channel _id(),
ExitStatus :: integer()}}

It is recommended by the SSH Connection Protocol to send this message, but that is not always the case.
1 x {ssh_cm ssh_connection_ref(), {closed, ssh_channel _id()}}
Indicatesthat thessh_channel started for the execution of the command has now been shut down.

exit status(ConnectionRef, Channelld, Status) -> ok
Types.

Connecti onRef = ssh_connection_ref()

Channel Id = ssh_channel _i d()

Status = integer()

Isto be called by a server-channel process to send the exit status of acommand to the client.

ptty alloc(ConnectionRef, Channelld, Options) ->

ptty alloc(ConnectionRef, Channelld, Options, Timeout) -> >
ssh_request status() | {error, reason()}

Types:
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _id()
Options = proplists:proplist()
Sends an SSH Connection Protocol pt y_r eq, to allocate a pseudo-terminal. Isto be called by an SSH client process.
Options:
{term, string()}
Defaultsto os.getenv(" TERM") or vt100 if it is undefined.
{width, integer()}
Defaultsto 80 if pi xel _wi dt h isnot defined.
{height, integer()}
Defaultsto 24 if pi xel _hei ght isnot defined.
{pixel_width, integer()}
Isdisregarded if wi dt h isdefined.
{ pixel_height, integer()}
Isdisregarded if hei ght isdefined.

Ericsson AB. All Rights Reserved.: SSH | 43

ssh_connection

{pty_opts, [{posix_atom(), integer()}]}
Option can be an empty list. Otherwise, see possible POSI X namesin Section 8in RFC 4254.

reply request(ConnectionRef, WantReply, Status, Channelld) -> ok
Types:
Connecti onRef = ssh_connection_ref()
Want Reply = bool ean()
Status = ssh_request _status()
Channel Id = ssh_channel _id()
Sends status replies to requests where the regquester has stated that it wants a status report, that is, Want Reply =

true. If WVant Repl y isf al se, caling this function becomes a "noop". Is to be called while handling an SSH
Connection Protocol message containing a\Want Repl y boolean value.

send(ConnectionRef, Channelld, Data) ->
send(ConnectionRef, Channelld, Data, Timeout) ->
send(ConnectionRef, Channelld, Type, Data) ->

send(ConnectionRef, Channelld, Type, Data, TimeOut) -> ok | {error, timeout}
| {error, closed}

Types.
Connecti onRef = ssh_connection_ref()
Channel I1d = ssh_channel _i d()
Data = binary()
Type = ssh_data_type_code()
Ti meout = tineout ()
Isto be called by client- and server-channel processes to send data to each other.

The function subsystem/4 and subsequent calls of send/ 3, 4, 5 must be executed in the same process.

send _eof(ConnectionRef, Channelld) -> ok | {error, closed}
Types:

Connecti onRef = ssh_connection_ref()

Channel Id = ssh_channel _id()

Sends EOF on channel Channel | d.

session channel(ConnectionRef, Timeout) ->

session_channel(ConnectionRef, InitialWindowSize, MaxPacketSize, Timeout) ->
{ok, ssh_channel_id()} | {error, reason()}

Types:
Connecti onRef = ssh_connection_ref()
Initial WndowSi ze = integer()
MaxPacket Si ze = integer()
Ti meout = timeout ()
Reason = term()

44 | Ericsson AB. All Rights Reserved.: SSH

href

ssh_connection

Opens a channel for an SSH session. The channel id returned from this function is the id used as input to the other
functionsin this module.

setenv(ConnectionRef, Channelld, Var, Value, TimeOut) -> ssh request status()
| {error, reason()}

Types:
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _i d()
Var = string()
Val ue = string()
Ti meout = timeout ()

Environment variables can be passed before starting the shell/command. Isto be called by a client channel processes.

shell(ConnectionRef, Channelld) -> ssh request status() | {error, closed}
Types:

Connecti onRef = ssh_connection_ref()

Channel I1d = ssh_channel _i d()

Isto be called by a client channel process to request that the user default shell (typically defined in /etc/passwd in
Unix systems) is executed at the server end.

subsystem(ConnectionRef, Channelld, Subsystem, Timeout) ->
ssh request status() | {error, reason()}

Types.
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _id()
Subsystem = string()
Ti meout = timeout ()
Isto be called by a client-channel process for requesting to execute a predefined subsystem on the server.

Thefunction subsyst en1 4 and subsequent calls of send/3,4,5 must be executed in the same process.

Ericsson AB. All Rights Reserved.: SSH | 45

ssh_client_key api

ssh_client_key api

Erlang module

Behavior describing the API for public key handling of an SSH client. By implementing the callbacks defined in this
behavior, the public key handling of an SSH client can be customized. By default the ssh application implementsthis
behavior with help of the standard OpenSSH files, see the ssh(6) application manual.

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both. For more details on public key data types, refer to Section 2 Public Key Records in the public_key
user's guide:

bool ean() =

true | false
string() =

[byte()]
public_key() =

RSAPubl i cKey' {}| {integer(), # Dss-Parns'{}}| term)
private _key() =

RSAPrivateKey' {} | # DSAPrivateKey'{} | term()
public_key_algorithm() =

‘ssh-rsa'| 'ssh-dss' | atom()

Exports

Module:add host key(HostNames, Key, ConnectOptions) -> ok | {error, Reason}
Types:

Host Nanes = string()

Description of the host that owns the Publ i cKey.

Key = public_key()

Normally an RSA or DSA public key, but handling of other public keys can be added.

Connect Options = proplists:proplist()

Options provided to ssh: connect/[3,4]

Reason = term().

Adds a host key to the set of trusted host keys.

Module:is host key(Key, Host, Algorithm, ConnectOptions) -> Result
Types.

Key = public_key()

Normally an RSA or DSA public key, but handling of other public keys can be added.

Host = string()

Description of the host.

46 | Ericsson AB. All Rights Reserved.: SSH

ssh_client_key api

Al gorithm = public_key_ al gorithm)

Host key algorithm. Isto support’ ssh-rsa' | ' ssh-dss', but more agorithms can be handled.
Connect Options = proplists:proplist()

Options provided to ssh:connect/[3,4].

Result = bool ean()

Checks if ahost key istrusted.

Module:user key(Algorithm, ConnectOptions) -> {ok, PrivateKey} | {error,
Reason}

Types.
Al gorithm = public_key al gorithm)
Host key algorithm. Isto support' ssh-rsa'| ' ssh-dss' but more algorithms can be handled.
Connect Options = proplists:proplist()
Options provided to ssh: connect/[3,4]
PrivateKey = private_key()
Private key of the user matching the Al gori t hm
Reason = term()

Fetches the users public key matching the Al gori t hm

Note:
The private key contains the public key.

Ericsson AB. All Rights Reserved.: SSH | 47

ssh_server_key_api

ssh_server key api

Erlang module

Behaviour describing the API for public key handling of an SSH server. By implementing the callbacks defined in this
behavior, the public key handling of an SSH server can be customized. By default the SSH application implements
this behavior with help of the standard OpenSSH files, see the ssh(6) application manual .

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both. For more details on public key data types, refer to Section 2 Public Key Records in the public_key
user's guide.

bool ean() =

true | false
string() =

[byte()]
public_key() =

RSAPubl i cKey' {}| {integer(), # Dss-Parns'{}}| term)
private _key() =

RSAPrivateKey' {} | # DSAPrivateKey'{} | term()
public_key_algorithm() =

‘ssh-rsa'| 'ssh-dss' | atom()

Exports

Module:host key(Algorithm, DaemonOptions) -> {ok, Key} | {error, Reason}
Types:

Al gorithm = public_key_algorithn()

Host key algorithm. Isto support* ssh-rsa' | 'ssh-dss', but more algorithms can be handled.

DaenonQOptions = proplists:proplist()

Options provided to ssh:daemon/[2,3].

Key = private_key()

Private key of the host matching the Al gori t hm

Reason = term()

Fetches the private key of the host.

Module:is auth key(Key, User, DaemonOptions) -> Result
Types.
Key = public_key()
Normally an RSA or DSA public key, but handling of other public keys can be added
User = string()
User owning the public key.

48 | Ericsson AB. All Rights Reserved.: SSH

ssh_server_key_api

DaenonQpti ons = proplists:proplist()
Options provided to ssh:daemon/[2,3].
Result = bool ean()

Checksif the user key is authorized.

Ericsson AB. All Rights Reserved.: SSH | 49

ssh_sftp

ssh_sftp

Erlang module

Thismoduleimplementsan SSH FTP (SFTP) client. SFTPisasecure, encrypted filetransfer service availablefor SSH.

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both:

reason()
=at on() A description of the reason why an operation failed.

The value is formed from the sftp error codes in the protocol-level responses as defined in draft-ietf-secsh-
filexfer-13.txt section 9.1.

The codes are named as SSH_FX_* which are transformed into lowercase of the star-part. E.g. the error code
SSH FX _NO_SUCH FI LE will causether eason() tobeno_such _file.

ssh_connection_ref() =
opaque() - asreturned by ssh: connect/ 3
ti nmeout ()
=infinity | integer() inmilliseconds. Default infinity.

Time-outs

If the request functions for the SFTP channel return{ error, ti meout}, noanswer was received from the server
within the expected time.

The request may have reached the server and may have been performed. However, no answer was received from the
server within the expected time.

Exports

apread(ChannelPid, Handle, Position, Len) -> {async, N} | {error, reason()}
Types:

Channel Pid = pid()

Handl e = term)

Position = integer()
Len = integer()
N =term)

The apr ead/ 4 function reads from a specified position, combining the posi t i on/ 3 and ar ead/ 3 functions.

apwrite(ChannelPid, Handle, Position, Data) -> {async, N} | {error, reason()}
Types.

Channel Pid = pid()

Handl e = term()

Position = integer()

50 | Ericsson AB. All Rights Reserved.: SSH

href
href

ssh_sftp

Len = integer()
Data = binary()

Ti meout = timeout ()
N=term)

Theapwr i t e/ 4 function writes to a specified position, combining the posi ti on/ 3 andawr i t e/ 3 functions.

aread(ChannelPid, Handle, Len) -> {async, N} | {error, reason()}
Types:

Channel Pid = pid()

Handle = term)

Position = integer()
Len = integer()
N=term)

Reads from an open file, without waiting for the result. If the handle is valid, the function returns { async, N},
where Nisaterm guaranteed to be unique between calls of ar ead. The actual datais sent as amessage to the calling
process. This message hastheform {async_reply, N, Result},whereResul t istheresult from the read,
either { ok, Data},eof ,or{error, reason()}.

awrite(ChannelPid, Handle, Data) -> {async, N} | {error, reason()}
Types:
Channel Pid = pid()
Handle = term)
Position = integer()
Len = integer()
Data = binary()
Ti meout = timeout ()
Writes to an open file, without waiting for the result. If the handleisvalid, the function returns{ async, N}, where
Nisaterm guaranteed to be unique between callsof awr i t e. Theresult of thewr i t e operation is sent as amessage

to the calling process. This message has the form { async_reply, N, Result}, where Resul t isthe result
from the write, either ok, or{error, reason()}.

close(ChannelPid, Handle) ->
close(ChannelPid, Handle, Timeout) -> ok | {error, reason()}
Types.

Channel Pid = pid()

Handle = term()

Ti meout = timeout ()

Closes ahandle to an open file or directory on the server.

delete(ChannelPid, Name) ->
delete(ChannelPid, Name, Timeout) -> ok | {error, reason()}
Types:

Channel Pid = pid()

Name = string()

Ericsson AB. All Rights Reserved.: SSH | 51

ssh_sftp

Ti meout = timeout ()
Deletes the file specified by Nane.

del dir(ChannelPid, Name) ->
del dir(ChannelPid, Name, Timeout) -> ok | {error, reason()}
Types:

Channel Pid = pid()

Name = string()

Ti meout = tinmeout ()

Deletes a directory specified by Nane. The directory must be empty before it can be successfully deleted.

list dir(ChannelPid, Path) ->
list dir(ChannelPid, Path, Timeout) -> {ok, Filenames} | {error, reason()}
Types.

Channel Pid = pid()

Path = string()

Fil enames = [Fil enane]

Fil enanme = string()

Ti meout = tinmeout ()

Lists the given directory on the server, returning the filenames as alist of strings.

make dir(ChannelPid, Name) ->
make dir(ChannelPid, Name, Timeout) -> ok | {error, reason()}
Types:

Channel Pid = pid()

Name = string()

Ti meout = tinmeout ()

Creates adirectory specified by Nanme. Name must be afull path to anew directory. The directory can only be created
in an existing directory.

make symlink(ChannelPid, Name, Target) ->
make symlink(ChannelPid, Name, Target, Timeout) -> ok | {error, reason()}
Types:

Channel Pid = pid()

Name = string()

Target = string()

Creates asymboalic link pointing to Tar get with the name Nane.

open(ChannelPid, File, Mode) ->
open(ChannelPid, File, Mode, Timeout) -> {ok, Handle} | {error, reason()}
Types:

Channel Pid = pid()

File = string()

52 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

Mode = [Modefl ag]

Modeflag = read | wite | creat | trunc | append | binary
Ti meout = timeout ()

Handl e = term()

Opens afile on the server and returns a handle, which can be used for reading or writing.

opendir(ChannelPid, Path) ->
opendir(ChannelPid, Path, Timeout) -> {ok, Handle} | {error, reason()}
Types.

Channel Pid = pid()

Path = string()

Ti meout = timeout ()

Opens a handle to adirectory on the server. The handle can be used for reading directory contents.

open_tar(ChannelPid, Path, Mode) ->
open_tar(ChannelPid, Path, Mode, Timeout) -> {ok, Handle} | {error, reason()}
Types:

Channel Pid = pid()

Path = string()

Mode = [read] | [wite] | [read, EncryptOpt] | [wite, Decrypt Opt]

Encrypt Opt = {crypto, {InitFun, Encrypt Fun, d oseFun}}

Decrypt Opt = {crypto, {InitFun, Decrypt Fun}}

InitFun = (fun() -> {ok,CryptoState}) | (fun() ->
{ok, Crypt oSt at e, ChunkSi ze})

CryptoState = any()
ChunkSi ze = undefined | pos_integer()
Encrypt Fun = (fun(Pl ai nBin, CryptoState) -> Encrypt Result)

Encrypt Result = {ok, EncryptedBi n, CryptoState} |
{ ok, Encrypt edBi n, Crypt oSt at e, ChunkSi ze}

Pl ai nBin = binary()
EncryptedBin = binary()
Decrypt Fun = (fun(EncryptedBi n, Crypt oState) -> DecryptResult)

Decrypt Result = {ok, Pl ai nBi n, CryptoState} |
{ ok, Pl ai nBi n, Crypt oSt at e, ChunkSi ze}

d oseFun = (fun(Pl ainBin, CryptoState) -> {ok, EncryptedBin})
Ti meout = timeout ()

Opensahandleto atar file onthe server, associated with Channel Pi d. Thehandle can be used for remotetar creation
and extraction, as defined by the erl_tar:init/3 function.

For code exampel see Section SFTP Client with TAR Compression and Encryption in the ssh Users Guide.

Thecr ypt o mode option is applied to the generated stream of bytes prior to sending them to the SFTP server. This
isintended for encryption but can be used for other purposes.

Thel ni t Fun isapplied once prior to any other cr ypt o operation. Thereturned Cr ypt oSt at e isthen folded into
repeated applications of the Encr ypt Fun or Decr ypt Fun. The binary returned from those funs are sent further

Ericsson AB. All Rights Reserved.: SSH | 53

ssh_sftp

to the remote SFTP server. Finaly, if doing encryption, the G oseFun is applied to the last piece of data. The
O oseFun isresponsible for padding (if needed) and encryption of that last piece.

The ChunkSi ze defines the size of the Pl ai nBi ns that EncodeFun is applied to. If the ChunkSi ze is
undef i ned, the size of the Pl ai nBi ns varies, because this is intended for stream crypto, whereas a fixed
ChunksSi ze isintended for block crypto. ChunkSi zes can be changed in the return from the Encr ypt Fun or
Decr ypt Fun. The value can be changed between pos_i nt eger () and undef i ned.

position(ChannelPid, Handle, Location) ->

position(ChannelPid, Handle, Location, Timeout) -> {ok, NewPosition | {error,
reason()}

Types:
Channel Pid = pid()
Handle = term)

Location = Ofset | {bof, Ofset} | {cur, Ofset} | {eof, Ofset} | bof |
cur | eof

O fset = integer()
Ti meout = tineout ()
NewPosi tion = integer()

Sets the file position of the file referenced by Handl e. Returns { ok, NewPosi ti on} (as an absolute offset) if
successful, otherwise{ error, reason()}.Locati on isoneof thefollowing:

O fset
Thesameas{bof, O fset}.
{bof, O fset}
Absolute offset.
{cur, Ofset}
Offset from the current position.
{eof, O fset}
Offset from the end of file.
bof | cur | eof
The same as eariler with Of f set O, thatis, { bof, 0} | {cur, 0} | {eof, O}.

pread(ChannelPid, Handle, Position, Len) ->

pread(ChannelPid, Handle, Position, Len, Timeout) -> {ok, Data} | eof |
{error, reason()}

Types:
Channel Pid = pid()
Handl e = term)
Position = integer()
Len = integer()
Ti meout = tineout ()
Data = string() | binary()

Thepr ead/ 3, 4 function reads from a specified position, combining the posi ti on/ 3 and r ead/ 3, 4 functions.

54 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

pwrite(ChannelPid, Handle, Position, Data) -> ok
pwrite(ChannelPid, Handle, Position, Data, Timeout) -> ok | {error, reason()}
Types:

Channel Pid = pid()

Handl e = term)

Position = integer()

Data = iolist()

Ti meout = timeout ()

Thepwr it e/ 3, 4 function writesto a specified position, combining theposi ti on/ 3andwri t e/ 3, 4 functions.

read(ChannelPid, Handle, Len) ->

read (ChannelPid, Handle, Len, Timeout) -> {ok, Data} | eof | {error,
reason()}

Types:
Channel Pid = pid()
Handl e = term)
Position = integer()
Len = integer()
Ti reout = tinmeout ()
Data = string() | binary()

Reads Len bytes from the file referenced by Handl e. Returns{ ok, Dat a},eof ,or{error, reason()}.If
thefileis opened with bi nar y, Dat a isabinary, otherwise it isastring.

If thefileisread past eof , only the remaining bytes are read and returned. If no bytes are read, eof isreturned.

read file(ChannelPid, File) ->
read file(ChannelPid, File, Timeout) -> {ok, Data} | {error, reason()}
Types.

Channel Pid = pid()

File = string()

Data = binary()

Ti meout = tineout ()

Reads a file from the server, and returns the datain a binary.

read file info(ChannelPid, Name) ->

read file info(ChannelPid, Name, Timeout) -> {ok, FileInfo} | {error,
reason()}

Types.
Channel Pid = pid()
Nane = string()
Handl e = term)
Ti meout = tinmeout ()
Filelnfo = record()

Ericsson AB. All Rights Reserved.: SSH | 55

ssh_sftp

Returnsaf i | e_i nf o record from the file specified by Name or Handl e. Seefile:iread file info/2 for information
about the record.

read link(ChannelPid, Name) ->
read link(ChannelPid, Name, Timeout) -> {ok, Target} | {error, reason()}
Types.

Channel Pid = pid()

Name = string()

Target = string()

Reads the link target from the symboalic link specified by nane.

read link info(ChannelPid, Name) -> {ok, FileInfo} | {error, reason()}

read link info(ChannelPid, Name, Timeout) -> {ok, FileInfo} | {error,
reason()}

Types:
Channel Pid = pid()
Name = string()
Handle = term)
Ti meout = timeout ()
Filelnfo = record()

Returnsafi | e_i nf o record from the symbolic link specified by Nane or Handl e. Seefile:read_link_info/2 for
information about the record.

rename (ChannelPid, OldName, NewName) ->
rename (ChannelPid, OldName, NewName, Timeout) -> ok | {error, reason()}
Types:

Channel Pid = pid()

A dNane string()

NewNare string()

Ti meout = timeout ()

Renames afile named O dNane and givesit the name NewNane.

start channel(ConnectionRef) ->
start channel(ConnectionRef, Options) -> {ok, Pid} | {error, reason()|term()}
start _channel(Host, Options) ->

(
(
(
start channel(Host, Port, Options) -> {ok, Pid, ConnectionRef} | {error,
reason() |term()}

(

(

(

start _channel(TcpSocket) ->

start _channel(TcpSocket, Options) -> {ok, Pid, ConnectionRef} | {error,
reason() |term()}

Types:
Host = string()
Connecti onRef = ssh_connection_ref()
Port = integer()

56 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

TcpSocket = port()
The socket is supposed to be from gen_tcp: connect or gen_tcp:accept with option { acti ve, f al se}
Options = [{Option, Value}]
If no connection reference is provided, a connection is set up, and the new connection is returned. An SSH channel
process is started to handle the communication with the SFTP server. The returned pi d for this processis to be used
asinput to all other API functionsin this module.
Options:
{tinmeout, timeout()}
There are two ways to set atimeout for the underlying ssh connection:
» If the connection timeout option connect _t i meout isset, that valueis used also for the negotiation
timeout and this option (t i meout) isignored.
e Otherwise, thisoption (t i meout) isused as the negotiation timeout only and there is no connection
timeout set
Thevaue defaultstoi nfinity.
{sftp_vsn, integer()}

Desired SFTP protocol version. The actua version is the minimum of the desired version and the maximum
supported versions by the SFTP server.

All other options are directly passed to ssh:connect/3 or ignored if a connection is already provided.

stop channel(ChannelPid) -> ok
Types:
Channel Pid = pid()
Stops an SFTP channel. Does not close the SSH connection. Use ssh:close/1 to closeit.

write(ChannelPid, Handle, Data) ->
write(ChannelPid, Handle, Data, Timeout) -> ok | {error, reason()}
Types:

Channel Pid = pid()

Handle = term)

Position = integer()

Data = iolist()

Ti meout = timeout ()

Writes dat a to the file referenced by Handl e. Thefileis to be opened with wr i t e or append flag. Returns ok
if successful or{ error, reason()} otherwise.

write file(ChannelPid, File, Iolist) ->
write file(ChannelPid, File, Iolist, Timeout) -> ok | {error, reason()}
Types.

Channel Pid = pid()

File = string()

lolist = iolist()

Ti reout = timeout ()

Ericsson AB. All Rights Reserved.: SSH | 57

ssh_sftp

Writes afile to the server. Thefileis created if it does not exist but overwritten if it exists.

write file info(ChannelPid, Name, Info) ->
write file info(ChannelPid, Name, Info, Timeout) -> ok | {error, reason()}
Types.

Channel Pid = pid()

Name = string()

Info = record()

Ti meout = timeout ()

Writes file information from afi | e_i nf o record to the file specified by Nare. See filewrite file_info/[2,3] for
information about the record.

58 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftpd

ssh_sftpd

Erlang module

Specifies a channel process to handle an SFTP subsystem.

DATA TYPES
subsystem spec() =
{subsystem nane(), {channel callback(), channel _init_args()}}
subsystem name() =
"sftp"
channel _cal I back() =

at om() - Name of the Erlang modul e implementing the subsystem using thessh_channel behavior, seethe
ssh_channel (3) manual page.

channel init_args() =
I'ist() - Theonegiven asargument to function subsyst em spec/ 1.

Exports

subsystem spec(Options) -> subsystem spec()
Types:

Options = [{Option, Value}]
Isto be used together with ssh: daenon/ [1, 2, 3]
Options:
{cwd, String}

Setstheinitial current working directory for the server.
{file_handl er, CallbackMbodul e}

Determines which module to call for accessing the file server. The default valueisssh_sft pd_fi | e, which
uses the file and filelib APIs to access the standard OTP file server. This option can be used to plug in other
file servers.

{max_files, Integer}

The default value is 0, which means that there is no upper limit. If supplied, the number of filenames returned to
the SFTP client per READDI Rrequest is limited to at most the given value.

{root, String}

Setsthe SFTProot directory. Then the user cannot see any files abovethisroot. If, for example, theroot directory
is set to / t np, then the user sees this directory as/ . If the user then writescd / et ¢, the user moves to /
tmp/ et c.

{sftpd_vsn, integer()}
Setsthe SFTP version to use. Defaultsto 5. Version 6 is under development and limited.

Ericsson AB. All Rights Reserved.: SSH | 59

	SSH
	SSH User's Guide
	Introduction
	Scope and Purpose
	Prerequisites
	SSH Protocol Overview
	Transport Protocol
	Authentication Protocol
	Connection Protocol
	Channels

	Where to Find More Information

	Getting Started
	General Information
	Using the Erlang ssh Terminal Client
	Running an Erlang ssh Daemon
	One-Time Execution
	SFTP Server
	SFTP Client
	SFTP Client with TAR Compression and Encryption
	Creating a Subsystem

	Configuring algorithms in SSH
	Introduction
	Basics of the ssh protocol's algorithms handling
	The SSH app's mechanism

	Replacing the default set: preferred_algorithms
	Example 1
	Example 2
	Example 3
	Example 4

	Modifying the default set: modify_algorithms
	Example 5
	Example 6
	Example 7

	Reference Manual
	SSH
	ssh
	close/1
	connect/3
	connect/4
	connect/2
	connect/3
	connection_info/2
	daemon/1
	daemon/2
	daemon/3
	daemon/1
	daemon/2
	daemon_info/1
	default_algorithms/0
	shell/1
	shell/2
	shell/3
	shell/1
	start/0
	start/1
	stop/0
	stop_daemon/1
	stop_daemon/2
	stop_listener/1
	stop_listener/2

	ssh_channel
	call/2
	call/3
	cast/2
	enter_loop/1
	init/1
	reply/2
	start/4
	start_link/4
	Module:code_change/3
	Module:init/1
	Module:handle_call/3
	Module:handle_cast/2
	Module:handle_msg/2
	Module:handle_ssh_msg/2
	Module:terminate/2

	ssh_connection
	adjust_window/3
	close/2
	exec/4
	exit_status/3
	ptty_alloc/3
	ptty_alloc/4
	reply_request/4
	send/3
	send/4
	send/4
	send/5
	send_eof/2
	session_channel/2
	session_channel/4
	setenv/5
	shell/2
	subsystem/4

	ssh_client_key_api
	Module:add_host_key/3
	Module:is_host_key/4
	Module:user_key/2

	ssh_server_key_api
	Module:host_key/2
	Module:is_auth_key/3

	ssh_sftp
	apread/4
	apwrite/4
	aread/3
	awrite/3
	close/2
	close/3
	delete/2
	delete/3
	del_dir/2
	del_dir/3
	list_dir/2
	list_dir/3
	make_dir/2
	make_dir/3
	make_symlink/3
	make_symlink/4
	open/3
	open/4
	opendir/2
	opendir/3
	open_tar/3
	open_tar/4
	position/3
	position/4
	pread/4
	pread/5
	pwrite/4
	pwrite/5
	read/3
	read/4
	read_file/2
	read_file/3
	read_file_info/2
	read_file_info/3
	read_link/2
	read_link/3
	read_link_info/2
	read_link_info/3
	rename/3
	rename/4
	start_channel/1
	start_channel/2
	start_channel/2
	start_channel/3
	start_channel/1
	start_channel/2
	stop_channel/1
	write/3
	write/4
	write_file/3
	write_file/4
	write_file_info/3
	write_file_info/4

	ssh_sftpd
	subsystem_spec/1

