
crypto
Copyright © 1999-2010 Ericsson AB. All Rights Reserved.

crypto 2.0.1
September 13 2010



Copyright © 1999-2010 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 13 2010



Ericsson AB. All Rights Reserved.: crypto | 1



1.1  Licenses

2 | Ericsson AB. All Rights Reserved.: crypto

1    User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

1.1  Licenses
This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.1.1  OpenSSL License

/* ====================================================================
 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY



1.1  Licenses

Ericsson AB. All Rights Reserved.: crypto | 3

 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */    

1.1.2  SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE



1.1  Licenses

4 | Ericsson AB. All Rights Reserved.: crypto

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */    



1.1  Licenses

Ericsson AB. All Rights Reserved.: crypto | 5

2    Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.



crypto

6 | Ericsson AB. All Rights Reserved.: crypto

crypto
Application

The purpose of the Crypto application is to provide message digest and DES encryption for SMNPv3. It provides
computation of message digests MD5 and SHA, and CBC-DES encryption and decryption.

Configuration
The following environment configuration parameters are defined for the Crypto application. Refer to application(3)
for more information about configuration parameters.

debug = true | false <optional>

Causes debug information to be written to standard error or standard output. Default is false.

OpenSSL libraries
The current implementation of the Erlang Crypto application is based on the OpenSSL package version 0.9.7 or higher.
There are source and binary releases on the web.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

The same URL also contains links to some compiled binaries and libraries of OpenSSL (see the Related/
Binaries menu) of which the Shining Light Productions Win32 and OpenSSL pages are of interest for the Win32
user.

For some Unix flavours there are binary packages available on the net.

If you cannot find a suitable binary OpenSSL package, you have to fetch an OpenSSL source release and compile it.

You then have to compile and install the library libcrypto.so (Unix), or the library libeay32.dll (Win32).

For Unix The crypto_drv dynamic driver is delivered linked to OpenSSL libraries in /usr/local/lib, but the
default dynamic linking will also accept libraries in /lib and /usr/lib.

If that is not applicable to the particular Unix operating system used, the example Makefile in the Crypto priv/
obj directory, should be used as a basis for relinking the final version of the port program.

For Win32 it is only required that the library can be found from the PATH environment variable, or that they reside
in the appropriate SYSTEM32 directory; hence no particular relinking is need. Hence no example Makefile for
Win32 is provided.

SEE ALSO
application(3)

href
href


crypto

Ericsson AB. All Rights Reserved.: crypto | 7

crypto
Erlang module

This module provides a set of cryptographic functions.

References:

• md4: The MD4 Message Digest Algorithm (RFC 1320)

• md5: The MD5 Message Digest Algorithm (RFC 1321)

• sha: Secure Hash Standard (FIPS 180-2)

• hmac: Keyed-Hashing for Message Authentication (RFC 2104)

• des: Data Encryption Standard (FIPS 46-3)

• aes: Advanced Encryption Standard (AES) (FIPS 197)

• ecb, cbc, cfb, ofb: Recommendation for Block Cipher Modes of Operation (NIST SP 800-38A).

• rsa: Recommendation for Block Cipher Modes of Operation (NIST 800-38A)

• dss: Digital Signature Standard (FIPS 186-2)

The above publications can be found at NIST publications, at IETF.

Types

byte() = 0 ... 255
ioelem() = byte() | binary() | iolist()
iolist() = [ioelem()]
Mpint() = <<ByteLen:32/integer-big, Bytes:ByteLen/binary>>
    

Exports

start() -> ok

Starts the crypto server.

stop() -> ok

Stops the crypto server.

info() -> [atom()]

Provides the available crypto functions in terms of a list of atoms.

info_lib() -> [{Name,VerNum,VerStr}]

Types:

Name = binary()

VerNum = integer()

VerStr = binary()

Provides the name and version of the libraries used by crypto.

href
href


crypto

8 | Ericsson AB. All Rights Reserved.: crypto

Name is the name of the library. VerNum is the numeric version according to the library's own versioning scheme.
VerStr contains a text variant of the version.

> info_lib().
[{<<"OpenSSL">>,9469983,<<"OpenSSL 0.9.8a 11 Oct 2005">>}]
        

md4(Data) -> Digest

Types:

Data = iolist() | binary()

Digest = binary()

Computes an MD4 message digest from Data, where the length of the digest is 128 bits (16 bytes).

md4_init() -> Context

Types:

Context = binary()

Creates an MD4 context, to be used in subsequent calls to md4_update/2.

md4_update(Context, Data) -> NewContext

Types:

Data = iolist() | binary()

Context = NewContext = binary()

Updates an MD4 Context with Data, and returns a NewContext.

md4_final(Context) -> Digest

Types:

Context = Digest = binary()

Finishes the update of an MD4 Context and returns the computed MD4 message digest.

md5(Data) -> Digest

Types:

Data = iolist() | binary()

Digest = binary()

Computes an MD5 message digest from Data, where the length of the digest is 128 bits (16 bytes).

md5_init() -> Context

Types:

Context = binary()

Creates an MD5 context, to be used in subsequent calls to md5_update/2.

md5_update(Context, Data) -> NewContext

Types:

Data = iolist() | binary()



crypto

Ericsson AB. All Rights Reserved.: crypto | 9

Context = NewContext = binary()

Updates an MD5 Context with Data, and returns a NewContext.

md5_final(Context) -> Digest

Types:

Context = Digest = binary()

Finishes the update of an MD5 Context and returns the computed MD5 message digest.

sha(Data) -> Digest

Types:

Data = iolist() | binary()

Digest = binary()

Computes an SHA message digest from Data, where the length of the digest is 160 bits (20 bytes).

sha_init() -> Context

Types:

Context = binary()

Creates an SHA context, to be used in subsequent calls to sha_update/2.

sha_update(Context, Data) -> NewContext

Types:

Data = iolist() | binary()

Context = NewContext = binary()

Updates an SHA Context with Data, and returns a NewContext.

sha_final(Context) -> Digest

Types:

Context = Digest = binary()

Finishes the update of an SHA Context and returns the computed SHA message digest.

md5_mac(Key, Data) -> Mac

Types:

Key = Data = iolist() | binary()

Mac = binary()

Computes an MD5 MAC message authentification code from Key and Data, where the the length of the Mac is 128
bits (16 bytes).

md5_mac_96(Key, Data) -> Mac

Types:

Key = Data = iolist() | binary()

Mac = binary()

Computes an MD5 MAC message authentification code from Key and Data, where the length of the Mac is 96 bits
(12 bytes).



crypto

10 | Ericsson AB. All Rights Reserved.: crypto

sha_mac(Key, Data) -> Mac

Types:

Key = Data = iolist() | binary()

Mac = binary()

Computes an SHA MAC message authentification code from Key and Data, where the length of the Mac is 160 bits
(20 bytes).

sha_mac_96(Key, Data) -> Mac

Types:

Key = Data = iolist() | binary()

Mac = binary()

Computes an SHA MAC message authentification code from Key and Data, where the length of the Mac is 96 bits
(12 bytes).

des_cbc_encrypt(Key, IVec, Text) -> Cipher

Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text according to DES in CBC mode. Text must be a multiple of 64 bits (8 bytes). Key is the DES key,
and IVec is an arbitrary initializing vector. The lengths of Key and IVec must be 64 bits (8 bytes).

des_cbc_decrypt(Key, IVec, Cipher) -> Text

Types:

Key = Cipher = iolist() | binary()

IVec = Text = binary()

Decrypts Cipher according to DES in CBC mode. Key is the DES key, and IVec is an arbitrary initializing vector.
Key and IVec must have the same values as those used when encrypting. Cipher must be a multiple of 64 bits (8
bytes). The lengths of Key and IVec must be 64 bits (8 bytes).

des_cbc_ivec(Data) -> IVec

Types:

Data = iolist() | binary()

IVec = binary()

Returns the IVec to be used in a next iteration of des_cbc_[encrypt|decrypt]. Data is the encrypted data
from the previous iteration step.

des3_cbc_encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher

Types:

Key1 =Key2 = Key3 Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text according to DES3 in CBC mode. Text must be a multiple of 64 bits (8 bytes). Key1, Key2, Key3,
are the DES keys, and IVec is an arbitrary initializing vector. The lengths of each of Key1, Key2, Key3 and IVec
must be 64 bits (8 bytes).



crypto

Ericsson AB. All Rights Reserved.: crypto | 11

des3_cbc_decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text

Types:

Key1 = Key2 = Key3 = Cipher = iolist() | binary()

IVec = Text = binary()

Decrypts Cipher according to DES3 in CBC mode. Key1, Key2, Key3 are the DES key, and IVec is an arbitrary
initializing vector. Key1, Key2, Key3 and IVec must and IVec must have the same values as those used when
encrypting. Cipher must be a multiple of 64 bits (8 bytes). The lengths of Key1, Key2, Key3, and IVec must
be 64 bits (8 bytes).

des_ecb_encrypt(Key, Text) -> Cipher

Types:

Key = Text = iolist() | binary()

Cipher = binary()

Encrypts Text according to DES in ECB mode. Key is the DES key. The lengths of Key and Text must be 64
bits (8 bytes).

des_ecb_decrypt(Key, Cipher) -> Text

Types:

Key = Cipher = iolist() | binary()

Text = binary()

Decrypts Cipher according to DES in ECB mode. Key is the DES key. The lengths of Key and Cipher must be
64 bits (8 bytes).

blowfish_ecb_encrypt(Key, Text) -> Cipher
blowfish_ecb_decrypt(Key, Text) -> Cipher

Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts the first 64 bits of Text using Blowfish in ECB mode. Key is the Blowfish key. The length of Text must
be at least 64 bits (8 bytes).

Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Decrypts the first 64 bits of Text using Blowfish in ECB mode. Key is the Blowfish key. The length of Text must
be at least 64 bits (8 bytes).

blowfish_cbc_encrypt(Key, Text) -> Cipher
blowfish_cbc_decrypt(Key, Text) -> Cipher

Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text using Blowfish in CBC mode. Key is the Blowfish key, and IVec is an arbitrary initializing vector.
The length of IVec must be 64 bits (8 bytes). The length of Text must be a multiple of 64 bits (8 bytes).

Types:



crypto

12 | Ericsson AB. All Rights Reserved.: crypto

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Decrypts Text using Blowfish in CBC mode. Key is the Blowfish key, and IVec is an arbitrary initializing vector.
The length of IVec must be 64 bits (8 bytes). The length of Text must be a multiple 64 bits (8 bytes).

blowfish_cfb64_encrypt(Key, IVec, Text) -> Cipher

Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text using Blowfish in CFB mode with 64 bit feedback. Key is the Blowfish key, and IVec is an arbitrary
initializing vector. The length of IVec must be 64 bits (8 bytes).

blowfish_cfb64_decrypt(Key, IVec, Text) -> Cipher

Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Decrypts Text using Blowfish in CFB mode with 64 bit feedback. Key is the Blowfish key, and IVec is an arbitrary
initializing vector. The length of IVec must be 64 bits (8 bytes).

blowfish_ofb64_encrypt(Key, IVec, Text) -> Cipher

Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text using Blowfish in OFB mode with 64 bit feedback. Key is the Blowfish key, and IVec is an arbitrary
initializing vector. The length of IVec must be 64 bits (8 bytes).

aes_cfb_128_encrypt(Key, IVec, Text) -> Cipher
aes_cbc_128_encrypt(Key, IVec, Text) -> Cipher

Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text according to AES in Cipher Feedback mode (CFB) or Cipher Block Chaining mode (CBC). Text
must be a multiple of 128 bits (16 bytes). Key is the AES key, and IVec is an arbitrary initializing vector. The lengths
of Key and IVec must be 128 bits (16 bytes).

aes_cfb_128_decrypt(Key, IVec, Cipher) -> Text
aes_cbc_128_decrypt(Key, IVec, Cipher) -> Text

Types:

Key = Cipher = iolist() | binary()

IVec = Text = binary()

Decrypts Cipher according to Cipher Feedback Mode (CFB) or Cipher Block Chaining mode (CBC). Key is the
AES key, and IVec is an arbitrary initializing vector. Key and IVec must have the same values as those used when
encrypting. Cipher must be a multiple of 128 bits (16 bytes). The lengths of Key and IVec must be 128 bits (16
bytes).



crypto

Ericsson AB. All Rights Reserved.: crypto | 13

aes_cbc_ivec(Data) -> IVec

Types:

Data = iolist() | binary()

IVec = binary()

Returns the IVec to be used in a next iteration of aes_cbc_*_[encrypt|decrypt]. Data is the encrypted
data from the previous iteration step.

erlint(Mpint) -> N
mpint(N) -> Mpint

Types:

Mpint = binary()

N = integer()

Convert a binary multi-precision integer Mpint to and from an erlang big integer. A multi-precision integer is a binary
with the following form: <<ByteLen:32/integer, Bytes:ByteLen/binary>> where both ByteLen and
Bytes are big-endian. Mpints are used in some of the functions in crypto and are not translated in the API for
performance reasons.

rand_bytes(N) -> binary()

Types:

N = integer()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses the crypto library pseudo-
random number generator.

rand_uniform(Lo, Hi) -> N

Types:

Lo, Hi, N = Mpint | integer()

Mpint = binary()

Generate a random number N, Lo =< N < Hi. Uses the crypto library pseudo-random number generator. The
arguments (and result) can be either erlang integers or binary multi-precision integers.

mod_exp(N, P, M) -> Result

Types:

N, P, M, Result = Mpint

Mpint = binary()

This function performs the exponentiation N ^ P mod M, using the crypto library.

rsa_sign(Data, Key) -> Signature
rsa_sign(DigestType, Data, Key) -> Signature

Types:

Data = Mpint

Key = [E, N, D]

E, N, D = Mpint

Where E is the public exponent, N is public modulus and D is the private exponent.

DigestType = md5 | sha



crypto

14 | Ericsson AB. All Rights Reserved.: crypto

The default DigestType is sha.

Mpint = binary()

Signature = binary()

Calculates a DigestType digest of the Data and creates a RSA signature with the private key Key of the digest.

rsa_verify(Data, Signature, Key) -> Verified
rsa_verify(DigestType, Data, Signature, Key) -> Verified

Types:

Verified = boolean()

Data, Signature = Mpint

Key = [E, N]

E, N = Mpint

Where E is the public exponent and N is public modulus.

DigestType = md5 | sha

The default DigestType is sha.

Mpint = binary()

Calculates a DigestType digest of the Data and verifies that the digest matches the RSA signature using the signer's
public key Key.

rsa_public_encrypt(PlainText, PublicKey, Padding) -> ChipherText

Types:

PlainText = binary()

PublicKey = [E, N]

E, N = Mpint

Where E is the public exponent and N is public modulus.

Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding

ChipherText = binary()

Encrypts the PlainText (usually a session key) using the PublicKey and returns the cipher. The Padding
decides what padding mode is used, rsa_pkcs1_padding is PKCS #1 v1.5 currently the most used mode and
rsa_pkcs1_oaep_padding is EME-OAEP as defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty
encoding parameter. This mode is recommended for all new applications. The size of the Msg must be less than
byte_size(N)-11 if rsa_pkcs1_padding is used, byte_size(N)-41 if rsa_pkcs1_oaep_padding
is used and byte_size(N) if rsa_no_padding is used. Where byte_size(N) is the size part of an Mpint-1.

rsa_private_decrypt(ChipherText, PrivateKey, Padding) -> PlainText

Types:

ChipherText = binary()

PrivateKey = [E, N, D]

E, N, D = Mpint

Where E is the public exponent, N is public modulus and D is the private exponent.

Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding

PlainText = binary()



crypto

Ericsson AB. All Rights Reserved.: crypto | 15

Decrypts the ChipherText (usually a session key encrypted with rsa_public_encrypt/3) using the PrivateKey
and returns the message. The Padding is the padding mode that was used to encrypt the data, see
rsa_public_encrypt/3.

rsa_private_encrypt(PlainText, PrivateKey, Padding) -> ChipherText

Types:

PlainText = binary()

PrivateKey = [E, N, D]

E, N, D = Mpint

Where E is the public exponent, N is public modulus and D is the private exponent.

Padding = rsa_pkcs1_padding | rsa_no_padding

ChipherText = binary()

Encrypts the PlainText using the PrivateKey and returns the cipher. The Padding decides what padding mode
is used, rsa_pkcs1_padding is PKCS #1 v1.5 currently the most used mode. The size of the Msg must be less
than byte_size(N)-11 if rsa_pkcs1_padding is used, and byte_size(N) if rsa_no_padding is used.
Where byte_size(N) is the size part of an Mpint-1.

rsa_public_decrypt(ChipherText, PublicKey, Padding) -> PlainText

Types:

ChipherText = binary()

PublicKey = [E, N]

E, N = Mpint

Where E is the public exponent and N is public modulus

Padding = rsa_pkcs1_padding | rsa_no_padding

PlainText = binary()

Decrypts the ChipherText (encrypted with rsa_private_encrypt/3) using the PrivateKey and returns the
message. The Padding is the padding mode that was used to encrypt the data, see rsa_private_encrypt/3.

dss_sign(Data, Key) -> Signature
dss_sign(DigestType, Data, Key) -> Signature

Types:

DigestType = sha | none (default is sha)

Data = Mpint | ShaDigest

Key = [P, Q, G, X]

P, Q, G, X = Mpint

Where P, Q and G are the dss parameters and X is the private key.

ShaDigest = binary() with length 20 bytes

Signature = binary()

Creates a DSS signature with the private key Key of a digest. If DigestType is 'sha', the digest is calculated as
SHA1 of Data. If DigestType is 'none', Data is the precalculated SHA1 digest.

dss_verify(Data, Signature, Key) -> Verified
dss_verify(DigestType, Data, Signature, Key) -> Verified

Types:

Verified = boolean()



crypto

16 | Ericsson AB. All Rights Reserved.: crypto

DigestType = sha | none

Data = Mpint | ShaDigest

Signature = Mpint

Key = [P, Q, G, Y]

P, Q, G, Y = Mpint

Where P, Q and G are the dss parameters and Y is the public key.

ShaDigest = binary() with length 20 bytes

Verifies that a digest matches the DSS signature using the public key Key. If DigestType is 'sha', the digest is
calculated as SHA1 of Data. If DigestType is 'none', Data is the precalculated SHA1 digest.

rc4_encrypt(Key, Data) -> Result

Types:

Key, Data = iolist() | binary()

Result = binary()

Encrypts the data with RC4 symmetric stream encryption. Since it is symmetric, the same function is used for
decryption.

dh_generate_key(DHParams) -> {PublicKey,PrivateKey}
dh_generate_key(PrivateKey, DHParams) -> {PublicKey,PrivateKey}

Types:

DHParameters = [P, G]

P, G = Mpint

Where P is the shared prime number and G is the shared generator.

PublicKey, PrivateKey = Mpint()

Generates a Diffie-Hellman PublicKey and PrivateKey (if not given).

dh_compute_key(OthersPublicKey, MyPrivateKey, DHParams) -> SharedSecret

Types:

DHParameters = [P, G]

P, G = Mpint

Where P is the shared prime number and G is the shared generator.

OthersPublicKey, MyPrivateKey = Mpint()

SharedSecret = binary()

Computes the shared secret from the private key and the other party's public key.

exor(Data1, Data2) -> Result

Types:

Data1, Data2 = iolist() | binary()

Result = binary()

Performs bit-wise XOR (exclusive or) on the data supplied.



crypto

Ericsson AB. All Rights Reserved.: crypto | 17

DES in CBC mode
The Data Encryption Standard (DES) defines an algorithm for encrypting and decrypting an 8 byte quantity using an
8 byte key (actually only 56 bits of the key is used).

When it comes to encrypting and decrypting blocks that are multiples of 8 bytes various modes are defined (NIST SP
800-38A). One of those modes is the Cipher Block Chaining (CBC) mode, where the encryption of an 8 byte segment
depend not only of the contents of the segment itself, but also on the result of encrypting the previous segment: the
encryption of the previous segment becomes the initializing vector of the encryption of the current segment.

Thus the encryption of every segment depends on the encryption key (which is secret) and the encryption of the
previous segment, except the first segment which has to be provided with an initial initializing vector. That vector
could be chosen at random, or be a counter of some kind. It does not have to be secret.

The following example is drawn from the old FIPS 81 standard (replaced by NIST SP 800-38A), where both the plain
text and the resulting cipher text is settled. The following code fragment returns `true'.

      Key = <<16#01,16#23,16#45,16#67,16#89,16#ab,16#cd,16#ef>>,
      IVec = <<16#12,16#34,16#56,16#78,16#90,16#ab,16#cd,16#ef>>,
      P = "Now is the time for all ",
      C = crypto:des_cbc_encrypt(Key, IVec, P),
         % Which is the same as 
      P1 = "Now is t", P2 = "he time ", P3 = "for all ",
      C1 = crypto:des_cbc_encrypt(Key, IVec, P1),
      C2 = crypto:des_cbc_encrypt(Key, C1, P2),
      C3 = crypto:des_cbc_encrypt(Key, C2, P3),

      C = <<C1/binary, C2/binary, C3/binary>>,
      C = <<16#e5,16#c7,16#cd,16#de,16#87,16#2b,16#f2,16#7c,
             16#43,16#e9,16#34,16#00,16#8c,16#38,16#9c,16#0f,
             16#68,16#37,16#88,16#49,16#9a,16#7c,16#05,16#f6>>,
      <<"Now is the time for all ">> == 
                        crypto:des_cbc_decrypt(Key, IVec, C).
    

The following is true for the DES CBC mode. For all decompositions P1 ++ P2 = P of a plain text message P
(where the length of all quantities are multiples of 8 bytes), the encryption C of P is equal to C1 ++ C2, where C1 is
obtained by encrypting P1 with Key and the initializing vector IVec, and where C2 is obtained by encrypting P2 with
Key and the initializing vector last8(C1), where last(Binary) denotes the last 8 bytes of the binary Binary.

Similarly, for all decompositions C1 ++ C2 = C of a cipher text message C (where the length of all quantities
are multiples of 8 bytes), the decryption P of C is equal to P1 ++ P2, where P1 is obtained by decrypting C1 with
Key and the initializing vector IVec, and where P2 is obtained by decrypting C2 with Key and the initializing vector
last8(C1), where last8(Binary) is as above.

For DES3 (which uses three 64 bit keys) the situation is the same.


	crypto
	User's Guide
	Licenses
	OpenSSL License
	SSLeay License


	Reference Manual
	crypto
	crypto
	start/0
	stop/0
	info/0
	info_lib/0
	md4/1
	md4_init/0
	md4_update/2
	md4_final/1
	md5/1
	md5_init/0
	md5_update/2
	md5_final/1
	sha/1
	sha_init/0
	sha_update/2
	sha_final/1
	md5_mac/2
	md5_mac_96/2
	sha_mac/2
	sha_mac_96/2
	des_cbc_encrypt/3
	des_cbc_decrypt/3
	des_cbc_ivec/1
	des3_cbc_encrypt/5
	des3_cbc_decrypt/5
	des_ecb_encrypt/2
	des_ecb_decrypt/2
	blowfish_ecb_encrypt/2
	blowfish_ecb_decrypt/2
	blowfish_cbc_encrypt/2
	blowfish_cbc_decrypt/2
	blowfish_cfb64_encrypt/3
	blowfish_cfb64_decrypt/3
	blowfish_ofb64_encrypt/3
	aes_cfb_128_encrypt/3
	aes_cbc_128_encrypt/3
	aes_cfb_128_decrypt/3
	aes_cbc_128_decrypt/3
	aes_cbc_ivec/1
	erlint/1
	mpint/1
	rand_bytes/1
	rand_uniform/2
	mod_exp/3
	rsa_sign/2
	rsa_sign/3
	rsa_verify/3
	rsa_verify/4
	rsa_public_encrypt/3
	rsa_private_decrypt/3
	rsa_private_encrypt/3
	rsa_public_decrypt/3
	dss_sign/2
	dss_sign/3
	dss_verify/3
	dss_verify/4
	rc4_encrypt/2
	dh_generate_key/1
	dh_generate_key/2
	dh_compute_key/3
	exor/2




