| v

ERLANG

Event Tracer (ET)

Copyright © 2002-2010 Ericsson AB. All Rights Reserved.
Event Tracer (ET) 1.4.1
September 13 2010

Copyright © 2002-2010 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 13 2010

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 1

1.1 Introduction

1 User's Guide

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and graphical
viewing of trace data.

1.1 Introduction

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and
graphical viewing of trace data.

The viewed trace datais normally collected from Erlang trace ports or files.

1.1.1 Scope and Purpose

Thismanual describestheEvent Tr acer (ET) application, asacomponent of the Erlang/Open Telecom Platform
development environment. It is assumed that the reader is familiar with the Erlang Devel opment Environment, which
is described in a separate User's Guide.

1.1.2 Prerequisites

The following prerequisitesis required for understanding the material inthe Event Tracer (ET) User's Guide:
« familiarity with the Erlang system and Erlang programming in general and the especially the art of Erlang tracing.
The application requires Erlang/OTP release R13BB or later. If you usethe old GS based GUI it does suffice with R7B.

1.1.3 About This Manual

In addition to thisintroductory chapter, the Event Tr acer s User's Guide contains the following chapters:

e Chapter 2: "Tutorial" provides a walk-through of the various parts of the application. The tutoria is based
on Jayson Vantuyl's article http://souja. net/ 2009/ 04/ maki ng- sense- of - er| angs-
event-tracer. htnl.

* Chapter 3: "Description” describes the architecture and typical usage of the application.
e Chapter 4: "Advanced examples' gives some usage examples

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Event Tracer (ET) and about the Erlang/
OTP development system:
* the Reference Manual of the Event Tracer (ET).

e documentation of basictracinginer | ang: trace/ 4ander| ang: trace_patt er n/ 3 andthentheutilities
derived from these: dbg, obser ver,invi sioandet.

e Programming Erlang: Software for a Concurrent World by Joe Armstrong; |SBN: 978-1-93435-600-5

2 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.2 Tutorial

1.2 Tutorial

1.2.1 Visualizing Message Sequence Charts

The easiest way of using ET, isto just use it asagraphical tool for displaying message sequence charts. In order to do
that you need to first start aVi ewer (which by default startsaCol | ect or):

{ok, ViewerPid} = et_viewer:start([{title,"Coffee Order"}]),
Col | ectorPid = et_viewer:get_col |l ector_pid(ViewerPid).

Then you send eventsto the Col | ect or withthefunctionet col | ect or: report _event/ 6 likethis:

et _collector:report_event (Col | ectorPid, 85, fromto, message, extra_stuff).

The Vi ewer will automatically pull events from the Col | ect or and display them on the screen.

The number (in this case 85) is an integer from 1 to 100 that specifiesthe "detail level" of the message. The higher the
number, the more important it is. This provides a crude form of priority filtering.

Thef r omt 0, and nessage parametersare exactly what they soundlike. f r omandt o arevisualizedintheVi ewer
as"lifelines’, with the message passing from one to the other. If f r omand t o are the same value, then it is displayed
next tothelifelineasan "action". Theext ra_st uf f valueissimply datathat you can attach that will be displayed
when someone actually clicks on the action or messagein the Vi ewer window.

Themodule et / exanpl es/ et _di spl ay_deno. er| illustrates how it can be used:

-modul e(et _di spl ay_denp) .
-export([test/0]).

test() ->
{ok, Viewer} = et_viewer:start([{title,"Coffee Order"},
Drink = {drink,iced_chai_|atte},
Si ze = {si ze, grande},
MIk = {m |k, whol e},
Fl avor = {flavor, vanilla},
C = et _viewer:get_collector_pid(Viewer),

{max_actors, 10}]),

et _collector:
et _collector:
et _collector:
et _collector:
et _collector:
et _collector:
et _collector:
et _collector:
et _collector:
et _collector:
et _collector:
et _collector:
et _collector:

ok.

report _event (C, 99, cust oner, barri stal, pl ace_order, [Dri nk, Si ze, M | k, Fl avor]),
report _event (C, 80, barri stal, regi ster, enter_order,[Drink, Size, Fl avor]),
report _event (C, 80, regi ster, barristal, give_total,"$5"),

report _event (C, 80, barristal, barri stal, get_cup, [Drink, Si ze]),

report _event (C, 80, barristal, barri sta2, give_cup,[]),

report _event (C, 90, barri stal, cust oner, request _noney, "$5"),

report _event (C, 90, cust oner, barri stal, pay_noney, "$5"),

report_event (C, 80, barri sta2, barrista2,get_chai _mx,[]),

report _event (C, 80, barri sta2, barri sta2, add_fl avor, [Fl avor]),
report_event (C, 80, barrista2, barrista2,add_mlk,[MIKk]),

report _event (C, 80, barrista2, barrista2,add_ice,[]),

report_event (C, 80, barrista2, barrista2,swirl,[]),

report _event (C, 80, barri sta2, custoner, gi ve_tasty_beverage, [Dri nk, Si ze]),

When you runtheet _di spl ay_deno: t est () . function in the example above, the Vi ewer window will look
likethis:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 3

1.2 Tutorial

Coffee Order (filter: all)

File ‘iewer Collector Filters andscaling Help

Hide From=To Detail level
Hide (excluded actors) |

100

customer barristal register barristaz

place order
enter orde
give total
get cup
give cup
reguest money
pay_money
get chai mix
add_flawvor
add milk
add_ice
swirl
give tasty beverage
-

1113)

Figure 2.1: Screenshot of the Vi ewer window

1.2.2 Four Modules

The event tracer framework is made up of four modules:

« et

e et _collector
e et _viewer

e et _selector

In addition, you'll probably want to familiarize yourself with the dbg module and possibly seq_t r ace module as
well.

1.2.3 The Event Tracer Interface

Theet moduleisnot likeother modules. It containsafunctioncaledet : t race_me/ 5. Whichisafunction that does
not do any useful stuff at all. Its sole purposeisto be afunction that iseasy to trace. A call to it may be something like:

4 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.2 Tutorial

et:trace_ne(85,fromto, nessage, extra_stuff).

The parametersto et : trace_mne/ 5 are the sasme asto et _col | ector:report _event/ 6 in the previous
chapter. The big difference between the two is in the semantics of the two functions. The second actually reports an
Event tothe Col | ect or while the first does nothing, it just returns the atom hopef ul | y_t raced. In order to
makethe parameterstoet : t race_ne/ 5turnupintheCol | ect or, tracing of that function must be activated and
the Col | ect or must beregistered asaTr acer of theRaw Trace Dat a.

Erlang tracing is a seething pile of pain that involves reasonably complex knowledge of clever ports, tracing
return formats, and specialized tracing Mat chSpecs (which are really their own special kind of hell). The tracing
mechanism is very powerful indeed, but it can be hard to grasp.

Luckily there is a simplified way to start tracing of et : t race_me/ 5 function calls. The idea is that you should
instrument your code with callsto et : trace_ne/ 5 in strategic places where you have interesting information
available in your program. Then you just start the Col | ect or with global tracing enabled:

et _viewer:start([{trace_global, true}, {trace_pattern, {et,max}}]).

Thiswill start a Col | ect or, aVi ewer and also start the tracing of et : t race_ne/ 5 function calls. The Raw
Trace Dat a iscollected by the Col | ect or and aview of it is displayed on the screen by the Vi ewer . You can
define your own "views' of the data by implementing your own Fi | t er functions and register theminthe Vi ewer .

1.2.4 The Collector and Viewer

These two pieces work in concert. Basically, the Col | ect or receives Raw Tr ace Dat a and processes it into
Event s inaet specific format (definedinet /i ncl ude/ et . hrl). The Vi ewer interrogates the Col | ect or
and displays an interactive representation of the data.

Y ou might wonder why these aren't just onemodule. The Col | ect or isageneric full-fledged framework that allows
processes to "subscribe” to the Event s that it collects. One Col | ect or can serve severa Vi ewer s. The typical
caseisthat you have one Vi ewer that visualizes Event s in oneflavor and ancther Vi ewer that visualizesthemin
another flavor. If you for example are tracing atext based protocol like HTML (or Megaco/ H. 248) it would be useful
to be ableto display the Event s as plain text as well as the internal representation of the message. The architecture
does also allow you to implement your own Vi ewer program as long as it complies to the protocol between the
Col | ect or/ Vi ewer protocol. Currently two kinds of Vi ewer s exists. That is the old GS based one and the new
based onwxW dget s. But if you feel for it you may implement your own Vi ewer , which for example could display
the Event s as ASCII art or whatever you feel useful.

The Vi ewer will by default create aCol | ect or for you. With afew options and some configuration settings you
can start collecting Event s.

TheCol | ect or API doesalso allow you to save the collected Event s to fileand later load them in alater session.

1.2.5 The Selector

This is perhaps the most central module in the entirety of the et suite. The Col | ect or needs "filters' to convert
theRaw Trace Dat a into "events' that it can display. Theet _sel ect or module providesthe default Fi | t er
and some API callsto manage the Trace Patt ern. The Sel ect or provides various functions that achieve the
following:

e Convert Raw Trace Dat a into an appropriate Event

« Magicaly noticetraces of theet : t race_ne/ 5 function and make appropriate Event s

e Carefully prevent trandating the Raw Tr ace Dat a twice

e ManageaTrace Pattern

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 5

1.2 Tutorial

TheTrace Patternisbasicaly atupleof anodul e andadetai |l | evel (either aninteger or the atom max
for full detail). In most casesthe Trace Pattern {et, nmax} does suffice. But if you do not want any runtime
dependency of et you can implement your own t r ace_ne/ 5 function in some module and refer to that module
intheTrace Pattern.

The specified module flows from your instantiation of the Vi ewer , tothe Col | ect or that it automatically creates,
getsstashed in asthe Tr ace Pat t er n, and eventually goes down into the bowels of the Sel ect or .

The module that you specify gets passed down (eventually) into Sel ect or's default Fi | t er . The format of the
et:trace_ne/ 5 function cal ishardcoded inthat Fi | t er .

1.2.6 How To Put It Together

The Col | ect or automatically registersitself to listen for trace Event s, so al you have to do is enable them.

For those people who want to do general tracing, consult the dbg module on how to trace whatever you're interested
inand let it work itsmagic. If you just want et : t race_ne/ 5 to work, do the following:

 CreateaCol | ect or
* CreateaVi ewer (thiscan do step #1 for you)
e Turnon and pare down debugging

Themodule et / exanpl es/ et _trace_deno. erl| achievesthis.

-nmodul e(et _trace_denp).
-export([test/0]).

test() ->
et _viewer:start([

{title, "Coffee Order"},

{trace_gl obal , true},

{trace_pattern, {et, max}},

{max_act ors, 10}
1),
%% dbg: p(all,call),
%6 dbg: tpl (et, trace_nme, 5, []),
Drink = {drink,iced_chai_latte},
Si ze = {size, grande},
MIlk = {m |k, whol e},
Fl avor = {flavor,vanilla},
et:trace_ne(99, custoner, barristal, pl ace_order, [Drink, Si ze, M | k, Fl avor]),
et:trace_ne(80, barristal, register,enter_order,[Drink, Size, Flavor]),
et:trace_ne(80,register,barristal,give_total,"$5"),
et:trace_ne(80, barristal, barristal, get_cup, [Drink, Si ze]),
et:trace_ne(80, barristal, barrista2, give_cup,[]),
et:trace_ne(90, barri stal, cust oner, request _noney, "$5"),
et:trace_ne(90, cust oner, barri stal, pay_noney, "$5"),
et:trace_ne(80, barrista2, barrista2,get_chai _mx,[]),
et:trace_ne(80, barrista2, barrista2,add_flavor,[Fl avor]),
et:trace_ne(80, barrista2, barrista2,add_mlk,[MIKk]),
et:trace_ne(80, barrista2, barrista2,add_ice,[]),
et:trace_ne(80,barrista2, barrista2,swirl,[]),
et:trace_ne(80, barrista2, custoner, gi ve_tasty_beverage, [Drink, Si ze]),
ok.

Running through the above, the most important points are:
e Turnon global tracing

6 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description

e SetaTrace Pattern
e Téel dbg to trace function Calls
« Tdl it specificaly totracetheet : t race_ne/ 5 function

Whenyouruntheet _trace_deno: t est () function above, the Vi ewer window will look like this screenshot:

- Coffee Order (filter: all) P =] b2

File ‘iewer Collector Filters andscaling Help

Hide From=To Detail level
Hide (excluded actors) |

100

customer barristal register barristaz

place order

enter order

give total

get cup

give cup

request money

pay_money

get chai mix

add_flawvor

add milk

give tasty beverage

1(13)

Figure 2.2: Screenshot of the Vi ewer window

1.3 Description

1.3.1 Overview

The two major components of theEvent Tracer (ET) tool isagraphical sequence chart viewer (et _vi ewer)
and its backing storage (et _col | ector). One Col | ect or may be used as backing storage for several
simultaneous Vi ewer s where each one may display a different view of the same trace data.

The interface between the Col | ect or and its Vi ewer s is public in order to enable other types of Vi ewer s.
However in the following text we will focus on usage of theet _vi ewer .

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 7

1.3 Description

The main start function is et _vi ewer: start/ 1. By default it will start both an et _col | ect or and an

et _viewer:

% er |

-pa et/ exanpl es

Erlang R13B03 (erts-5.7.4) [64-bit] [snp:4:4] [rq:4]

Eshell V5.7.4
1> {ok, Viewer} = et viewer:start([]).
{ ok, <0. 40. 0>}

[async-threads: 0] [kernel-poll:false]

(abort with "G

A Vi ewer getstrace Event s fromits Col | ect or by polling it regularly for more Event s to display. Event s
are for example reported to the Col | ect or withet _col | ector:report_event/ 6:

2>

<0.

3>
3>
3>
3>
3>
3>
3>
3>
3>
3>
3>
3>
3>
3>
3>
3>

Col | ector =
39. 0>
et _col |l ector

et _collector:
et _collector:
et _collector:
et _collector:
et _collector:
et _collector:

et _collector:

et _viewer:get_col |l ector_pid(Viewer).

:report_event (Col | ector, 60, ny_shell, mmesia_tm start_outer,
"Start outer transaction"),
report_event (Col | ector, 40, mmesia_tm ny_shell, new_tid,
"New transaction id is 4711"),
report_event (Col |l ector, 20, ny_shell, mmesia_l ocker, try wite_|ock,
"Acquire wite lock for {my_tab, key}"),
report_event (Col | ector, 10, mmesi a_|l ocker, ny_shell, granted,
"You got the wite lock for {my_tab, key}"),
report_event (Col |l ector, 60, ny_shell, do_commit,
"Perform transaction commt"),
report_event (Col | ector, 40, ny_shell, mmesia_|l ocker, release_tid,
"Rel ease all |ocks for transaction 4711"),
report_event (Col | ector, 60, ny_shell, mmesia_tm delete_transaction,

"End of outer transaction"),

report_event (Col |l ector, 20, ny_shell, end_outer,

"Transaction returned {atomc, ok}").

{ok, {tabl e_handl e, <0. 39. 0>, 16402, trace_ts,
#Fun<et _col | ector. 0. 62831470>} }

This actually is a simulation of the process Event s caused by a Vhesi a transaction that writes arecord in aloca

table:

mesi a: transaction(fun() -> mesia:wite({nmy_tab, key, val}) end).

At this stage when we have a couple of Event s, it is time to show how it looks like in the graphical interface of

et _viewer:

8| Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description

File ‘iewer Collector Filters andscaling Help
[Hide From=To illevel

. 100
[Hide (excluded actors) |

my shell mnesia tm mnesia locker

start outer

new tid

try write lock

granted

do_commit

release tid

delete transaction

end outer

118)

Figure 3.1: A simulated Mnesia transaction which writes one record

In the sequence chart, the actors (which symbolically has performed the Event) are shown as named vertical bars.
The order of the actors may be altered by dragging (hold mouse button 1 pressed during the operation) the name tag
of an actor and drop it elsewhere:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 9

1.3 Description

File ‘iewer Collector Filters andscaling Help

[Hide From=To illevel
100
[Hide (excluded actors) |

my shell mnesia locker mnesia tm

start outer

new tid

try write lock

granted

do_commit

release tid

delete transaction

end outer

118)

Figure 3.2: Two actors has switched places

An Event may be an action performed by one single actor (blue text label) or it may involve two actors and is then
depicted as an arrow directed from one actor to another (red text label). Details of an Event can be shown by clicking
(press and rel ease the mouse button 1) on the event label text or on the arrow. When doing that aCont ent s Vi ewer
window pops up. It may look like this:

o 1 =]
File Hide Search Filters
DETAIL LEVEL: Z0
LABEL: try write lock
FROM: my_shell
TO: mnesia locker
PARSED: Z0Ll0-02-02T15:123:00.394498
CONTENTS:

Acguire write lock for [my_ tab, key)

Figure 3.3: Details of a write lock message

1.3.2 Filters and dictionary

TheEvent Tracer (ET) usesnamed filtersin various contexts. An Event Tracefilterisan Er | ang f un that
takes some trace data as input and returns a possibly modified version of it:

filter(TraceData) -> false | true | {true, NewEvent}

10 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description

TraceData = Event | erlang_trace_data()
Event = #event{}
NewEvent = #event{}

The interface of the filter function is the same as the the filter functions for thegood old | i st s: zf / 2. If thefilter
returns f al se it means that the trace data should silently be dropped. t r ue means that the trace data data already
isan Event Recor d and that it should be kept asit is. t r ue means that the Tr aceDat a aready is an Event
Recor d andthat it should bekept asitis.{t r ue, NewEvent} meansthat theorigina trace datashould bereplaced
with Event . This provides means to get rid of unwanted Event s aswell as enabling alternate views of an Event .

The first filter that the trace data is exposed for isthe Col | ect or Fil t er. When atrace Event is reported
withet collector:report/2 (oret_collector:report_event/5, 6) the first thing that happens, is
that a message is sent to the Col | ect or process to fetch a handle that contains some useful stuff, such as the
Col ector Filter Fun andanEtstableidentifier. Thenthe Col | ector Filter Fun isappliedand if it
returnst rue (or {true, NewEvent}),the Event will be stored in an Etstable. As an optimization, subsequent
calstoet _col | ector: report -functions can use the handle directly instead of the Col | ect or Pi d.

All filters (registered in aCol | ect or orinaVi ewer) must be able to handle an Event record asinput. The
Col l ector Filter (tha isthe filter named al |) is alittle bit special, as its input also may be raw Er | ang
Trace Data

The Col | ect or manages a key/value based dictionary, where the filters are stored. Updates of the dictionary is
propagated to all subscribing processes. WhenaVi ewer isstarteditisregistered asasubscriber of dictionary updates.

In each Vi ewer there is only one filter that is active and all trace Event s that the Vi ewer gets from the
Col | ect or will passthruthat filter. By writing clever filtersit is possible to customize how the Event s lookslike
in the viewer. The following filter in et / exanpl es/ et _deno. er | replaces the actor names mesi a_t mand
mmesi a_| ocker and leaves everything else in the record asit was:

mgr _actors(E) when is_record(E, event) ->
Actor = fun(A) ->

case A of
mesia_tm -> trans_ngr;
mesi a_| ocker -> | ock_ngr;
_ -> A
end
end,

{true, E#event{from = Actor(E#event.from,
to = Actor(E#event.to),
contents = [{orig_from E#event.front,
{orig_to, E#event .t o},
{orig_contents, E#event.contents}]}}.

If we now add the filter to the running Col | ect or:

4> Fun = fun(E) -> et_deno: ngr_actors(E) end.

#Fun<er| _eval . 6. 13229925>

5> et _collector:dict_insert(Collector, {filter, ngr_actors}, Fun).
ok

you will see that the Fi | t er menu in all viewers have got a new entry called ngr _act or s. Select it, and a new
Vi ewer window will pop up:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 11

1.3 Description

gr_acto =|a]x

File ‘iewer Collector Filters andscaling Help

[Hide From=To illevel
[v* Hide (excluded actors)

]

my shell trans mgr lock mgr

start outer

new tid

try write lock

granted

do_commit

release_tid

delete transaction

end outer

£

18)

Figure 3.4: The same trace data in a different view

In order to seethenitty gritty detailsof an Event youmay click ontheEvent inordertostartaCont ent s Vi ewer
for that Event . Inthe Cont ent s Vi ewer there aso is afilter menu that enables inspection of the Event from
other views than the one selected in the viewer. A click onthenew _t i d Event will causeaCont ents Vi ewer
window to pop up, showing the Event inthengr _act or s view:

0 - - = - d d 0 —ﬂx
File Hide Search Filters

DETAIL LEVEL: Z0

LABEL: try write lock

FROM: my_shell

TO: lock mgr

PARSED: Z010-0Z-02T15:22:47.518214
CONTENTS:

[{orig from,my shell},
{orig_to,mnesia locker)
{orig _contents,"Acguire write lock for [my tab, key}"}]

Figure 3.5: The trace Event in the mgr_actors view

Select theal | entry intheFi | t ers menu and anew Cont ents Vi ewer w ndow will pop up showing the
sametrace Event inthe collectors view:

12 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description

1 =]

File Hide Search Filters

DETAIL LEVEL: Z0

LABEL: try write lock

FROM: my_shell

TO: mnesia locker

PARSED: Z010-0Z-02T15:22:47.518214

CONTENTS:

Acguire write lock for [my_ tab, key)

Figure 3.6: The same trace Event in the collectors view

1.3.3 Trace clients

Asyou have seen, it ispossible to usetheet _col | ect or: report _event/ 5, 6 functions explicitly. By using
those functions you can write your own trace client that reads trace data from any source stored in any format and
just feed the Col | ect or withit. You may replacethedefault Col | ect or Fi | t er with afilter that converts new
exciting trace data formats to Event Recor ds or you may convert it to an Event Recor d before you invoke
et _coll ector:report/ 2 andthenrely onthedefault Col | ect or Filter tohandlethe new format.

There are also existing functionsin the API that reads from various sourcesand callset _col | ect or: report/ 2:

* ThetraceEvent s that arehosted by theCol | ect or may bestoredtofileand later beloaded by selectingsave
and | oad entriesinthe Vi ewer s Fi | e menu or viatheet _col | ect or API.

e |t isaso possible to perform live tracing of a running system by making use of the built-in trace support in
the Erlang emulator. These Erlang traces can be directed to files or to ports. See the reference manua for
erlang:trace/ 4,erl ang:trace_pattern/3,dbgandttb for moreinfo.

There are also corresponding trace client types that can read the Erlang trace data format from such files or
ports. Theet _col | ector:start_trace_client/ 3 function makes use of these Erlang trace clients and
redirects the trace datato the Col | ect or .

The default Col | ect or Fi | t er converts the raw Erlang trace data format into Event Recor ds. If you
want to perform this differently you can of course write your own Col | ect or Fi | t er from scratch. But it
may probably save you some efforts if you first apply the default filter in et _sel ect or: parse_event/ 2
before you apply your own conversions of its output.

1.3.4 Global tracing

Setting up an Erlang tracer on a set of nodes and connecting trace clients to the ports of these tracersis not intuitive.
In order to make thisit easier theEvent Tr acer hasanation of global tracing. When used, theet _col | ect or
process will monitor Erlang nodes and when one connects, an Erlang tracer will automatically be started on the newly
connected node. A corresponding trace client will also be started on the Col | ect or node in order to automatically
forward the trace Event s to the Col | ect or. Set the boolean parameter t r ace_gl obal to true for ether
theet col |l ector or et _vi ewer in order to activate the global tracing. There is no restriction on how many
concurrent (anonymous) collectors you can have, but you can only have one global Col | ect or as its name is
registeredin gl obal .

In order to further simplify the tracing, you can make use of theet : t race_ne/ 4, 5 functions. These functions are
intended to be invoked from other applications when there are interesting Event s, in your application that needs to
be highlighted. Thefunctions are extremely light weight asthey do nothing besides returning an atom. These functions
are specifically designed to be traced for. Asthe caller explicitly providesthe values for the Event Recor d fields,

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 13

1.3 Description

thedefault Col | ect or Fi |l t er isabletoautomatically provide acustomized Event Recor d without any user
defined filter functions.

In normal operation, the et:trace_ne/ 4, 5 cals are aimost for free. When tracing is needed, you can either
activate tracing on these functions explicitly. Or you can combine the usage of t r ace_gl obal with the usage of
trace_pattern. Whenset, thet race_patt er n will automatically be activated on all connected nodes.

Onenicethingwiththet r ace_pat t er nisthat it providesavery simpleway of minimizingthe amount of generated
trace data by allowing you to explicitly control the detail level of thetracing. Asyou may have seentheet _vi ewer
have adlider called " Det ai | Level " that allows you to control the detail level of the trace Event s displayed in
the Vi ewer . On the other hand if you set alow detail level inthet r ace_pat t er n, lots of the trace datawill never
be generated and thus not sent over the socket to the trace client and stored in the Col | ect or .

1.3.5 Viewer window

Almost all functionality available in the et _vi ewer is aso available via shortcuts. Which key that has the same
effect as selecting a menu entry is shown enclosed in parentheses. For example pressing the key r is equivalent to
selecting the menu entry Vi ewer - >Ref r esh.

File menu:
e (Cear all events in the Coll ector - Deletesall Event s stored inthe Col | ect or and notifies
al connected Vi ewer s about this.

e Load events to the Collector from fil e -Loadsthe Col | ect or with Event s from afile
and notifies al connected Vi ewer s about this.

e Save all events in the Collector to file-Savesal Events storedintheCol | ect or tofile.

* Print setup - Enablesediting of printer setting, such as paper and layout.

e Print current page - Printsthe events on the current page. The page size is dependent of the selected
paper type.

« Print all pages - Printsal events. The page size is dependent of the selected paper type.

e Close this Viewer - Closes this Vi ewer window, but keeps all other Vi ewer s windows and the
Col | ect or process.

e Close other Viewers, but this-KeepsthisVi ewer window anditsCol | ect or process, but closes
all other Vi ewer s windowsconnected to the same Col | ect or .

e (Close all Viewers and the Col |l ector -ClosestheCol | ect or and all Vi ewer s connected toit.
Viewer menu:

e First -Scrallst hi s viewer to thefirst Event intheCol | ect or.

e Last - Scrollst hi s viewer tothelast Event intheCol | ect or.

 Prev - Scrollst hi s viewer one page backwards.

* Next - Scrollst hi s viewer one page forward.

« Refresh-Clearst hi s viewer andre-read itsEvent s fromthe Col | ect or.

e Up - Scrollsafew Event s backwards.

 Down - Scrollsafew Event s forward.

e Display all actors. - Resetthe settingsfor hidden and/or highlighted actors.

Collector menu:

« First -Scrollsal | viewersto thefirst Event intheCol | ect or.
e Last - Scrollsal | viewerstothelast Event intheCol | ect or.
« Prev-Scrollsal | viewers one page backwards.

 Next - Scrollsal | viewers one page forward.

14 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description

Refresh - Clearsal | viewersand re-read their Event s fromthe Col | ect or.

Filters and scaling menu:

ActiveFilter (=) -Statsanew Vi ewer window with the same active filter and scale as the current one.

ActiveFilter (+) - Startsanew Vi ewer window with the same active filter but alarger scale than the
current one.

ActiveFilter (-) -Startsanew Vi ewer window with the same active filter but a smaller scale than the
current one.

all (0) - Startsanew Vi ewer with the Col | ector Filter asactive filter. It will cause al eventsin
the collector to be viewed.

Anot her Fi l ter (2) -If morefiltersareinserted into the dictionary, these will turn up here as entriesin the
Fi | t er s menu. Thesecondfilter will get the shortcut number 2, the next one number 3 etc. The namesare sorted.

Slider and radio buttons:

H de Fron¥To - When true, this means that the Vi ewer will hide al Event s where the from-actor equals
to itsto-actor. These events are sometimes called actions.

H de (excluded actors) - When true, this means that the Vi ewer will hide all Event s whose actors
are marked as excluded. Excluded actors are normally enclosed in round brackets when they are displayed inthe
Vi ewer .

Detai | | evel -Thisdlider controlstheresolution of the Vi ewer . Only Event s withadetail level snal | er
than the selected one (default=100=max) are displayed.

Other features:

Vertical scroll -Usemousewhee and up/down arrowsto scroll little. Use page up/down and home/end
buttons to scroll more.

Di splay details of an event - Left mouseclick onthe event label or the arrowand anew Cont ent s
Vi ewer window will pop up, displaying the contents of an Event .

H ghli ght actor (toggle) - Left mouseclick onthe actor name tag. The actor name will be enclosed in
square brackets[] . When one or more actors are highlighted, only events related to those actors are displayed.
All others are hidden.

Excl ude actor (toggle) - Right mouse click on the actor name tag. The actor name will be enclosed in
round brackets () . When an actor is excluded, all events related to this actor is hidden. If the checkbox Hi de
(excl uded act ors) ischecked, even the name tags and corresponding vertical line of excluded actors will
be hidden.

Move actor - Left mouse button drag and drop on actor name tag. Move the actor by first clicking on the
actor name, keeping the button pressed while moving the cursor to a new location and release the button where
the actor should be moved to.

Di splay all actors - Pressthe'a button. Reset the settings for hidden and/or highlighted actors.

1.3.6 Configuration

The Event Recor ds in the Ets table are ordered by their timestamp. Which timestamp that should be used is
controlled viathe event _or der parameter. Default ist r ace_t s which means the time when the trace data was
generated. event _t s means the time when the trace data was parsed (transformed into an Event Recor d).

1.3.7 Contents viewer window

File menu:

Cl ose - Close thiswindow.
Save - Save the contents of this window to file.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 15

1.4 Advanced examples

Filters menu:

ActiveFilter -Statanew Cont ents Vi ewer w ndowwith the same active filter.

Anot her Fi l ter (2) -If morefiltersareinserted into the dictionary, these will turn up here as entriesin the
Fi | t er s menu. The second filter will be number 2, the next one number 3 etc. The names are sorted.

Hide menu:

H de actor in viewer - Known actors are shown as a hamed vertical barsin the Vi ewer window. By
hiding the actor, its vertical bar will be removed and the Vi ewer will be refreshed.

H di ng the actor isonly useful if the max_act or s threshold has been reached, as it then will imply
that the "hidden" actor will be displayed asif it were" UNKNOWN" . If themax_act or s threshold not have been
reached, the actor will re-appear as avertical bar inthe Vi ewer .

Show actor in viewer - Thisimpliesthat the actor will be added as a known actor in the Vi ewer with
its own vertical bar.

Search menu:

Forward fromthis event - Setthisevent tobethefirst event in the viewer and changeitsdisplay modeto
be enter forward search mode. The actor of this event (from, to or both) will be added to thelist of selected actors.
Reverse from this event - Setthisevent to bethefirst Event inthe Vi ewer and change its display
mode to be enter reverse search mode. The actor of this Event (from, to or both) will be added to the list of
selected actors. Observe, that the Event s will be shown in reverse order.

Abort search. Display all -Switchthedisplay mode of the Vi ewer to show al Event s regardless
of any ongoing searches. Abort the searches.

1.4 Advanced examples

1.4.1 A simulated Mnesia transaction

The Erlang code for running the simulated Mnesi a transaction example in the previous chapter is included in the
et/ exanpl es/ et _denv. erl file

simtrans() ->

simtrans([]).

simtrans(ExtraOpti ons) ->

Options = [{dict_insert, {filter, ngr_actors}, fun ngr_actors/1}],
{ok, Viewer} = et_viewer:start_|ink(Options ++ ExtraOptions),
Col l ector = et_viewer:get_collector_pid(Viewer),

et _collector:report_event(Collector, 60, ny_shell, mesia_tm start_outer,
"Start outer transaction"),

et _collector:report_event(Collector, 40, mesia_tm my_shell, new_tid,
"New transaction id is 4711"),

et _collector:report_event (Collector, 20, ny_shell, mesia_l ocker, try wite_lock,
"Acquire wite lock for {my_tab, key}"),

et _collector:report_event(Coll ector, 10, mmesi a_l ocker, mny_shell, granted,
"You got the wite lock for {ny_tab, key}"),

et _collector:report_event(Collector, 60, ny_shell, do_commt,
"Perform transaction commt"),

et _collector:report_event(Collector, 40, ny_shell, mesia_l ocker, release_tid,
"Rel ease all locks for transaction 4711"),

et _collector:report_event (Collector, 60, ny_shell, mesia_tm delete_transaction,
"End of outer transaction"),

et _collector:report_event(Coll ector, 20, ny_shell, end_outer,

16 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.4 Advanced examples

{coll ector, Collector}.

"Transaction returned {atom c, ok}"),

mgr _actors(E) when is_record(E, event) ->

Actor = fun(A)

-> trans_nygr;

mesi a_| ocker -> | ock_ngr;

-> A

E#event {from = Act or (E#event.fron,
to = Actor(E#event.to),

[{orig _from E#event.froni,
{orig_to, E#event .t o},
{orig_contents, E#event.contents}]}}.

If you invoketheet denp: si m trans() function, aVi ewer window will pop up and the sequence trace will
be amost the same as if the following Mhesi a transaction would have been run:

mesi a: transaction(fun() -> mesia:wite({nmy_tab, key, val}) end).

And the viewer window will look like:

Erl ang R13B03 (erts-5.7.4) [64-bit] [snp:4:4] [rq:4]

[async-threads: 0] [kernel-poll:false]

(abort with "G
et_viewer:start([]).

1> {ok, Viewer}
{ ok, <0. 40. 0>; }

2> et _denp:simtrans().
{ok, {tabl e_handl e, <0. 45. 0>, 24596, trace_t s,
#Fun<et _col | ector. 0. 62831470>} }

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 17

1.4 Advanced examples

- et wx_ viewer (filter: all] - X

File ‘iewer Collector Filters andscaling Help

Hide From=To Detail level
Hide (excluded actors) |

100

my shell mnesia tm mnesia locker

start outer

new_tid

try write lock

granted

do_commit

release_tid

delete transaction

end outer

11(8)

Figure 4.1: A simulated Mesi a transaction which writes one record

1.4.2 Some convenient functions used in the Mnesia transaction example

Thenodul e_as_act or filter convertstheEvent Recor ds sothe module namesbecomes actors and theinvoked
functions becomes labels. If the information about who the caller was it will be displayed as an arrow directed from
thecalertothecalee. The[{ mressage, {caller}}, {return_trace}] optionstodbg:t pl /2 function
will imply the necessary information in the Erlang traces. Here followsthe nodul e_as_act or filter:

modul e_as_actor (E) when is_record(E, event) ->
case |ists: keysearch(nfa, 1, E#event.contents) of
{value, {nfa, {M F, _A}}} ->
case |ists: keysearch(pamresult, 1, E#event.contents) of
{val ue, {pamresult, {M, _F2, _A2}}} ->
{true, E#event{label = F, from= M, to = M};
==

{true, E#event{label = F, from=M to = M}

end;

fal se
end.

Thepl ai n_process_i nf o filter doesnot dter theEvent Recor ds. It merely ensuresthat the event not related
to processes are skipped:

pl ai n_process_i nfo(E) when is_record(E, event) ->

18 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.4 Advanced examples

case E#event.| abel of

send -> true;
send_t o_non_exi sti ng_process -> true;
'receive' -> true;
spawn -> true;
exit -> true;
I'i nk -> true;
unl i nk -> true;
getting_linked -> true;
{seq_send, _Label} -> true;
{seq_receive, _Label} -> true;
{seq_print, _Label} -> true;
{drop, _N} -> true;

-> fal se

end.

The pl ai n_process_i nfo_nol i nk filter does not alter the Event Records. It do makes use of the
pl ai n_process_i nf o, but do aso ensure that the process info related to linking and unlinking is skipped:

pl ai n_process_info_nolink(E) when is_record(E, event) ->
(E#tevent .| abel /= link) and
(E#tevent .| abel /= unlink) and
(E#tevent .| abel /= getting_linked) and
pl ai n_process_i nfo(E).

In order to simplify the startup of an et _vi ewer process with the filters mentioned above, plus some others (that
also are found in et / exanpl es/ et _deno. er| src/et_collector.erl the et _deno: start/ 0, 1 functions can
be used:

start() ->
start([]).

start (ExtraOptions) ->
Options = [{trace_gl obal, true},
{parent _pid, undefined},
{max_actors, infinity},
{max_events, 1000},
{active_filter, nodule_as_actor}],
et _viewer:start _link(filters() ++ Options ++ ExtraOptions).

A simple one-liner starts the tool:

erl -pa ../exanples -s et_denp

Thefilters are included by the following parameters:

filters() ->
[{dict_insert, {filter, nodul e_as_actor},
fun nodul e_as_actor/ 1},

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 19

1.4 Advanced examples

{dict_insert,
{dict_insert,
{dict_insert,
{dict_insert,
{dict_insert,
{dict_insert,

{dict_insert,

1.4.3 Erlang trace of a real Mnesia transaction

Thefollowing piece of codeet _denp: trace_mmesi a/ 0 activates call tracing of both local and external function
callsfor al modulesin the Mnesi a application. The call traces are configured cover all processes (both existing and
those that are spawned in the future) and include timestampsfor trace data. It do also activate tracing of processrelated
eventsfor Mhesi a'sstatic processes plusthe calling process (that isyour shell). Please, observe that thewher ei s/ 1
call in the following code requires that both the traced Mhesi a application and the et _vi ewer isrunning on the

same node:

trace_mesia() ->
Mbdul es = mesi

{filter, plain_process_info},

fun plain_process_info/ 1},

{filter, plain_process_info_nolink},
fun plain_process_i nfo_nolink/1},
{filter, named_process_info},

fun nanmed_process_i nfo/ 1},

{filter, named_process_info_nolink},
fun naned_process_i nfo_nol i nk/ 1},
{filter, node_process_info},

fun node_process_info/ 1},

{filter, node_process_info_nolink},
fun node_process_info_nolink/1},
{filter, application_as_actor},

fun application_as_actor/1}

a:ns(),

Spec = [{message, {caller}}, {return_trace}],

Fl ags = [send,
dbg: p(all, [cal
[dbg:tpl (M [{

Local | yRunni ngServers = [M || M <- Mdul es, whereis(M /= undefined],

"receive', procs, tinestanp],
I, tinestanp]),
_'» [1, Spec}]) || M<- Modules],

[dbg: p(wherei s(RS), Flags) || RS <- Local |l yRunni ngServers],
dbg: p(sel f(), Flags),
Local | yRunni ngSer vers.

Theet _denp: | i ve_trans/ 0 function starts the global Col | ect or, startsa Vi ewer , starts Mhesi a, creates
alocal table, activates tracing (as described above) and registers the shell processis as'my_shell' for clarity. Finaly

asimple Mhesi a transaction that writes asingle record is run:

live_ trans() ->
live trans([]).

live_trans(ExtraQptions) ->
Options = [{title, "Muesia tracer"},
{hi de_actions, true},

{active_fil

ter, naned_process_info_nolink}],

et _deno:start(Options ++ ExtraOptions),

mesi a: start (),

mesi a: create_tabl e(my_tab, [{ram copies, [node()]}]),

et _deno:trace_mesi a(),
regi ster(my_shell, self()),

mmesi a: transacti on(fun()

20 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

-> mesi a:wite({ny_tab, key,

val })

end) .

1.4 Advanced examples

Now weruntheet deno: |ive_trans/ 0 function:

erl -pa ../exanpl es
Erl ang R13B03 (erts-5.7.4) [64-bit] [snp:4:4] [rq:4]
[async-threads: 0] [kernel-poll:false]

Eshell V5.7.4 (abort with "G

1> et _deno:live_trans().
{at om c, ok}

Please, explorethe different filtersin order to see how the traced transaction can be seen from different point of views:

File ‘iewer Collector Filters andscaling Help

v Hide From=To Detail level
Hide {excluded actors) |

100

my =hell mnesia tm mnesia locker

start outer

new tid

try write lock

granted

release tid

delete transaction

zend

1(200)

Figure 4.2: A real Mnesi a transaction which writes one record

1.4.4 Erlang trace of Megaco startup

The Event Tracer (ET) tool wasinitially written in order to demonstrate how messages where sent over the
Megaco protocol. Thiswere back in the old days before the standard bodiesof | ETF and | TU had approved Megaco
(also called H. 248) as an international standard.

In the Megaco application of Erlang/OTP, the code is carefully instrumented with callsto et : t race_me/ 5. For
each call adetail level isgiven in order to enable dynamic control of the trace level in asimple manner.

The megaco_fi |t er module implements a customized filter for Megaco messages. It does also make use of
trace_gl obal combined with usage of thet r ace_pattern:

-nmodul e(megaco_filter).
-export([start/0]).

start() ->

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 21

1.4 Advanced examples

Options =
[{event _order, event_ts},
{scale, 3},
{max_actors, infinity},
{trace_pattern, {megaco, nax}},
{trace_gl obal , true},
{dict_insert, {filter, megaco_filter}, fun filter/1},
{active_filter, megaco filter},
{title, "Megaco tracer - Erlang/OTP"}],
et _viewer:start(Options).

First we start an Erlang node with aglobal Col | ect or andits Vi ewer .

er|l -sname observer
Erl ang R13B03 (erts-5.7.4) [64-bit] [snp:4:4] [rq:4]
[async-threads: 0] [kernel-poll:false]

Eshell V5.7.4 (abort with *"Q
(observer @al co) 1> megaco_filter:start().
{ ok, <0. 48. 0>}

Secondly we start another Erlang node which we connect the observer node, before we start the application that we
want to trace. In this case we start a Media Gateway Controller that listens for both TCP and UDP on the text and
binary ports for Megaco:

erl -snane ngc -pa ../../ nmegaco/ exanpl es/ si npl e
Erl ang R13B03 (erts-5.7.4) [64-bit] [snp:4:4] [rq:4]
[async-threads: 0] [kernel-poll:false]

Eshell V5.7.4 (abort with "G
(nmgc@ al co) 1> net: pi ng(observer @ al co) .
pong
(mgc@ al co) 2> negaco: start ().
ok
(mgc@ al co) 3> negaco_si npl e_ngc: start ().
{ok, [{ok, 2944,
{nmegaco_r ecei ve_handl e, { devi ceNang, "control l er"},
megaco_pretty_text_encoder,[], negaco_tcp, dynanic}},
{ ok, 2944,
{negaco_r ecei ve_handl e, { devi ceNang, "control | er"},
megaco_pretty_text_encoder, [], negaco_udp, dynani c}},
{ ok, 2945,
{megaco_r ecei ve_handl e, { devi ceNang, "control l er"},
megaco_bi nary_encoder, [], negaco_t cp, dynami c}},
{ ok, 2945,
{negaco_r ecei ve_handl e, { devi ceNang, "control l er"},
megaco_bi nary_encoder, [], negaco_udp, dynam c}}]}

And finally we start an Erlang node for the Media Gateways and connect to the observer node. Each Media Gateway
connectsto the controller and sends an initial Service Change message. The controller accepts the gateways and sends
areply to each one using the same transport mechanism and message encoding according to the preference of each
gateway. That isall combinations of TCP/IP transport, UDP/IP transport, text encoding and ASN.1 BER encoding:

Erlang R13B03 (erts-5.7.4) [64-bit] [snp:4:4] [rq:4]

22 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.4 Advanced examples

[async-threads: 0] [kernel-poll:false]

Eshell V5.7.4 (abort with "G
(my@ al co) 1> net : pi ng(observer @al co) .
pong
(my@ al co) 2> megaco_si npl e_ng: start().
[{{devi ceNan®e, "gateway_tt"},
{error, {start_user, negaco_not _started}}},
{{devi ceNane, "gateway_tb"},
{error, {start_user, negaco_not _started}}},
{{devi ceNane, "gateway_ut"},
{error, {start_user, negaco_not _started}}},
{{devi ceNane, "gat eway_ub"},
{error, {start_user, negaco_not _started}}}]
(my@ al co) 3> negaco: start ().
ok
(my@ al co) 4> megaco_si npl e_ng: start().
[{{devi ceNan®e, "gateway_tt"},
{1,
{ok, [{" ActionReply', 0, asnl_NOVALUE, asnl_NOVALUE,
[{servi ceChangeRepl vy,
{' Servi ceChangeRepl y',
[{megaco_term.id, fal se, ["root"]}],
{ servi ceChangeResPar ns,
{" Servi ceChangeResPar m ,
{devi ceNane, "control | er"},
asnl_ NOVALUE, asnl_ NOVALUE, asnl_NOVALUE,
asnl_NOVALUE}}}}]}]3}},
{{devi ceNane, "gateway_tb"},
{1,
{ok, [{" ActionReply', 0, asnl_NOVALUE, asnl_NOVALUE,
[{servi ceChangeRepl vy,
{' Servi ceChangeRepl y',
[{megaco_term.id, false, ["root"]}],
{ servi ceChangeResPar ns,
{" Servi ceChangeResPar m ,
{devi ceNane, "control | er"},
asnl_ NOVALUE, asnl_ NOVALUE, asnl_NOVALUE,
asnl_NOVALUE}}}}]}]3}},
{{devi ceNane, "gateway_ut"},
{1,
{ok, [{" ActionReply', 0, asnl_NOVALUE, asnl_NOVALUE,
[{servi ceChangeRepl vy,
{' Servi ceChangeRepl y',
[{megaco_term.id, false, ["root"]}],
{ servi ceChangeResPar ns,
{" Servi ceChangeResPar m ,
{devi ceNane, "control | er"},
asnl_ NOVALUE, asnl_ NOVALUE, asnl_ NOVALUE,
asnl_NOVALUE}}}}]}]3}},
{{devi ceNane, "gat eway_ub"},
{1,
{ok,[{" ActionReply', 0, asnl_NOVALUE, asnl_NOVALUE,
[{servi ceChangeRepl vy,
{' Servi ceChangeRepl y',
[{megaco_term.id, fal se, ["root"]}],
{ servi ceChangeResPar ns,
{" Servi ceChangeResPar m ,
{devi ceNane, "control | er"},
asnl_ NOVALUE, asnl_ NOVALUE,
asnl_NOVALUE, ...}}}}]1} 11}

The Megaco adopted viewer looks like this, when we have clicked on the [gateway _tt] actor name in order to only
display the events regarding that actor:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 23

1.4 Advanced examples

SQaCco trace angl/OTP

File ‘iewer Collector Filters andscaling Help

[Hide From=To
|w Hide (excluded actors)

il lewvel

[gateway tt]

tocp connect

tocp connection han

connect handler st

callback: connect

return: connect

call or cast - opt

gateway tt@user

dler starting

arted

ions prepared #1

preliminary mid

encode trans reque

=t (=) msg #1

call or cast - req

uest encoded #1

send request - mul

ti transaction #1

send 146 bytes #1

check message auth

controller

handle reguest #1

receive 127 bytes

receive message

callback: connect

return: connect

check message auth

0(138)

NN E1

Figure 4.3: The viewer adopted for Megaco

24 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.4 Advanced examples

A pretty printed Megaco message looks like this:

: onte ewer (filter: megaco_filte = =] 3
File Hide Search Filters
DETAIL LEVEL: &0
LABEL: send_reguest - multi transaction #1
FROM: gateway_tt
TO: preliminary mid
EVENT_TS: 2Z010-02-02T10:59:56. 244503
TRACE_TS: Z010-02-02T10:59:55.244381
CONTENTS:
Transaction = 1 [
Context = - |
ServiceChange = root |

Services |
Method = Restart,
Reason = "901"

Figure 4.4: A textual Megaco message

And the corresponding internal form for the same Megac o message looks like this:

- onte ewer (filter: a =|0]x
File Hide Search Filters
DETAIL LEVEL: &0
LABEL: send_reguest - multi transaction
ACTOR: megaco
EVENT_TS: 2Z010-02-02T10:59:56. 244503
TRACE_TS: Z010-02-02T10:59:55.244381
CONTENTS:

[{line,megaco_messenger, 3651},
{conn_data,
{megaco_conn_handle, {deviceName, "gateway_tt"},preliminary_mid},
1,infinitvy,
{megaco_incr_timer,7000,2,0,infinity},
goooo, false, false,10,false, 10,2048, 0,undefined, 30000, infinity,infinity,
Z0000,<2883.68.0>,
{apply_at_exit,#Ref<3883.0.0.30>}
megaco_tep, #Port<2883. 941> ,megaco_pretty text encoder,[].l,asnl_NOVALUE,
megaco_simple mg, [],undefined,<3883.70.0>,false,true,false,5000,false,
false,false,false, 10000, none, 5000, infinity,plain},
[{transactionReguest,
['TransactionRequest',1,
[{'Actionﬁequest'.D.aBDl_NOVALUE.aBnl_NOVALUE.
[{'CommandReguest’',
{serviceChangeReq,
{'ServiceChangeReguest’',
[{megaco_term_id,false, ["root™]}],
{'ServiceChangeParm’,restart,asnl_ NOVALUE,

asnl_ MNOVALUE,asnl_ NOVALUE,

["s01v],

asnl_ MNOVALUE,asnl_ NOVALUE,asnl_ NOVALUE,

asnl_NOVALUE}}},

asnl_NOVALUE,asnl_NOVALUE}]}11}1]

Figure 4.5: The internal form of a Megaco message

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 25

1.4 Advanced examples

2 Reference Manual

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and graphical
viewing of trace data.

26 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et

et

Erlang module

Interface module for the Event Trace (ET) application

Exports

trace_ne(Detail Level, From To, Label, Contents) -> hopefully traced
Types.

DetailL evel = integer (X) when X =<0, X >=100

From = actor ()

To=actor()

Label =atom() | string() | term()

Contents=[{Key, Value}] | term()

actor() =term()
A function that is intended to be traced.

This function is intended to be invoked at strategic places in user applications in order to enable simplified tracing.
Thefunctions are extremely light weight as they do nothing besides returning an atom. The functions are designed for
being traced. The global tracing mechanisminet col | ect or defaultsto set its trace pattern to these functions.

Thelabel isintended to provide abrief summary of the event. It is preferred to use an atom but a string would also do.

The contents can be any term but in order to simplify post processing of the traced events, aplainlist of {Key, Vaue}
tuplesis preferred.

Some events, such as messages, are directed from some actor to another. Other events (termed actions) may be
undirected and only have one actor.

trace_ne(Detail Level, Fronilo, Label, Contents) -> hopefully traced
Invokeset : trace_ne/ 5 with both Fr omand To set to Fr onilo.

phone_home(Det ai | Level , Fronio, Label, Contents) -> hopefully traced
phone_home(Detail Level, From To, Label, Contents) -> hopefully traced

These functions sends a signal to the outer space and the caller hopes that someone is listening. In other words, they
invokeet : trace_ne/4 andet:trace_ne/ 5 respectively.

report _event(Detail Level, Fronilfo, Label, Contents) -> hopefully traced
report _event(Detail Level, From To, Label, Contents) -> hopefully traced

Deprecated functions which for the time being are kept for backwards compatibility. Invokeset : t race_ne/ 4 and
et:trace_ne/ 5 respectively.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 27

et_collector

et _collector

Erlang module

Interface module for the Event Trace (ET) application

Exports

start _link(Options) -> {ok, CollectorPid} | {error, Reason}

Types:
Options = [option()]
option() = {parent_pid, pid()} | {event_order, event_order()} | {dict_insert, {filter, collector},
collector_fun()} | {dict_insert, {filter, event_filter_name()}, event_filter_fun()} | {dict_insert, {subscriber,
pid()}, dict_val()} | {dict_insert, dict_key(), dict_val()} | {dict_delete, dict_key()} | {trace_client,
trace client()} | {trace _global, boolean()} | {trace pattern, trace pattern()} | {trace port, integer()} |
{trace_max_queue, integer ()}

event_order () = trace ts|event_ts
trace pattern() = {report_module(), extended_dbg_match_spec()} | undefined

report_module() = atom() | undefined <v>extended_dbg_match_spec()() = detail_level() |
dbg_match_spec()

detail_level() = min | max | integer (X) when X =< 0, X >= 100

trace client() = {event_file, file_ name()} | {dbg_trace type(), dbg trace parameters()}
file_name() = string()

collector_fun() = trace filter_fun() | event_filter_fun()

trace filter_fun() = fun(TraceData) -> false | true | {true, NewEvent}
event_filter_fun() = fun(Event) -> false | true | {true, NewEvent}
event_filter _name() = atom()

TraceData = erlang_trace _data()

Event = NewEvent = record(event)

dict_key() =term()

dict_val() =term()

Collector Pid = pid()

Reason = term()

Start a collector process.

The collector collects trace events and keeps them ordered by their timestamp. The timestamp may either reflect the
time when the actual trace data was generated (trace ts) or when the trace data was transformed into an event record
(event_ts). If the time stamp is missing in the trace data (missing timestamp option to erlang:trace/4) the trace tswill
be set to the event _ts.

Events are reported to the collector directly with the report function or indirectly via one or more trace clients. All
reported events arefirst filtered thru the collector filter before they are stored by the collector. By replacing the default
collector filter with a customized dito it is possible to allow any trace data as input. The collector filter is a dictionary
entry with the predefined key {filter, collector} and the value is a fun of arity 1. See et_selector:make_event/1 for
interface details, such as which erlang:trace/1 tuples that are accepted.

The collector hasabuilt-in dictionary service. Any term may be stored asvalue in the dictionary and bound to aunique
key. When new values are inserted with an existing key, the new values will overwrite the existing ones. Processes

28 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et_collector

may subscribe on dictionary updates by using { subscriber, pid()} as dictionary key. All dictionary updates will be
propagated to the subscriber processes matching the pattern {{subscriber, ' '}, ' '} where the first ' ' is interpreted
asapid().

In global trace mode, the collector will automatically start tracing on all connected Erlang nodes. When a node
connects, a port tracer will be started on that node and a corresponding trace client on the collector node.

Default values:

o parent_pid - self().

e event_order - trace ts.

e trace globa - false.

« trace pattern - undefined.

e trace port - 4711.

e trace_max_queue - 50.

stop(Col l ectorPid) -> ok
Types:

Collector Pid = pid()
Stop a collector process.

save_event _file(CollectorPid, FileNanme, Options) -> ok | {error, Reason}
Types.
CallectorPid = pid()
FileName = string()
Options = [option()]
Reason = term()
option() = event_option() | file_option() | table_option()
event_option() = existing
file_option() = write | append
table option() = keep | clear
Save the eventsto afile.

By default the currently stored events (existing) are written to a brand new file (write) and the events are kept (keep)
after they have been written to thefile.

Instead of keeping the events after writing them to file, it is possible to remove all stored events after they have
successfully written to file (clear).

The options defaults to existing, write and keep.

| oad_event _file(CollectorPid, FileNane) -> {ok, BadBytes} | exit(Reason)
Types:

Collector Pid = pid()

FileName = string()

BadBytes = integer (X) where X >=0

Reason =term()
Load the event table from afile.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 29

et_collector

report (Handl e, TraceOrEvent) -> {ok, Continuation} | exit(Reason)
report _event (Handl e, Detail Level, Fronflo, Label, Contents) -> {ok,
Conti nuation} | exit(Reason)

report _event (Handl e, Detail Level, From To, Label, Contents) -> {ok,
Conti nuation} | exit(Reason)

Types:
Handle = Initial | Continuation
Initial = collector_pid()
collector_pid() = pid()
Continuation = record(table_handle)
TraceOrEvent =record(event) | dbg_trace tuple() | end_of trace
Reason = term()
DetailL evel = integer (X) when X =<0, X >= 100
From = actor ()
To=actor()
FromTo = actor()
Label =atom() | string() | term()
Contents=[{Key, Value}] | term()
actor() =term()

Report an event to the collector.

All eventsarefiltered thru the collector filter, which optionally may transform or discard the event. Thefirst call should
use the pid of the collector process as report handle, while subsequent calls should use the table handle.

make key(Type, Stuff) -> Key

Types:
Type=record(table_handle) | trace_ts| event_ts
Stuff = record(event) | Key
Key = record(event_ts) | record(trace ts)

Make a key out of an event record or an old key.

get _table_handl e(Col | ectorPid) -> Handl e
Types:

Collector Pid = pid()

Handle = record(table_handle)

Return atable handle.

get _gl obal _pid() -> CollectorPid | exit(Reason)
Types:

Collector Pid = pid()

Reason =term()

Return athe identity of the globally registered collector if thereis any.

30 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et_collector

change_pattern(Col |l ectorPid, RawPattern) -> {old_pattern, TracePattern}
Types:

Collector Pid = pid()

RawPattern = {report_module&(), extended_dbg_match_spec()}

report_module() = atom() | undefined

extended_dbg_match_spec()() = detail_level() | dbg_match_spec()

RawPattern = detail_level()

detail_level() = min | max | integer (X) when X =< 0, X >= 100

TracePattern = {report_module(), dbg_match_spec_match_spec()}
Change active trace pattern globally on al trace nodes.

dict _insert(CollectorPid, {filter, collector}, FilterFun) -> ok
dict_insert(CollectorPid, {subscriber, SubscriberPid}, Void) -> ok
dict _insert(CollectorPid, Key, Val) -> ok

Types:
Collector Pid = pid()
Filter Fun =filter_fun()
Subscriber Pid = pid()
Void =term()
Key =term()
Val =term()
Insert adictionary entry and send a{et, {dict_insert, Key, Val}} tupleto all registered subscribers.
If the entry isanew subscriber, it will imply that the new subscriber processfirst will get one message for each already
stored dictionary entry, before it and all old subscribers will get this particular entry. The collector process links to

and then supervises the subscriber process. If the subscriber process diesit will imply that it gets unregistered aswith
anormal dict_delete/2.

di ct _| ookup(Col I ectorPid, Key) -> [Val]
Types:

Collector Pid = pid()

Filter Fun = filter_fun()

Collector Pid = pid()

Key =term()

Val =term()
Lookup adictionary entry and return zero or one value.

dict _delete(Coll ectorPid, Key) -> ok
Types:
Collector Pid = pid()
Subscriber Pid = pid()
Key = {subscriber, Subscriber Pid} | term()
Delete adictionary entry and send a{ et, {dict_delete, Key}} tuple to all registered subscribers.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 31

et_collector

If the deleted entry isaregistered subscriber, it will imply that the subscriber process getsis unregistered as subscriber
aswell asit getsit final message.

dict_match(CollectorPid, Pattern) -> [Match]
Types.

Collector Pid = pid()

Pattern ="' ' | {key_pattern(), val_pattern()}

key pattern() = ets match_object_pattern()

val_pattern() = ets match_object_pattern()

Match = {key(), val()}

key() = term()

val() =term()

Match some dictionary entries

mul ticast(_CollectorPid, Mg) -> ok
Types:

Collector Pid = pid()

Collector Pid = pid()

Msg = term()
Sends a message to al registered subscribers.

start _trace client(CollectorPid, Type, Parameters) -> file_ | oaded |
{trace_client_pid, pid()} | exit(Reason)

Types:
Type=dbg_trace client_type()
Parameters = dbg_trace client_parameters()
Pid = dbg_trace client_pid()

Load raw Erlang trace from afile, port or process.

iterate(Handl e, Prev, Linmit) -> NewAcc
Short for iterate(Handle, Prev, Limit, undefined, Prev) -> NewAcc

iterate(Handl e, Prev, Limt, Fun, Acc) -> NewAcc
Types:

Handle = collector_pid() | table_handle()

Prev =first | last | event_key()

Limit = done&() | forward() | backward()

collector_pid() = pid()

table_handle() = record(table_handle)

event_key() = record(event) | record(event_ts) | record(trace ts)

dong() =0

forward() = infinity | integer (X) where X >0

backward() = '-infinity' | integer (X) where X <0

32| Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et_collector

Fun = fun(Event, Acc) -> NewAcc <v>Acc = NewAcc = term()

Iterate over the currently stored events.

Iterates over the currently stored eventsand applies afunction for each event. Theiteration may be performed forwards
or backwards and may be limited to a maximum number of events (abs(Limit)).

cl ear_tabl e(Handl e) -> ok
Types:
Handle = collector_pid() | table_handl&()
collector_pid() = pid()
table_handle() = record(table_handle)
Clear the event table.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 33

et_selector

et _selector

Erlang module

Exports

make pattern(RawPattern) -> TracePattern
Types.
RawPattern = detail_level()
TracePattern = erlang_trace pattern_match_spec()
detail_level() = min | max | integer (X) when X >=0, X =< 100
Makes a trace pattern suitable to feed change pattern/1
Min detail level deactivatestracing of callstoet: trace_ne/ 4,5
Max detail level activatestracing of all callstoet: trace_ne/ 4,5

integer(X) detail level activatestracing of all callstoet : t r ace_ne/ 4, 5 whose detail level argument islesser than
X.

Seeasoerl ang: trace_pattern/2for moreinfoabout itsmat ch_spec()

change_pattern(Pattern) -> ok

Types:
Pattern = detail_level() | empty_match_spec() | erlang_trace pattern_match_spec()
detail_level() = min | max | integer (X) when X >=0, X =< 100
empty_match_spec() =]

Activates/deactivates tracing by changing the current trace pattern.

m n detail level deactivatestracing of calstoet :trace_ne/ 4,5

max detail level activatestracing of all callstoet:trace _ne/ 4,5

i nt eger (X) detail level activatestracing of al callstoet : trace_ne/ 4, 5 whose detail level argument is lesser
than X.

An empty match spec deactivatestracing of callstoet : trace _ne/ 4,5

Other match specs activates tracing of cals to et:trace_nme/4,5 accordingly with
erlang:trace_pattern/ 2.

parse_event (Mod, ValidTraceData) -> false | true | {true, Event}
Types:
Mod = module_name() | undefined <v>module_name() = atom() <v>ValidTraceData =
erlang_trace data() | record(event)

erlang_trace data() = {trace, Pid, Label, Info} | {trace, Pid, Labdl, Info, Extra} | {trace_ts, Pid, Label,
Info, ReportedT S} | {trace_ts, Pid, Label, Info, Extra, ReportedTS} | {seq_trace, Label, Info} | {seq_trace,
Label, Info, ReportedTS} | {drop, Number OfDr opped| tems}

Transforms trace data and makes an event record out of it.

Seeerl ang: t race/ 3 for moreinfo about the semantics of the trace data.

34 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et_selector

An event record consists of the following fields:
detail _level
Noise has a high level as opposed to essentials.
trace ts
Time when the trace was generated. Same as event_tsif omitted in trace data.
event_ts
Time when the event record was created.
from
From actor, such as sender of a message.
to
To actor, such as receiver of message.
label
Label intended to provide a brief event summary.
contents
All nitty gritty details of the event.
Seeet:trace_ne/ 4andet:trace_ne/ 5 for details.
Returns:
{true, Event}
where Event is an #event{} record representing the trace data
true
means that the trace data already is an event record and that it isvalid asit is. No transformation is needed.
false
means that the trace data is uninteresting and should be dropped

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 35

et_viewer

et viewer

Erlang module

Exports

file(FileNane) -> {ok, ViewerPid} | {error, Reason}
Types.
FileName() = string()
Viewer Pid = pid()
Reason =term()
Start anew event viewer and a corresponding collector and load them with trace events from atracefile.

start() -> ok
Simplified start of a sequence chart viewer with global tracing activated.
Convenient to be used from the command line (erl -s et_viewer).

start (Options) -> ok
Start of a sequence chart viewer without linking to the parent process.

start _link(Options) -> {ok, ViewerPid} | {error, Reason}

Types:
Options = [option() | collector_option()]
option() = {parent_pid, extended_pid()} | {title, term()} | {detail_level, detail_level()} | {is_suspended,
boolean()} | {scale, integer ()} | {width, integer ()} | {height, integer ()} | {collector_pid, extended_pid()}
| {event_order, event_order ()} | {active filter, atom()} | {max_actors, extended_integer ()} |
{trace_pattern, et_collector_trace pattern()} | {trace port, et_collector_trace port()} | {trace global,
et_collector_trace global()} | {trace client, et_collector_trace client()} | {dict_insert, {filter,
filter_name()}, event_filter_fun()} | {dict_insert, et_collector_dict_key(), et_collector_dict_val()}
| {dict_delete, {filter, filter_name()}} | {dict_delete, et_collector_dict_key()} | {actors, actors()} |
{first_event, first_key()} | {hide_unknown, boolean()} | {hide_actions, boolean()} | {display_mode,

display_mode()}

extended_pid() = pid() | undefined

detail_level() = min | max | integer (X) when X >=0, X =< 100
event_order () = trace ts|event_ts

extended_integer () = integer () | infinity

display_mode() = all | {search_actors, direction(), first_key(), actor ()}
direction() =forward | reverse

first_key() = event_key()

actors() = [term()]

filter_name() = atom()

filter_fun() = fun(Event) -> false | true | {true, NewEvent}
Event = NewEvent = record(event)

36 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et _viewer

Viewer Pid = pid()
Reason = term()

Start a sequence chart viewer for trace events (messages/actions)

A filter_fun() takes an event record as sole argument and returns false | true | { true, NewEvent} .

If the collector _pid is undefined a new et _collector will be started with the following
parameter settings. parent _pid, event _order, trace_global, trace_pattern, trace_port,
trace_nax_queue,trace_client,dict_insert anddi ct _del ete. Thenewet vi ewer will register

itself asanet _col | ect or subscriber.

Default values:

parent_pid - self().

title- "et_viewer".
detail_level - max.

is suspended - false.
scale- 2.

width - 800.

height - 600.
collector_pid - undefined.
event_order - trace ts.
active filter - collector.
max_actors - 5.

actors - ["UNKNOWN"].
first_event - first.
hide_unknown - false.
hide _actions - false.
display_mode - al.

get _collector_pid(ViewerPid) -> CollectorPid
Types:

Viewer Pid = pid()
Collector Pid = pid()

Returns the identifier of the collector process.

stop(ViewerPid) -> ok
Types:

Viewer Pid = pid()

Stops a viewer process.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 37

	Event Tracer (ET)
	User's Guide
	Introduction
	Scope and Purpose
	Prerequisites
	About This Manual
	Where to Find More Information

	Tutorial
	Visualizing Message Sequence Charts
	Four Modules
	The Event Tracer Interface
	The Collector and Viewer
	The Selector
	How To Put It Together

	Description
	Overview
	Filters and dictionary
	Trace clients
	Global tracing
	Viewer window
	Configuration
	Contents viewer window

	Advanced examples
	A simulated Mnesia transaction
	Some convenient functions used in the Mnesia transaction
 example
	Erlang trace of a real Mnesia transaction
	Erlang trace of Megaco startup

	Reference Manual
	et
	trace_me/5
	trace_me/4
	phone_home/4
	phone_home/5
	report_event/4
	report_event/5

	et_collector
	start_link/1
	stop/1
	save_event_file/3
	load_event_file/2
	report/2
	report_event/5
	report_event/6
	make_key/2
	get_table_handle/1
	get_global_pid/0
	change_pattern/2
	dict_insert/3
	dict_insert/3
	dict_insert/3
	dict_lookup/2
	dict_delete/2
	dict_match/2
	multicast/2
	start_trace_client/3
	iterate/3
	iterate/5
	clear_table/1

	et_selector
	make_pattern/1
	change_pattern/1
	parse_event/2

	et_viewer
	file/1
	start/0
	start/1
	start_link/1
	get_collector_pid/1
	stop/1

