| v

ERLANG

Observer

Copyright © 2002-2010 Ericsson AB. All Rights Reserved.
Observer 0.9.8.3

September 13 2010

Copyright © 2002-2010 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 13 2010

Ericsson AB. All Rights Reserved.: Observer | 1

1.1 Trace Tool Builder

1 User's Guide

The Observer application contains tools for tracing and investigation of distributed systems.

1.1 Trace Tool Builder

1.1.1 Introduction

The Trace Tool Builder is a base for building trace tools for single node or distributed erlang systems. It requires the
runti me_t ool s application to be available on the traced node.

The main features of the Trace Tool Builder are:

« Start tracing to file ports on several nodes with one function call.

* Write additional information to atrace information file, which is read during formatting.

e Restoring of previous configuration by maintaining a history buffer and handling configuration files.

* Some simple support for sequential tracing.

» Formatting of binary trace logs and merging of logs from multiple nodes.

Even though the intention of the Trace Tool Builder is to serve as a base for tailor made trace tools, it is of course

possible to useit directly from the erlang shell. The application only allows the use of file port tracer, so if you would
like would like to use other types of trace clients you will be better off using dbg directly instead.

1.1.2 Getting Started

Thet t b module is the interface to all functions in the Trace Tool Builder. To get started the least you need to do
isto start atracer withtt b: tracer/ 0/ 1/ 2, and set the required trace flags on the processes you want to trace
witht t b: p/ 2. Then, when the tracing is completed, you must stop the tracer witht t b: st op/ 0/ 1 and format the
tracelogwithtt b: f ormat / 1/ 2.

ttb:tracer/ 0/ 1/ 2 opensafiletrace port on each node that shall be traced. All trace messages will be written to
this port and end up in abinary file (the binary trace log).

tt b: p/ 2 specifieswhich processes that shall be traced. Trace flags given in this call specifies what to trace on each
process. You can call this function several timesif you like different trace flags to be set on different processes.

If you want to trace function calls (i.e. if you havethecal | trace flag set on any of your processes), you must also
set trace patterns on the required function(s) withtt b: t p ortt b: t pl . A function is only traced if it has a trace
pattern. The trace pattern specifies how to trace the function by using match specifications. Match specifications are
described in the User's Guide for the erlang runtime systemer t s.

ttb: stop/ 0/ 1 stopstracing on al nodes, deletes al trace patterns and flushes the trace port buffer.

tthb: format/ 1/ 2 trandates the binary trace logs into something readable. By default t t b presents each trace
message as a line of text, but you can also write your own handler to make more complex interpretations of the trace
information. A trace log can even be presented graphically viathe Event Tracer application. Note that if you give the
format optiontottb: st op/ 1 theformatting isautomatically done when stoppingtt b.

Example: Tracing the local node from the erlang shell

This small module is used in the example:

2 | Ericsson AB. All Rights Reserved.: Observer

1.1 Trace Tool Builder

- modul e(m) .
-export([f/0]).
fO ->
receive
From when pi d(From ->
Now = erl ang: now(),
From! {self(), Now}
end.

The following example shows the basic use of t t b from the erlang shell. Default options are used both for starting
the tracer and for formatting. This gives a trace log named Node- t t b, where Node is the name of the node. The
default handler prints the formatted trace messages in the shell.

(tiger@urin)47> %WoFirst | spawn a process running ny test function
(tiger@urin)47> Pid = spam(mf,[]).

<0. 125. 0>

(tiger@urin)48>

(tiger@urin)48> %% Then | start a tracer...

(tiger@urin)48> tth:tracer().

{ok, [tiger@lurin]}

(tiger@urin)49>

(tiger@lurin)49> %% and activate the new process for tracing
(tiger@lurin)49> %6 function calls and sent nessages.
(tiger@urin)49> ttbh: p(Pid,[call,send]).

{ok, [{<0.125. 0>, [{mat ched, ti ger @urin, 1}]1}]}

(tiger@urin)50>

(tiger@urin)50> %o Here | set a trace pattern on erl ang: now 0
(tiger@urin)50> %% The trace pattern is a sinple match spec
(tiger@urin)50> %% generated by dbg: fun2nms/1. It indicates that
(tiger@urin)50> %6the return value shall be traced.
(tiger@urin)50> M5 = dbg: fun2ns(fun(_) -> return_trace() end).
[{"_",[1,[{return_trace}]}]

(tiger@lurin)51> tth:tp(erlang, now, V5).

{ok, [{mat ched, ti ger @lurin, 1}, {saved, 1}]}

(tiger@urin)52>

(tiger@urin)52> %61 run nmy test (i.e. send a nmessage to
(tiger@urin)52> %% my new process)

(tiger@urin)52> Pid ! self().

<0.72.0>

(tiger@urin)53>

(tiger@urin)53> %% And then | have to stop ttb in order to flush
(tiger@urin)53> %6the trace port buffer

(tiger@lurin)53> tth:stop().

st opped

(tiger@urin)54>

(tiger@urin)54> %o Finally | format ny trace |og
(tiger@urin)54> ttb:format ("tiger@lurin-tth").
({<0.125.0>,{mf,0},tiger@urin}) call erlang: now)
({<0.125.0>,{mf,0},tiger@urin}) returned from erlang: now 0 ->
{1031, 133451, 667611}

({<0.125.0>,{mf,0},tiger@urin}) <0.72.0> !

{<0. 125. 0>, { 1031, 133451, 667611} }

ok

Example: Build your own tool

This small example shows asimple tool for "debug tracing", i.e. tracing of function calls with return values.

Ericsson AB. All Rights Reserved.: Observer | 3

1.1 Trace Tool Builder

- modul e(mydebug) .
-export([start/0O,trc/1,stop/0,format/1]).
-export([print/4]).

%% I ncl ude ms_transform hrl so that | can use dbg:fun2ns/2 to
% generate match specifications.
-include_lib("stdlib/include/ns_transformhrl").

%®06 Star the "mydebug" tool

start() ->
%% The options specify that the binary |og shall be naned
%% <Node>-debug_| og and that the print/4 function in this
%% nmodul e shall be used as format handl er
ttb:tracer(all,[{file,"debug_|l og"}, {handl er, {{?MODULE, print},0}}]),
%6 All processes (existing and new) shall trace function calls
%% and include a timestanp in each trace nessage
ttb:p(all,[call,timestanp]).

%806 Set trace pattern on function(s)
trc(M when atom(M ->

tre({M*'_"," '});
trc({MF}) when atom(M, atom(F) ->
tre({MF,"_"});

trc({MF, _A}=MFA) when atom(M, atom(F) ->
%6 This match spec specifies that return val ues shall
%0 be traced. NOTE that nms_transform hrl nust be included
%6if dbg:fun2nms/1 shall be used!
Mat chSpec = dbg: fun2ns(fun(_) -> return_trace() end),
ttb:tpl (MFA Mat chSpec) .

%M@ Format a binary trace |og
format(File) ->
tth:format (File).

%®06 St op the "mydebug" tool

stop() ->

tth:stop().
%WBo-------- Internal functions--------
L T

%®86 For mat handl| er

print(_Qut,end_of _trace, _TI,N ->
N;

print(Qut, Trace, _TI,N) ->
do_print(Qut, Trace, N),
N+1.

do_print(Qut,{trace_ts,P,call,{MF, A}, Ts}, N ->
io:format (Cut,
"~w. ~wW, ~w ~n"
"Cal | Do~W ~wW ~w-n"
"Argunments :~p~n~n",
[N, Ts, P, M F, I ength(A), Al);
do_print(Qut,{trace_ts,P,return_from{MF, A}, R Ts}, N) ->
io:format(Cut,
"~w. ~wW, ~w ~n"
"Return from : ~w ~W ~w-n"
"Return val ue : ~p~n~n",
[N, Ts,P,MF, AR]).

To distinguish trace logs produced with this tool from other logs, thefi | e optionisusedintracer/ 2. Thelogs
will therefore be named Node- debug_| og, where Node is the name of the node where the log is produced.

4 | Ericsson AB. All Rights Reserved.: Observer

1.1 Trace Tool Builder

By using the handl er option when starting the tracer, the information about how to format the file is stored in the
traceinformationfile(. ti). Thisisnot necessary, asit might be given at the time of formatting instead. It can however
be useful if you e.g. want to automatically format your trace logs by using the f or mat optioninttb: st op/ 1. It
also means that you don't need any knowledge of the content of a binary log to be able to format it the way it was
intended. If the handl er option is given both when starting the tracer and when formatting, the one given when
formatting is used.

Thecal | trace flag is set on al processes. This means that any function activated with thet r ¢/ 1 command will
be traced on all existing and new processes.

1.1.3 Running the Trace Tool Builder against a remote node

The Observer application might not always be available on the node that shall be traced (in the following called the
"traced node"). It is still possible to run the Trace Tool Builder from another node (in the following called the "trace
control node") aslong as

e The Observer application is available on the trace control node.

* TheRuntime Tools application is available on both the trace control node and the traced node.

If the Trace Tool Builder shall be used against aremote node, it is highly recommended to start the trace control node
as hidden. This way it can connect to the traced node without the traced node "seeing" it, i.e. if the nodes() BIF

is called on the traced node, the trace control node will not show. To start a hidden node, add the - hi dden option
totheer | command, e.g.

% erl -snane trace_control -hidden

Diskless node

If the traced node is diskless, t t b must be started from a trace control node with disk access, and thef i | e option
must be givento thet r acer / 2 function withthevalue{| ocal , Fil e}, eg.

(trace_control @urin)1> tth:tracer(nynode@,i skl ess, [{file,{local,

{wrap, "nytrace"}}}]).
{ ok, [nynode@li skl ess] }

1.1.4 Trace Information and the .ti File

In addition to the trace log file(s), afilewith the extension . t i iscreated when the Trace Tool Builder is started. This
is the trace information file. It isa binary file, and it contains the process information, trace flags used, the name of
the node to which it belongs and al information written withthewr i t e_t race_i nf o/ 2 function.

To beableto useall thisinformation during formatting, it isimportant that the trace information file existsin the same
directory asthetrace log, and that it has the same name as the trace log with the additional extension . ti .

Except for the process information, everything in the trace information file is passed on to the handler function when
formatting. The Tl parameter isalist of { Key, Val uelLi st} tuples. Thekeysf | ags, handl er,fi | e andnode
are used for information written directly by t t b.

Y ou can add information to the trace information file by callingwri t e_t race_i nf o/ 2. Note that Val ueLi st
always will be alist, and if youcall wite_trace_i nfo/ 2 severa times with the same Key, the Val ueLi st
will be extended with a new value each time. Example:

ttb:wite_trace_info(nykey, 1) gives the entry {nykey,[1]} in TI. Another call,
ttb:wite_trace_info(nykey, 2),changesthisentry to{nykey, [1, 2] }.

Ericsson AB. All Rights Reserved.: Observer | 5

1.1 Trace Tool Builder

1.1.5 Wrap Logs

If you want to limit the size of the trace logs, you can use wrap logs. This works aimost like a circular buffer. You
can specify the maximum number of binary logs and the maximum size of each log. t t b will create a new binary
log each time a log reaches the maximum size. When the the maximum number of logs are reached, the oldest log
is deleted before anew oneis created.

Wrap logs can be formatted one by one or al at once. See Formatting.

1.1.6 Formatting

Formatting can be done automatically when stopping t t b (see Automatically collect and format logs fromall nodes),
or explicitly by callingthet t b: f or mat / 1/ 2 function.

Formatting means to read a binary log and present it in a readable format. Y ou can use the default format handler in
t t b to present each trace message as aline of text, or write your own handler to make more complex interpretations
of the trace information. Y ou can even use the Event Tracer et to present the trace log graphically (see Presenting
trace logs with Event Tracer).

Thefirstargumenttot t b: f or mat / 1/ 2 specifieswhich binary log(s) to format. This can be the name of one binary
log, alist of such logs or the name of a directory containing one or more binary logs. If this argument indicates more
than onelog, andthet i nest anp flag was set when tracing, the trace messages from the different logswill be merged
according to the timestamps in each message.

The second argument to t t b: f or mat / 2 isalist of options. The out option specifies the destination where the
formatted text shall bewritten. Default destinationisst andar d_i o, but afilename can also begiven. Thehandl er
option specifies the format handler to use. If this option is not given, the handl er option given when starting the
tracer is used. If the handl er option was not given when starting the tracer either, a default handler is used, which
prints each trace message as aline of text.

A format handler is afun taking four arguments. This fun will be called for each trace message in the binary log(s).
A simple example which only prints each trace message could be like this:

fun(Fd, Trace, _Tracelnfo, State) ->
io:format (Fd, "Trace: ~p~n", [Trace]),
State

end.

Fd isthefiledescriptor for the destination file, or theatom st andar d_i o. _Tr acel nf o containsinformation from
thetrace information file (see Trace Information and the .ti File). St at e isastate variablefor the format handler fun.
Theinitial value of the St at e variableis given with the handler option, e.g.

ttb:format ("tiger@lurin-ttbh", [{handler, {{Md, Fun}, initial_state}}])

NANNNNNNNNNNNN

Another format handler could be used to calculate time spent by the garbage collector:

fun(_Fd, {trace_ts, P,gc_start, Info, StartTs}, Tracelnfo, State) ->
[{P,StartTs}| State];
(Fd, {trace_ts, P,gc_end, _Info, EndTs}, Tracelnfo, State) ->

{val ue, {P, StartTs}} = lists: keysearch(P, 1, State),

Time = diff(StartTs, EndTs),

io:format ("GC in process ~w. ~w nilliseconds~n", [P, Tine]),
State -- [{P, StartTs}]

6 | Ericsson AB. All Rights Reserved.: Observer

1.1 Trace Tool Builder

end

A more refined version of this format handler is the function handl e_gc/ 4 inthe module nul ti trace. erl
which can be found in the sr ¢ directory of the Observer application.

By giving the format handler et , you can have the trace log presented graphically with et _vi ewer in the Event
Tracer application (see Presenting trace logs with Event Tracer).

Wrap logs can be formatted one by one or all in one go. To format one of the wrap logs in a set, give the exact name
of thefile. To format the whole set of wrap logs, give the name with ** instead of the wrap count. An example:

Start tracing:

(tiger@urin)l> tth:tracer(node(),[{file, {wap,"trace"}}]).
{ok,[tiger@lurin]}
(tiger@urin)2> tth:p(...)

Thiswill give aset of binary logs, like:

tiger@lurin-trace. 0. wp
tiger@urin-trace. 1. wp
tiger@lurin-trace.2. wp

Format the whole set of logs:

1> ttbh:format ("tiger@urin-trace.*. wp").
ok
2>

Format only the first log:

1> tth:format ("tiger @urin-trace. 0. wp").
ok
2>

To merge all wrap logs from two nodes:

1> ttbh:format (["tiger@lurin-trace.*. wp","lion@urin-trace.*.wp"]).
ok

2>

Presenting trace logs with Event Tracer

For detailed information about the Event Tracer, please turn to the User's Guide and Reference Manuals for the et
application.

Ericsson AB. All Rights Reserved.: Observer | 7

1.1 Trace Tool Builder

By giving the format handler et , you can have the trace log presented graphically with et _vi ewer in the Event
Tracer application. t t b providesafew different filterswhich can be selected fromthe Filter menuintheet _vi ewer
window. The filters are names according to the type of actors they present (i.e. what each vertical line in the sequence
diagram represent). Interaction between actorsis shown as red arrows between two vertical lines, and activitieswithin
an actor are shown as blue text to the right of the actorsline.

The pr ocesses filter is the only filter which will show all trace messages from atrace log. Each vertical linein
the sequence diagram represents a process. Erlang messages, spawn and link/unlink are typical interactions between
processes. Function calls, scheduling and garbage collection are typical activities within a process. pr ocesses is
the defaullt filter.

Therest of thefilterswill only show function calls and function returns. All other trace message are discarded. To get
the most out of thesefilters, et _vi ewer needsto known the caller of each function and the time of return. This can
be obtained by using both thecal | andr et ur n_t o flagswhen tracing. Note that ther et ur n_t o flag only works
with local call trace, i.e. when trace patterns are set witht t b: t pl .

The same result can be obtained by using the cal | flag only and setting a match specification like this on local or
global function calls:

1> dbg: fun2ns(fun(_) -> return_trace(), message(caller()) end).
[{"_",[],[{return_trace}, {message, {caller}}]}]

This should however be done with care, sincethe{r et ur n_t r ace} functioninthe match specification will destroy
tail recursiveness.

Thenodul es filter shows each module as avertical linein the sequence diagram. External function callg/returns are
shown as interactions between modules and internal function calls/returns are shown as activities within amodule.

The f unct i ons filter shows each function as a vertical line in the sequence diagram. A function calling itself is
shown as an activity within afunction, and all other function calls are shown as interactions between functions.

Thenods_and_procs andf uncs_and_pr ocs filters are equivalent to the nodul es and f unct i ons filters
respectively, except that each module or function can have several vertical lines, one for each processit resides on.

As an example this module is used, and the function bar : f 1() iscalled from another modulef 0o0.

- nmodul e(bar) .
-export([f1/0,f3/0]).
fi() ->

f2(),

ok.
f2() ->

spawn(?MODULE, f3,[]) .
f3() ->

ok.

Thecal | andr et urn_t o flagsare used, and trace pattern is set on local callsin module bar .
ttb:format ("tiger@lurin-ttb", [{handler, et}]) givesthefollowing result:

8 | Ericsson AB. All Rights Reserved.: Observer

1.1 Trace Tool Builder

et_wviewer (filter: processes)

File ¥iewer Collector Filter Help

£ Freeze Detail Level
.f Hide From=Ta

f Hide Unknown

<0327, 0 0. 331, 0
tigarédnrin tigarédnrin

call bar: £1/0
call bar: £2/0

spawn bar: £3/0

P
I

raturn to bar: £1/0

roaturn to foo:gofl

oxit

call bar: £3/0

return to undsfined

oxit

Figure 1.1: Filter: "processes"

el_viewer {filter: mods_and_procs)

File ¥iewer Collector Filter Help

£ Freeze Detail Level
f Hide Fraom=To 1”'3
f Hide Unknown .

foo bar bar
<0327, 0% <0327, 0% =0, 8381. 0%

tigerédnrin tigerédurin tigerédurin
gEcall bar: £170 = =

P
I

call bar: £2/0

raturn to bar: £1/0

raturn to foo:gofl

3

call bar: £3/0

return to unkoown

Figure 1.2: Filter: "mods_and_procs"

Ericsson AB. All Rights Reserved.: Observer | 9

1.1 Trace Tool Builder

1.1.7 Automatically collect and format logs from all nodes

If the option f et ch isgiventothet t b: st op/ 1 function, trace logs and trace information files are fetched from
all nodes after tracing is stopped. The logs are stored in a new directory namedt t b_upl oad- Ti mest anp under
the working directory of the trace control node.

If the option f or mat isgiventott b: st op/ 1, the trace logs are automatically formatted after tracing is stopped.
Note that f or mat also impliesf et ch, i.e. the trace logs will be collected from all nodes as for the f et ch option
before they are formatted. All logs in the upload directory are merged during formatting.

1.1.8 History and Configuration Files

For the tracing functionality, dbg could be used instead of thet t b for setting trace flags on processes and trace
patterns for call trace, i.e. the functionsp, t p,t pl , ct p, ct pl and ct pg. The only thing added by t t b for these
functions is that al calls are stored in the history buffer and can be recalled and stored in a configuration file. This
makes it easy to setup the same trace environment e.g. if you want to compare two test runs. It a so reduces the amount
of typingwhen using t t b from the erlang shell.

Uselist_history/ 0 to see the content of the history buffer, and r un_hi st ory/ 1 to re-execute one of the
entries.

The main purpose of the history buffer isthe possibility to create configuration files. Any function stored in the history
buffer can be written to a configuration file and used for creating a specific configuration at any time with one single
function call.

A configuration file is created or extended withwr i t e_confi g/ 2/ 3. Configuration files are binary files and can
therefore only be read and written with functions provided by t t b.

You can write the complete content of the history buffer to a config file by caling
ttb:wite_config(ConfigFile,all). And you can write selected entries from the history by calling
ttb:wite_config(ConfigFile, NunLi st), where NunLi st isalist of integers pointing out the history
entries to write.

User defined entries can adso be written to a config file by cdling the
function ttb:wite config(ConfigFile, ConfigList) whee ConfigList is a Ilist of
{ Modul e, Functi on, Args}.

Any existing file Confi gFil e is deleted and a new file is created when wite_confi g/ 2 is caled.
The option append can be used if you wish to add something at the end of an existing config file, eg.
ttb:wite config(ConfigFile, Wiat, [append]).

Example: History and configuration files
See the content of the history buffer

(tiger@urin)191> tth:tracer().

{ok, [tiger@lurin]}

(tiger@urin)192> tth: p(self(),[garbage_collection,call]).
{ok, {[<0.1244.0>], [gar bage_col | ection,call]}}
(tiger@urin)193> tth:tp(ets,new, 2,[]).

{ok, [{mat ched, 1}]}

(tiger@urin)194> tth:list_history().
[{1,{ttb,tracer,[tiger@urin,[]]}},

{2,{ttb, p, [<0.1244. 0>, [garbage_col | ection,call]]}},
{3.{ttb,tp,[ets,new, 2,[]]}}]

Execute an entry from the history buffer:

10 | Ericsson AB. All Rights Reserved.: Observer

1.1 Trace Tool Builder

(tiger@urin)195> tth: ctp(ets, new, 2).

{ok, [{mat ched, 1}]}

(tiger@urin)196> tth:list_history().
[{1,{ttb,tracer,[tiger@urin,[]]}},

{2,{ttb, p, [<0.1244.0>, [gar bage_col | ection,call]]}},
{3.{ttb,tp,[ets, new 2,[]]}},

{4,{ttb,ctp,[ets, new, 2]}}]

(tiger@urin)197> tth:run_history(3).
tth:tp(ets, new, 2,[]) ->

{ok, [{mat ched, 1}]}

Write the content of the history buffer to a configuration file:

(tiger@urin)198> tth:wite_config("nmyconfig",all).
ok

(tiger@urin)199> tth:list_config("mconfig").
[{1,{ttb,tracer,[tiger@urin,[]]}},

{2,{ttb, p, [<0.1244. 0>, [garbage_col | ection,call]]}},
{3, {ttb,tp, [ets, new, 2,[]]1}},

{4,{ttb,ctp,[ets, new, 2]}},

{5, {ttb,tp,[ets, new 2,[]]}}]

Extend an existing configuration:

(tiger@lurin)200> tth:wite_config("nmyconfig",[{ttb,tp,[ets,delete,1,[]]}],
[append]) .

ok

(tiger@urin)201> tth:list_config("mconfig").
[{2,{ttb,tracer,[tiger@urin,[]]}},

{2,{ttb, p,[<0.1244. 0>, [garbage_col |l ection,call]]}},

{3,{tth,tp,[ets,new, 2,[]]}},

{4,{ttb,ctp,[ets, new, 2]}},

{5, {tth,tp,[ets,new, 2,[]]}},

{6,{ttb,tp,[ets,delete,1,[]1]}}]

Go back to a previous configuration after stopping Trace Tool Builder:

(tiger@urin)202> tth: stop().

ok

(tiger@urin)203> ttbh: run_config("myconfig").
ttb:tracer(tiger@urin,[]) ->

{ok, [tiger@lurin]}

ttb: p(<0.1244. 0>, [garbage_col | ection,call]) ->
{ok, {[<0.1244.0>], [gar bage_col | ection,call]}}

ttb:tp(ets, new, 2,[]) ->
{ok, [{mat ched, 1}]}

ttbh: ctp(ets, new, 2) ->
{ok, [{mat ched, 1}]}

ttb:tp(ets, new, 2,[]) ->
{ok, [{mat ched, 1}]}

ttb:tp(ets,delete, 1,[]) ->

Ericsson AB. All Rights Reserved.: Observer | 11

1.1 Trace Tool Builder

{ok, [{mat ched, 1}]}

ok

Write selected entries from the history buffer to a configuration file:

(tiger@urin)204> tth:list_history().
[{1,{ttb,tracer,[tiger@urin,[]]}},

{2,{ttb, p, [<0.1244. 0>, [garbage_col | ection,call]]}},
{3, {ttb,tp, [ets, new, 2,[]]1}},

{4,{ttb,ctp,[ets, new, 2]}},

{5 {ttb,tp, [ets, new, 2,[]]1}},
{6,{ttb,tp,[ets,delete,1,[]1]}}]

(tiger@urin)205> ttbh:wite_config("nyconfig",[1,2,3,6]).
ok

(tiger@urin)206> tth:list_config("mconfig").
[{1,{ttb,tracer,[tiger@urin,[]]}},

{2,{ttb, p, [<0.1244. 0>, [garbage_col | ection,call]]}},
{3, {ttb,tp, [ets, new, 2,[]]1}},

{4,{ttb, tp,[ets,delete, 1,[1]1}}]

(tiger@urin)207>

1.1.9 Sequential Tracing

To learn what sequential tracing is and how it can be used, please turn to the reference manual for theseq_t r ace
moduleintheker nel application.

The support for sequential tracing provided by the Trace Tool Builder includes

e Initiation of the system tracer. Thisis automatically done when atrace port is started with
ttbh:tracer/0/1/2

» Creation of match specifications which activates sequential tracing

Starting sequential tracing requires that a tracer has been started with the ttb:tracer/ 0/ 1/ 2 function.
Sequential tracing can then either be started via a trigger function with a match specification created with
ttb:seq_trigger_ns/0/1,ordrectly by usingtheseq_t r ace modulein theker nel application.

Example: Sequential tracing
In the following example, the function dbg: get _tracer/ 0 isused astrigger for sequentia tracing:

(tiger@urin)110> tth:tracer().

{ok,[tiger@lurin]}

(tiger@lurin)l1l1l> tth: p(self(),call).

{ok, {[<0.158.0>],[call]}}

(tiger@urin)112> tth:tp(dbg, get_tracer,O0,ttbh:seq_trigger_ns(send)).
{ok, [{mat ched, 1}, {saved, 1}]}

(tiger@urin)113> dbg: get _tracer(), seq_trace:reset_trace().

true

(tiger@urin)l14> tth: stop().

ok

(tiger@urin)115> ttbh:format("tiger @urin-ttbh").

({<0. 158. 0>, {shel | , eval uator, 3},ti ger@urin}) call dbg:get_tracer()
SeqTrace [0]: ({<0.158.0>, {shell,evaluator, 3},tiger@urin})

{<0. 237.0>, dbg, ti ger @urin} ! {<0.158.0>, {get_tracer,tiger@urin}}
[Serial: {0,1}]

SeqTrace [0]: ({<0.237.0>, dbg,tiger@urin})

{<0. 158. 0>, {shel | , eval uator, 3}, ti ger@urin} ! {dbg, {ok, #Port <0.222>}}
[Serial: {1,2}]

12 | Ericsson AB. All Rights Reserved.: Observer

1.2 Erlang Top

ok
(tiger@urin)116>

Starting sequential tracing with atrigger is actually more useful if the trigger function is not called directly from the
shell, but rather implicitly within alarger system. When calling afunction from the shell, itissimpler to start sequential
tracing directly, e.g.

(tiger@lurin)ll6> tth:tracer().

{ok, [tiger@lurin]}

(tiger@urin)l1l7> seq_trace: set _token(send,true), dbg:get_tracer(),
seq_trace:reset _trace().

true

(tiger@urin)118> tth: stop().

ok

(tiger@urin)119> tth:format("tiger @urin-ttbh").

SeqTrace [0]: ({<0.158.0>,{shell,evaluator, 3},tiger@urin})

{<0. 246. 0>, dbg, ti ger @urin} ! {<0.158.0>, {get_tracer,tiger@urin}}
[Serial: {0,1}]

SeqTrace [0]: ({<0.246.0>, dbg,tiger@urin})

{<0. 158. 0>, {shel | , eval uator, 3}, tiger@urin} ! {dbg, {ok, #Port <0.229>}}
[Serial: {1,2}]

ok

(tiger@lurin)120>

In both examples above, the seq_t race: reset _trace/ 0 resets the trace token immediately after the traced
function in order to avoid lots of trace messages due to the printouts in the erlang shell.

All functionsin the seq_t r ace module, except set _system tracer/ 1, can be used after the trace port has
been started witht t b: t racer/ 0/ 1/ 2.

1.1.10 Example: Multipurpose trace tool

Themodulermul titrace. erl which can be found in the sr ¢ directory of the Observer application implements
asmall tool with three possible trace settings. The trace messages are written to binary files which can be formatted
with thefunctionul titrace: format/ 1/ 2.

mul titrace: debug(What)
Start calltrace on all processes and trace the given function(s). The format handler used is
mul titrace: handl e_debug/ 4 which prints each call and return. What must be anitem or alist of items
to trace, given on the format { Modul e, Functi on, Ari ty},{ Modul e, Functi on} orjust Modul e.
multitrace: gc(Procs)
Trace garbage collection on the given process(es). The format handler usedismnul ti t race: handl e_gc/ 4
which prints start and stop and the time spent for each GC.
mul titrace: schedul e(Procs)
Trace in- and out-scheduling on the given process(es). The format handler used is
mul titrace: handl e_schedul e/ 4 which prints each in and out scheduling with process, timestamp and
current function. It also prints the total time each traced process was scheduled in.

1.2 Erlang Top

1.2.1 Introduction

Erlang Top, et op is atool for presenting information about erlang processes similar to the information presented
by t op in UNIX.

Ericsson AB. All Rights Reserved.: Observer | 13

1.2 Erlang Top

1.2.2 Output

The output from et op can be graphical or text based.

Text based it looks like this:

13: 40: 32
bi nary 33
code 173
ets 95

MsgQ Current Function

tiger@lurin
Load: cpu 0

procs 197

runq 135
Pi d Nane or Initial Func
<127.23. 0> code_server
<127.21. 0> file_server_2
<127.2.0> er| _prim.| oader
<127.9. 0> kernel _sup
<127.17.0> net _kerne
<127.0. 0> init
<127.16. 0> aut h
<127.18. 0> inet _tcp_dist:accept
<127.5. 0> appl i cati on_control
<127.137. 0> net _kernel : do_spawn_

Menory: total 1997
processes 0
atom 1002
Ti me Reds Menory
0 59585 78064
0 36380 44276
0 27962 3740
0 6998 4676
62 6018 3136
0 4156 4352
0 1765 1264
0 660 1416
0 569 6756
0 553 5840

gen_server:| oop/ 6
gen_server:| oop/ 6
erl _prim| oader:| oop
gen_server:| oop/ 6
gen_server:| oop/ 6
init:loop/l
gen_server:| oop/ 6
pri m.inet:accept0/2
gen_server:| oop/ 6
dbg: do_relay_1/1

[eNeNeoNoNoNoNoNoNoNe]

And graphically it looks like this:

File Options

Erlang Top

tiger@durin

Load: cpu 0
procs 280
rung 71

Memary :

total 2335
processes I
atom 1300

binary
code
ets

05:31:23
40

133

g0

Mame or Initial Function

Tine{us

Reds Memar:y

gE=2e]}

Current Function

L0 net_kerneal

228

1580

gen_server:loop/6

L0

dd11_server

4656

gen_server:loop/B

L net_kernel:spawn_func/E

5248

dhy:do_relay_1/1

L0

inet_tcp_dist:do_accept/

1340

dist_util:con_Toopsd

L erlang:apply/2

1280

iowait_io_mon_replys2

shell:evaluator/3

L0

1244

shell:eval_loop/2

L0 release_handler

13108

gen_server:loop/6

L0

overToad

1264

gen_server:loop/B

L0 alarm_handler

1264

gen_event:loop/d

L0

sas1_safe_sup

Figure 2.1: Graphical presentation of etop

The header includes some system information:

Load

cpuisRunti ne/ Wal | cl ock, i.e. the percentage of time where the node has been active, pr ocs isthe

18380

gen_server:loop/B

number of processes on the node, and r unq is the number of processes that are ready to run.

14 | Ericsson AB. All Rights Reserved.: Observer

1.2 Erlang Top

Memory
Thisisthe memory alocated by the node in kilo bytes.

For each process the following information is presented:
Time

Thisisthe runtime for the process, i.e. the actua time the process has been scheduled in.
Reds

Thisisthe number of reductions that has been executed on the process
Memory

Thisisthe size of the processin bytes, obtained by acall to pr ocess_i nf o(Pi d, nenory).

MsgQ
Thisisthe length of the message queue for the process.

Note:

Time and Reds can be presented as accumulated values or as values since last update.

1.2.3 Start

To start etop with the graphical presentation, use the script get op or the batch file get op. bat ,

node tiger@urin

eg.getop -

To start etop with the text based presentation use the script et op or the batch file et op. bat , eg. et op - node

tiger@urin,

1.2.4 Configuration

All configuration parameters can be set at start by adding - Opt Name Val ue to the command line, e.g. et op -

node tiger@urin -setcookie nycookie -1ines 15.

Theparametersl i nes,i nt erval ,accunul at e andsor t canbechanged during runtime. Use the Options menu

with the graphical presentation or the function et op: conf i g/ 2 with the text based presentation.
A list of all valid configuration parameters can be found in the reference manual for et op.

Note that it is even possible to change which information to sort by by clicking the header line of the table in the

graphical presentation.

Ericsson AB. All Rights Reserved.: Observer | 15

1.2 Erlang Top

Example: Change configuration with graphical presentation

Erlang Top

File Options

Accumulate
tiger@[r. 08:32:03

Load: Update Interval Memory: total 2336 binary 4an
Number of Lines processes 1] code 193
Sart - atom 1300 ets g0

Mame or Initial Function|Time{us{Reds Memary [Msgl Current Function

net_kernel 237 10 2336 gen_server:loop/6

dd11_server 4656 gen_server:loop/B

net_kernel:spawn_func/g 5248 dhy:do_relay_1/1

inet_tcp_dist:do_accept/ 2415 dist_util:con_Toopsd

erlangapplys2 1280 iowait_io_mon_replys2
shell:evaluator/3 1244 shell:eval_loop/2
release_handler 13108 gen_server:loop/6

overload 1264 gen_server:loop/B

alarm_handler 1264 gen_event:loop/d

sas1_safe_sup 18380 gen_server:loop/B

Figure 2.2: Select the option to change from the Options menu.

Erlang Top
File Options

tiger@durin 08:32:43
Load: cpu 0 Memary: total 2335 binary 40
procs 280 processes I code 133
rung 71 atom 1300 ets g0

Mame or Initial Function|Time{us{Reds Memary [Msgl Current Function

L0 net_kernel 278 2336 0

L0 net 0 1244 0

L0 ine|| Enter number of lines: 1840 0

L0 dd1 4656] gen_server:loop/B

L net 5248 1] dby:do_relay_1/1
]
0
]
0
]

gen_server:loop/6

net_kernel:ticker_loop/2

dist_util:con_loop/9

L0 erl 12810
L she 1244
L0 release_handler 13108
L over load 1264
L0 alarm_handler 1264

ioiwait_io_mon_reply/2

shell:eval_Tloop/2

gen_server:loop/B

gen_server:loop/6

gen_event:loop/4

Figure 2.3: Enter the new value in the popup window and click "OKk"

16 | Ericsson AB. All Rights Reserved.: Observer

1.2 Erlang Top

File Options

Erlang Top

tiger@durin

Load: cpu
procs
rung

0 Memary :

280
71

total

2335

processes I

atom

1300

binary
code
ets

05:33:24
40

133

g0

Mame or Initial Function

Tine{us

Reds Memar:y

gE=2e]}

Current Function

L0

net_kernel

381

32 2336

]

gen_server:loop/6

L0

inet_tcp_dist:do_accept/

374

1039 1340

dist_util:con_Toopsd

L0

net_kernel:ticker/2

1244

net_kernel:ticker_loop/2

L0

dd11_server

4656

gen_server:loop/B

L0

net_kernel:spawn_func/g

5248

Figure 2.4: The interface is updated with the new configuration

dhy:do_relay_1/1

Example: Change configuration with text based presentation

tiger@urin 10: 12: 39
Load: cpu 0 Menory: total 1858 bi nary 33
procs 191 processes 0 code 173
runq 2 atom 1002 ets 95
Pid Name or Initial Func Ti me Reds Menory MsgQ Current Function
<127.23. 0> code_server 0 60350 71176 0 gen_server: | oop/ 6
<127.21.0> file_server_2 0 36380 44276 0 gen_server: | oop/ 6
<127.2.0> erl _prim.| oader 0 27962 3740 0 erl _prim.l oader:| oop
<127.17.0> net _ker nel 0 13808 3916 0 gen_server: | oop/ 6
<127.9. 0> kernel _sup 0 6998 4676 0 gen_server: | oop/ 6
<127.0. 0> init 0 4156 4352 0 init:loop/1l
<127.18. 0> inet_tcp_dist:accept 0 2196 1416 0 prim.inet:accept0/2
<127.16. 0> aut h 0 1893 1264 0 gen_server: | oop/ 6
<127.43. 0> ddl | _server 0 582 3744 0 gen_server: | oop/ 6
<127.5. 0> application_controll 0 569 6756 0 gen_server:| oop/6
etop: config(lines,5).
ok
(etop@urin) 2>
tiger@urin 10: 12: 44
Load: cpu 0 Menory: total 1859 bi nary 88
procs 192 processes 0 code 173
runq 2 atom 1002 ets 95
Pid Nane or Initial Func Ti me Reds Menory MsgQ Current Function
<127.17.0> net _ker nel 183 70 4092 0 gen_server:| oop/6
<127. 335. 0> inet _tcp_dist:do_acc 141 22 1856 0 dist_util:con_| oop/9
<127.19. 0> net _kernel :ticker/2 155 6 1244 0 net_kernel :tickerl/2
<127. 341. 0> net _kernel : do_spawn_ 0 0 5840 0 dbg:do_relay_1/1
<127.43. 0> ddl | _server 0 0 3744 0 gen_server:| oop/6

Ericsson AB. All Rights Reserved.: Observer | 17

1.3 Crashdump Viewer

1.2.5 Printto file

At any time, the current et op display can be dumped to atext file. Use Dump to file on the File menu with the
graphical presentation or the function et op: dunp/ 1 with the text based presentation.

1.2.6 Stop

To stop et op, use Exit on the File menu for the graphical presentation, or the function et op: st op/ 0 with the text
based presentation.

1.3 Crashdump Viewer

1.3.1 Introduction

The Crashdump Viewer isan HTML based tool for browsing Erlang crashdumps. Crashdump Viewer runs under the
WebTool application.

1.3.2 Getting Started

From an erlang node, start Crashdump Viewer by callingcr ashdunp_vi ewer : st art () . Thiswill automatically
start WebTool and display the web address where WebTool can be found. See the documentation for the WebTool
application for further information about how to use WebTool.

Point your web browser to the address displayed, and you should now see the start page of WebTool. At the top of
the page, you will see alink to "CrashDumpViewer". Click this link to get to the start page for Crashdump Viewer.
(Notethat if webtool is on localhost, you must configure your web browser to have direct connection to the internet,
or you must set no proxy for localhost.)

You can aso start WebTool, Crashdump Viewer and a browser in one go by running the st art _webt ool script
foundinthepri v directory of the WebTool application, e.g.
>start_webt ool crashdunp_vi ewer

From the start page of Crashdump Viewer, push the "L oad Crashdump™ button to load a crashdump into the tool. Then
enter the filename of the crashdump in the entry field and push the "Ok" button.

Crashdumps generated by OTP R9C and later are loaded directly into the Crashdump Viewer, while dumps from
earlier releases first are trandated by the Crashdump Trandlater. The Crashdump Translater creates a new file with
the same name as the original crashdump, but with the extension . t r ansl at ed. If there is no write access to the
directory of the original file, you will be asked to enter a new path and filename for the trandated file.

1.3.3 Navigating

Thelefthand frame contains amenu. Menu folders can be expanded and collapsed by clicking the folder picture. When
amenu item is clicked, the item information is shown in the big information frame.

The filename frame above the information frame shows the full name of the currently viewed Erlang crashdump.
To load anew crashdump, click the "Load New Crashdump™ button in the menu frame.

The various information shown in the information frame will contain links to process identifiers (PIDs) and port
identifiers. Clicking one of theselinkswill take you to the detail ed information page for the process or port in question.
Usethe"Back" button in your browser to get back to the startingpoint. If the process or port resided on aremote node,
there will be no information available. Clicking the link will then take you to the information about the remote node.

18 | Ericsson AB. All Rights Reserved.: Observer

1.3 Crashdump Viewer

1.3.4 Help

Further help on how to use the Crashdump Viewer tool can be found in the tool's menu under 'Documentation’:

'‘Crashdump Viewer help' is a short document describing each information page and any additional information that
might occur, compared to the raw dump described in '"How to interpret Erlang crashdumps.

'How to interpret Erlang crashdumps' is a document from the Erlang runtime system describing details in the raw
crashdumps. Here you will also find information about each single field in the different information pages. This
document can also be found directly in the OTP online documentation, viathe Erlang runtime system user's guide.

Ericsson AB. All Rights Reserved.: Observer | 19

1.3 Crashdump Viewer

2 Reference Manual

The Observer application contains tools for tracing and investigation of distributed systems.

20 | Ericsson AB. All Rights Reserved.: Observer

observer

observer
Application

This chapter describes the OBSERVER application in OTP, which provides tools for tracing and investigation of
distributed systems.

Configuration

There are currently no configuration parameters available for this application.

SEE ALSO

Ericsson AB. All Rights Reserved.: Observer | 21

ttb

ttb

Erlang module

The Trace Tool Builder t t b is abase for building trace tools for distributed systems.
Whenusing t t b, dbg shall not be used in parallel.

Exports

tracer() -> Result
Thisisequivalenttot racer (node()).

tracer (Nodes) -> Result

Thisisequivalenttot r acer (Nodes, []) .

tracer (Nodes, Opts) -> Result

Types:
Result = {ok, ActivatedNodes} | {error,Reason}
Nodes=atom() | [atom()] | all | existing | new
Opts=[Opt]
Opt = {file,Client} | {handler, FormatHandler} | {process_info,PI}
Client = File | {local, File}
File= Filename | Wrap
Filename = string()
Wrap = {wrap,Filename} | {wrap,Filename,Size,Count}
FormatHandler = See format/2
Pl =true|false

This function starts a file trace port on all given nodes and also points the system tracer for sequentia tracing to the
same port.

Thegiven Fi | enarre will be prefixed with the node name. Default Fi | enane is"tth".

Fi |l e={wrap, Fi | enane, Si ze, Count } canbeusedif the size of the trace logs must be limited. Default values
are Si ze=128*1024 and Count =8.

When tracing disklessnodes, t t b must be started from an external "trace control node" with disk access,and Cl i ent
must be{ | ocal , Fil e}.All traceinformation isthen sent to the trace control node where it is written to file.

Thepr ocess_i nf o optionindicatesif processinformation should be collected. If PI = t r ue (whichisdefault),
each process identifier Pi d is replaced by a tuple { Pi d, Processl nf o, Node}, where Processl nf o is the
process registered name its globally registered name, or itsinitial function. It is possible to turn off this functionality
by settingPl = fal se.

p(Procs, Flags) -> Return
Types:
Return = {ok,[{Procs,MatchDesc}]}
Procs = Process | [Process] | all | new | existing

22 | Ericsson AB. All Rights Reserved.: Observer

tth

Process = pid() | atom() | {global,atom()}
Flags= Flag | [Flag]

This function sets the given trace flags on the given processes.

Please turn to the Reference manua for module dbg for details about the possible trace flags. The parameter
Mat chDesc isthe same as returned from dbg: p/ 2

Processes can be given as registered names, globally registered names or process identifiers. If aregistered nameis
given, the flags are set on processes with this name on all active nodes.

tp, tpl, ctp, ctpl, ctpg

These functions should be used in combination with thecal | trace flag for setting and clearing trace patterns. When
thecal | traceflagisset onaprocess, function callswill betraced on that processif atrace pattern has been set for the
called function. Trace patterns specifies how to trace a function by using match specifications. Match specifications
are described in the User's Guide for the erlang runtime systemert s.

These functions are equivalent to the corresponding functionsin dbg, but all calls are stored inthe history. The history
buffer makes it easy to create config files so that the same trace environment can be setup several times, e.g. if you
want to compare two test runs. It also reduces the amount of typing when using t t b from the erlang shell.

tp
Set trace pattern on global function calls

t pl

Set trace pattern on local and global function calls
ctp

Clear trace pattern on local and global function calls
ctpl

Clear trace pattern on local function calls

ct pg
Clear trace pattern on global function calls

list_history() -> History
Types:
History = [{N,Func,Args}]

All callstot t b isstored in the history. This function returns the current content of the history. Any entry can be re-
executed withr un_hi st ory/ 1 or stored in aconfig filewithwri t e_confi g/ 2/ 3.

run_history(N) -> ok | {error, Reason}
Types:
N =integer () | [integer ()]
Executes the given entry or entries from the history list. History can belisted with | i st _hi st ory/ 0.

write_config(ConfigFile, Config)
Equivalenttowri t e_confi g(ConfigFile, Config,[]).

wite_config(ConfigFile, Config, Opt) -> ok | {error, Reason}
Types:

ConfigFile = string()

Config = all | [integer ()] | [{Mod,Func,Args}]

Ericsson AB. All Rights Reserved.: Observer | 23

ttb

Mod = atom()
Func = atom()
Args=[term()]
Opt =] | [append]
This function creates or extends a config file which can be used for restoring a specific configuration later.
The content of the config file can either be fetched from the history or given directly asalist of { Mod, Func, Ar gs}.

If the complete history is to be stored in the config file Conf i g should beal I . If only a selected number of entries
from the history should be stored, Conf i g should be alist of integers pointing out the entries to be stored.

If Opt is not given or if itis[], Confi gFil e is deleted and a new file is created. If Opt = [append],
Conf i gFi | e will not be deleted. The new information will be appended at the end of thefile.

run_config(ConfigFile) -> ok | {error, Reason}
Types:

ConfigFile = string()
Executes al entriesin the given config file.

run_config(ConfigFile, NunList) -> ok | {error, Reason}
Types:
ConfigFile = string()
NumList = [integer ()]
Executes selected entries from the given config file. NurLi st is a list of integers pointing out the entries to be
executed.

The content of a config file can belisted with| i st _confi g/ 1.

list_config(ConfigFile) -> Config | {error, Reason}
Types:

ConfigFile= string()

Config = [{N,Func,Args}]
Listsall entriesin the given config file.

wite trace_info(Key,Info) -> ok
Types.

Key =term()

Info = Data | fun() -> Data

Data =term()

The. ti filecontains{ Key, Val uelLi st} tuples. Thisfunction adds Dat a to the ValueL ist associated with Key.
All information written with this function will be included in the call to the format handler.

seq_trigger_ns() -> MatchSpec
Equivalenttoseq_t ri gger_ns(al |)

seqg_trigger_ns(Fl ags) -> MatchSpec
Types:

24 | Ericsson AB. All Rights Reserved.: Observer

ttb

MatchSpec = match_spec()
Flags= all | SeqTraceFlag | [SeqTraceFlag]
SeqTraceFlag = atom()

A match specification can turn on or off sequential tracing. This function returns a match specification which turns
on sequential tracing with the given Fl ags.

This match specification can be given as the last argument to t p or t pl . The activated | t emwill then become a
trigger for sequential tracing. Thismeansthat if theitemiscalled on aprocesswiththecal | traceflag set, the process
will be "contaminated" with the seq_trace token.

If Fl ags = al |, all possible flags are set.

Please turn to the reference manual for theseq_t r ace moduleintheker nel application to see the possible values
for SeqTr aceFl ag. For a description of the match_spec() syntax, please turn to the User's guide for the runtime
system (erts). The chapter Match Specification in Erlang explains the general match specification "language”.

Note:

The system tracer for sequential tracing is automatically initiated by tt b when a trace port is started with
ttb:tracer/0/ 1/ 2.

Example of how to usetheseq_t ri gger _ns/ 0/ 1 function:

(tiger@urin)5> ttbh:tracer().

{ok, [tiger@lurin]}

(tiger@urin)6> ttbh:p(all,call).

{ok,{[all],[call]}}

(tiger@urin)7> ttb:tp(nod, func,ttb:seq_trigger_ns()).
{ok, [{mat ched, 1}, {saved, 1}]}

(tiger@urin)8>

Whenever nod: func(. . .) iscalled after this, the seq_trace token will be set on the executing process.

stop()
Equivalenttostop([]) .

stop(Opts) -> stopped
Types:

Opts=[Opt]

Opt =fetch | format
Stops tracing on all nodes.

The f et ch option indicates that trace logs shall be collected from all nodes after tracing is stopped. This option
is useful if nodes on remote machines are traced. Logs and trace information files are then sent to the trace control
node and stored in adirectory namedt t b_upl oad- Ti mest anp, where Ti nest anp isontheformyyyynmndd-

hhrmss. Even logs from nodes on the same machine as the trace control node are moved to this directory.

Thef or mat option indicates that the trace logs shall be formatted after tracing is stopped. Note that this option also
impliesthef et ch option, i.e. logs are collected in a new directory on the trace control node before formatting. All
logsin the directory will be merged.

Ericsson AB. All Rights Reserved.: Observer | 25

ttb

format (Fil e)
Sameasformat (File,[]).

format (File, Options) -> ok | {error, Reason}
Types.
File=string() | [string()]
This can be the name of abinary log, alist of such logs or the name of a directory containing one or more
binary logs.
Options = [Opt]
Opt ={out,Out} | {handler,FormatHandler}
Out = standard_io | string()
FormatHandler = {Function, InitialState} | et
Function = fun(Fd,Trace,Tracel nfo,State) -> State
Fd = standard_io | FileDescriptor
Thisisthe file descriptor of the destination file Qut
Trace = tuple()
Thisisthe trace message. Please turn to the Reference manual for theer | angmodule for details.
Tracelnfo = [{Key,ValuelList}]
Thisincludesthe keysf | ags, cl i ent and node, and if handl er is given as option to the tracer function,
thisisalso included. In addition all information written withthewr i t e_t r ace_i nf o/ 2function isincluded.

Reads the given binary trace log(s). If adirectory or alist of logsis given and thet i nest anp flag was set during
tracing, the trace messages from the different logs are merged according to the timestamps.

If For mat Handl er = {Function,Initial State}, Functi on will be called for each trace message. If
For mat Handl er = et, et _vi ewer inthe Event Tracer application (et) is used for presenting the trace log
graphically. t t b provides a few different filters which can be selected from the Filter menuinthe et _vi ewer . If
For mat Handl er isnot given, adefault handler is used which presents each trace message as aline of text.

If Qut isgiven, For mat Handl er getsthe filedescriptor to Qut asthefirst parameter.
Qut isignoredif For mat Handl er = et.

Wrap logs can be formatted one by one or all in one go. To format one of the wrap logs in a set, give the exact name
of the file. To format the whole set of wrap logs, give the name with *' instead of the wrap count. See examplesin
thet t b User's Guide.

26 | Ericsson AB. All Rights Reserved.: Observer

etop

etop

Erlang module

et op should be started with the provided scripts et op and get op for text based and graphical presentation
respectively. Under Windows the batch fileset op. bat and get op. bat can be used.

All interaction with et op when running the graphical presentation should happen via the menus. For the text based
presentation the functions described below can be used.

The following configuration parameters exist for et op.

node
The measured node.
Value: atom()
Mandatory
setcookie
Cookie to use for the etop node - must be the same as the cookie on the measured node.
Value: atom()
lines
Number of lines (processes) to display.
Value: integer()
Default: 10
interval
Thetimeinterval (in seconds) between each update of the display.
Value: integer()
Default: 5
accumul ate
If t r ue the execution time and reductions are accumul ated.
Value: boolean()
Default: f al se
sort
I dentifies what information to sort by.
Vaueruntime | reductions | nenory | msg_g
Default: runt i ne (r educti ons if t raci ng=of f)
tracing
et op usesthe erlang trace facility, and thus no other tracing is possible on the measured node while et op is
running, unless this option is set to of f . Also helpful if the et op tracing causes too high load on the measured
node. With tracing off, runtime is not measured.
Vaue on | off
Default: on

Exports

confi g(Key, Val ue) -> Result
Types:
Result = ok | {error,Reason}
Key =lines|interval | accumulate | sort
Value=term()

This function is used to change the tool's configuration parameters during runtime. The table above indicates the
allowed values for each parameter.

Ericsson AB. All Rights Reserved.: Observer | 27

etop

dunmp(File) -> Result

Types:
Result = ok | {error,Reason}
File=string()

This function dumps the current display to atext file.

stop() -> stop
This function terminates et op.

28 | Ericsson AB. All Rights Reserved.: Observer

crashdump_viewer

crashdump_viewer

Erlang module

The Crashdump Viewer isan HTML based tool for browsing Erlang crashdumps. Crashdump Viewer runs under the

WebTool application.

Exports

start() -> ok

Thisfunction startsthe cr ashdunp_vi ewer .

stop() -> ok

This function stopsthe cr ashdunp_vi ewer .

Ericsson AB. All Rights Reserved.: Observer | 29

	Observer
	User's Guide
	Trace Tool Builder
	Introduction
	Getting Started
	Example: Tracing the local node from the erlang shell
	Example: Build your own tool

	Running the Trace Tool Builder against a remote node
	Diskless node

	Trace Information and the .ti File
	Wrap Logs
	Formatting
	Presenting trace logs with Event Tracer

	Automatically collect and format logs from all nodes
	History and Configuration Files
	Example: History and configuration files

	Sequential Tracing
	Example: Sequential tracing

	Example: Multipurpose trace tool

	Erlang Top
	Introduction
	Output
	Start
	Configuration
	Example: Change configuration with graphical presentation
	Example: Change configuration with text based presentation

	Print to file
	Stop

	Crashdump Viewer
	Introduction
	Getting Started
	Navigating
	Help

	Reference Manual
	observer
	ttb
	tracer/0
	tracer/1
	tracer/2
	p/2
	/0
	list_history/0
	run_history/1
	write_config/2
	write_config/3
	run_config/1
	run_config/2
	list_config/1
	write_trace_info/2
	seq_trigger_ms/0
	seq_trigger_ms/1
	stop/0
	stop/1
	format/1
	format/2

	etop
	config/2
	dump/1
	stop/0

	crashdump_viewer
	start/0
	stop/0

