
Observer
Copyright © 2002-2010 Ericsson AB. All Rights Reserved.

Observer 0.9.8.3
September 13 2010

Copyright © 2002-2010 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 13 2010

Ericsson AB. All Rights Reserved.: Observer | 1

1.1 Trace Tool Builder

2 | Ericsson AB. All Rights Reserved.: Observer

1 User's Guide

The Observer application contains tools for tracing and investigation of distributed systems.

1.1 Trace Tool Builder

1.1.1 Introduction
The Trace Tool Builder is a base for building trace tools for single node or distributed erlang systems. It requires the
runtime_tools application to be available on the traced node.

The main features of the Trace Tool Builder are:

• Start tracing to file ports on several nodes with one function call.

• Write additional information to a trace information file, which is read during formatting.

• Restoring of previous configuration by maintaining a history buffer and handling configuration files.

• Some simple support for sequential tracing.

• Formatting of binary trace logs and merging of logs from multiple nodes.

Even though the intention of the Trace Tool Builder is to serve as a base for tailor made trace tools, it is of course
possible to use it directly from the erlang shell. The application only allows the use of file port tracer, so if you would
like would like to use other types of trace clients you will be better off using dbg directly instead.

1.1.2 Getting Started
The ttb module is the interface to all functions in the Trace Tool Builder. To get started the least you need to do
is to start a tracer with ttb:tracer/0/1/2, and set the required trace flags on the processes you want to trace
with ttb:p/2. Then, when the tracing is completed, you must stop the tracer with ttb:stop/0/1 and format the
trace log with ttb:format/1/2.

ttb:tracer/0/1/2 opens a file trace port on each node that shall be traced. All trace messages will be written to
this port and end up in a binary file (the binary trace log).

ttb:p/2 specifies which processes that shall be traced. Trace flags given in this call specifies what to trace on each
process. You can call this function several times if you like different trace flags to be set on different processes.

If you want to trace function calls (i.e. if you have the call trace flag set on any of your processes), you must also
set trace patterns on the required function(s) with ttb:tp or ttb:tpl. A function is only traced if it has a trace
pattern. The trace pattern specifies how to trace the function by using match specifications. Match specifications are
described in the User's Guide for the erlang runtime system erts.

ttb:stop/0/1 stops tracing on all nodes, deletes all trace patterns and flushes the trace port buffer.

ttb:format/1/2 translates the binary trace logs into something readable. By default ttb presents each trace
message as a line of text, but you can also write your own handler to make more complex interpretations of the trace
information. A trace log can even be presented graphically via the Event Tracer application. Note that if you give the
format option to ttb:stop/1 the formatting is automatically done when stopping ttb.

Example: Tracing the local node from the erlang shell

This small module is used in the example:

1.1 Trace Tool Builder

Ericsson AB. All Rights Reserved.: Observer | 3

-module(m).
-export([f/0]).
f() ->
 receive
 From when pid(From) ->
 Now = erlang:now(),
 From ! {self(),Now}
 end.

The following example shows the basic use of ttb from the erlang shell. Default options are used both for starting
the tracer and for formatting. This gives a trace log named Node-ttb, where Node is the name of the node. The
default handler prints the formatted trace messages in the shell.

(tiger@durin)47> %% First I spawn a process running my test function
(tiger@durin)47> Pid = spawn(m,f,[]).
<0.125.0>
(tiger@durin)48>
(tiger@durin)48> %% Then I start a tracer...
(tiger@durin)48> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)49>
(tiger@durin)49> %% and activate the new process for tracing
(tiger@durin)49> %% function calls and sent messages.
(tiger@durin)49> ttb:p(Pid,[call,send]).
{ok,[{<0.125.0>,[{matched,tiger@durin,1}]}]}
(tiger@durin)50>
(tiger@durin)50> %% Here I set a trace pattern on erlang:now/0
(tiger@durin)50> %% The trace pattern is a simple match spec
(tiger@durin)50> %% generated by dbg:fun2ms/1. It indicates that
(tiger@durin)50> %% the return value shall be traced.
(tiger@durin)50> MS = dbg:fun2ms(fun(_) -> return_trace() end).
[{'_',[],[{return_trace}]}]
(tiger@durin)51> ttb:tp(erlang,now,MS).
{ok,[{matched,tiger@durin,1},{saved,1}]}
(tiger@durin)52>
(tiger@durin)52> %% I run my test (i.e. send a message to
(tiger@durin)52> %% my new process)
(tiger@durin)52> Pid ! self().
<0.72.0>
(tiger@durin)53>
(tiger@durin)53> %% And then I have to stop ttb in order to flush
(tiger@durin)53> %% the trace port buffer
(tiger@durin)53> ttb:stop().
stopped
(tiger@durin)54>
(tiger@durin)54> %% Finally I format my trace log
(tiger@durin)54> ttb:format("tiger@durin-ttb").
({<0.125.0>,{m,f,0},tiger@durin}) call erlang:now()
({<0.125.0>,{m,f,0},tiger@durin}) returned from erlang:now/0 ->
{1031,133451,667611}
({<0.125.0>,{m,f,0},tiger@durin}) <0.72.0> !
{<0.125.0>,{1031,133451,667611}}
ok

Example: Build your own tool

This small example shows a simple tool for "debug tracing", i.e. tracing of function calls with return values.

1.1 Trace Tool Builder

4 | Ericsson AB. All Rights Reserved.: Observer

-module(mydebug).
-export([start/0,trc/1,stop/0,format/1]).
-export([print/4]).

%% Include ms_transform.hrl so that I can use dbg:fun2ms/2 to
%% generate match specifications.
-include_lib("stdlib/include/ms_transform.hrl").

%%% -------------Tool API-------------
%%% ----------------------------------
%%% Star the "mydebug" tool
start() ->
 %% The options specify that the binary log shall be named
 %% <Node>-debug_log and that the print/4 function in this
 %% module shall be used as format handler
 ttb:tracer(all,[{file,"debug_log"},{handler,{{?MODULE,print},0}}]),
 %% All processes (existing and new) shall trace function calls
 %% and include a timestamp in each trace message
 ttb:p(all,[call,timestamp]).

%%% Set trace pattern on function(s)
trc(M) when atom(M) ->
 trc({M,'_','_'});
trc({M,F}) when atom(M), atom(F) ->
 trc({M,F,'_'});
trc({M,F,_A}=MFA) when atom(M), atom(F) ->
 %% This match spec specifies that return values shall
 %% be traced. NOTE that ms_transform.hrl must be included
 %% if dbg:fun2ms/1 shall be used!
 MatchSpec = dbg:fun2ms(fun(_) -> return_trace() end),
 ttb:tpl(MFA,MatchSpec).

%%% Format a binary trace log
format(File) ->
 ttb:format(File).

%%% Stop the "mydebug" tool
stop() ->
 ttb:stop().

%%% --------Internal functions--------
%%% ----------------------------------
%%% Format handler
print(_Out,end_of_trace,_TI,N) ->
 N;
print(Out,Trace,_TI,N) ->
 do_print(Out,Trace,N),
 N+1.

do_print(Out,{trace_ts,P,call,{M,F,A},Ts},N) ->
 io:format(Out,
 "~w: ~w, ~w:~n"
 "Call : ~w:~w/~w~n"
 "Arguments :~p~n~n",
 [N,Ts,P,M,F,length(A),A]);
do_print(Out,{trace_ts,P,return_from,{M,F,A},R,Ts},N) ->
 io:format(Out,
 "~w: ~w, ~w:~n"
 "Return from : ~w:~w/~w~n"
 "Return value :~p~n~n",
 [N,Ts,P,M,F,A,R]).

To distinguish trace logs produced with this tool from other logs, the file option is used in tracer/2. The logs
will therefore be named Node-debug_log, where Node is the name of the node where the log is produced.

1.1 Trace Tool Builder

Ericsson AB. All Rights Reserved.: Observer | 5

By using the handler option when starting the tracer, the information about how to format the file is stored in the
trace information file (.ti). This is not necessary, as it might be given at the time of formatting instead. It can however
be useful if you e.g. want to automatically format your trace logs by using the format option in ttb:stop/1. It
also means that you don't need any knowledge of the content of a binary log to be able to format it the way it was
intended. If the handler option is given both when starting the tracer and when formatting, the one given when
formatting is used.

The call trace flag is set on all processes. This means that any function activated with the trc/1 command will
be traced on all existing and new processes.

1.1.3 Running the Trace Tool Builder against a remote node
The Observer application might not always be available on the node that shall be traced (in the following called the
"traced node"). It is still possible to run the Trace Tool Builder from another node (in the following called the "trace
control node") as long as

• The Observer application is available on the trace control node.

• The Runtime Tools application is available on both the trace control node and the traced node.

If the Trace Tool Builder shall be used against a remote node, it is highly recommended to start the trace control node
as hidden. This way it can connect to the traced node without the traced node "seeing" it, i.e. if the nodes() BIF
is called on the traced node, the trace control node will not show. To start a hidden node, add the -hidden option
to the erl command, e.g.

% erl -sname trace_control -hidden

Diskless node

If the traced node is diskless, ttb must be started from a trace control node with disk access, and the file option
must be given to the tracer/2 function with the value {local, File}, e.g.

(trace_control@durin)1> ttb:tracer(mynode@diskless,[{file,{local,
{wrap,"mytrace"}}}]).
{ok,[mynode@diskless]}

1.1.4 Trace Information and the .ti File
In addition to the trace log file(s), a file with the extension .ti is created when the Trace Tool Builder is started. This
is the trace information file. It is a binary file, and it contains the process information, trace flags used, the name of
the node to which it belongs and all information written with the write_trace_info/2 function.

To be able to use all this information during formatting, it is important that the trace information file exists in the same
directory as the trace log, and that it has the same name as the trace log with the additional extension .ti.

Except for the process information, everything in the trace information file is passed on to the handler function when
formatting. The TI parameter is a list of {Key,ValueList} tuples. The keys flags, handler, file and node
are used for information written directly by ttb.

You can add information to the trace information file by calling write_trace_info/2. Note that ValueList
always will be a list, and if you call write_trace_info/2 several times with the same Key, the ValueList
will be extended with a new value each time. Example:

ttb:write_trace_info(mykey,1) gives the entry {mykey,[1]} in TI. Another call,
ttb:write_trace_info(mykey,2), changes this entry to {mykey,[1,2]}.

1.1 Trace Tool Builder

6 | Ericsson AB. All Rights Reserved.: Observer

1.1.5 Wrap Logs
If you want to limit the size of the trace logs, you can use wrap logs. This works almost like a circular buffer. You
can specify the maximum number of binary logs and the maximum size of each log. ttb will create a new binary
log each time a log reaches the maximum size. When the the maximum number of logs are reached, the oldest log
is deleted before a new one is created.

Wrap logs can be formatted one by one or all at once. See Formatting.

1.1.6 Formatting
Formatting can be done automatically when stopping ttb (see Automatically collect and format logs from all nodes),
or explicitly by calling the ttb:format/1/2 function.

Formatting means to read a binary log and present it in a readable format. You can use the default format handler in
ttb to present each trace message as a line of text, or write your own handler to make more complex interpretations
of the trace information. You can even use the Event Tracer et to present the trace log graphically (see Presenting
trace logs with Event Tracer).

The first argument to ttb:format/1/2 specifies which binary log(s) to format. This can be the name of one binary
log, a list of such logs or the name of a directory containing one or more binary logs. If this argument indicates more
than one log, and the timestamp flag was set when tracing, the trace messages from the different logs will be merged
according to the timestamps in each message.

The second argument to ttb:format/2 is a list of options. The out option specifies the destination where the
formatted text shall be written. Default destination is standard_io, but a filename can also be given. The handler
option specifies the format handler to use. If this option is not given, the handler option given when starting the
tracer is used. If the handler option was not given when starting the tracer either, a default handler is used, which
prints each trace message as a line of text.

A format handler is a fun taking four arguments. This fun will be called for each trace message in the binary log(s).
A simple example which only prints each trace message could be like this:

fun(Fd, Trace, _TraceInfo, State) ->
 io:format(Fd, "Trace: ~p~n", [Trace]),
 State
end.

Fd is the file descriptor for the destination file, or the atom standard_io. _TraceInfo contains information from
the trace information file (see Trace Information and the .ti File). State is a state variable for the format handler fun.
The initial value of the State variable is given with the handler option, e.g.

ttb:format("tiger@durin-ttb", [{handler, {{Mod,Fun}, initial_state}}])
 ^^^^^^^^^^^^^

Another format handler could be used to calculate time spent by the garbage collector:

fun(_Fd,{trace_ts,P,gc_start,_Info,StartTs},_TraceInfo,State) ->
 [{P,StartTs}|State];
 (Fd,{trace_ts,P,gc_end,_Info,EndTs},_TraceInfo,State) ->
 {value,{P,StartTs}} = lists:keysearch(P,1,State),
 Time = diff(StartTs,EndTs),
 io:format("GC in process ~w: ~w milliseconds~n", [P,Time]),
 State -- [{P,StartTs}]

1.1 Trace Tool Builder

Ericsson AB. All Rights Reserved.: Observer | 7

end

A more refined version of this format handler is the function handle_gc/4 in the module multitrace.erl
which can be found in the src directory of the Observer application.

By giving the format handler et, you can have the trace log presented graphically with et_viewer in the Event
Tracer application (see Presenting trace logs with Event Tracer).

Wrap logs can be formatted one by one or all in one go. To format one of the wrap logs in a set, give the exact name
of the file. To format the whole set of wrap logs, give the name with '*' instead of the wrap count. An example:

Start tracing:

(tiger@durin)1> ttb:tracer(node(),[{file,{wrap,"trace"}}]).
{ok,[tiger@durin]}
(tiger@durin)2> ttb:p(...)
...

This will give a set of binary logs, like:

tiger@durin-trace.0.wrp
tiger@durin-trace.1.wrp
tiger@durin-trace.2.wrp
...

Format the whole set of logs:

1> ttb:format("tiger@durin-trace.*.wrp").
....
ok
2>

Format only the first log:

1> ttb:format("tiger@durin-trace.0.wrp").
....
ok
2>

To merge all wrap logs from two nodes:

1> ttb:format(["tiger@durin-trace.*.wrp","lion@durin-trace.*.wrp"]).
....
ok
2>

Presenting trace logs with Event Tracer

For detailed information about the Event Tracer, please turn to the User's Guide and Reference Manuals for the et
application.

1.1 Trace Tool Builder

8 | Ericsson AB. All Rights Reserved.: Observer

By giving the format handler et, you can have the trace log presented graphically with et_viewer in the Event
Tracer application. ttb provides a few different filters which can be selected from the Filter menu in the et_viewer
window. The filters are names according to the type of actors they present (i.e. what each vertical line in the sequence
diagram represent). Interaction between actors is shown as red arrows between two vertical lines, and activities within
an actor are shown as blue text to the right of the actors line.

The processes filter is the only filter which will show all trace messages from a trace log. Each vertical line in
the sequence diagram represents a process. Erlang messages, spawn and link/unlink are typical interactions between
processes. Function calls, scheduling and garbage collection are typical activities within a process. processes is
the default filter.

The rest of the filters will only show function calls and function returns. All other trace message are discarded. To get
the most out of these filters, et_viewer needs to known the caller of each function and the time of return. This can
be obtained by using both the call and return_to flags when tracing. Note that the return_to flag only works
with local call trace, i.e. when trace patterns are set with ttb:tpl.

The same result can be obtained by using the call flag only and setting a match specification like this on local or
global function calls:

1> dbg:fun2ms(fun(_) -> return_trace(),message(caller()) end).
[{'_',[],[{return_trace},{message,{caller}}]}]

This should however be done with care, since the {return_trace} function in the match specification will destroy
tail recursiveness.

The modules filter shows each module as a vertical line in the sequence diagram. External function calls/returns are
shown as interactions between modules and internal function calls/returns are shown as activities within a module.

The functions filter shows each function as a vertical line in the sequence diagram. A function calling itself is
shown as an activity within a function, and all other function calls are shown as interactions between functions.

The mods_and_procs and funcs_and_procs filters are equivalent to the modules and functions filters
respectively, except that each module or function can have several vertical lines, one for each process it resides on.

As an example this module is used, and the function bar:f1() is called from another module foo.

-module(bar).
-export([f1/0,f3/0]).
f1() ->
 f2(),
 ok.
f2() ->
 spawn(?MODULE,f3,[]).
f3() ->
 ok.

The call and return_to flags are used, and trace pattern is set on local calls in module bar.

ttb:format("tiger@durin-ttb", [{handler, et}]) gives the following result:

1.1 Trace Tool Builder

Ericsson AB. All Rights Reserved.: Observer | 9

Figure 1.1: Filter: "processes"

Figure 1.2: Filter: "mods_and_procs"

1.1 Trace Tool Builder

10 | Ericsson AB. All Rights Reserved.: Observer

1.1.7 Automatically collect and format logs from all nodes
If the option fetch is given to the ttb:stop/1 function, trace logs and trace information files are fetched from
all nodes after tracing is stopped. The logs are stored in a new directory named ttb_upload-Timestamp under
the working directory of the trace control node.

If the option format is given to ttb:stop/1, the trace logs are automatically formatted after tracing is stopped.
Note that format also implies fetch, i.e. the trace logs will be collected from all nodes as for the fetch option
before they are formatted. All logs in the upload directory are merged during formatting.

1.1.8 History and Configuration Files
For the tracing functionality, dbg could be used instead of the ttb for setting trace flags on processes and trace
patterns for call trace, i.e. the functions p, tp, tpl, ctp, ctpl and ctpg. The only thing added by ttb for these
functions is that all calls are stored in the history buffer and can be recalled and stored in a configuration file. This
makes it easy to setup the same trace environment e.g. if you want to compare two test runs. It also reduces the amount
of typing when using ttb from the erlang shell.

Use list_history/0 to see the content of the history buffer, and run_history/1 to re-execute one of the
entries.

The main purpose of the history buffer is the possibility to create configuration files. Any function stored in the history
buffer can be written to a configuration file and used for creating a specific configuration at any time with one single
function call.

A configuration file is created or extended with write_config/2/3. Configuration files are binary files and can
therefore only be read and written with functions provided by ttb.

You can write the complete content of the history buffer to a config file by calling
ttb:write_config(ConfigFile,all). And you can write selected entries from the history by calling
ttb:write_config(ConfigFile,NumList), where NumList is a list of integers pointing out the history
entries to write.

User defined entries can also be written to a config file by calling the
function ttb:write_config(ConfigFile,ConfigList) where ConfigList is a list of
{Module,Function,Args}.

Any existing file ConfigFile is deleted and a new file is created when write_config/2 is called.
The option append can be used if you wish to add something at the end of an existing config file, e.g.
ttb:write_config(ConfigFile,What,[append]).

Example: History and configuration files

See the content of the history buffer

(tiger@durin)191> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)192> ttb:p(self(),[garbage_collection,call]).
{ok,{[<0.1244.0>],[garbage_collection,call]}}
(tiger@durin)193> ttb:tp(ets,new,2,[]).
{ok,[{matched,1}]}
(tiger@durin)194> ttb:list_history().
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}}]

Execute an entry from the history buffer:

1.1 Trace Tool Builder

Ericsson AB. All Rights Reserved.: Observer | 11

(tiger@durin)195> ttb:ctp(ets,new,2).
{ok,[{matched,1}]}
(tiger@durin)196> ttb:list_history().
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}},
 {4,{ttb,ctp,[ets,new,2]}}]
(tiger@durin)197> ttb:run_history(3).
ttb:tp(ets,new,2,[]) ->
{ok,[{matched,1}]}

Write the content of the history buffer to a configuration file:

(tiger@durin)198> ttb:write_config("myconfig",all).
ok
(tiger@durin)199> ttb:list_config("myconfig").
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}},
 {4,{ttb,ctp,[ets,new,2]}},
 {5,{ttb,tp,[ets,new,2,[]]}}]

Extend an existing configuration:

(tiger@durin)200> ttb:write_config("myconfig",[{ttb,tp,[ets,delete,1,[]]}],
[append]).
ok
(tiger@durin)201> ttb:list_config("myconfig").
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}},
 {4,{ttb,ctp,[ets,new,2]}},
 {5,{ttb,tp,[ets,new,2,[]]}},
 {6,{ttb,tp,[ets,delete,1,[]]}}]

Go back to a previous configuration after stopping Trace Tool Builder:

(tiger@durin)202> ttb:stop().
ok
(tiger@durin)203> ttb:run_config("myconfig").
ttb:tracer(tiger@durin,[]) ->
{ok,[tiger@durin]}

ttb:p(<0.1244.0>,[garbage_collection,call]) ->
{ok,{[<0.1244.0>],[garbage_collection,call]}}

ttb:tp(ets,new,2,[]) ->
{ok,[{matched,1}]}

ttb:ctp(ets,new,2) ->
{ok,[{matched,1}]}

ttb:tp(ets,new,2,[]) ->
{ok,[{matched,1}]}

ttb:tp(ets,delete,1,[]) ->

1.1 Trace Tool Builder

12 | Ericsson AB. All Rights Reserved.: Observer

{ok,[{matched,1}]}

ok

Write selected entries from the history buffer to a configuration file:

(tiger@durin)204> ttb:list_history().
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}},
 {4,{ttb,ctp,[ets,new,2]}},
 {5,{ttb,tp,[ets,new,2,[]]}},
 {6,{ttb,tp,[ets,delete,1,[]]}}]
(tiger@durin)205> ttb:write_config("myconfig",[1,2,3,6]).
ok
(tiger@durin)206> ttb:list_config("myconfig").
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}},
 {4,{ttb,tp,[ets,delete,1,[]]}}]
(tiger@durin)207>

1.1.9 Sequential Tracing
To learn what sequential tracing is and how it can be used, please turn to the reference manual for the seq_trace
module in the kernel application.

The support for sequential tracing provided by the Trace Tool Builder includes

• Initiation of the system tracer. This is automatically done when a trace port is started with
ttb:tracer/0/1/2

• Creation of match specifications which activates sequential tracing

Starting sequential tracing requires that a tracer has been started with the ttb:tracer/0/1/2 function.
Sequential tracing can then either be started via a trigger function with a match specification created with
ttb:seq_trigger_ms/0/1, or directly by using the seq_trace module in the kernel application.

Example: Sequential tracing

In the following example, the function dbg:get_tracer/0 is used as trigger for sequential tracing:

(tiger@durin)110> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)111> ttb:p(self(),call).
{ok,{[<0.158.0>],[call]}}
(tiger@durin)112> ttb:tp(dbg,get_tracer,0,ttb:seq_trigger_ms(send)).
{ok,[{matched,1},{saved,1}]}
(tiger@durin)113> dbg:get_tracer(), seq_trace:reset_trace().
true
(tiger@durin)114> ttb:stop().
ok
(tiger@durin)115> ttb:format("tiger@durin-ttb").
({<0.158.0>,{shell,evaluator,3},tiger@durin}) call dbg:get_tracer()
SeqTrace [0]: ({<0.158.0>,{shell,evaluator,3},tiger@durin})
{<0.237.0>,dbg,tiger@durin} ! {<0.158.0>,{get_tracer,tiger@durin}}
[Serial: {0,1}]
SeqTrace [0]: ({<0.237.0>,dbg,tiger@durin})
{<0.158.0>,{shell,evaluator,3},tiger@durin} ! {dbg,{ok,#Port<0.222>}}
[Serial: {1,2}]

1.2 Erlang Top

Ericsson AB. All Rights Reserved.: Observer | 13

ok
(tiger@durin)116>

Starting sequential tracing with a trigger is actually more useful if the trigger function is not called directly from the
shell, but rather implicitly within a larger system. When calling a function from the shell, it is simpler to start sequential
tracing directly, e.g.

(tiger@durin)116> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)117> seq_trace:set_token(send,true), dbg:get_tracer(),
seq_trace:reset_trace().
true
(tiger@durin)118> ttb:stop().
ok
(tiger@durin)119> ttb:format("tiger@durin-ttb").
SeqTrace [0]: ({<0.158.0>,{shell,evaluator,3},tiger@durin})
{<0.246.0>,dbg,tiger@durin} ! {<0.158.0>,{get_tracer,tiger@durin}}
[Serial: {0,1}]
SeqTrace [0]: ({<0.246.0>,dbg,tiger@durin})
{<0.158.0>,{shell,evaluator,3},tiger@durin} ! {dbg,{ok,#Port<0.229>}}
[Serial: {1,2}]
ok
(tiger@durin)120>

In both examples above, the seq_trace:reset_trace/0 resets the trace token immediately after the traced
function in order to avoid lots of trace messages due to the printouts in the erlang shell.

All functions in the seq_trace module, except set_system_tracer/1, can be used after the trace port has
been started with ttb:tracer/0/1/2.

1.1.10 Example: Multipurpose trace tool
The module multitrace.erl which can be found in the src directory of the Observer application implements
a small tool with three possible trace settings. The trace messages are written to binary files which can be formatted
with the function multitrace:format/1/2.

multitrace:debug(What)
Start calltrace on all processes and trace the given function(s). The format handler used is
multitrace:handle_debug/4 which prints each call and return. What must be an item or a list of items
to trace, given on the format {Module,Function,Arity}, {Module,Function} or just Module.

multitrace:gc(Procs)
Trace garbage collection on the given process(es). The format handler used is multitrace:handle_gc/4
which prints start and stop and the time spent for each GC.

multitrace:schedule(Procs)
Trace in- and out-scheduling on the given process(es). The format handler used is
multitrace:handle_schedule/4 which prints each in and out scheduling with process, timestamp and
current function. It also prints the total time each traced process was scheduled in.

1.2 Erlang Top

1.2.1 Introduction
Erlang Top, etop is a tool for presenting information about erlang processes similar to the information presented
by top in UNIX.

1.2 Erlang Top

14 | Ericsson AB. All Rights Reserved.: Observer

1.2.2 Output
The output from etop can be graphical or text based.

Text based it looks like this:

==
 tiger@durin 13:40:32
 Load: cpu 0 Memory: total 1997 binary 33
 procs 197 processes 0 code 173
 runq 135 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.23.0> code_server 0 59585 78064 0 gen_server:loop/6
<127.21.0> file_server_2 0 36380 44276 0 gen_server:loop/6
<127.2.0> erl_prim_loader 0 27962 3740 0 erl_prim_loader:loop
<127.9.0> kernel_sup 0 6998 4676 0 gen_server:loop/6
<127.17.0> net_kernel 62 6018 3136 0 gen_server:loop/6
<127.0.0> init 0 4156 4352 0 init:loop/1
<127.16.0> auth 0 1765 1264 0 gen_server:loop/6
<127.18.0> inet_tcp_dist:accept 0 660 1416 0 prim_inet:accept0/2
<127.5.0> application_controll 0 569 6756 0 gen_server:loop/6
<127.137.0> net_kernel:do_spawn_ 0 553 5840 0 dbg:do_relay_1/1
==

And graphically it looks like this:

Figure 2.1: Graphical presentation of etop

The header includes some system information:

Load
cpu is Runtime/Wallclock, i.e. the percentage of time where the node has been active, procs is the
number of processes on the node, and runq is the number of processes that are ready to run.

1.2 Erlang Top

Ericsson AB. All Rights Reserved.: Observer | 15

Memory
This is the memory allocated by the node in kilo bytes.

For each process the following information is presented:

Time
This is the runtime for the process, i.e. the actual time the process has been scheduled in.

Reds
This is the number of reductions that has been executed on the process

Memory
This is the size of the process in bytes, obtained by a call to process_info(Pid,memory).

MsgQ
This is the length of the message queue for the process.

Note:
Time and Reds can be presented as accumulated values or as values since last update.

1.2.3 Start
To start etop with the graphical presentation, use the script getop or the batch file getop.bat, e.g. getop -
node tiger@durin

To start etop with the text based presentation use the script etop or the batch file etop.bat, e.g. etop -node
tiger@durin,

1.2.4 Configuration
All configuration parameters can be set at start by adding -OptName Value to the command line, e.g. etop -
node tiger@durin -setcookie mycookie -lines 15.

The parameters lines, interval, accumulate and sort can be changed during runtime. Use the Options menu
with the graphical presentation or the function etop:config/2 with the text based presentation.

A list of all valid configuration parameters can be found in the reference manual for etop.

Note that it is even possible to change which information to sort by by clicking the header line of the table in the
graphical presentation.

1.2 Erlang Top

16 | Ericsson AB. All Rights Reserved.: Observer

Example: Change configuration with graphical presentation

Figure 2.2: Select the option to change from the Options menu.

Figure 2.3: Enter the new value in the popup window and click "Ok"

1.2 Erlang Top

Ericsson AB. All Rights Reserved.: Observer | 17

Figure 2.4: The interface is updated with the new configuration

Example: Change configuration with text based presentation

==
 tiger@durin 10:12:39
 Load: cpu 0 Memory: total 1858 binary 33
 procs 191 processes 0 code 173
 runq 2 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.23.0> code_server 0 60350 71176 0 gen_server:loop/6
<127.21.0> file_server_2 0 36380 44276 0 gen_server:loop/6
<127.2.0> erl_prim_loader 0 27962 3740 0 erl_prim_loader:loop
<127.17.0> net_kernel 0 13808 3916 0 gen_server:loop/6
<127.9.0> kernel_sup 0 6998 4676 0 gen_server:loop/6
<127.0.0> init 0 4156 4352 0 init:loop/1
<127.18.0> inet_tcp_dist:accept 0 2196 1416 0 prim_inet:accept0/2
<127.16.0> auth 0 1893 1264 0 gen_server:loop/6
<127.43.0> ddll_server 0 582 3744 0 gen_server:loop/6
<127.5.0> application_controll 0 569 6756 0 gen_server:loop/6
==

etop:config(lines,5).
ok

(etop@durin)2>
==
 tiger@durin 10:12:44
 Load: cpu 0 Memory: total 1859 binary 33
 procs 192 processes 0 code 173
 runq 2 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.17.0> net_kernel 183 70 4092 0 gen_server:loop/6
<127.335.0> inet_tcp_dist:do_acc 141 22 1856 0 dist_util:con_loop/9
<127.19.0> net_kernel:ticker/2 155 6 1244 0 net_kernel:ticker1/2
<127.341.0> net_kernel:do_spawn_ 0 0 5840 0 dbg:do_relay_1/1
<127.43.0> ddll_server 0 0 3744 0 gen_server:loop/6
==

1.3 Crashdump Viewer

18 | Ericsson AB. All Rights Reserved.: Observer

1.2.5 Print to file
At any time, the current etop display can be dumped to a text file. Use Dump to file on the File menu with the
graphical presentation or the function etop:dump/1 with the text based presentation.

1.2.6 Stop
To stop etop, use Exit on the File menu for the graphical presentation, or the function etop:stop/0 with the text
based presentation.

1.3 Crashdump Viewer

1.3.1 Introduction
The Crashdump Viewer is an HTML based tool for browsing Erlang crashdumps. Crashdump Viewer runs under the
WebTool application.

1.3.2 Getting Started
From an erlang node, start Crashdump Viewer by calling crashdump_viewer:start(). This will automatically
start WebTool and display the web address where WebTool can be found. See the documentation for the WebTool
application for further information about how to use WebTool.

Point your web browser to the address displayed, and you should now see the start page of WebTool. At the top of
the page, you will see a link to "CrashDumpViewer". Click this link to get to the start page for Crashdump Viewer.
(Note that if webtool is on localhost, you must configure your web browser to have direct connection to the internet,
or you must set no proxy for localhost.)

You can also start WebTool, Crashdump Viewer and a browser in one go by running the start_webtool script
found in the priv directory of the WebTool application, e.g.
>start_webtool crashdump_viewer

From the start page of Crashdump Viewer, push the "Load Crashdump" button to load a crashdump into the tool. Then
enter the filename of the crashdump in the entry field and push the "Ok" button.

Crashdumps generated by OTP R9C and later are loaded directly into the Crashdump Viewer, while dumps from
earlier releases first are translated by the Crashdump Translater. The Crashdump Translater creates a new file with
the same name as the original crashdump, but with the extension .translated. If there is no write access to the
directory of the original file, you will be asked to enter a new path and filename for the translated file.

1.3.3 Navigating
The lefthand frame contains a menu. Menu folders can be expanded and collapsed by clicking the folder picture. When
a menu item is clicked, the item information is shown in the big information frame.

The filename frame above the information frame shows the full name of the currently viewed Erlang crashdump.

To load a new crashdump, click the "Load New Crashdump" button in the menu frame.

The various information shown in the information frame will contain links to process identifiers (PIDs) and port
identifiers. Clicking one of these links will take you to the detailed information page for the process or port in question.
Use the "Back" button in your browser to get back to the startingpoint. If the process or port resided on a remote node,
there will be no information available. Clicking the link will then take you to the information about the remote node.

1.3 Crashdump Viewer

Ericsson AB. All Rights Reserved.: Observer | 19

1.3.4 Help
Further help on how to use the Crashdump Viewer tool can be found in the tool's menu under 'Documentation':

'Crashdump Viewer help' is a short document describing each information page and any additional information that
might occur, compared to the raw dump described in 'How to interpret Erlang crashdumps'.

'How to interpret Erlang crashdumps' is a document from the Erlang runtime system describing details in the raw
crashdumps. Here you will also find information about each single field in the different information pages. This
document can also be found directly in the OTP online documentation, via the Erlang runtime system user's guide.

1.3 Crashdump Viewer

20 | Ericsson AB. All Rights Reserved.: Observer

2 Reference Manual

The Observer application contains tools for tracing and investigation of distributed systems.

observer

Ericsson AB. All Rights Reserved.: Observer | 21

observer
Application

This chapter describes the OBSERVER application in OTP, which provides tools for tracing and investigation of
distributed systems.

Configuration
There are currently no configuration parameters available for this application.

SEE ALSO

ttb

22 | Ericsson AB. All Rights Reserved.: Observer

ttb
Erlang module

The Trace Tool Builder ttb is a base for building trace tools for distributed systems.

When using ttb, dbg shall not be used in parallel.

Exports

tracer() -> Result

This is equivalent to tracer(node()).

tracer(Nodes) -> Result

This is equivalent to tracer(Nodes,[]).

tracer(Nodes,Opts) -> Result

Types:

Result = {ok, ActivatedNodes} | {error,Reason}

Nodes = atom() | [atom()] | all | existing | new

Opts = [Opt]

Opt = {file,Client} | {handler, FormatHandler} | {process_info,PI}

Client = File | {local, File}

File = Filename | Wrap

Filename = string()

Wrap = {wrap,Filename} | {wrap,Filename,Size,Count}

FormatHandler = See format/2

PI = true | false

This function starts a file trace port on all given nodes and also points the system tracer for sequential tracing to the
same port.

The given Filename will be prefixed with the node name. Default Filename is "ttb".

File={wrap,Filename,Size,Count} can be used if the size of the trace logs must be limited. Default values
are Size=128*1024 and Count=8.

When tracing diskless nodes, ttb must be started from an external "trace control node" with disk access, and Client
must be {local, File}. All trace information is then sent to the trace control node where it is written to file.

The process_info option indicates if process information should be collected. If PI = true (which is default),
each process identifier Pid is replaced by a tuple {Pid,ProcessInfo,Node}, where ProcessInfo is the
process' registered name its globally registered name, or its initial function. It is possible to turn off this functionality
by setting PI = false.

p(Procs,Flags) -> Return

Types:

Return = {ok,[{Procs,MatchDesc}]}

Procs = Process | [Process] | all | new | existing

ttb

Ericsson AB. All Rights Reserved.: Observer | 23

Process = pid() | atom() | {global,atom()}

Flags = Flag | [Flag]

This function sets the given trace flags on the given processes.

Please turn to the Reference manual for module dbg for details about the possible trace flags. The parameter
MatchDesc is the same as returned from dbg:p/2

Processes can be given as registered names, globally registered names or process identifiers. If a registered name is
given, the flags are set on processes with this name on all active nodes.

tp, tpl, ctp, ctpl, ctpg

These functions should be used in combination with the call trace flag for setting and clearing trace patterns. When
the call trace flag is set on a process, function calls will be traced on that process if a trace pattern has been set for the
called function. Trace patterns specifies how to trace a function by using match specifications. Match specifications
are described in the User's Guide for the erlang runtime system erts.

These functions are equivalent to the corresponding functions in dbg, but all calls are stored in the history. The history
buffer makes it easy to create config files so that the same trace environment can be setup several times, e.g. if you
want to compare two test runs. It also reduces the amount of typing when using ttb from the erlang shell.

tp
Set trace pattern on global function calls

tpl
Set trace pattern on local and global function calls

ctp
Clear trace pattern on local and global function calls

ctpl
Clear trace pattern on local function calls

ctpg
Clear trace pattern on global function calls

list_history() -> History

Types:

History = [{N,Func,Args}]

All calls to ttb is stored in the history. This function returns the current content of the history. Any entry can be re-
executed with run_history/1 or stored in a config file with write_config/2/3.

run_history(N) -> ok | {error, Reason}

Types:

N = integer() | [integer()]

Executes the given entry or entries from the history list. History can be listed with list_history/0.

write_config(ConfigFile,Config)

Equivalent to write_config(ConfigFile,Config,[]).

write_config(ConfigFile,Config,Opt) -> ok | {error,Reason}

Types:

ConfigFile = string()

Config = all | [integer()] | [{Mod,Func,Args}]

ttb

24 | Ericsson AB. All Rights Reserved.: Observer

Mod = atom()

Func = atom()

Args = [term()]

Opt = [] | [append]

This function creates or extends a config file which can be used for restoring a specific configuration later.

The content of the config file can either be fetched from the history or given directly as a list of {Mod,Func,Args}.

If the complete history is to be stored in the config file Config should be all. If only a selected number of entries
from the history should be stored, Config should be a list of integers pointing out the entries to be stored.

If Opt is not given or if it is [], ConfigFile is deleted and a new file is created. If Opt = [append],
ConfigFile will not be deleted. The new information will be appended at the end of the file.

run_config(ConfigFile) -> ok | {error,Reason}

Types:

ConfigFile = string()

Executes all entries in the given config file.

run_config(ConfigFile,NumList) -> ok | {error,Reason}

Types:

ConfigFile = string()

NumList = [integer()]

Executes selected entries from the given config file. NumList is a list of integers pointing out the entries to be
executed.

The content of a config file can be listed with list_config/1.

list_config(ConfigFile) -> Config | {error,Reason}

Types:

ConfigFile = string()

Config = [{N,Func,Args}]

Lists all entries in the given config file.

write_trace_info(Key,Info) -> ok

Types:

Key = term()

Info = Data | fun() -> Data

Data = term()

The .ti file contains {Key,ValueList} tuples. This function adds Data to the ValueList associated with Key.
All information written with this function will be included in the call to the format handler.

seq_trigger_ms() -> MatchSpec

Equivalent to seq_trigger_ms(all)

seq_trigger_ms(Flags) -> MatchSpec

Types:

ttb

Ericsson AB. All Rights Reserved.: Observer | 25

MatchSpec = match_spec()

Flags = all | SeqTraceFlag | [SeqTraceFlag]

SeqTraceFlag = atom()

A match specification can turn on or off sequential tracing. This function returns a match specification which turns
on sequential tracing with the given Flags.

This match specification can be given as the last argument to tp or tpl. The activated Item will then become a
trigger for sequential tracing. This means that if the item is called on a process with the call trace flag set, the process
will be "contaminated" with the seq_trace token.

If Flags = all, all possible flags are set.

Please turn to the reference manual for the seq_trace module in the kernel application to see the possible values
for SeqTraceFlag. For a description of the match_spec() syntax, please turn to the User's guide for the runtime
system (erts). The chapter Match Specification in Erlang explains the general match specification "language".

Note:
The system tracer for sequential tracing is automatically initiated by ttb when a trace port is started with
ttb:tracer/0/1/2.

Example of how to use the seq_trigger_ms/0/1 function:

(tiger@durin)5> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)6> ttb:p(all,call).
{ok,{[all],[call]}}
(tiger@durin)7> ttb:tp(mod,func,ttb:seq_trigger_ms()).
{ok,[{matched,1},{saved,1}]}
(tiger@durin)8>

Whenever mod:func(...) is called after this, the seq_trace token will be set on the executing process.

stop()

Equivalent to stop([]).

stop(Opts) -> stopped

Types:

Opts = [Opt]

Opt = fetch | format

Stops tracing on all nodes.

The fetch option indicates that trace logs shall be collected from all nodes after tracing is stopped. This option
is useful if nodes on remote machines are traced. Logs and trace information files are then sent to the trace control
node and stored in a directory named ttb_upload-Timestamp, where Timestamp is on the form yyyymmdd-
hhmmss. Even logs from nodes on the same machine as the trace control node are moved to this directory.

The format option indicates that the trace logs shall be formatted after tracing is stopped. Note that this option also
implies the fetch option, i.e. logs are collected in a new directory on the trace control node before formatting. All
logs in the directory will be merged.

ttb

26 | Ericsson AB. All Rights Reserved.: Observer

format(File)

Same as format(File,[]).

format(File,Options) -> ok | {error, Reason}

Types:

File = string() | [string()]

This can be the name of a binary log, a list of such logs or the name of a directory containing one or more
binary logs.

Options = [Opt]

Opt = {out,Out} | {handler,FormatHandler}

Out = standard_io | string()

FormatHandler = {Function, InitialState} | et

Function = fun(Fd,Trace,TraceInfo,State) -> State

Fd = standard_io | FileDescriptor

This is the file descriptor of the destination file Out

Trace = tuple()

This is the trace message. Please turn to the Reference manual for the erlangmodule for details.

TraceInfo = [{Key,ValueList}]

This includes the keys flags, clientand node, and if handleris given as option to the tracer function,
this is also included. In addition all information written with the write_trace_info/2function is included.

Reads the given binary trace log(s). If a directory or a list of logs is given and the timestamp flag was set during
tracing, the trace messages from the different logs are merged according to the timestamps.

If FormatHandler = {Function,InitialState}, Function will be called for each trace message. If
FormatHandler = et, et_viewer in the Event Tracer application (et) is used for presenting the trace log
graphically. ttb provides a few different filters which can be selected from the Filter menu in the et_viewer. If
FormatHandler is not given, a default handler is used which presents each trace message as a line of text.

If Out is given, FormatHandler gets the filedescriptor to Out as the first parameter.

Out is ignored if FormatHandler = et.

Wrap logs can be formatted one by one or all in one go. To format one of the wrap logs in a set, give the exact name
of the file. To format the whole set of wrap logs, give the name with '*' instead of the wrap count. See examples in
the ttb User's Guide.

etop

Ericsson AB. All Rights Reserved.: Observer | 27

etop
Erlang module

etop should be started with the provided scripts etop and getop for text based and graphical presentation
respectively. Under Windows the batch files etop.bat and getop.bat can be used.

All interaction with etop when running the graphical presentation should happen via the menus. For the text based
presentation the functions described below can be used.

The following configuration parameters exist for etop.

node
The measured node.
Value: atom()
Mandatory

setcookie
Cookie to use for the etop node - must be the same as the cookie on the measured node.
Value: atom()

lines
Number of lines (processes) to display.
Value: integer()
Default: 10

interval
The time interval (in seconds) between each update of the display.
Value: integer()
Default: 5

accumulate
If true the execution time and reductions are accumulated.
Value: boolean()
Default: false

sort
Identifies what information to sort by.
Value: runtime | reductions | memory | msg_q
Default: runtime (reductions if tracing=off)

tracing
etop uses the erlang trace facility, and thus no other tracing is possible on the measured node while etop is
running, unless this option is set to off. Also helpful if the etop tracing causes too high load on the measured
node. With tracing off, runtime is not measured.
Value: on | off
Default: on

Exports

config(Key,Value) -> Result

Types:

Result = ok | {error,Reason}

Key = lines | interval | accumulate | sort

Value = term()

This function is used to change the tool's configuration parameters during runtime. The table above indicates the
allowed values for each parameter.

etop

28 | Ericsson AB. All Rights Reserved.: Observer

dump(File) -> Result

Types:

Result = ok | {error,Reason}

File = string()

This function dumps the current display to a text file.

stop() -> stop

This function terminates etop.

crashdump_viewer

Ericsson AB. All Rights Reserved.: Observer | 29

crashdump_viewer
Erlang module

The Crashdump Viewer is an HTML based tool for browsing Erlang crashdumps. Crashdump Viewer runs under the
WebTool application.

Exports

start() -> ok

This function starts the crashdump_viewer.

stop() -> ok

This function stops the crashdump_viewer.

	Observer
	User's Guide
	Trace Tool Builder
	Introduction
	Getting Started
	Example: Tracing the local node from the erlang shell
	Example: Build your own tool

	Running the Trace Tool Builder against a remote node
	Diskless node

	Trace Information and the .ti File
	Wrap Logs
	Formatting
	Presenting trace logs with Event Tracer

	Automatically collect and format logs from all nodes
	History and Configuration Files
	Example: History and configuration files

	Sequential Tracing
	Example: Sequential tracing

	Example: Multipurpose trace tool

	Erlang Top
	Introduction
	Output
	Start
	Configuration
	Example: Change configuration with graphical presentation
	Example: Change configuration with text based presentation

	Print to file
	Stop

	Crashdump Viewer
	Introduction
	Getting Started
	Navigating
	Help

	Reference Manual
	observer
	ttb
	tracer/0
	tracer/1
	tracer/2
	p/2
	/0
	list_history/0
	run_history/1
	write_config/2
	write_config/3
	run_config/1
	run_config/2
	list_config/1
	write_trace_info/2
	seq_trigger_ms/0
	seq_trigger_ms/1
	stop/0
	stop/1
	format/1
	format/2

	etop
	config/2
	dump/1
	stop/0

	crashdump_viewer
	start/0
	stop/0

