| v

ERLANG

orber

Copyright © 1997-2010 Ericsson AB. All Rights Reserved.
orber 3.6.17

September 13 2010

Copyright © 1997-2010 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 13 2010

Ericsson AB. All Rights Reserved.: orber | 1

1.1 The Orber Application

1 User's Guide

The Orber application is an Erlang implementation of a CORBA Object Request Broker.

1.1 The Orber Application

1.1.1 Content Overview
The Orber documentation is divided into three sections:

* PART ONE - The User's Guide
Description of the Orber Application including IDL-to-Erlang language mapping, services and a small tutorial
demonstrating the devel opment of a simple service.

* PART TWO - Release Notes
A concise history of Orber.

* PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in Orber.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

» ORB kernel and 110P support

¢ Interface Repository

* IDL to Erlang mapping

e CosNaming Service

* Resolving initial reference from Java or C++
e Tutoria - creating asimple service

* CORBA Exceptions

» Interceptors

e OrberWeb

» Debugging

ORB Kernel and 11OP Support

The ORB kernel which has 110P support will allow the creation of persistent server objects in Erlang. These objects
can also be accessed via Erlang and Java environments. For the moment a Java enabled ORB is needed to generate
Javafrom IDL to use Java server objects (this has been tested using OrbhixWeb).

Interface Repository

The IFR is an interface repository used for some type-checking when coding/decoding I1OP. The IFR is capable of
storing al interfaces and declarations of OMG IDL.

IDL to Erlang Mapping

The OMG IDL mapping for Erlang, which is necessary to access the functionality of Orber, is described, The
mapping structure is included as the basic and the constructed OMG IDL types references, invocations and Erlang
characteristics. An exampleis also provided.

2 | Ericsson AB. All Rights Reserved.: orber

1.2 Introduction to Orber

CosNaming Service

Orber contains a CosNaming compliant service.

Resolving Initial References from Java or C++
A couple of classes are added to Orber to simplify initial reference access from Javaor C++.

Resolving initial reference from Java
A class with only one method which returns an Interoperable Object Referenceon the external string format to the
INIT object (see "Interoperable Naming Service" specification).

Resolving initial reference from C++

A class (and header file) with only one method which returns an IOR on the external string format to the INIT object
(see "Interoperable Naming Service" specification).

Orber Stub/Skeleton

An example which describes the APl and behavior of Orber stubs and skeletons.

CORBA Exceptions

A listing of all system exceptions supported by Orber and how one should handle them. This chapter also describe
how to generate user defined exceptions.

Interceptors

Descibes how to implement and activate interceptors.

OrberWeb
Offers the possibility to administrate and supervise Orber viaa GUI.
Debugging

Describes how to use different tools when debugging and/or developing new applications using Orber. Also includes
aFAQ, which deal with the most common mistakes when using Orber.

1.2 Introduction to Orber

1.2.1 Overview

The Orber application isa CORBA compliant Object Request Brokers (ORB), which provides CORBA functionality
in an Erlang environment. Essentially, the ORB channels communication or transactions between nodes in a
heterogeneous environment.

Common Object Request Broker Architecture is a common communication standard developed by the OMG
(Object Management Group)(Common Object Request Broker Architecture) provides an interface definition language
allowing efficient system integration and also supplies standard specifications for some services.

The Orber application contains the following parts:

¢ ORB kernel and 110P support

» Interface Repository

« Interface Definition Language Mapping for Erlang

e CosNaming Service

Benefits

Orber provides CORBA functionality in an Erlang environment that enables:

Ericsson AB. All Rights Reserved.: orber | 3

1.2 Introduction to Orber

e Platforminteroperability and transparency

Orber enables communication between OTP applications or Erlang environment applications and other platforms;
for example, Windows NT, Solaris etc, alowing platform transparency. This is especialy helpful in situations
wherethere are many userswith different platforms. For exampl e, booking airlineticketswould requiretheairline
database and hundreds of travel agents (who may not have the same platform) to book seats on flights.

« Application level interoperability and transparency

As Orber isa CORBA compliant application, its purpose is to provide interoperability and transparency on the
application level. Orber simplifies the distributed system software by defining the environment as objects, which
in effect, views everything asidentical regardless of programming languages.

Previoudly, time-consuming programming was required to facilitate communication between different languages.
However, with CORBA compliant Orber the Application Programmer is relieved of this task. This makes
communication on an application level relatively transparent to the user.

Purpose and Dependencies
The system architecture and OTP dependencies of Orber areillustrated in figure 1 below:

| Orber ‘
- application level
| K emel | _
enyIronment
- lewel
| Exlan Run Time System (ERTS) |

Figure 2.1: Figure 1: Orber Dependencies and Structure.

Orber is dependent on Mnesia (see the Mnesia documentation) - an Erlang database management application used to
store object information.

Note:

Although Orber does not have a run-time application dependency to |C (an Interface Definition Language - IDL
is the OMG specified interface definition language, used to define the CORBA object interfaces.compiler for
Erlang), it is necessary when building services and applications. See the |C documentation for further details.

4 | Ericsson AB. All Rights Reserved.: orber

1.3 The Orber Application

o o
Java node
= Eilang Node 2
Erlang Mode 1

Figure 2.2: Figure 2: ORB interface between Java and Erlang Environment Nodes.

This simplified illustration in figure 2 demonstrates how Orber can facilitate communication in a heterogeneous
environment. The Erlang Nodesrunning OTP and the other Node running applicationswritten in Javacan communicate
via an Object Request Broker - ORB open software bus architecture specified by the OMG which allows object
components to communicate in a heterogeneous environment.(Object Request Broker). Using Orber means that
CORBA functions can be used to achieve this communication.

For example, if one of the above nodes requests an object, it does not need to know if that object is located on the
same, or different, Erlang or Java nodes. The ORB will channel the information creating platform and application
transparency for the user.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming and CORBA (Common Object Request Broker Architecture).

Recommended reading includes Open Tel ecom Platform Documentation Set and Concurrent Programming in Erlang.

1.3 The Orber Application
1.3.1 ORB Kernel and IIOP

This chapter givesabrief overview of the ORB and its relation to objectsin adistributed environment and the usage of
Domainsin Orber. Also Internet-Inter ORB Protocol (Internet-Inter ORB Protocol) is discussed and how this protocol
facilitates communication between ORBs to allow the accessory of persistent server objects in Erlang.

1.3.2 The Object Request Broker (ORB)

An ORB kernel can be best described as the middle-ware, which creates relationships between clients and servers,
but is defined by its interfaces. This allows transparency for the user, as they do not have to be aware of where the
requested object is located. Thus, the programmer can work with any other platform provided that an IDL mapping
and interfaces exist.

The IDL mapping which is described in a later chapter is the translator between other platforms, and languages.
However, it is the ORB, which provides objects with a structure by which they can communicate with other objects.

ORBsintercept and direct messages from one object, pass this message using 110P to another ORB, which then directs
the message to the indicated object.

Ericsson AB. All Rights Reserved.: orber | 5

1.3 The Orber Application

An ORB is the base on which interfaces, communication stubs and mapping can be built to enable communication
between objects. Orber uses A domain allows a more efficient communication protocol to be used between objects
not on the same node without the need of an ORBto group objects of different nodes

How the ORB provides communication is shown very simply in figure 1 below:

CLIENT SERVER
(Obiject) (Object)

Object Request Broker (ORB)

- - -3 message path

Figure 3.1: Figure 1: How the Object Request Broker works.

The domain in Orber gives an extra aspect to the distributed object environment as each domain has one ORB, but
it is distributed over a number of object in different nodes. The domain binds objects on nodes more closely than
distributed objects in different domains. The advantage of a domain is that a faster communication exists between
nodes and objects of the same domain. An internal communication protocol (other than 110P) allows a more efficient
communication between these objects.

Note:

Unlike objects, domains can only have one name so that no communication ambiguities exist between domains.

1.3.3 Internet Inter-Object Protocol (IIOP)

[1OP is a communication protocol developed by the OMG to facilitate communication in adistributed object-oriented
environment.

Figure 2 below demonstrates how [10OP works between objects:

6 | Ericsson AB. All Rights Reserved.: orber

1.4 Interface Repository

damant {x) domain {v)

doman (z)

Figure 3.2: Figure 2: IOP communication between domains and objects.

Note:

Within the Orber domains the objects communicate without using the [1OP. However, the user is unaware of the
difference in protocols, as this difference is not visible.

1.4 Interface Repository

1.4.1 Interface Repository(IFR)

The IFR is an interface repository built on the Mnesia application. Orber uses the IFR for some type-checking when
coding/decoding I1OP. The IFR is capable of storing all interfaces and declarations of OMG IDL.

The interface repository is mainly used for dynamical interfaces, and as none are currently supported this function is
only really used for retrieving information about interfaces.

Functions relating to the manipulation of the IFR including, initialization of the IFR, aswell as, locating, creating and
destroying initial references are detailed further in the Manual Pages.

1.5 Installing Orber

1.5.1 Installation Process

This chapter describes how to install Orber in an Erlang Environment.

Preparation
To begin with, you must decide if you want to run Orber as a

e Sngle node (non-distributed) - all communication with other Orber instances and ORB's supplied by other
vendors use the OMG GIOP protocol.

e Multi node (distributed) - al Orber nodes, within the same dorai n, communicate via the Erlang distribution
protocol. For all other Orber instances, i.e. not part of the same dorai n, and ORB's supplied by other vendors,
the OMG GIOP protocol is used.

Ericsson AB. All Rights Reserved.: orber | 7

1.5 Installing Orber

Which approach to use is highly implementation specific, but afew things you should consider:

» All nodes within an Orber domain should have the same security level.
» |If the capacity is greater than load (volume of traffic) a single-node Orber might be a good solution.

* Insome cases the distributed system architecture requires a single-node is the structure of the ORB or ORBs as
defined during the install processis called the "installation"..

e A multi-node Orber makes it possible to load balance and create a more fault tolerant system. The Objects can
also have auniform view if you use distributed Mnesia tables.

» Sincethe GIOP protocol creates alarger overhead than the Erlang distribution protocol, the performance
will be better when communicating with Objects within the same Orber domain compared with inter ORB
communication (GIOP).

You aso have to decide if you want Orber to store internal data using di sc_copi es and/or r am copi es.
Which storage type you should depends if/how you intend to use Mnesia in your application. If you intend to use
di sc_copi es you must start with creating a Mnesia schema, which contain information about the location of the
Erlang nodes where Orber is planned to be run. For more background information, see the M nesia documentation.

In some casesit is absolutely necessary to change the default configuration of Orber. For example, if two Orber-ORB's
shall be able to communicate via GIOP, they must have aunique dormai n domain. Consult the configuration settings
section. If you encounter any problems; see the chapter about Debugging in this User's Guide.

Jump Start Orber

The easiest way to start Orber isto use or ber : j unp_st art (Port), which start a single-node ORB with (most
likely) a unique domain (i.e. "IP-number:Port"). This function may only be used during development and testing.
For any other situation, install and start Orber as described in the following sections. The listen port, i.e. iiop_port
configuration parameter, is set to the supplied Port.

Warning:

How Orber is configured when using or ber : j unp_st art (Port) may change at any time without warning.
Hence, this operation must not be used in systems delivered to a customer.

Install Single Node Orber
Since a single node Orber communicate viathe OMG GIOP protocol it isnot necessary to start the Erlang distribution
(i.e.using - nane/ - snane).

If weuser am copi es thereisno need for creating a disk based schema. Simply use:

erl > mesia:start().

erl > corba:orb_init([{domain, "M/RAMS ngl eNodeORB"}]).

erl> orber:install ([node()], [{ifr_storage_type, ramcopies}]).
erl > orber:start().

If youinstallation requiresdi sc_copi es youmust begin with creating aMnesiaschema. Otherwise, theinstallation
issimilar to aRAM installation:

erl > mesi a: creat e_schema([node()]).
erl > mesia:start ().
erl> corba:orb_init([{domain, "MD skSingleNodeORB"}]).

8 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

erl> orber:install ([node()], [{ifr_storage_type, disc_copies},
{nanmeservi ce_storage_type, disc_copies}]).
erl> orber:start().

You can ill choose to store the IFR data as ram_copies, but then the data must be re-installed (i.e. invoke
orber:install/2) if the node is restarted. Hence, since the IFR data is rather static you should use
di sc_copi es. For more information see the or ber section in the reference manual.

If you do not need to change Orber's configuration you can skip orb_init/1. But, you should at least set the [IOP
timeout parameters.

Install RAM Based Multi Node Orber

Within adomain Orber uses the Erlang distribution protocol. Hence, you must start it first by, for example, using:

host A> erl -snanme nodeA

In this example, we assume that we want to use two nodes; node A and nodeB. Since Mnesiamust know which other
nodes should a part of the distribution we either need to add the Mnesia configuration parameter ext r a_db_nodes
or use mesi a: change_confi g/ 2. To begin with, Mnesia must be started on all nodes before we can install
Orber:

nodeA@ost A> mesi a: start ().
nodeA@ost A> mmesi a: change_confi g(extra_db_nodes,
[nodeA@wost A, nodeB@ost B]) .

After that the above have been repeated on nodeB we must first make sure that both nodes will use the same domain
name, then we can install Orber:

nodeA@ost A> corba:orb_init([{domain, "MyRAMVIIti NodeORB"}]).
nodeA@ost A> orber:install ([nodeA@ost A nodeB@ost B],

[{ifr_storage_type, ramcopies}]).
nodeA@ost A> orber:start().

Notethat youcanonly invokeor ber : i nst al | / 1/ 2 on oneof thenodes. Now we can start Orber on the other node:

nodeB@ost B> corba:orb_init([{domain, “M/RAMVIti NodeORB"}]).
nodeB@host B> orber:start().

Install Disk Based Multi Node Orber

Asfor RAM based multi-node Orber installations, the Erlang distribution must be started (e.g. erl -sname nodeA). The
major differenceisthat when it is disk based a Mnesia schema must be created:

nodeA@ost A> mmesi a: cr eat e_schena([nodeA@ost A, nodeB@ost B]) .

Ericsson AB. All Rights Reserved.: orber | 9

1.5 Installing Orber

nodeA@ost A> mmesi a: start ().

In this example, we assume that we want to use two nodes, nodeA and nodeB. Since it is not possible to create
a schema on more than one node. Hence, al we have to do is to start Mnesia (i.e. invoke rmesi a: start ()) on
nodeB.

After Mnesia have been started on al nodes, you must confirm that all nodes have the same domain name, then Orber
isready to beinstalled:

nodeA@ost A> corba:orb_init([{domain, "MD skMilti NodeORB"}]).
nodeA@ost A> orber:install ([nodeA@ost A, nodeB@ost B] ,

[{ifr_storage_type, disc_copies}]).
nodeA@nost A> orber:start().

Notethat youcanonly invokeor ber : i nst al | / 1/ 2 on oneof the nodes. Now we can start Orber on the other node:

nodeB@ost B> corba:orb_init([{domain, "MD skMilti NodeORB"}]).
nodeB@ost B> orber:start().

1.5.2 Configuration

It is essential that one configure Orber properly, to avoid, for example, malicious attacks and automatically terminate
[1OP connections no longer in use. An easy way to extract information about Orber's configuration parametersis to

invoke the operation orber:info/1/2. Orber offer the following configuration parameters:

Key Range Default
domain string() "ORBER"
iiop_port integer() >=0 4001
nat_iiop_port i[?';i?;ga?rllt{elg;);?l),}i]r;teger(), Thesameasi i op_port
iiop_out_ports 0| {integer(),integer()} 0
iiop_out_ports_attempts integer() >0 1
iiop_out_ports_random true | false fase
iiop_max_fragments integer() > O | infinity infinity
iiop_max_in_requests integer() > 0O | infinity infinity
iiop_max_in_connections integer() >0 infinity
iiop_backlog integer() >0 5

10 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

iiop_packet size integer() > O | infinity infinity

ip_address string() | { multiple, [string(]} All interfaces

ip_address local string() Defined by the underlying system
nat_ip_address {Sﬁgggj()slt;[,r:;(l)“ ?{I:estr[ftng (r;?(s)t]r%nlgg O} Thesameasi p_addr ess
objectkeys gc_time integer() > O | infinity infinity

giop_version {1,0} |{1,1} |{1,2} {1,1}
iiop_setup_connection_timeout integer() > O | infinity infinity
iiop_connection_timeout integer() > 0 | infinity infinity
iiop_in_connection_timeout integer() > O | infinity infinity

iiop_out_keepalive true | false fase

iiop_in_keepalive true | false fase

iiop_timeout integer() > 0O | infinity infinity

interceptors {native, [atom()]} -

local_interceptors {native, [atom()]} -

orbl nitRef [string()] | undefined undefined
orbDefaultInitRef string() | undefined undefined
orber_debug_level 0-10 0

flags integer() >=0 0
e .

secure no | ssl no

ssl_generation 213 2

iiop_sd_port integer() >=0 4002
iiop_ss_accept_timeout integer() > O | infinity infinity

iiop_ss_backlog integer() >0 5

iiop_sd_ip address local string() Defined by the underlying system

Ericsson AB. All Rights Reserved.: orber | 11

1.5 Installing Orber

integer() > 0| {local, integer(),

nat_iiop_ssl_port [{integer(), integer()} |} Thesameasi i op_ssl _port
sd_server_cacertfile string() -
sd_server_certfile string() -
sd_server_verify 0]1]2 -
sd_server_depth integer() -
sd_server_password string() -
sd_server keyfile string() -
sd_server_ciphers string() -
sdl_server_cachetimeout integer() | infinity infinity
sd_client_cacertfile string() -
sd_client_certfile string() -
sd_client_verify 0]1|2 -
sd_client_depth integer() -
sd_client_password string() -
sd_client_keyfile string() -
sdl_client_ciphers string() -
sd_client_cachetimeout integer() | infinity infinity
iiop_ss_out_keepalive true | false fase
iiop_ss_in_keepalive true | false fase

Table 5.1: Orber Configuration Parameters

Comments on the table 'Orber Configuration Parameters':

domain

Since Orber domains, they are supposed to communicate via [lOP, MUST have unique names, communication

will fail if two domains have the same name. The domain name MAY NOT contain *G(i.e.\ 007).

iiop_port

If set to 0 the OS will pick any vacant port.
Note:On a UNIX systemit is preferable to have a [lOP port higher than 1023, sinceit is not recommended to
run Erlang as aroot user.

12 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

nat_iiop_port
Thevaueiseither aninteger or {| ocal , Defaul t NATPort, [{Port, NATPort}]}.Seedso
Firewall Configuration.
iiop_out_ports
When set to 0 any available port will be used. If arangeis specified, Orber will only use the local ports
within the interval when trying to connect to another ORB (Orber acts as aclient ORB). If all portsarein use
communication will fail. Hence, it is absolutely necessaryto seti i op_connecti on_ti neout aswell.
Otherwise, connections no longer in use will block further communication. If one use, for example, er | -
orber iiop_out_ports "{5000,5020}", Orber will only use port 5000 to 5020 when connecting. If
communicating via SSL, make sure you use aversion that supportsthelocal { port, Port} option. Seeaso
Firewall Configuration.
iiop_out_ports random
Requiresthati i op_out port s defineaport range. If that isthe case Orber will select aport randomly from
that sequence.
iiop_out_ports_attempts
Requiresthati i op_out port s defineaport range. If so Orber will accept a number of timeouts, defined by
this parameter, when trying to connect to another ORB.
iiop_max_fragments
Limits the number of I10OP fragments allowed per request.
iiop_max_in_requests
Limits the number of concurrent incoming requests per incoming connection.
iiop_max_in_connections
Limits the number of concurrent incoming connections.
iiop_backlog
Defines the maximum length the queue of pending incoming connections may grow to.
iiop_packet size
Defines the maximum size of incoming requests. If this limit is exceeded, the connection is closed.
ip_address
Thisoption is used if orber only should listen on a specific ip interface on a multi-interface host or if exported
IOR:s should contain multiple components. The valueisthe IPv4 or IPv6 addressasastring or { mul ti pl e,
| PLi st }. Thelatter requires that the object is available viathe all 1P addresses found in the list.
ip_address local
This option defines the default local interface Orber will use when connecting to another ORB viallOP, i.e.,
Orber act asthe client side ORB. ThevalueisalPv4 or IPv6 address as a string. It is possible to override
i p_address_| ocal bydefiningii op_acl or passing the Orber generici nt er f ace Context. If
this option is not used, the underlying OS will choose which interface to use. For more information, see the
Interface Configuration section.
nat_ip_address
Thevaueistheip addressasastring (IPv4 or IPv6), { mul ti pl e, 1 PList} or{l ocal,
Def aul t NATI PAddr ess, [{| PAddress, NATI PAddress}]}.Seeaso Firewall Configuration.
objectkeys gc time
This option should be set if objects are started using the option { per si st ent, true}.Thevaueis
i nt eger () seconds.
giop_version
Defines the default GIOP protocol version.
iiop_setup_connection_timeout
The value is an integer (seconds) or the atom infinity. This optionis only valid for client-side connections. If
this option is set, attempts to connect to other ORB's will timeout after the given time limit. Note, if the time
limit is large the TCP protocol may timeout before the supplied value.
iiop_connection_timeout
Thevalueisaninteger (timeout in seconds between 0 and 1000000) or the atom infinity. Thisoptionis only
valid for client object connections, i.e., will have no effect on server connections. Setting this option will

Ericsson AB. All Rights Reserved.: orber | 13

1.5 Installing Orber

cause client connections to be terminated, if and only if, there are no pending requests. If there are aclient till
waiting for areply, Orber will try again after the given seconds have passed. The main purpose for this option
isto reduce the number of open connections; it is, for example, not necessary to keep a connection, only used
once aday, open at al time.

iiop_in_connection_timeout
Thesameasfori i op_connecti on_ti neout . Theonly differenceisthat this option only affects
incoming connections (i.e. Orber act as server-side ORB).

iiop_out_keepalive
Enables periodic transmission on a connected socket, when no other data is being exchanged. If the other
end does not respond, the connection is considered broken and will be terminated. When enabled the
SO _KEEPALIVE socket level option is set.

iiop_in_keepalive
Thesameasfori i op_out keepal i ve. Theonly differenceisthat this option only affectsincoming
connections.

iiop_timeout
Thevalueis an integer (timeout in seconds between 0 and 1000000) or the atom infinity. Thisoptionis
only valid on the client side. Setting this option, cause all intra-ORB requests to timeout and raise a system
exception, e.g. TI MEQUT, if no replies are delivered within the given time limit.

interceptors
If one set this parameter, e.g., erl -orber interceptors "{native, ['nmylnterceptor']}",
Orber will use the supplied interceptor(s) for al inter-ORB communication. ' myl nt er cept or' isthe
module name of the interceptor. For more information, see the interceptor chapter in the User's Guide and the
Reference Manual.

local_interceptors
If defined, its value will be used when activating local interceptors via Orber Environment Flags. If not
defined, but the flag is set, Orber will use the value of thei nt er cept or s parameter.

orblnitRef
Setting thisoption, e.g.,er| -orber orblnitRef [\"NameService=corbal oc:: host. coni
NaneSer vi ce\ "], will ater thelocation from wherecor ba: resol ve_initi al _references(Key)
tries to find an object matching the given Key. The keys will also appear when invoking
corba:list _initial _services().Thisvariableoverridesor bDef aul t | ni t Ref

orbDefaultlnitRef
If amatching Key for or bl ni t Ref isnot found, and thisvariable is set, it determines the location from
whereor ber:resol ve_initial _references(Key) triesto find an object matching the given Key.
Usage: er|l -orber orbDefaultlnitRef \"corbal oc:: host.com".

orber_debug_level
Therangeis0to 10. Using level 10 isthe most verbose configuration. This option will generate reports, using
theerror | ogger, for abnormal situations. It is not recommended to use this option for delivered systems
since some of the reportsis not to be considered as errors. The main purpose is to assist during development.

flags
No flags are activated in the default case. The available configuration settings are described in Orber
Environment Flags.

iiop_acl
This option must be activated by setting Orber Environment Flags parameter. The value of this parameter
shal bealistof [{Direction, Filter}] andlor[{Direction, Filter, [Interfaces]}].
TheDirection,tcp_in,ssl_in,tcp_out orssl_out,determinesif the Access Control List (ACL)
applies to incoming or outgoing connections and I1OP or I1OP over SSL. TheFi | t er uses aextended format
of Classless Inter Domain Routing (CIDR). For example, " 123. 123. 123. 10" limitsthe connection
to that particular host, while" 123. 123. 123. 10/ 17" alows connections to or from any host equal to
the 17 most significant bits. Orber also allow the user to specify a certain port or port range, for example,
"123.123.123. 10/ 17#4001" and" 123. 123. 123. 10/ 17#4001/ 5001" respectively. IPv4 or none
compressed | Pv6 strings are accepted.

14 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

Thelist of I nt er f aces, IPv4 or IPv6 strings, may only contain one address for outgoing connections. For
incoming connections, the |l nt er f aces list may contain several IP strings. If set for outgoing connections,
and access is granted, Orber will use that local interface when connecting to the server-side ORB. For incoming
connections, the client-side ORB is required to use one of the listed interfaces locally. If it fail to do so, access
will be denied. The module orber_acl provides operations for eval uating the access control for filters and
addresses. See also the Interface Configuration and Firewall Configuration chapters.

secure
Determines the security mode Orber will use, which is either no if it is an insecure domain or the type of
security mechanism used. Currently, per default, Orber is compliant with CSI v1 level 0, which means 11OP
viaSSL/TLS. The security chapter later in this manual describes how to get security in Orber and how the
options are used.

ssl_generation
Defineswhich SSL version, i.e. available AP, isinstalled. The default value, 2, refersto SSL-3.1 or later, but
earlier than SSL-4.0. If set to 3 SSL-4.0, or later, must be available. Currently it not possibletouse 1, itisonly
reserved for future use.

iiop_sd_port
If set, the value must be an integer greater than zero and not equal to iiop_port.

iiop_ss_accept_timeout
The value isaninteger (timeout in seconds) or the atom infinity and determine how long the SSL handshake
may take. This option should be set to avoid if a client never initiate the handshake.

iiop_ss_backlog
Defines the maximum length the queue of pending incoming connections may grow to.

iiop_sd_ip_address local
This option defines the default local interface Orber will use when connecting to another ORB viallOP SSL,
i.e., Orber act asthe client side ORB. ThevalueisalPv4 or IPv6 address as a string. It is possible to override
iiop_ssl _ip_address_ | ocal bydefiningii op_acl orpassingthe Orber generici nt er f ace
Context. If thisoption is not used, the underlying OS will choose which interface to use. For more information,
see the Interface Configuration section.

nat_iiop_sd_port
If set, the value must be an integer greater than zeroor {| ocal , Def aul t NATPort, [{Port,
NATPort}]}. Seealso Firewall Configuration.

ssl_server_cacertfile
the file path to a server side CA certificate.

ssl_server_certfile
The path to afile containing a chain of PEM encoded certificates.

ssl_server_verify
The type of verification used by SSL during authentication of the other peer for incoming calls.

ssl_server_depth
The SSL verification depth for outgoing calls.

ssl_server_password
The server side key string.

ssl_server_keyfile
Thefile path to a server side key.

ssl_server_ciphers
The server side cipher string.

ssl_server_cachetimeout
The server side cache timeout.

ssl_client_cacertfile
Thefile path to aclient side CA certificate.

ssl_client_certfile
The path to afile containing a chain of PEM encoded certificates.

Ericsson AB. All Rights Reserved.: orber | 15

1.5 Installing Orber

ssl_client_verify
Thetype of verification used by SSL during authentication of the other peer for outgoing calls.
ssl_client_depth
The SSL verification depth for incoming calls.
ssl_client_password
Theclient side key string.
ssl_client_keyfile
Thefile path to aclient side key.
ssl_client_ciphers
The client side cipher string.
ssl_client_cachetimeout
The client side cache timeout.
iiop_ss_out_keepalive
Enables periodic transmission on a connected socket, when no other data is being exchanged. If the other
end does not respond, the connection is considered broken and will be terminated. When enabled the
SO _KEEPALIVE socket level option is set. Requires that the installed SSL version support the keepalive
option and that the ssl_generation points to this version.
iiop_sd_in_keepalive
Thesameasforii op_ssl _out keepal i ve. Theonly differenceisthat this option only affectsincoming
connections.

It is possible to invoke operations using the extra timeout parameter:

erl > nodul e_i nterface: functi on(Ooj Ref, Tineout, ..Argunents..).
erl> nmodul e_i nterface: functi on(Qoj Ref, [{timeout, Timeout}], ..Argunents..).
erl > nodul e_i nterface: functi on(oj Ref, ..Argunents..).

The extra Timeout argument will override the configuration parameteri i op_t i meout . Itis, however, not possible
tousei nfinity to override the Timeout parameter. The Timeout option is also valid for objects which resides
within the same A domain containing several Erlang nodes, which are communicating by using the Erlang internal
format. An Orber domain looks as one ORB from the environment..

The iiop_setup_connection_ tinmeout, iiop _timeout, iiop_connection_tineout and
iiop_in_connection_tinmeout variables should be used. The specified values is implementation
specific, i.e, WAN or LAN, but they should range from iiop_setup_connection_tinmeout to
i iop_connection_tineout.

To change these settings in the configuration file, the - conf i g flag must be added to the erl command. See the
Reference Manual config(4) for further information. The values can also be sent separately as options to the Erlang
node when it is started, see the Reference Manual erl(1) for further information.

Orber Environment Flags

The Envi ronnment Fl ags alows the user to activate debugging facilities or change Orber's behavior. The latter
may result in that Orber isno longer compliant with the OM G standard, which may be necessary when communicating
with a non-compliant ORB.

Hexadecimal Value OMG Compliant Description
0001 no Exclude CodeSet Component
0002 yes Local Typechecking

16 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

0004 yes Use Host Namein IOR

0008 yes Enable NAT

0020 yes Local Interceptors

0080 yes Light IFR

0100 yes Use IPv6

0200 yes EXIT Tolerance

0400 yes Enable Incoming ACL

0800 yes Enable Outgoing ACL

1000 yes Use Current Interfacein IOR

Table 5.2: Orber Environment Flags

Any combination of the flags above may be used and changes the behavior as follows:

Exclude CodeSet Component - instruct Orber to exclude the CodeSet component in exported |OR:s. When
activated, no negotiating regarding character and wide character conversions between the client and the server
will occur. Thisflag will, most likely, cause problemsif your IDL specification contains the data types wchar
and/or wstring.

Local Typechecking - If activated, parameters, replies and raised exceptions will be checked to ensure that the
datais correct. If an error occurs, theer r or _| ogger isused to generate reports. One MAY NOT use this
option for delivered systems due to the extra overhead. Since this option activates typechecking for all objects
generated on the target node, it is also possibleto usetheoption {1 ocal _t ypecheck, bool ean()},
wheninvokingoe_create/ 2,0e_create_link/2,corba: create/4orcorba:create_|ink/4,
to override the configuration parameter.

Use Host Name in IOR - normally Orber inserts the IP-number in IOR:s when they are exported. In some cases,
thiswill cause the clients to open two connections instead of one.

Enable NAT - if thisflag is set, it is possible to use the NAT (Network Address Translation) configuration
parameters (nat _ii op_port,nat _iiop_ssl_port andnat i p_address).

Local Interceptors - use interceptors for local invocations.

Light IFR - if the IFR is not explicitly used and thisflag is set, Orber will use a minimal IFR to reduce memory
usage and installation time.

Use IPv6 - when this option is activated, Orber will use | Pv6 for inter-ORB communication.
EXIT Tolerance - servers will survive even though the call-back module caused an EXIT.
Enable Incoming ACL - activates access control for incoming connections.

Enable Outgoing ACL - activates access control for outgoing connections.

Use Current Interfacein IOR - when set, Orber will add the interface the request came viato exported local
IOR:s.

Invoking the operation orber:info/1/2 will display the currently set flags in areadable way.

Ericsson AB. All Rights Reserved.: orber | 17

1.5 Installing Orber

1.5.3 Firewall Configuration

Firewalls are used to protect objects from clients in other networks or sub-networks, but also to restrict which hosts
internal objects may connect to (i.e.i nbound pr ot ect i on andout bound pr ot ecti on). A firewall can limit
access based on:

e Transport Level - performs access control decisions based on address information in TCP headers.

» Application Level - understands GIOP messages and the specific transport level inter-ORB Protocol supported
eg. lIOP.

This section describes how to configure a Transport Level firewall. It must have prior knowledge of
the source to destination mappings, and conceptually has a configuration table containing tuples of the form:
({inhost:inport}, {outhost:outport}).Ifthereareno portrestrictionsitisrather easy to configurethe
firewall. Otherwise, we must consider the following aternatives:

e Incoming Requests - Orber only uses the port-numbers specified by the configuration parametersiiop_port and
iiop_sd_port. Other ORB's may use several ports but it should be possible to change this behavior. Consult the
other ORBs documentation.

» Outgoing Requests - Most ORB's, Orber included, ask the OS to supply avacant local port when connecting
to the server-side ORB. It is possible to change this behavior when using Orber (i.e. set the configuration
parameter iiop_out_ports).

Warning:

Usingtheoptioni i op_out _port s may resultinthat Orber runsout of valid ports numbers. For example, other
applications may steal some of the ports or the number of concurrent outgoing connections to other ORBs may
be higher than expected. To reduce, but not eliminate, therisk you should usei i op_connecti on_ti meout .

Firewall configuration example:

"Plain" IlOP

To: Orber-|PNo: (iiop_port) From ORB-1| PNo: X

To: ORB-| PNo: Z From Orber-1PNo: (iiop_out_ports | Any Port)
110P via SSL

To: Orber-|PNo: (iiop_port) From ORB-1| PNo: X

To: Orber-1PNo: (iiop_ssl_port) From ORB-|PNo:Y

To: ORB-| PNo: Z From Orber-1PNo: (iiop_out_ports | Any Port)

If the communication take place viaa TCP Firewall with NAT (Network Address Trandation), we must activate this
behavior and define the external address and/or ports.

External Internal
nat_ip address % {ip_address)
criestoRB [(][
nat_iiop port flop port
nat_iiop ssl port fiop ssl port

Figure 5.1: TCP Firewall With NAT

18 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

Using NAT makes it possible to use different host data for different network domains. This way we can share
Internet Protocol address resources or obscure resources. To enable this feature the Enable NAT flag must be set
andnat _iiop_port,nat_iiop_ssl_port andnat i p_addr ess configured, whichmapstoi i op_port,
iiop_ssl_port andi p_addr ess respectively. Hence, the firewall must be configured to translate the external
to the internal representation correctly. If these NAT parameters are assigned a single port number or |P address,
only those will be used when an IOR is exported to another ORB. When i p_address issetto {nul ti pl e,

[1 PAddress]}, nat _i p_address should be configured in the same way, so that each NAT IP address can
be trandated to a valid address by the firewall. If objects are supposed to be accessible via different interfaces
and port, see also Interface Configuration, the options{ | ocal , Def aul t NATI PAddr ess, [{| PAddress,

NATI PAddr ess}]} and/or{l ocal , Defaul t NATPort, [{Port, NATPort}]} shalbeused. Thedefault
NAT IP address and port, should be trandated to the value of i p_addr ess_| ocal and the default listen port by
the firewall. If the 1P address and/or port is not found in the list, the default values will be inserted in the IOR. The
firewall must be able to translate these correctly.

If it is necessary to limit the access to an ORB within a secure network, but other applications running on the same
host may not be blocked out, one can use a Application Level firewall or Orber Access Control List (ACL). The latter
makes it possible for the user to define which hosts may communicate, either as server or client, with Orber. This
is achieved by defining the configuration parameter iiop_acl. The Classless Inter Domain Routing (CIDR) Fi | t er

determines which peer interfaces and ports the other ORB may use.

Filter Peer Interface(s) Peer Port(s)
"10.1.1.1" 10.1.11 any
"10.1.1.1/8" 10.0.0.0-10.255.255.255 any
"10.1.1.1/8#4001" 10.0.0.0-10.255.255.255 4001
"10.1.1.1/8#4001/5001" 10.0.0.0-10.255.255.255 4001-5001

Table 5.3: Orber ACL Filters

Orber ACL, also allows the user to define which local interface(s) may be used, but will not detect spoof i ng. The
operation orber_acl: match/2/3 makes it easy to verify whether access would be granted or not. For example, if Orber
would be started withthe ACL [{tcp_out, "10.1.1.1/8#4001/5001"}],thenorber_acl: match/2
would behave as follows:

erl > orber_acl :match({11,1,1, 1}, tcp_out).

fal se

erl > orber_acl: mtch({10,1, 1,1}, tcp_out).

true

erl > orber_acl:mtch({11,1,1, 1}, tcp_out, true).
{false,[],0}

erl > orber_acl : mtch({10,1,1, 1}, tcp_out, true).

{true,[], {4001, 5001} }

Only if the returned boolean is true the extra return values makes a difference. In the example above, {t r ue,
[1,{4001, 5001}} means that Orber may connect to " 10. 1. 1. 1", using any local interface, if the server-
side ORB listens for incoming connect requests on a port within the range 4001-5001. Note, invoking the

Ericsson AB. All Rights Reserved.: orber | 19

1.5 Installing Orber

or ber _acl : mat ch/ 2/ 3 operation, will not result in a connect attempt by Orber. The reason for this, is that this
function may be used on alive node aswell asin test environment. Hence, if alocal interfaceis currently not available
or no server-side ORB available via the given host/port(s), will not be detected by Orber.

1.5.4 Interface Configuration

In many cases it is sufficient to simply configure the underlying OS which local interfaces shall be used for al
applications. But, in some cases it is required, due to, for example, the firewall configuration, that different loca
interfaces are used for different applications. Some times, it is even necessary to use a specific interface for asingle
CORBA object. This section describe how one can alter thisin different ways.

The default behavior is that Orber lets the OS configuration decide which interface will be added in IOR:s exported
to another ORB and the local interface used when connecting to another ORB (Orber act as client side ORB).
The latter can be overridden by setting the configuration parametersi i op_ssl _i p_address_| ocal and/or
i p_address_| ocal , which will affect 1OP via SSL and |10P respectively. These parameters can be overridden
by using the Orber generici nt er f ace Context or defining an ACL (Access Control List). The latter always takes
precedence if alocal interface isincluded (eg. [{tcp_out, "10.0.0.0/8", ["10.0.0.1"]1}]). If the
interfaceisexcluded (e.g. [{t cp_out, "10.0.0.0/8"}]), theinterface chosen will, in the following order, be
determined by #' | OP_Servi ceContext' {},i p_address_local/iiop_ssl _ip_address_Il ocal or
the configuration of the underlying system.

Adding the interface context, for generated stubs/skeletons, is done in the following way:

Ctx = #' | OP_ServiceContext' {context_id = ?0RBER_ GENERI C_CTX_I D,
context_data = {interface, "10.0.0.1"}},
' CosNami ng_Nami ngCont ext ' : resol ve(NS, [{context, [Ctx]}], Nane),

It is aso possible to add the context to corba:string_to_object/2,
corba:resolve_initial _references/2, corba:resolve_ initial _references_renote/3,
corba:list_initial_services_renote/?2, corba_obj ect: not_existent/ 2,

corba_object: non_existent/2 and corba object:is_a/3. The operations exported by
cor ba_obj ect are affected if the supplied 10R is external. The function cor ba: string_t o_obj ect/2
might require the interface context if a corbaloc or a corbaloc sring is
passed (See the INS chapter), while corba:resolve_ initial _references renote/3 and
corba:list_initial_services_renotel/2 adways connect to another ORB and it might be necessary to
add the context. The remaining cor ba operations are affected if calls are re-directed by setting the or bl ni t Ref
and/or or bDef aul t | ni t Ref configuration parameters. For more information, see the Reference Manual for each
module.

Configuring which interface(s) that shall be used when exporting an IOR to another ORB, is determined
by nat _i p_address, setting the flag 16#1000 and i p_address, in that order. Orber listens for
incoming connections either via all interffaces or the interface defined by i p_address. It is aso
possible to add and remove extra listen interfaces by using orber:add _|isten_interface/2/3 and
orber:renove_listen_interface/ 1. Inthiscase oneshould set the 16#1000 flag and, if necessary, set the
configuration parameters{ | ocal , Def aul t NATI PAddr ess, [{| PAddress, NATI PAddress}]} and/
or{local, DefaultNATPort, [{Port, NATPort}]}.

20 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

1.6 OMG IDL to Erlang Mapping
1.6.1 OMG IDL to Erlang Mapping - Overview

The purpose of OMG IDL, Interface Definition Language, mapping is to act as trandator between platforms and
languages. An IDL specification is supposed to describe data types, object types etc.

CORBA isindependent of the programming language used to construct clients or implementations. In order to use the
ORB, it isnecessary for programmersto know how to access ORB functionality from their programming languages. It
trandlates different IDL constructs to a specific programming language. This chapter describes the mapping of OMG
IDL constructs to the Erlang programming language.

1.6.2 OMG IDL Mapping Elements

A complete language mapping will allow the programmer to have access to al ORB functionality in a way that is
convenient for a specified programming language.

All mapping must define the following elements:

e All OMG IDL basic and constructed types

* Referencesto constants defined in OMG IDL

» Referencesto objects defined in OMG IDL

« Invocations of operations, including passing of parameters and receiving of results

» Exceptions, including what happens when an operation raises an exception and how the exception parameters
are accessed

* Accessto attributes
« Signatures for operations defined by the ORB, such as dynamic invocation interface, the object adapters etc.
e Scopes; OMG IDL has several levels of scopes, which are mapped to Erlang's two scopes.

1.6.3 Getting Started

To begin with, we should decide which type of objects (i.e. servers) we need and if two, or more, should export the
same functionality. Let us assume that we want to create a system for DB (database) access for different kind of
users. For example, anyone with a valid password may extract data, but only a few may update the DB. Usually, an
application isdefined within anmodul e, and all global datatypes are defined on the top-level. To begin with we create
amodule and the interfaces we need:

// DB |IDL

#i fndef _DB IDL_

#define _DB |DL_

/1l A nmodule is sinply a container
nmodul e DB {

/1l An interface maps to a CORBA:: (bj ect.
interface CommonUser {

}s

/1 Inherit the Consuner interface
interface Administrator : ComonUser {

}s

interface Access {

Ericsson AB. All Rights Reserved.: orber | 21

1.6 OMG IDL to Erlang Mapping

b
#endi f

Since the Admmi ni st rat or should be able to do the same things as the ConmonUser , the previous inherits from
the latter. The Access interface will grant access to the DB. Now we are ready to define the functionality and data
types we heed. But, this requires that we know alittle bit more about the OMG IDL.

Note:

The OMG definesaset of reserved caseinsensitive key-words, which may NOT be used asidentifiers (e.g. module
name). For more information, see Reserved Compiler Names and Keywords

1.6.4 Basic OMG IDL Types

The OMG IDL mapping is strongly typed and, even if you have a good knowledge of CORBA types, it is essential
to read carefully the following mapping to Erlang types.

The mapping of basic typesis straightforward. Note that the OMG IDL double type is mapped to an Erlang float which
does not support the full double value range.

OMG IDL type Erlang type Note

float Erlang float

double Erlang float value range not supported
short Erlang integer -2~15.. 2M5-1

unsigned short Erlang integer 0..2M6-1

long Erlang integer -2"31 .. 2"31-1

unsigned long Erlang integer 0..27"32-1

long long Erlang integer -2"63 .. 2°63-1

unsigned long long Erlang integer 0..2"64-1

char Erlang integer |SO-8859-1

wchar Erlang integer UTF-16 (1SO-10646-1:1993)
boolean Erlang atom true/false

octet Erlang integer

any Erlang record #any{ typecode, value}
long double Not supported

22 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

Object

Orber object reference

Internal Representation

void

Erlang atom

ok

Table 6.1: OMG IDL basic types

The any value is written as a record with the field typecode which contains the Type Code is a full definition of a
type representation, see also the Type Code table, and the value field itself.

Functions with return type voi d will return the atom ok.

1.6.5 Template OMG IDL Types and Complex Declarators
Constructed types al have native mappings as shown in the table below.

Type IDL code Mapsto Erlang code
: typedef string S; . ok = op(Obj, "Hello
string void op(in S &); Erlang string World"),

typedef wstring S; ok = op(Obj, "Hello

wstring void op(in S a): Erlang list of Integers World"),
typedef sequence <long,
seguence 3>S Erlang list ok = op(Onj, [1, 2, 3)),
void op(in S a);
typedef string §[2]; ok = op(Obj, {"one",
array void op(in S a); Erlang tuple "two'}),
typedef fixed<3,2> MF = fixed:create(3, 2,
fixed myFixed; Erlang tuple 314),

void op(in myFixed a); ok = op(Obj, MF),

Table 6.2: OMG IDL Template and Complex Declarators

String/WString Data Types

A st ri ng consists of all possible 8-bit quantities except null. Most ORB:s uses, including Orber, the character set
Latin-1 (1SO-8859-1). Thewst ri ng type is represented as a list of integers, where each integer represents a wide
character. In this case Orber uses, as most other ORB:s, the UTF-16 (ISO-10646-1:1993) character set.

When defining aa string or wstring they can be of limited length or null terminated:

/1 Null term nated

typedef string nyString;

typedef wstring nyWstring;

/1 Maxi mum | ength 10

typedef string<10> nyStringl0;
typedef wstring<10> nyWstringlo;

Ericsson AB. All Rights Reserved.: orber | 23

1.6 OMG IDL to Erlang Mapping

If we want to define a char/string or wchar/wstring constant, we can use octal (\OOO - one, two or three octal digits),
hexadecimal (\xHH - one or two hexadecimal digits) and unicode \uHHHH - one, two, three or four hexadecimal
digits.) representation as well. For example:

const string SwedensBestSoccer Team = "\101" "\x49" "\ u004B";
const wstring SwedensBest HockeyTeam = L"\ 101\ x49\ u004B";
const char aChar = '\u004B ;

const wchar aWhar L' \u004C ;

Naturally, wecanuse” Er | ang",L" Rocks"," A" andL' A" aswsell.

Sequence Data Type

A sequence can be defined to be of a maximum length or unbounded, and may contain Basic and Template types
and scoped names:

typedef sequence <short, 1> aShort Sequence;
typedef sequence <l ong> alLongSequence;
typedef sequence <alongSequence> anEvenLonger Sequence;

Array Data Type

Arrays are multidimensional, fixed-size arrays. The indices is language mapping specific, which is why one should
not pass them as arguments to another ORB.

typedef long nyMatrix[2][3];

Fixed Data Type

A Fixed Point literal consists of an integer part (decimal digits), decimal point and a fraction part (decimal digits),
followed by a D or d. Either the integer part or the fraction part may be missing; the decimal point may be missing,
but not d/D. The integer part must be a positive integer less than 32. The Fraction part must be a positive integer less
than or equal to the Integer part.

const fixed nmyFi xedl = 3. 14D;
const fixed nyFi xed2 = .14D;
const fixed nmyFi xed3 = 0. 14D;
const fixed nyFi xed4 = 3.D;
const fixed nmyFi xed5 = 3D;

It isalso possible to use unary (+-) and binary (+-*/) operators.

const fixed nyFi xed6
const fixed nyFi xed7

3D + 0. 14D,
- 3. 14D;

24 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

The Fixed Point examples above are, so called, anonymous definitions. In later CORBA specifications these have
been deprecated as function parameters or return values. Hence, we strongly recommend that you do not use them.
Instead, you should use:

typedef fixed<5, 3> nyFi xed53;

const nyFi xed53 nyFi xed53const ant = 03. 140d;
typedef fixed<3, 2> nyFi xed32;

const nyFi xed32 nyFi xed32constant = 3. 14d;

nyFi xed53 foo(in nyFi xed32 MF); // OK
voi d bar(in fixed<5,3> MF); // Illegal

For more information, see Fixed in Orber's Reference Manual.

Now we continue to work on our IDL specification. To begin with, we want to limit the size of the logon parameters
(Id and password). Since the User | D and Passwor d parameters, only will be used when invoking operations on
the Access interface, we may choose to define them within the scope that interface. To keep it ssmple our DB will
contain employee information. Hence, as the DB key we choose an integer (Enpl oyeeNo).

/1 DB I DL
#ifndef DB IDL_
#define DB IDL_
nodul e DB {
typedef unsigned | ong Enpl oyeeNo;
interface CommonUser {
any | ookup(in Enpl oyeeNo ENo);
IE
interface Adm nistrator : CommopnUser {
voi d del ete(in Enpl oyeeNo ENo);
IE
interface Access {

typedef string<10> User| D,
typedef string<l10> Password;

CommonUser | ogon(in UserlDID, in Password PW;

#endi f
But what should, for example, thel ookup operation return? One option isto use the any datatype. But, depending

on what kind of data it encapsulates, this datatype can be rather expensive to use. We might find a solution to our
problems among the Const r uct ed IDL types.

1.6.6 Constructed OMG IDL Types
Constructed types al have native mappings as shown in the table below.

Ericsson AB. All Rights Reserved.: orber | 25

1.6 OMG IDL to Erlang Mapping

Type IDL code Mapsto Erlang code
struct myStruct {
long &; ok = op(Obj,

struct short b; Erlang record #myStruct'{ a=300,
h b=127}),

void op(in myStruct a);

union myUnion

switch(long) { ok = op(Obj,
union case 1l: long & Erlang record #myUnion'{label=1,
} value=66}),

void op(in myUnion a);

enum myEnum { one,
enum two} ; Erlang atom ok = op(Obj, one),
void op(in myEnum a);

Table 6.3: OMG IDL constructed types

Struct Data Type
A st ruct may have Basic, Template, Scoped Names and Constructed types as members.

Enum Data Type

The maximum number of identifiers which may defined in an enumeration is 2%2. The order in which the identifiers
are named in the specification of an enumeration defines the relative order of the identifiers.

Union Data Type
A uni on may consist of:

o ldentifier
e Switch - may be an integer, char, boolean, enum or scoped name.
» Body - with or without adef aul t case; may appear at most once.

A case label must match the defined type of the discriminator, and may only contain a default case if the values given
in the non-default 1abels do not cover the entire range of the union's discriminant type. For example:

Il 1llegal default; all cases covered by
/1 non-default cases.
uni on Bool eanUni on swi t ch(bool ean) {
case TRUE: |ong TrueVal ue;
case FALSE: |ong Fal seVal ue;
default: |ong DefaultVal ue;
IE
Il K
uni on Bool eanUni on2 swi t ch(bool ean) {
case TRUE: |ong TrueVal ue;
default: |ong DefaultVal ue;

h

26 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

It is not necessary to list all possible values of the union discriminator in the body. Hence, the value of aunion isthe
value of the discriminator and, in given order, one of the following:

« |f thediscriminator match alabel, explicitly listed in a case statement, the value must be of the same type.
« |If the union contains a default label, the value must match the type of the default label.

* Novaue. Orber then inserts the Erlang atom undef i ned in the value field when receiving a union from an
external ORB.

The above can be summed up to:

/1 1f the discrimnator equals 1 or 2 the val ue
/Il is along. Gherw se, the atom undefined.
uni on LongUni on switch(long) {

case 1:

case 2: long TrueVal ue;

/1 1f the discrimnator equals 1 or 2 the val ue
/'l is along. Gherw se, a bool ean.
uni on LongUni on2 switch(long) {

case 1:

case 2: |long TrueVal ue;

defaul t: bool ean Def aul t Val ue;
}s

Warning:

Every field in, for example, a struct must be initiated. Otherwise it will be set to the atom undef i ned,
which Orber cannot encode when communicating via [lOP. In the example above, invoking the operation with
#myStruct'{a=300} will fail (equal to #myStruct'{a=300, b=undefined})

Now we can continue to work on our IDL specification. To begin with, we should determine the return value of the
| ookup operation. Since the any type can be rather expensive we can use ast r uct or auni on instead. If we
intend to return the same information about a employee every time we can use a struct. Let us assume that the DB
contains the name, address, employee number and department.

/] DB I DL

#i fndef _DB_IDL_
#define _DB_IDL_
nodul e DB {

typedef unsi gned | ong Enpl oyeeNo;
enum Depart ment {Departnentl, Departnent?2};
struct enpl oyee {
Enpl oyeeNo No;
string Nane;
string Address;
Depart nent Dpt;
}s
typedef enpl oyee Enpl oyeeDat a;

interface CommonUser {

Ericsson AB. All Rights Reserved.: orber | 27

1.6 OMG IDL to Erlang Mapping

Enpl oyeeDat a | ookup(i n Enpl oyeeNo ENo);
IE
interface Administrator : ComonUser {
voi d del ete(in Enpl oyeeNo ENo);
IE
interface Access {

typedef string<10> Userl D;
typedef string<10> Password;

/1 Since Administrator inherits from CommonUser
/] the returned Obj ect can be of either type.
CommonUser | ogon(in UserID ID, in Password PW;

b
#endi f

We can also define exceptions (i.e. not system exception) thrown by each interface. Since exceptions are thoroughly
described in the chapter System and User Defined Exceptions, we choose not to. Hence, we are now ready to compile
our IDL-file by invoking:

$ erlc DB.idl
or:

$ erl
Erl ang (BEAM enul ator version 5.1.1 [threads: 0]

Eshell V5.1.1 (abort with "G
1> ic:gen('DB").

ok

2> halt().

The next step is to implement our servers. But, to be able to do that, we need to know how we can access data type
definitions. For example, since a struct is mapped to an Erlang record we must include an hrl-file in our callback
module.

1.6.7 Scoped Names and Generated Files

Scoped Names
Within a scope al identifiers must be unique. The following kinds of definitions form scopesin the OMG IDL:

e module
* interface
e oOperation

28 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

e valuetype
e struct
e union
e exception

For example, since enumerants do not form a scope, the following IDL code is not valid:

nmodul e MyModul e {
/] '"two' is not unique
enum MyEnum {one, two};
enum MyQt her Enum {two, three};

But, since Erlang only has two levels of scope, module and function, the OMG IDL scope is mapped as follows:

* Function Scope - used for constants, operations and attributes.
» Erlang Module Scope - the Erlang module scope handles the remaining OMG IDL scopes.

An Erlang module, corresponding to an IDL global name, is derived by converting occurrences of "::" to underscore,
and eliminating the leading "::". Hence, accessing My Enumfrom another module, one use My Modul e: : MyEnum

For example, an operation f oo defined in interface | , which is defined in module M would be written in IDL as
M:l1::fooandas' M |':fooinErlang-f oo isthefunctionnameand' M | ' isthe name of the Erlang module.
Applying this knowledge to a stripped version of the DB.idl gives:

// DB |IDL

#i fndef _DB | DL_

#define _DB I DL_

/| ++ topnost scope ++

/1 1C generates oe_XX erl and oe_XX hrl.

/Il XX is equal to the name of the IDL-file.

/] Tips: create one IDL-file for each top nodul e
/'l and give the file the sane nane (DB.idl).

/1l The oe_XX.erl nodule is used to register data
/1 in the IFR

nmodul e DB {

/| ++ Modul e scope ++

/'l To access ' Enpl oyeeNo' from anot her scope, use:
/1 DB::Enpl oyeeNo, DB::Access etc.

typedef unsigned | ong Enpl oyeeNo;

enum Depart ment {Departnentl, Departnent2};

/1 Definitions of this struct is contained in:
/1 DB.hrl

/'l Access functions exported by:

/| DB_enpl oyee. erl

struct enpl oyee {

IE

typedef enpl oyee Enpl oyeeDat a;

/1 If this interface should inherit an interface
/1 in another nodule (e.g. G herMdul e) use:

Ericsson AB. All Rights Reserved.: orber | 29

1.6 OMG IDL to Erlang Mapping

/1 interface Access : O herMdul e:: Qherlnterface
interface Access {

/] ++ interface scope ++

/1l Types within this scope is accessible via:
/1 DB::Access::UserlD

[/l The Stub/Skeleton for this interface is
/Il placed in the nodul e:

/1 DB_Access. erl

typedef string<10> Userl D;

typedef string<10> Password;

/1 Since Administrator inherits from CommonUser
/] the returned Obj ect can be of either type.
/1 This operation is exported from

/1 DB_Access. erl

CommonUser | ogon(in UserID ID, in Password PW;

b
#endi f

Using underscores in IDL names can lead to ambiguities due to the name mapping described above. It is advisable
to avoid the use of underscores in identifiers. For example, the following definition would generate two structures
namedx_y_z.

modul e x {
struct y_z {
b
interface y {

struct z {

}s
}s

Generated Files
Several files can be generated for each scope.

« AnErlang source codefile (. er |) isgenerated for top level scope aswell as the Erlang header file.
* AnErlang header file (. hr |') will be generated for each scope. The header file will contain record definitions
foral struct,uni on and except i on typesin that scope.

e Modulesthat contain at least one constant definition, will produce Erlang source codefiles (. er |). That Erlang
filewill contain constant functions for that scope. Modules that contain no constant definitions are considered
empty and no code will be produced for them, but only for their included modul es/interfaces.

* Interfaceswill produce Erlang source codefiles (. er |), this code will contain all operation stub code and
implementation functions.

» Inaddition to the scope-related files, an Erlang source file will be generated for each definition of the types
struct,uni on and except i on (these are the types that will be represented in Erlang as records). Thisfile
will contain specia access functions for that record.

30 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

e Thetop level scope will produce two files, one header file (. hr |) and one Erlang sourcefile (. er |). These
filesare named asthe IDL file, prefixed with oe_.

After compiling DB.idl, the following files have been generated:

e o0e_DB. hrl andoe_DB. er| for thetop scope level.

e DB. hrl for the module DB.

e DB Access. hrl andDB_Access. er| fortheinterface DB_Access.

e DB _ComonUser. hrl and DB_ComonUser . er| fortheinterface DB CormonUser .

« DB Administrator. hrl andDB_Admi ni strator. erl fortheinterface DB_Admi ni st rat or.
DB _enpl oyee. er| for the structure enpl oyee in module DB.

Since the enpl oyee struct is defined in the top level scope, the Erlang record definition is found in
DB. hr | . IC aso generates stubs/skeletons (e.g. DB_ConmonUser . er |) and access functions for some datatypes
(e.g. DB_enpl oyee. erl). How the stubs/skeletons are used is thoroughly described in Subs/Skeletons and
Module_Interface.

1.6.8 Typecode, Identity and Name Access Functions

As mentioned in a previous section, st ruct , uni on and except i on types yield record definitions and access
code for that record. For st ruct, uni on, excepti on, arr ay and sequence types, a specia file is generated
that holds access functions for TypeCode, | dent i t y and Name. These functions are put in the file corresponding
to the scope where they are defined. For example, the module DB_enpl oyee. er |, representing the enpl oyee
struct, exports the following functions:

e tc/0 - returns the type code for the struct.

e id/O - returnsthe IFR identity of the struct. In this case the returned valueis" | DL: DB/ enpl oyee: 1. 0",
but if the struct was defined in the scope of ConmonUser , the result would be " | DL: DB/ CormonUser /
enpl oyee: 1. 0". However, the user usually do not need to know the Id, just which Erlang module contains
the correct Id.

« name/0 - returns the scoped name of the struct. The enpl oyee struct nameis" DB_enpl oyee".

Type codes give a compl ete description of the type including all its components and structure.are, for example, used
in Any values. Hence, we can encapsulate the enpl oyee struct in an any type by:

%% Erl ang code

1

AnEnpl oyee = #' DB_enpl oyee' {' No' ,
' "Adam | van Kendal | ",

Name' =
' Address' = "Rasunda, Sol na",
Dpt * = 'Departnentl'},

Enpl oyeeTC = ' DB_enpl oyee' :tc(),
Enpl oyeeAny = any: cr eat e(Enpl oyeeTC, AnEnpl oyee),

For more information, see the Type Code listing.

1.6.9 References to Constants

Constants are generated as Erlang functions, and are accessed by a single function call. The functions are put in the
file corresponding to the scope where they are defined. Thereisno need for an object to be started to access a constant.

Example:

Ericsson AB. All Rights Reserved.: orber | 31

1.6 OMG IDL to Erlang Mapping

[l midl
modul e m {
const float pi

1
w

.14,

interface i {
const float pi = 3.1415;

}s

Since the two constants are defined in different scopes, the IDL code above is vaid, but not necessarily a good
approach. After compilingm i dl , the constant definitions can be extracted by invoking:

$erlc midl

$ erlc merl

$ erl

Erl ang (BEAM emnul ator version 5.1.1 [threads: 0]

Eshell V5.1.1 (abort with *"Q
1> mpi ().

3.14

2> mi:pi().

3. 1415

3> halt().

1.6.10 References to Objects Defined in OMG IDL

Objects are accessed by object references. An object reference is an opagque Erlang term created and maintained by
the ORB.

Objects are implemented by providing implementations for all operations and attributes of the Object, see operation
implementation.

1.6.11 Exceptions

Exceptions are handled as Erlang catch and throws. Exceptions are translated to messages over an |1OP bridge but
converted back to athrow on the receiving side. Object implementations that invoke operations on other objects must
be aware of the possibility of a non-local return. This includes invocation of ORB and IFR services. See aso the
Exceptions section.

Exception parameters are mapped as an Erlang record and accessed as such.

An object implementation that raises an exception will use the cor ba: r ai se/ 1 function, passing the exception
record as parameter.

1.6.12 Access to Attributes

Attributes are accessed through their access functions. An attribute implicitly definesthe _get and _set operations.
These operations are handled in the same way as normal operations. The _get operation isdefined asar eadonl y
attribute.

readonly attribute long RAttri bute;
attribute |l ong RWAttri bute;

32| Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

The RAttri bute requires that you implement, in your call-back module, get RAttri bute. For the
RWAL t ri but e itisnecessary toimplement _get RWAttri buteand set RWAttri bute.

1.6.13 Invocations of Operations

A standard Erlang gen_ser ver behavior isused for object implementation. Thegen_ser ver stateisthen used as
the object internal state. Implementation of the object function is achieved by implementing its methods and attribute
operations. These functionswill usually havetheinternal state astheir first parameter, followed by any i n andi nout
parameters.

Do not confuse the object internal state with its object reference. The object internal state is an Erlang term which
has aformat defined by the user.

Note:

It isis not always the case that the internal state will be the first parameter, as stubs can use their own object
reference as the first parameter (see the |C documentation).

A function call will invoke an operation. Thefirst parameter of the function should be the object reference and then all
i nandi nout parametersfollow in the same order as specified in the IDL specification. The result will be a return
value unlessthefunction hasi nout or out parameters specified; in which case, atuple of the return value, followed
by the parameters will be returned.

Example:

/1 1DL
modul e m {
interface i {

readonly attribute long RAttri bute;
attribute long RMttri bute;
long foo(in short a);
long bar(in char c, inout string s, out |ong count);
voi d baz(out long Id);

Isusedin Erlang as :

%% Erl ang code

oj = ... %6 get obj ect reference
RAttr = mi:' get RAttribute' (bj),
RMitr = mi:' get RWAttribute' (Obj),

ok = m_i:':set_RV\Attribute'(Ooj, Long),
Rl = mi:foo(Ohj, 55),
{R2, S, Count} = mi:bar(Qbj, $a, "hello"),

Note how the i nout parameter is passed and returned. There is no way to use a single occurrence of a variable
for this in Erlang. Also note, that ok, Orber's representation of the IDL-type voi d, must be returned by baz and
' _set _RWAttri bute' . These operations can beimplemented in the call-back module as:

Ericsson AB. All Rights Reserved.: orber | 33

1.6 OMG IDL to Erlang Mapping

' _set _RWAttribute' (State, Long) ->
{reply, ok, State}.

'_get _RWAttribute' (State) ->
{reply, Long, State}.

'_get _RAttribute (State) ->
{reply, Long, State}.

foo(State, AShort) ->
{reply, ALong, State}.

bar (State, AShort, AString) ->
{reply, {ALong, "M/String", AlLong}, State}.

baz(State) ->
{reply, {ok, Ald}, State}.

The operations may require more arguments (depends on |1C options used). For more information, see Stubs/Skel etons
and Module_Interface.

Warning:

A function can also be defined to be oneway, i.e. asynchronous. But, since the behavior of a oneway operation
is not defined in the OMG specifications (i.e. the behavior can differ depending on which other ORB Orber is
communicating with), one should avoid using it.

1.6.14 Implementing the DB Application

Now we are ready to implement the call-back modules. There are three modules we must create;
 DB_Access impl.erl

 DB_CommonUser_impl.erl

o DB_Administrator_impl.erl

An easy way to accomplish that, is to use the IC backend er | _t enpl at e, which will generate a complete call-
back module. One should aso add the same compile options, for examplet hi s or f r om used when generating the
stub/skeleton modules:

$> erlc +"{be,erl _tenplate}" DB.idl

We begin with implementing the DB_Access_i npl . er| module, which, if weused er| _t enpl at e, will look
like the following. All we need to do isto add the logic to thel ogon operation.

%% <LI CENSE>
%o

9o $1 d$
9o

%6 Modul e : DB_Access_inpl.erl

34 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

%0
%06
%0
%0
%0
%0
%06

Sour ce / hore/ user / exanpl e/ DB. i dI
Descri pti on
Creation date: 2005-05-20

-nmodul e(* DB_Access_inpl').

-export ([l ogon/3]).

%0

I nternal Exports

-export([init/1,

term nate/ 2,
code_change/ 3,
handl e_i nfo/ 2]).

R e e
% | ncl ude Files
R e
R e e
%% Macr os
R e
R e e
%% Recor ds
R e
-record(state, {}).
[
%% APl Functi ons
7
R e
%% Functi on | ogon/ 3
%% Ar gument s State - term()
%6 ID = String()
%6 PW= String()
%% Ret ur ns Ret urnVal ue = OE_Reply
%6 CE_Reply = Obj ect _Ref ()
%% Rai ses
%% Descri ption:
R e e e
|l ogon(State, ID, PW ->
9% Check if the IDPWis valid and what
%Wotype of user it is (Comron or Adm nistrator).
CE_Reply
= case check_user (1D, PW of
{ok, admi nistrator} ->
' DB_Admi ni strator':oe_create();
{ok, common} ->
' DB_CommonUser ' : oe_create();
error ->
%% Here we shoul d throw an exception
corba:raise(....)
end,
{reply, OE Reply, State}.
[
%A | nt ernal Functi ons

Ericsson AB. All Rights Reserved.: orber | 35

1.6 OMG IDL to Erlang Mapping

[

R e I
%% Functi on Dinit/1

%6 Arguments : Env = term()

%% Ret ur ns . {ok, State} |

%% {ok, State, Tineout} |

%% i gnore |

%% {stop, Reason}

9% Rai ses Do

% Description: Initiates the server

R e

init(_Env) ->
{ok, #state{}}.

R
%% Functi on : terminate/2
%6 Arguments : Reason = nornal | shutdown | term()
%6 State = term()
%% Ret ur ns . ok
9% Rai ses Do
%% Descri ption: Invoked when the object is term nating.
R
term nat e(_Reason, _State) ->

ok.
R
%% Functi on . code_change/ 3
%6 Arguments @ A dVsn = undefined | term()
%6 State = NewState = term)
%% Extra = term)
%% Ret ur ns . {ok, Newstate}
9% Rai ses -
%% Descri ption: |Invoked when the object should update its internal state
%6 due to code repl acenment.
R
code_change(_O dVsn, State, _Extra) ->

{ok, State}.
R
%% Functi on . handl e_info/ 2
%6 Arguments @ Info = normal | shutdown | term()
%% State = NewState = term)
%% Ret ur ns . {noreply, NewState} |
%6 {noreply, NewState, Tineout} |
%% {stop, Reason, Newstat e}
%% Rai ses Do
%% Descri ption: Invoked when, for exanple, the server traps exits.
R

handl e_i nfo(_I nfo, State) ->
{noreply, State}.

Since DB_Adm ni strator inherits from DB_ConmmonUser , we must implement
del ete in the DB _Admi ni strator _inpl.erl module, and | ookup in
DB_Adni ni strator_i npl . erl andDB_ConmonUser _i npl . erl . But wait, is that really necessary?
Actually, it is not. We simple use the |C compile option impl:

$ erlc + {{inpl, "DB::CommonUser"}, "DBUser_inpl"}' + {{inpl, "DB::Adninistrator"}, "DBUser_inpl"

$ erlc *.erl

36 | Ericsson AB. All Rights Reserved.: orber

p

DB. i dl

1.6 OMG IDL to Erlang Mapping

Instead of creating, and not the least, maintaining two call-back modules, we only have to dea with
DBUser _i npl . erl . If we generated the templates, we simply rename DB_Admi ni strator _i npl . erl to
DBUser _i npl . er | . Seeaso the Exceptions chapter. In thefollowing example, only theimplementation of the AP
functions are shown:

%6
(4

%% APl Functi ons
%W

%% Functi on : delete/2

%6 Arguments : State - term()

%o ENo = unsi gned_Long()
%% Ret ur ns : ReturnVal ue = ok

%% Rai ses

%% Descri pti on:

del ete(State, ENo) ->
%% How we access the DB, for exanple mmesia, is not shown here.
case del et e_enpl oyee(No) of

ok ->
{reply, ok, State};
error ->

%% Here we should throw an exception if
%Whothere is no match.

corba:raise(....)
end.

R e
%% Functi on : | ookup/ 2
%6 Arguments : State - term()
%o ENo = unsi gned_Long()
%% Ret ur ns : ReturnVal ue = OE_Reply
%o CE_Reply = #' DB_enpl oyee' { No, Nane, Addr ess, Dpt }
%o No = unsi gned_Long()
%o Name = String()
%o Address = String()
%0 Dpt = Depart nent
%0 Departnent = 'Departnentl' | 'Departnment?2'
9% Rai ses
%% Descri ption:
R e

| ookup(State, ENo) ->
%% How we access the DB, for exanple mmesia, is not shown here.
case | ookup_enpl oyee(ENo) of
%6 W assune that we receive a 'DB_enpl oyee' struct
{ok, Enpl oyee} ->
CE_Reply = Enpl oyee,
{reply, OE Reply, State};
error ->
%% Here we should throw an exception if
%Whothere is no match.
corba:raise(....)
end.

After you have compiled both call-back modules, and implemented the missing functionality (e.g.
lookup_employee/1), we can test our application:

Ericsson AB. All Rights Reserved.: orber | 37

1.6 OMG IDL to Erlang Mapping

%% Erl ang code

%% Create an Access obj ect
Acc = 'DB_Access':oe_create(),

%hb Login is Common user and Admi ni strator
Adm = ' DB_Access': |l ogon(A, "admin", "pw'),
Com = ' DB_Access':logon(A, “"comi', "pw'),

%% Lookup exi sting enpl oyee
Enpl oyee = ' DB_Adnmini strator': | ookup(Adm 1),
Enpl oyee = ' DB_ConmonUser' : | ookup(Adm 1),

%Wolf we try the same using the DB_CommonUser interface
%bit result in an exit since that operation is not exported.
{"EXIT', _} = (catch 'DB_CommonUser"':del ete(Adm 1)),

%6 Try to del ete the enpl oyee via the CommpnUser Obj ect
{'EXCEPTION', _} = (catch 'DB_Administrator':delete(Com 1)),

%% | nvoke del ete operation on the Adninistrator object
ok = 'DB_Admi nistrator':del ete(Adm 1),

1.6.15 Reserved Compiler Names and Keywords

The use of some names is strongly discouraged due to ambiguities. However, the use of some names is prohibited
when using the Erlang mapping , asthey are strictly reserved for IC.

IC reserves dl identifiers starting with OE_ and oe__ for internal use.

Note also, that an identifier in IDL can contain aphabetic, digits and underscore characters, but the first character
must be a phabetic.

The OMG defines a set of reserved words, shown below, for use as keywords. These may not be used as, for example,
identifiers. The keywords which are not in bold face was introduced in the OMG CORBA-3.0 specification.

abstract exception inout provides truncatable
any emits interface public typedef
attribute enum local publishes typeid
boolean eventtype long raises typeprefix
case factory module readonly unsigned
char FALSE multiple setraises union
component finder native sequence uses

const fixed Object short ValueBase
consumes float octet string valuetype
context getraises oneway struct void

38| Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

custom home out supports wchar
default import primarykey switch wstring
double in private TRUE

Table 6.4: OMG IDL keywords

The keywords listed above must be written exactly as shown. Any usage of identifiers that collide with a keyword
isillegal. For example, long is a valid keyword; Long and LONG are illegal as keywords and identifiers. But, since
the OMG must be able to expand the IDL grammar, it is possible to use Escaped Identifiers. For example, it is not
unlikely that nat i ve have been used in IDL-specifications as identifiers. One option is to change all occurrences
tomyNat i ve. Usually, it is necessary to change programming language code that depends upon that IDL as well.
Since Escaped Identifiers just disable type checking (i.e. if it is a reserved word or not) and leaves everything else
unchanged, it is only necessary to update the IDL-specification. To escape an identifier, simply prefix it with _. The
following IDL-codeisillegal:

typedef string native;
interface i {
void foo(in native Arg);
iE
iE

With Escaped Identifiers the code will look like:

typedef string _native;
interface i {
void foo(in _native Arg);
Jit
¢

1.6.16 Type Code Representation

Type Codes are used in any values. To avoid mistakes, you should use access functions exported by the Data Types
modules (e.g. struct, union etc) or the orber_tc module.

Type Code Example

tk_null

tk_void

tk_short

tk_long

tk_longlong

Ericsson AB. All Rights Reserved.: orber | 39

1.6 OMG IDL to Erlang Mapping

tk_ushort

tk_ulong

tk_ulonglong

tk_float

tk_double

tk_boolean

tk_char

tk_wchar

tk_octet

tk_any

tk_TypeCode

tk_Principal

{tk_objref, IFRId, Name}

{tk_objref, "IDL:M1\I1:1.0", "11"}

{tk_struct, IFRId, Name, [{ ElemName, ElemTC}]}

{tk_struct, "IDL:M1\S1:1.0", "S1", [{"a", tk_long},
{"b", tk_char}]}

{tk_union, IFRId, Name, DiscrTC, DefaultNr, [{ Label,
ElemName, ElemTC}]}

Note: DefaultNr tells which of tuplesin the case list that
is default, or -1 if no default

{tk_union, "IDL:U1:1.0","U1", tk_long, 1, [{1, "a",
tk_long}, { default, "b", tk_char}]}

{tk_enum, IFRId, Name, [ElemName]}

{tk_enum, "IDL:E1:1.0", "E1", ["al", "a2"]}

{tk_string, Length} {tk_string, 5}
{tk_wstring, Length} {tk_wstring, 7}
{tk_fixed, Digits, Scal€} {tk_fixed, 3, 2}

{tk_sequence, ElemTC, Length}

{tk_sequence, tk_long, 4}

{tk_array, ElemTC, Length}

{tk_array, tk_char, 9}

{tk_dlias, IFRId, Name, TC}

{tk_alias, "IDL:T1:1.0", "T1", tk_short}

{tk_except, IFRId, Name, [{ ElemName, ElemTC}]}

{tk_except, "IDL:ExcL:1.0", "Excl", [{"a", tk_long},
{"b", {tk_string, 0}}1}

Table 6.5: Type Code tuples

40 | Ericsson AB. All Rights Reserved.: orber

1.7 CosNaming Service

1.7 CosNaming Service

1.7.1 Overview of the CosNaming Service

The CosNaming Service is a service developed to help users and programmers identify objects by human readable
names rather than by a reference. By binding a name to a naming context (another object), a contextual reference is
formed. This is helpful when navigating in the object space. In addition, identifying objects by name alows you to
evolve and/or relocate objects without client code modification.

The CosNaming service has some concepts that are important:

e name binding - a name to object association.

* naming context - isan object that contains a set of name bindings in which each name is unique. Different names
can be bound to the same object.

e tobind a name - isto create a name binding in a given context.

* toresolve a name - isto determine the object associated with the name in a given context.

A name is always resolved in a context, there no absolute names exist. Because a context is like any other object, it
can aso be bound to a name in a naming context. Thiswill result in a naming graph (a directed graph with notes and
labeled edges). The graph allows more complex names to refer to an object. Given a context, you can use a sequence
to reference an object. This sequence is henceforth referred to as name and the individual elementsin the sequence as
name components. All but the last name component are bound to naming contexts.

The diagram in figure 1 illustrates how the Naming Service provides a contextual relationship between objects,
NamingContexts and NameBindings to create an object locality, as the object itself, has no name.

Marming Crmtest O Object
R

—— NameBinding | ! Naming Service

Figure 7.1: Figure 1: Contextual object relationships using the Naming Service.

Ericsson AB. All Rights Reserved.: orber | 41

1.7 CosNaming Service

The naming contexts provide adirectory of contextual reference and naming for objects (an object can appear to have
more than one name).

In figure 1 the abject to the right can either be called al pha from one context or ganma from another.

The Naming Service hasan initial naming context, which is shown in the diagram as the top-most object in the naming
graph. It hastwo namesbet a and epsi | on, which are bound to other naming contexts. Theinitial naming context is
awell known location used to share acommon name space between multiple programs. Y ou can traverse the naming
graph until you reach a name, which is bound to an object, which is not a naming context.

We recommend reading chapter 12, CORBA Fundamentals and Programming, for detailed information regarding the
Naming Service.

1.7.2 The Basic Use-cases of the Naming Service

The basic use-cases of the Naming Service are:

e Fetchinitia reference to the naming service.
e Creating a naming context.

» Binding and unbinding names to objects.

* Resolving aname to an object.

» Listing the bindings of a naming context.

e Destroying a naming context.

Fetch Initial Reference to the Naming Service

In order to use the naming service you have to fetch an initial referenceto it. Thisis done with:

NS = corba:resolve_initial _references("NameService").

Note:

NS in the other use-cases refers to thisinitial reference.

Creating a Naming Context

Therearetwo functionsfor creating anaming context. Thefirst function, which only createsanaming context objectis:
NC = ' CosNam ng_Nami ngCont ext ' : new_cont ext (NS) .

The other function creates a naming context and binds it to a name in an already existing naming context (the initial
context in this example):

NC = ' CosNam ng_Nami ngCont ext ' : bi nd_new_cont ext (NS, | nanme: newm(["new'])).

42 | Ericsson AB. All Rights Reserved.: orber

1.7 CosNaming Service

Binding and Unbinding Names to Objects

Thefollowing stepsillustrate how to bind/unbind an object reference to/from aname. For the example below, assume
that the NamingContexts in the path are already bound to the name / wor kgr oup/ ser vi ces, and that reference
to the services context are in the variable Sc.

e Usethe naming library functions to create a name

Nane = | nane: new(["object"]).

e Use CosNaming::NamingContext::bind() to bind a name to an object

' CosNami ng_Nami ngCont ext ' : bi nd(Sc, Nane, Object).

e Use CosNaming::NamingContext::unbind() to remove the NameBinding from an object

' CosNani ng_Nani ngCont ext ' : unbi nd(Sc, Nane).

Note:

Objects can have more than one name, to indicate different paths to the same object.

Resolving a Name to an Object
The following steps show how to retrieve the object reference to the service context above (/workgroup/services).

e Usethe naming library functionsto create a name path:

Name = | name: new([" wor kgr oup", "services"]).

e Use CosNaming::NamingContext::resolve() to to resolve the name to an object
Sc = ' CosNami ng_Nam ngCont ext' :resol ve(NS, Nane).
An alternative isto use:

Sc = corba:string_to_object("corbanane:rir:/NanmeServi ce#wor kgr oup/ servi ces/").

The cor banane schemais described further in the Interoperable Naming Service section.

Ericsson AB. All Rights Reserved.: orber | 43

1.7 CosNaming Service

Listing the Bindings in a NamingContext
e Use CosNaming::NamingContext::list() to list all the bindingsin a context
The following code retrieves and lists up to 10 bindings from a context.

{BList, Blterator} = 'CosNam ng_Nam ngContext':list(Sc, 10).
lists:foreach(fun({{ld, Kind},BindingType}) -> case Bindi ngType of
nobj ect ->
io:format("id: %, kind: %, type: object~n", [Id, Kind]);
->
io:format("id: %, kind: %, type: ncontext~n", [Id, Kind])
end end,
Blist).

Note:

Normally aThe binding iterator (Like abook mark) indicateswhich objects have been read from thelist.is hel pful
in situations where you have a large number of objects in a list, as the programmer then can traverse it more
easily. In Erlang it is not needed, because lists are easily handled in the language itself.

Warning:

Remember that the Bindinglterator (Blterator in the example) is an object and therefore must be removed
otherwise dangling processes will occur. Use CosNami ng: : Bi ndi ngl t erat or: : destroy() toremove
it.

' CosNami ng_Nani ngCont ext ' : destroy(Blterator).

Destroying a Naming Context

The naming contexts are persistent and must be explicitly removed. (they are a'so removed if al Orber nodes in the
domain are stopped).

» Use CosNaming::NamingContext::destroy() to remove a NamingContext

' CosNani ng_Nami ngCont ext ' : destroy(Sc) .

1.7.3 Interoperable Naming Service

The OMG specifies URL schemes, which represent aCORBA object and aCORBA object bound in aNamingContext,
for resolving references from other ORB:s. As of today, three schemes are defined:

« IOR
e corbaloc

44 | Ericsson AB. All Rights Reserved.: orber

1.7 CosNaming Service

e corbaname

IOR

A stringified IOR isavalid URL format but difficult for humans to handle through non-electronic means. This URL
format does not depend on a specific Name Service and, thus, is robust and insulates the client from the encapsul ated
transport information and object key used to reference the object.

corbaloc

The notation of this schemeis similar to the more well known URL HTTP, and the full cor bal oc BNFis:

<cor bal oc>

<obj _addr_|ist>
<obj _addr >

<pr ot _addr >
<rir_prot_addr>
<rir_prot_token>
<future_prot_addr>
<future_prot_id>
<i i op_prot_addr>
<iiop_id>
<iiop_defaul t>

<i i op_prot_token>
<i i op_addr>

"corbal oc: "<obj _addr_list>["/"<key_string>]
[<obj _addr>", "] *<obj _addr >

<prot_addr> | <future_prot_addr>
<rir_prot_addr> | <iiop_prot_addr>
<rir_prot_token>":"

rir

<future_prot_id><future_prot_addr>
<future_prot_token>":"

<iiop_id><iiop_addr>

<iiop_default> | <iiop_prot_token>":"

"iiop"
<ver si on><host >[": " <port >]

<host > DNS-styl e Host Nane | ip_address
<versi on> <mgjor>"."<mnor>"@ | enpty_string
<port > nunber

<maj or > nunber

<m nor > nunber

<key_string> for exanpl e NaneService

The cor bal oc scheme consists of 3 parts:

e Protocol - asof today i i op orri r issupported. Using ri r meansthat we will resolve the given Key locally,
i.e,thesameasusingcor ba: resol ve_initial _references("NameService").

* |IOP address - this address can be divided into Ver si on, Host and Por t . If the version or port are left out
they will be set to the default values 1. 0 and 2809 respectively.

« KeyString - an object key, e.g., "NameService'. If no Key is supplied the default value "NameService" will be
used.

A cor bal oc can be passed used together with
corba:string_to_object("corbal oc::1.0@rl ang. org: 4001/ NaneService") o st as
the configuration variables orblnitil Ref or orbDefaul tlnitil Ref and calling
corba:resolve_initial _references("NanmeService"). For more information see the Orber
installation chapter. cor bal oc can also be used together with cor banane to gain an easy accessto aName Service.

Currently, the OMG defines a set of reserved keys and the type of object, listed below, they should be associated
with. The NaneSer vi ce key may not be changed in Orber. If you want to add one of the reserved keys as an initial
service, simply use:

1> Factory = cosNotificationApp:start_global _factory().
2> corba:add_initial _service("NotificationService", Factory).

This object can then be easily resolved by any other ORB, supporting the Interoperable Naming Service, by using:

Ericsson AB. All Rights Reserved.: orber | 45

1.7 CosNaming Service

3> NF = corba:string_to_object("corbal oc::1.0@rl| ang. org: 4001/ Noti fi cati onServi ce").

Sring Name Object Type
RootPOA PortableServer::POA
POA Current PortableServer::Current
InterfaceRepository CORBA::Repository
NameService CosNaming::NamingContext
TradingService CosTrading::Lookup
SecurityCurrent SecurityL evel 1::Current/SecurityL evel 2::Current

TransactionCurrent

CosTransaction::Current

DynAnyFactory

DynamicAny::DynAnyFactory

ORBPolicyManager

CORBA::PolicyManager

PolicyCurrent

CORBA::PolicyCurrent

NotificationService

CosNotifyChannel Admin::EventChannel Factory

TypedNoatificationService

CosTypedNotifyChannel Admin:: TypedEventChannel Fag

tory

CodecFactory

| OP::CodecFactory

PlCurrent

Portabl el nterceptors.:Current

Table 7.1: Currently reserved key strings

corbaname

Thecor bananme URL schemeis an extension of the cor bal oc scheme, and the full cor banane BNF is:

<cor banane>
<obj _addr _|ist>
<key_string>

as descri bed above.
as descri bed above.

"corbanane: "<obj _addr_list>["/"<key_string>]["#"<string_name>]

The string_nane, concatenated to the cor bal oc string, identifies a binding in a naming context. A name
component consists of two parts, i.e., i d and ki nd, which is represented as follows:

Sring Name

Name Sequence Comment

46 | Ericsson AB. All Rights Reserved.: orber

1.7 CosNaming Service

The first component has no
"id1/./id3.kind3" [{"ida", "} {"",""}.,{"id3","kind3"}] | kind defined while the second
component's both fields are empty.

Not allowed, mustinsert a".'

"id1//id3.kind3" ERROR between the /.

The first component's fields are both
"id1.kindl/." [{"id1","kind1"} ,{"",""}] set while the second component's
both fields are empty.

Anld with atrailing '." is not

idl.kindl/id2. ERROR allowed.

Since'." and '/ are used to separate
"\Vdv/i\.d2" [{"i/d1",""} {"i.d2",""}] the components, these tokens must
be escaped to be correctly converted.

Table 7.2: Stringified Name representation

After creating a stringified Name we can either use:

NaneStr = "org. erlang",
NS = corba:resolve_initial_references("NanmeService"),
oj = ' CosNam ng_Nam ngCont ext Ext' : resol ve_str (NS, NameStr),

or concatenate the Name String using:

NameStr = " Swedi sh/ Soccer/ Chanpi ons",

Address = "corbanane:iiop: 1. 0@ww. ai k. se: 2000/ NaneSer vi ce",

NS = corba:resolve_initial _references("NameService"),

URLStr = ' CosNanmi ng_Nami ngContext Ext':to_url (NS, Address, NameStr),
bj = corba:string_to_object(URLStr),

Using the first aternative, the configuration variables or bl ni ti | Ref and orbDefaul tinitil Ref, will
determine which other ORB's or the local Name Service Orber will try to resolve the given string from. The second
aternative alows us to override any settings of the configuration variables.

The function to_url /3 will perform any necessary escapes compliant with IETF/RFC 2396. US-ASCII
dphanumeric charactersand ™, " | /" | ":" | "?" | "@ | "&" | "=" | "+ | "$" | ;" |
Sl p Lt e o (]) " arenot escaped.

Ericsson AB. All Rights Reserved.: orber | 47

1.8 How to use security in Orber

1.8 How to use security in Orber

1.8.1 Security in Orber

Introduction

Orber SSL provides authentication, privacy and integrity for your Erlang applications. Based on the Secure Sockets
Layer protocol, the Orber SSL ensuresthat your Orber clientsand servers can communicate securely over any network.
Thisisdone by tunneling I1OP through an SSL connection. To get the node secure you will also need to have afirewall
which only lets through connections to certain ports.

Enable Usage of Secure Connections

To enable a secure Orber domain you have to set the configuration variable secure which currently only can have one
of two values; no if no security for 11OP should be used and sdl if secure connections is needed (sdl is currently the
only supported security mechanism).

The default is no security.

Configurations when Orber is Used on the Server Side

The following three configuration variables can be used to configure Orber's SSL behavior on the server side.

* sd_server_certfile- which isapath to afile containing a chain of PEM encoded certificates for the Orber
domain as server.

» sd_server_cacertfile - which is apath to afile containing a chain of PEM encoded certificates for the Orber
domain as server.

e sd_server verify - which specifies type of verification: 0 = do not verify peer; 1 = verify peer, verify client
once, 2 = verify peer, verify client once, fail if no peer certificate. The default valueis 0.

» sd_server_depth - which specifies verification depth, i.e. how far in achain of certificates the verification
process shall proceed before the verification is considered successful. The default valueis 1.

» sd_server_keyfile - which isapath to afile containing a PEM encoded key for the Orber domain as server.
e sd_server_password - only used if the private keyfile is password protected.

» sd_server_ciphers- whichisstring of ciphers as a colon separated list of ciphers.

e ss_server_cachetimeout - which is the session cache timeout in seconds.

There also exist anumber of API functions for accessing the values of these variables:

e orber:sd_server certfile/O

e orber:ss_server_cacertfile/O

e orber:ssd_server verify/O

e orber:sd_server depth/O

e orber:sd_server keyfile/O

e orber:sd_server password/O

e orber:sd_server_ciphers/O

o orber:sdl_server_cachetimeout/O

Configurations when Orber is Used on the Client Side

When the Orber enabled application is the client side in the secure connection the different configurations can be set
per client process instead and not for the whole domain as for incoming calls.

One can use configuration variables to set default values for the domain but they can be changed per client process.
Below isthelist of client configuration variables.

48 | Ericsson AB. All Rights Reserved.: orber

1.9 Orber Stubs/Skeletons

« sd _client_certfile- which is apath to afile containing a chain of PEM encoded certificates used in outgoing
callsin the current process.

» sd_client_cacertfile - which is a path to afile containing a chain of PEM encoded CA certificates used in
outgoing callsin the current process.

« sd_client_verify - which specifies type of verification: 0 = do not verify peer; 1 = verify peer, verify client once,
2 = verify peer, verify client once, fail if no peer certificate. The default valueisO.

» sd_client_depth - which specifies verification depth, i.e. how far in achain of certificates the verification
process shall proceed before the verification is considered successful. The default valueis 1.

» sd_client_keyfile - which isa path to afile containing a PEM encoded key when Orber act as client side ORB.
e sd_client_password - only used if the private keyfile is password protected.

» sd_client_ciphers- whichis string of ciphers as a colon separated list of ciphers.

« sd_client_cachetimeout - which is the session cache timeout in seconds.

There aso exist a number of API functions for accessing and changing the values of this variables in the client
processes.

Access functions:

e orber:sd_client_certfile/O

e orber:sd_client_cacertfile/O

e orber:sd_client_verify/O

e orber:sd_client_depth/0

e orber:sd_client_keyfile/O

e orber:sd_client_password/O

e orber:sd_client_ciphers0

e orber:sd_client_cachetimeout/O
Modify functions:

e orber:set sd_client_certfile/1

e orber:set sd_client_cacertfile/1
e orber:set sd_client_verify/l

e orber:set_sd_client_depth/1

1.9 Orber Stubs/Skeletons

1.9.1 Orber Stubs and Skeletons Description
This example describes the APl and behavior of Orber stubs and skeletons.

Server Start

Orber servers can be started in several ways. The chosen start functions determines how the server can be accessed
and its behavior.

Using Modul e_I nterface: oe _create() oroe_create |ink():

* Noinitial data can be passed.
e Cannot be used as a supervisor child start function.

« Only accessible through the object reference returned by the start function. The object reference is no longer
valid if the server dies and is restarted.

Using Modul e_I nterface: oe_create(Env) oroe_create_|ink(Env):

Ericsson AB. All Rights Reserved.: orber | 49

1.9 Orber Stubs/Skeletons

Initial data can be passed using Env.
Cannot be used as a supervisor child start function.

Only accessible through the object reference returned by the start function. The object reference is no longer
valid if the server dies and isrestarted.

Using Modul e_I nterface: oe_create(Env, Options):

Initial data can be passed using Env.

Cannot be used as a supervisor child start function.

Accessible through the object reference returned by the start function. If the option { r egnanme, RegNane}
is used the object reference stays valid even if the server has been restarted.

If theoptions{ per si stent, true} and{regname, {global, Nane}} isused, theresult froman
object invocation will be the exception 'OBJECT_NOT_EXIST" only if the object has terminated with reason
nor mal or shut down. If the object isin the process of restarting, the result will be{ error, Reason} or
a system exception is raised.

Theoption{ pseudo, true} makesit possible to start create non-server objects. There are, however, some
limitations, which are further described in the Pseudo obj ect s section.

Using Modul e_I nterface: oe_create_link(Env, Options):

Initial data can be passed using Env.
Can be used as a supervisor child start function if the option{ sup_chi | d, true} used.

Accessible through the object reference returned by the start function. If the option { r egnane, RegNane}
is used the object reference stays valid even if the server has been restarted.

If theoptions{ per si stent, true} and{regname, {global, Nane}} isused, theresult froman
object invocation will be the exception 'OBJECT_NOT_EXIST" only if the object has terminated with reason
nor mal or shut down. If the object isin the process of restarting, the result will be{ error, Reason} or
a system exception is raised.

For starting a server as a supervisor child you should use the options[{ per si stent, true},
{regnane, {global, Nane}}, {sup_child, true}] andof typetransient. Thisconfiguration
allows you to delegate restarts to the supervisor and still be able to use the same object reference and be able to
seeif the server is permanently terminated. Please note you must use supervisor/stdlib-1.7 or later and that the it
returns{ ok, Pid, Object} instead of just Obj ect .

Using the option { pseudo, true} havethe sameeffect asusing oe_cr eat e/ 2.

Warning:

To avoid flooding Orber with old object references start erlang using the flag -orber objectkeys gc_time Time,
which will remove all object referencesrelated to servers being dead for Time seconds. To avoid extra overhead,
i.e., performing garbage collect if no persistent objectsare started, the objectkeys gc_timedefault valueisinfinity.
For more information, see the orber and corba documentation.

Warning:

Orber dtill allow oe_creat e(Env, {Type, RegNane}) and oe_create |ink(Env,
{Type, RegNane}) to be used, but may not in future releases.

50 | Ericsson AB. All Rights Reserved.: orber

1.9 Orber Stubs/Skeletons

Pseudo Objects
This section describes Orber pseudo objects.

The Orber stub can be used to start apseudo obj ect , which will create a non-server implementation. A pseudo
object introduce some limitations:

e« Thefunctionsoe_create |ink/2isequa tooe_create/ 2,i.e, nolink canor will be created.

e TheBlF:s self() andprocess_flag(trap_exit,true) behavesincorrectly.

e Thel Coption{{inmpl, "M:I"}, "other _inpl"} hasno effect. The cal-back functions must be
implemented in afilecalledM | _i nmpl . er |

* The call-back functions must be implemented asif thel Coption{t hi s, "M : 1"} wasused.

» Thegen server St at e changes have no effect. The user can provide information viathe Env start parameter
and the State returned fromi ni t / 2 will be the State passed in following invocations.

e Theserver reply Ti meout hasno effect.

* Thecompile option f r omhas no effect.

e« Theoption{pseudo, true} overridesal other start options.

e Only the functions, besides own definitions, i ni t / 2 (called viaoe _create*/2) andt er m nat e/ 2 (caled via
corba:dispose/1) must be implemented.

By adopting therulesfor pseudo objects described abovewe canuseoe_cr eat e/ 2 tocreateser ver orpseudo
objects, by excluding or including the option { pseudo, true}, without changing the call-back module.

To create a pseudo object do the following:

fingol fin 127> erl
Erl ang (BEAM enul ator version 4.9

Eshell V4.9 (abort with ~"QG

1> ic:gen(nyDefinition, [{this, "M/Mdule:: Wlnterface"}]).

Erlang I DL conpiler version 20

ok

2> make:all ().

Reconpi | e: oe_MyDefinition

Reconpi | e: MyMbdul e_M/I nterface

Reconpi | e: MyModul e_MyI nt er face_i npl

up_to_date

3> PseudoObj = MyModul e_Myl nterface: oe_create(Env, [{pseudo, true}]).

The call-back functions must be implemented as MyFuncti on(OE_THI' S, State, Args), and caled by
MyModul e_ Myl nterface: MyFuncti on(Pseudobj, Args).

Call-back Module

This section provides an example of how a call-back module may be implemented.

Note:

Arguments and Replies are determined by the IDL-code and, hence, not further described here.

%o File : Modul e_I nterface_inpl.erl

Ericsson AB. All Rights Reserved.: orber | 51

1.9 Orber Stubs/Skeletons

%86 Aut hor
%8 Pur pose :
%86 Created :

W -------------- INCLUDES --------------ccccooooooooaaaananoo
-include_l'i b("orber/include/corba. hrl").

-include_lib(".. ..").

W -------------- EXPORTS------------cococccecccceea oo

%6 Arity depends on | C configuration paraneters and the | DL
%% speci fication.
-export ([own_function/X]).

Wo-------------- gen_server specific -----------------------o
-export([init/1, term nate/2, code_change/3, handl e_info/2]).

init(lnitial Data) ->
%6 'trap_exit' optional (have no effect if pseudo object).
process_flag(trap_exit,true),

%k -- Possible replies ---
%6 Reply and await next request
{ok, State}.

%6 Reply and if no nore requests within Tine the special

%6 ti meout message shoul d be handled in the

%% Modul e_I nterface_i npl : handl e_i nfo/2 cal | - back function (use the
%61 C option {{handl e_info, "Mdule::Interface"}, true}).

{ok, State, Tineout}

%6 Return ignore in order to informthe parent, especially if it is a
%k supervi sor, that the server, as an exanple, did not start in

%% accordance with the configuration data.

i gnore

%o lf the initializing procedure fails, the reason

%6is supplied as StopReason.

{stop, StopReason}

term nat e(Reason, State) ->
ok.

code_change(d dVsn, State, Extra) ->
{ok, NewState}.

%61 f use I C option {{handl e_info, "Mdule::Interface"}, true}.
%% (have no effect if pseudo object).
handl e_i nfo(Info, State) ->

%k -- Possible replies ---

%6 Awai t the next invocation.

{noreply, State}.

%6 Stop with Reason.

{stop, Reason, State}.

Wb -- TWO-WAY ------------oomoomoom oo
%6 1f use I1C option {this, "Mdule:lnterface"}

%% (Required for pseudo objects)

own_function(This, State, .. Argunments ..) ->

%61 C options this and from

52 | Ericsson AB. All Rights Reserved.: orber

1.10 CORBA System and User Defined Exceptions

own_function(This, From State, .. Argunments ..) ->
%% 1 C option from
own_function(From State, .. Arguments ..) ->

%6 Send explicit reply to client.
corba:reply(From Reply),

%k -- Possible replies ---
{noreply, State}

{noreply, State, Tineout}

%61 f not use IC option {this, "Mdule:lnterface"}
own_function(State, .. Argunents ..) ->

%k -- Possible replies ---

%6 Reply and await next request

{reply, Reply, State}

%6 Reply and if no nore requests within Tine the special

%6 ti meout nmessage shoul d be handled in the

%% Modul e_I nterface_i npl : handl e_i nfo/ 2 cal | -back function (use the
%61 C option {{handl e_info, "Mdule::Interface"}, true}).

{reply, Reply, State, Ti meout}

%6 Stop the server and send Reply to invoking object.
{stop, StopReason, Reply, State}

%% Stop the server and send no reply to invoking object.
{stop, StopReason, State}

%% Rai se exception. Any changes to the internal State is |ost.
cor ba: rai se(Excepti on).

16 o] 1 R = A e e e e e e S S s
%6 lf use I1C option {this, "Mdule:lnterface"}

%% (Required for pseudo objects)

own_function(This, State, .. Arguments ..) ->

%61 f not use IC option {this, "Mdule:lnterface"}
own_function(State, .. Argunents ..) ->
%% -- Possible results ---
{noreply, State}
%% Rel ease and if no nore requests within Time the special
%6 ti meout nmessage shoul d be handled in the
%% Modul e_I nterface_i npl : handl e_i nfo/2 cal | -back function (use the
%6 |1C option {{handl e_info, "Mdule::Interface"}, true}).
{noreply, State, Tineout}

%6 Stop the server with StopReason.
{stop, StopReason, State}

O - - - m e END @2 WEBULE crcommaomoeanmmo oo anno-annao o

1.10 CORBA System and User Defined Exceptions

1.10.1 System Exceptions

O ber, or any other ORB, may raise a Syst em Except i ons. These exceptions contain status- and minor-fields
and may not appear in the operations rai ses exception IDL-definition.

Ericsson AB. All Rights Reserved.: orber | 53

1.10 CORBA System and User Defined Exceptions

Status Field

The statusfield indicates if the request was completed or not and will be assigned one of the following Erlang atoms:

Satus Description

The operation was invoked on the target object but

an error occurred after the object replied. This occur,
for example, if a server replies but Orber isnot able to
marshal and send the reply to the client ORB.

'COMPLETED_YES

Orber failed to invoke the operation on the target object.

COMPLETED_NO This occur, for example, if the object no longer exists.

Orber invoked the operation on the target object but
'COMPLETED_MAYBE' an error occurred and it isimpossible to decide if the
request really reached the object or not.

Table 10.1: System Exceptions Status

Minor Field

The minor field contains an integer (VMCID), which is related to a more specific reason why an invocation failed.
Thefunction or ber : except i on_i nf o/ 1 can be used to map the minor code to a string. Note, for VMCID:s not
assigned by the OMG or Orber, the documentation for that particular ORB must be consulted.

Supported System Exceptions
The OMG CORBA specification defines the following exceptions:

« 'BAD_CONTEXT - if areguest does not contain a correct context this exception is raised.

* 'BAD_INV_ORDER - this exception indicates that operations has been invoked operations in the wrong order,
which would cause, for example, a dead-1ock.

 'BAD_OPERATION' - raised if the target object exists, but that the invoked operation is not supported.
* 'BAD_PARAM' - isthrown if, for example, a parameter is out of range or otherwise considered illegal.

 'BAD_TYPECODE - if illegal type codeis passed, for example, encapsulated in an any data type the
' BAD_TYPECODE' exception will be raised.

« 'BAD_QOS - raised whenever an object cannot support the required quality of service.

* 'CODESET_INCOMPATIBLE' - raised if two ORB's cannot communicate due to different representation of, for
example, char and/or wchar .

e 'COMM_FAILURE' - raised if an ORB is unable to setup communication or it islost while an operationisin
progress.

 'DATA CONVERSON' - raised if an ORB cannot convert data received to the native representation. See also
the' CODESET_| NCOVPATI BLE' exception.

 'FREE_MEM' - the ORB failed to free dynamic memory and failed.

e 'IMP_LIMIT - an implementation limit was exceeded in the ORB at run time. A object factory may, for
example, limit the number of object clients are allowed to create.

* 'INTERNAL' - aninterna failure occurred in an ORB, which is unrecognized. Y ou may consider contacting the
ORB providers support.

e 'INTF_REPOS - the ORB was not able to reach the interface repository, or some other failure relating to the
interface repository is detected.

54 | Ericsson AB. All Rights Reserved.: orber

1.10 CORBA System and User Defined Exceptions

'INITIALIZE' - the ORB initialization failed due to, for example, network or configuration error.
'INVALID_TRANSACTION' - israised if the request carried an invalid transaction context.

'INV_FLAG' - an invalid flag was passed to an operation, which caused, for example, a connection to be closed.
'INV_IDENT" - this exception indicates that an IDL identifier isincorrect.

'INV_OBJREF' - this exception is raised if an object referenceis malformed or anil reference (see also
corba:create nil_objref/0).

'INV_POLICY - the invocation cannot be made due to an incompatibility between policy overrides that apply to
the particular invocation.

'MARSHAL' - this exception may be raised by the client- or server-side when either ORB is unable to marshal/
unmarshal requests or replies.

'NO_IMPLEMENT - if the operation exists but no implementation exists, this exception is raised.
'NO_MEMORY" - the ORB has run out of memory.

'NO_PERMISSION' - the caller has insufficient privileges, such as, for example, bad SSL certificate.
'NO_RESOURCES - ageneral platform resource limit exceeded.

'NO_RESPONSE' - no response available of adeferred synchronous request.

'OBJ_ADAPTER - indicates administrative mismatch; the object adapter is not able to associate an object with
the implementation repository.

'OBJECT_NOT_EXIST' - the object have been disposed or terminated; clients should remove all copies of the
object reference and initiate desired recovery process.

'PERSIST_STORE' - the ORB was not able to establish a connection to its persistent storage or data contained
in the the storage is corrupted.

'REBIND' - arequest resulted in, for example, a' LOCATI ON_FORWARD' message; if the policies are
incompatible this exception is raised.

'TIMEOUT - raised if arequest fail to complete within the given time-limit.

"TRANSACTION_MODE' - atransaction policy mismatch detected.

'TRANSACTION_REQUIRED' - atransaction is required for the invoked operation but the request contained no
transaction context.

"TRANSACTION_ROLLEDBACK' - the transaction associated with the request has already been rolled back or
will be.

"TRANSACTION_UNAVAILABLE' - no transaction context can be supplied since the ORB is unable to contact
the Transaction Service.

'TRANSIENT" - the ORB could not determine the current status of an object since it could not be reached. The
error may be temporary.

'UNKNOWN' - isthrown if an implementation throws a non-CORBA, or unrecognized, exception.

1.10.2 User Defined Exceptions

User exceptions is defined in IDL-files and is listed in operations raises exception listing. For example, if we have
the following IDL code:

modul e MyModul e {

excepti on MyException {};
excepti on MyExceptionMsg { string Extralnfo; };

interface Myl nterface {

voi d foo()

Ericsson AB. All Rights Reserved.: orber | 55

1.10 CORBA System and User Defined Exceptions

rai ses(MyExcepti on);

voi d bar ()
rai ses(M/Excepti on, MyExcepti onMsg);

voi d baz();
IE
IE

1.10.3 Throwing Exceptions

To be able to raise MyExcept i on or MyExcept i onMsg exceptions, the generated MyModul e. hrl must be
included, and typical usageis:

-modul e(* MyModul e_MyInterface_inpl').
-include("M/Mdul e. hrl").

bar(State) ->
case TestingSonet hi ng of
ok ->
{reply, ok, State};
{error, Reason} when |ist(Reason) ->
cor ba: rai se(# MyModul e_M/Excepti onMsg' {' Extral nfo' = Reason});
error ->
corba: rai se(# M/Mdul e_M/Exception'{})
end.

1.10.4 Catching Exceptions
Depending on which operation we invoke we must be able to handle:

» foo- MyExcepti on or asystem exception.

e bar- MyExcepti on, MyExcept i onMsg or asystem exception.
* baz - asystem exception.

Catching and matching exceptions can bee done in different ways:

case catch ' MyModul e_M/l nterface': bar (M Ref erence) of

ok ->
%% The operation rai sed no exception.
ok;

{' EXCEPTI ON', # MyMddul e_M/Excepti onMsg' {' Extral nfo' = Reason}} ->
%Wolf we want to | og the Reason we nust extract 'Extralnfo'.
error_l ogger:error_nsg("QOperation 'bar' raised: ~p~n", [Reason]),
... do sonething ...;

{' EXCEPTION', E} when record(E, 'OBJECT_NOT_EXIST') ->
... do sonething ...;

{' EXCEPTION , E} ->

do sonething ...
end.

56 | Ericsson AB. All Rights Reserved.: orber

1.11 Orber Interceptors

1.11 Orber Interceptors

1.11.1 Using Interceptors

For Inter-ORB communication, e.g., via | | OP, it is possible to intercept requests and replies. To be able to use
I nt er cept or s Orber the configuration parameter i nt er cept or s must be defined.

Configure Orber to Use Interceptors
The configuration parameter i nt er cept or s must be defined, e.g., as command line option:

erl -orber interceptors "{native, ['nylnterceptor']}"

It is possible to use more than one interceptor; simply add them to the list and they will be invoked in the same order
asthey appear inthe list.

One can aso active and deactivate an interceptor during run-time, but this will only affect currently
existing connections. For more information, consult Orber's Reference Manua regarding the operations
orber:activate audit trail/0/1andorber:activate audit _trail/0/1.

Creating Interceptors
Each supplied interceptor must export the following functions:

e new_out_connection/3/5 - one of these operationsis called when aclient application calls an object residing
on remote ORB. If an interceptor exports both versions, arity 3 and 5, which operation that will be invoked is
Orber internal .

* new_in_connection/3/5 - one of these operationsis invoked when a client side ORB triesto set up a connection
to the target ORB. If an interceptor exports both versions, arity 3 and 5, which operation that will beinvoked is
Orber internal .

e out_request/6 - supplies al request data on the client side ORB.
e out_request encoded/6 - similar to out _r equest but the request body is encode.

* in_request_encoded/6 - after a new request arrives at the target ORB the request data is passed to the interceptor
in encoded format.

e in_request/6 - prior to invoking the operation on the target object, theinterceptor i n_r equest iscalled.

* out_reply/6 - after the target object replied the out _r epl y operation is called with the result of the object
invocation.

e out_reply encoded/6 - before sending areply back to the client side ORB this operation is called with the result
in encoded format.

e in_reply_encoded/6 - after the client side ORB receives areply thisfunction is called with the reply in encoded
format.

* in_reply/6 - before delivering the reply to the client this operation isinvoked.

e closed in_connection/1 - when a connection is terminated on the client side this function is called.

* closed out_connection/1 - if an outgoing connection is terminated this operation will be invoked.

The operations new_out _connection, new_in_connection, closed_in_connection and

cl osed_out _connect i on operationsareonly invoked once per connection. The remaining operationsare called,
as shown below, for every Request/Reply to/from remote CORBA Objects.

Ericsson AB. All Rights Reserved.: orber | 57

1.11 Orber Interceptors

in re coded out reply

) st ORB out |

nﬂu@cﬁon closed [in— ction
est
Teque

Server

Figure 11.1: The Invocation Order of Interceptor Functions.

1.11.2 Interceptor Example
Assume we want to create a simple access service which purpose isto:

e Only alow incoming request from ORB's residing on a certain set of nodes.
* Restrict the objects any client may invoke operations on.

e Only alow outgoing requests to call alimited set of external ORB's.

* Add achecksum to each binary request/reply body.

To restricts the access we use a pr ot ect ed and naned etstable holding all information. How the ets-table is
initiated and maintained isimplementation specific, but it contain{ Node, bj ect Tabl e, Checksumvbdul e}
where Node is used as ets-key, Cbj ect Tabl e is areference to another ets-table in which we store which objects
the clients are alowed to invoke operations on and Checksunivodul e determines which module we should use to
handle the checksums.

new_i n_connection(Arg, Host, Port) ->
%% Since we only use one interceptor we do not care about the
%Wbinput Arg since it is set do undefined by O ber.
case ets:|ookup(in_access_table, Host) of
(1 ->
%6 We may want to |l og the Host/Port to see if someone tried
%Whbto hack in to our system
exi t ("Access not granted");
[{Host, ObjTable, Checksumibdul e}] ->
{oj Tabl e, Checksum\bdul e}
end.

58 | Ericsson AB. All Rights Reserved.: orber

1.11 Orber Interceptors

The returned tuple, i.e., { ObjTable, ChecksumModule}, will be passed as the first argument whenever invoking one
of the interceptor functions. Unless the connection attempt did not fail we are now ready for receiving requests from
the client side ORB.

When anew request comesinthefirstinterceptor functiontobeinvokedisi n_r equest _encoded. Wewill remove
the checksum from the coded request body in the following way:

i n_request _encoded({Ooj Tabl e, Checksunibdul e}, bj Key, Cx, Op, Bin, Extra) ->
NewBi n = Checksumbdul e: renove_checksun{ Bi n),
{NewBi n, Extra}.

If the checksum check fails the Checksunivodul e should invoke exit/1. But if the check succeeded we are now
ready to check if the client-ORB objects are allowed to invoke operations on the target object. Please note, itispossible
to run both checksini n_r equest _encoded. Please note, the checksum calculation must be relatively fast to
ensure a good throughput.

If we want to we can restrict any clientsto only use a subset of operations exported by a server:

i n_request ({Obj Tabl e, Checksumvbdul e}, Obj Key, Cx, Op, Parans, Extra) ->
case ets:|ookup(Obj Tabl e, {Obj Key, Op}) of
[1->
exit("Client tried to invoke illegal operation");
[SoneData] ->
{Parans, Extra}
end.

At this point Orber are now ready to invoke the operation on the target object. Since we do not care about what the
reply istheout _r epl y function do nothing, i.e.:

out _reply(_, _

_ Reply, Extra) ->
{Reply, Extra}.

If the client side ORB expects a checksum to be added to the reply we add it by using:

out _reply_encoded({Qoj Tabl e, ChecksuniVbdul e}, CbjKey, Ctx, Op, Bin, Extra) ->
NewBi n = Checksumibdul e: add_checksun(Bi n),
{NewBi n, Extra}.

Warning:

If we manipulate the binary as above the behavior must be Bin ==
renove_checksunm(add_checksum(Bin)).

For outgoing requests the principle is the same. Hence, it is not further described here. The complete interceptor
module would look like:

Ericsson AB. All Rights Reserved.: orber | 59

1.11 Orber Interceptors

- modul e(nyl nterceptor).

%% I nterceptor functions.
- export ([new_out _connecti on/ 3,
new_i n_connecti on/ 3,
cl osed_i n_connection/1,
cl osed_out _connection/ 1,
i n_request _encoded/ 6,
i n_reply_encoded/ 6,
out _repl y_encoded/ 6,
out _request _encoded/ 6,
i n_request/ 6,
in_replyl6,
out _repl y/6,
out _request/6]).

new_i n_connecti on(Arg, Host, Port) ->
%% Si nce we only use one interceptor we do not care about the
%6 input Arg since it is set do undefined by O ber.
case ets:|ookup(in_access_table, Host) of
(1 ->
%6 We may want to |log the Host/Port to see if soneone tried
%obto hack in to our system
exit("Access not granted");
[{Host, Onj Tabl e, ChecksumiVobdul e}] ->
{Obj Tabl e, Checksum\vbdul e}
end.

new_out _connecti on(Arg, Host, Port) ->
case ets:|ookup(out_access_table, Host) of
(1 ->
exit("Access not granted");
[{Host, Onj Tabl e, ChecksumiVbdul e}] ->
{Obj Tabl e, Checksum\bdul e}
end.

i n_request _encoded({_, Checksumvbdul e}, Obj Key, Cx, Op, Bin, Extra) ->
NewBi n = Checksumbdul e: r enpve_checksum(Bi n),
{NewBi n, Extra}.

in_request ({Obj Table, _}, ObjKey, Ctx, Op, Parans, Extra) ->
case ets: | ookup(QObj Tabl e, {Obj Key, Op}) of
(1 ->
exit("Client tried to invoke illegal operation");
[SoneData] ->
{Params, Extra}
end.

out_reply(_, _, _, _, Reply, Extra) ->
{Reply, Extra}.

out _reply_encoded({_, ChecksunmVbdul e}, CbjKey, Cx, Op, Bin, Extra) ->
NewBi n = Checksumivbdul e: add_checksumn(Bi n),
{NewBi n, Extra}.

out _request ({Cbj Tabl e, _}, ObjKey, Ctx, Op, Parans, Extra) ->
case ets: | ookup(QObj Tabl e, {ObjKey, Op}) of
(1 ->
exit("Client tried to invoke illegal operation");
[SoneData] ->
{Params, Extra}
end.

60 | Ericsson AB. All Rights Reserved.: orber

1.12 OrberWeb

out _request _encoded({_, Checksum\bdul e}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBi n = Checksumivbdul e: add_checksumn(Bi n),
{NewBi n, Extra}.

in_reply_encoded({_, Checksum\bdul e}, ObjKey, Cx, Op, Bin, Extra) ->
NewBi n = Checksumibdul e: r enpve_checksum(Bi n),
{NewBi n, Extra}.

in_reply(_, _, _, _, Reply, Extra) ->
{Reply, Extra}.

cl osed_i n_connection(Arg) ->
%% Not hi ng to cl ean up.
Arg.

cl osed_out _connection(Arg) ->

%% Not hi ng to cl ean up.
Arg.

Note:

One can also use interceptors for debugging purposes, e.g., print which objects and operations are invoked
with which arguments and the outcome of the operation. In conjunction with the configuration parameter

or ber _debug_| evel itisrather easy to find out what went wrong or just to log the traffic.

1.12 OrberWeb
1.12.1 Using OrberWeb

O ber Wb isintended to make things easier when devel oping and testing applicationsusing Or ber . The user isable

to interact with Or ber viaa GUI by using aweb browser.

O ber Wb requiresthat the application WebTool isavailable and started on at least one node; if so Or ber Web can
usually be used to to access Or ber nodes supporting the Interoperable Naming Service. How to start OrberWeb is

described in Starting Orber\Web
The Or ber Web GUI consists of a Menu Frame and a Data Frames.

The Menu Frame

The menu frame consists of:

* Node List - which node to access.

» Configuration - see how Orber on the current node is configured.

e Name Service - browse the NameService and add/remove a Context/Object.

* IFR Types - see which types are registered in IFR.

e Create Object - create a new object and, possibly, storeit in the NameService.

Ericsson AB. All Rights Reserved.: orber | 61

1.12 OrberWeb

main@shagrat

Menu

® Configuration

* Name Service

® JER Tvpes

® Create Object

Reloadl

Figure 12.1: The Menu Frame.

Which nodes we can access is determined by what is returned when invoking [node() | nodes()] . If you cannot
seeadesired nodeinthelist, you haveto call net _adm pi ng(Node) . But thisrequiresthat the nodeis started with
the distribution switched on (e.g. er| - snane myNode); thisalso goes for the node Or ber Wb is running on.

The Configuration Data Frame

When accessing the Configuration page OrberWeb presents a table containing the configuration settings for the target
node.

Configuration
Key Value
IIOP Request Timeout infinity
MOP Connection Timeout infinity
MOP Setup Connection Timeout infinity
I[IOP Port 4001
Bootstrap Port 4001
Orber Domain MyDomaln
Nodes in Domain [main@shagrat]
Default GIOP Version {1,1%
Objectkeys GC infinity
Using Interceptors false
Debug Level 10
ORBInitRef undefined
ORBDefaultinitRef undefined
Il {Key, value}] Change it|

Figure 12.2: Configuration Settings.

It is also possible to change those configuration parameters which can be changed when Orber is already started. The
Key-Vauepairsisgiven asalist of tuples, e.g., [{orber_debug_level, 5}, {iiop_timeout, 60}, {giop version, {1,2}}].
If one tries to update a parameter which may not be changed an error message will be displayed.

62 | Ericsson AB. All Rights Reserved.: orber

1.12 OrberWeb

The IFR Data Frame

All typesregistered in the IFR (Interface Repository) which have an associated | FR-id can be viewed viathe IFR Data
Frame. This givesthe user an easy way to confirm that all necessary | DL -specifications have been properly registered.
All available types are listed when choosing | FR Types in the menu frame:

Interface Repository
Modules

Interfaces

Structs

Unions

Exceptions

Constants

Enumerants

Aliases

Attributes

Operations
Contained

Typedef

Figure 12.3: Select Type.

After selecting atype all definitions of that particular type will be displayed. If no such bindings exists the table will
be empty.

Since Orber adds definitionsto the IFR when it isinstalled (e.g. CosNaming), not only types defined by the user will
show up in the table. In the figure below you find the the NameService exceptions listed.

Interface Repository
ir ExceptionDef
IDL:omg.org/CosNaming/NamingContext/AlreadyBound: 1.0
IDL:omg.org/CosNaming/NamingContext/CannotProceed: 1.0
IDL:omg. org/CosNaming/ NamingContext/ InvalidName: 1.0
IDL:omg.org/CosNaming/NamingContext/NotEmpty:1.0
IDL:omeg. org/CosNaming/ NamingContext/ NotFound: 1.0
IDL:omg.org/CosNaming/NamingContextExt/InvalidAddress: 1.0

Go Backl

Figure 12.4: List Registered Exceptions.

The NameService Data Frame

The NameService main purposeisto make possibleto bind object references, which can client applications can resolve
and invoke operations on. Initially, the NameService is empty. The most common scenario, is that user applications
create Contexts and add objectsin the NameService. OrberWeb allows the user to do the very same thing.

When referencing an object or context you must use stringified NameComponents. For more information see the
Interoperable Naming Service. In the following example we will use the string or g/erlang/ TheObjectName, where org
and erlang will be contexts and TheObjectName the name the object will be bound to.

Ericsson AB. All Rights Reserved.: orber | 63

1.12 OrberWeb

Since the NameService is empty in the beginning, the only thing we can do is creating a new context. Simply write
orgin the input field and press New Cont ext . If OrberWeb was able to create the context or not, is shown in the
completion message. If successful, just pressthe Go Back button. Now, alink named org should be listed inthetable.
In the right column the context type is displayed. Contexts are associated with ncontext and objects with nobject.

NameService

Root Context
EMPTY

| orgI New Contgxt:

Figure 12.5: Add a New Context.

To create the next level context (i.e. erlang), simply follow the link and repeat the procedure. If done correctly, atable
containing the same data as the following figure should be the result if you follow the erlang link. Note, that the path
isdisplayed in the yellow field.

If a context does not contain any sub-contexts or object bindings, it is possible to delete the context. If these
requirements are met, aDel et e Cont ext button will appear. A completion status message will be displayed after
deleting the context.

NameService
org/erlang

EMPTY Delete Context]|

I New Context_

Go Backl

Figure 12.6: Delete Context.

Now it is possible to bind an object using the complete name string. To find out how thisis done using OrberWeb see
Object Creation. For now, we will just assume that an object have been created and bound as TheObjectName.

NameService

org/erlang
TheDbjectName naobject

1 Nlew Cg_nteg{t
Go Backl

Figure 12.7: Object Stored in the NameService.

64 | Ericsson AB. All Rights Reserved.: orber

1.12 OrberWeb

If you follow the TheObjectName link, data about the bound object will be presented. Note, depending on which type
of object it is, the information given differs. It would, for example, not be possible to display a Pid for all types of
objects since it might reside on a Java-ORB. In the figure below a CosNotification FilterFactory have been bound
under the name org/erlang/TheObjectName.

NameService

Key Value
IFR Id IDL:omg.org/CosNotifyFilter/FilterFactory: 1.0
Stored As org/erlang/TheObjectName
External Object false
Non Existent false
Pid <0.597.0=

[IOR.:00
IOR String
Operations create_mapping filter/2

create filter/1

Go Back| ‘ Unbind] ‘ Unbind & Dispose

Figure 12.8: Object Data.

OrberWeb also makes it possible to remove a binding and dispose the associated object. Pressing Unbind the binding
will be removed but the object will still exist. But, if the Unbind and Dispose button is pressed, the binding will be

removed and the object terminated.

The Object Creation Data Frame

This part makesiit possible to create a new object and, if wanted, store it the NameService.

Operation to use (@Bind

Create a New Object

Module Module Interfacs

Arpuments ["String", {logfile, "/tmp/MyLoggFile"i]]
Opti{ms [{regname, {global, "Thelbkj ectName_E_"} 1]
Name String org/erlang/TheObjectNams

Rebind

Create it|

Figure 12.9: Create a New Object.

Ericsson AB. All Rights Reserved.: orber | 65

1.13 Debugging

e Module - simply type the name of the module of the object type you want to create. If the module begins with a
capital letter, we normally must write' Modul e | nt er f ace' . But, when using OrberWeb, you shall NOT.
Since we cannot create linked objects thisis not an option.

* Arguments - the supplied arguments must be written as a single Erlang term. That is, asalist or tuple containing
other Erlang terms. The arguments will be passed to thei ni t function of the object. It is, however, not
possible to use Erlang records. If OrberWeb is not able to parse the arguments, an error message will be
displayed. If left empty, an empty list will be passed.

» Options - the options can be the ones listed under Module_Interface in Orber's Reference manual. Hence,
they are not further described here. But, as an example, in the figure above we started the object as globally
registered. If no options supplied the object will be started as default.

* Name String - if left empty the object will not be registered in the NameService. Hence, it isimportant that you
can access the object in another way, otherwise a zombie process is created. In the previous section we used
the name string org/erlang/TheObjectName. If we choose the same name here, the listed contexts (i.e. org and
erlang) must be created before we can create and bind the object to TheObjectName. If this requirement is not
met, OrberWeb cannot bind the object. Hence, the object will be terminated and an error message displayed.

» Operation to use - which option choosed will determine the behavior of OrberWeb. If you choose bind and a
binding already exists an error message will be displayed and the newly started object terminated. But if you
choose rebind any existing binding will over-written.

1.12.2 Starting OrberWeb

You may choose to start OrberWeb on node, on which Orber is running or not. But the Erlang distribution must be
started (e.g. by using -sname aNodeName). Now, all you have to do isto invoke:

erl > webtool :start ().
WebTool is available at http://| ocal host: 8888/
O http://127.0.0. 1: 8888/

Type one of the URL:sin your web-browser. If you want to access the WebTool application from different machine,
just replacel ocal host with its name. For more information, see the WebTool documentation.

1.13 Debugging
1.13.1 Tools and FAQ

Persons who use Orber for the first time may find it hard to tell what goes wrong when trying to setup communication
between an Orber-ORB and ORB:s supplied by another vendor or another Orber-ORB. The purpose of this chapter is
to inform about the most common mistakes and what tools one can use to overcome these problems.

Tools

To begin with, Orber can be configured to run in debug mode. There are four ways to set this parameter:
» erl -orber orber_debug_level 10 - can be added to a start-script.

e corba:orb_init([{orber_debug_level, 10}]) - this operation must be invoked before starting Orber.

« orber:configure(orber_debug_level, 10) - this operation can be invoked at any time.

* OrberWeb - viathe Conf i gur at i on menu one can easily change the configuration. For more information,
see the OrberWeb chapter in this User's Guide.

66 | Ericsson AB. All Rights Reserved.: orber

1.13 Debugging

When Orber runs i debug mode, printouts will be generated if anything abnormal occurs (not necessarily an error).
An error message typically looks like:

=ERROR REPORT==== 29- Nov- 2001::14: 09: 55 ===
O ber
[410] corba: common_creat e(orber_test _server, [{pseudo,truce}]);
not a bool ean(truce).

In the exampl e above, we tried to create an object with an incorrect option (i.e. should have been { pseudo, t r ue}).

If you are not able to solve the problem, you should include all generated reports when contacting support or using
the erlang-questions mailing list.

Itiseasy toforget to, for example, set all fieldsin astruct, which one may not discover when devel oping an application
using Orber. When using a typed language, such faults would cause a compile time error. To avoid these mistakes,
Orber allows the user to activate automatic typechecking of all local invocations of CORBA Objects. For this feature
to bereally useful, the user must create test suiteswhich cover as much as possible. For exampl e, invoking an operation
with invalid or incorrect arguments should also be tested. This option can be activated for one object or all object via:

- 'MyModuyle Mylnterface':oe create(Env, [{local_typecheck, true}]) - This approach will only activate,
or deactivate, typechecking for the returned instance. Naturally, this option can also be passed to
oe_create_|link/2,corba:create/4andcorba:create |ink/4.

e erl -orber flags 2 - can be added to a start-script. All object invocations will be typechecked, unless overridden
by the previous option.

e corba:orb_init([{flags, 16#0002}]) - this operation must be invoked before starting Orber. Behaves as the
previous option.

If incorrect datais passed or returned, Orber usestheer r or _| ogger to generate logs, which can look like:

=ERROR REPORT==== 10- Jul - 2002: : 12: 36: 09 ===
========= (r ber TypeCheCk Request =========
I nvoked......: MyMdul e_M/lInterface:foo/1l
Typecode.: [{tk_enum"I|DL: MyModul e/ enunerant: 1. 0",
"enuner ant ",
["one","two"]}]
Argurents....: [three]
Result....... : {' EXCEPTION , {' MARSHAL' , [], 102, ' COWLETED_NO }}

Note, that the arity is equivalent to the IDL-file. In the example above, an undefined enumerant was used. In most
cases, it isuseful to set the configuration parameter or ber _debug_| evel 10 aswell. Dueto the extra overhead,
thisoption MAY ONLY be used during testing and development. For moreinformation, see also configuration settings.

Itisalso possible to trace all communication between an Orber-ORB and, for example, a Java-ORB, communicating
via IlOP. All you need to do is to activate an interceptor. Normally, the users must implement the interceptor
themselves, but for your convenience Orber includes three pre-compiled interceptorscalled or ber _ii op_tracer,
orber _iiop_tracer_silent andorber _iiop_tracer_stealth.

Ericsson AB. All Rights Reserved.: orber | 67

1.13 Debugging

Warning:
Logging al traffic is expensive. Hence, only use the supplied interceptors during test and development.

The orber _iiop tracer and orber _iiop_tracer_silent interceptors uses the error_| ogger
module to generate the logs. If the traffic is intense you probably want to write the reports to alog-file. Thisis done
by, for example, invoking:

erl> error_logger:tty(false).
erl> error_logger:logfile({open, "/tnp/I|OPTrace"}).

Thel | OPTr ace filewill contain, if you usetheor ber _i i op_t r acer interceptor, reports which looks like:

=l NFO REPORT==== 13- Jul - 2005:: 18: 22: 39 ===
S==========c=c==c=q new_out _Connecti o) =SS
Node : myNode@ryHost

From : 192.0.0.10: 47987

To : 192.0.0. 20: 4001

=l NFO REPORT==== 29- Nov-2001:: 15: 26: 28 ===

Connection: {"192.0.0. 20", 4001, "192. 0. 0. 10", 47987}
Operation : resol ve
Parameters: [[{' CosNamni ng_NanmeConponent"',
"Al K", " Swedi shl cehockeyChanpi ons"}]1]
Cont ext : [{'IOP_ServiceContext',1,
{' CONV_FRAME_CodeSet Cont ext ', 65537, 65801} }]

Theorber _iiop_tracer_sil ent will not log GIOP encoded data. To activate one the interceptors, you have
two options:

» erl -orber interceptors "{native,[orber_iiop_tracer]}" - can be added to a start-script.

e corba:orb_init([{interceptors, {native, [orber_iiop_tracer_silent]}}]) - this operation must be invoked before
starting Orber.

It is adso possible to active and deactivate an interceptor during run-time, but this will only affect currently
existing connections. For more information, consult Orber's Reference Manua regarding the operations
orber:activate audit trail/0/1andorber:activate audit trail/0/1.

FAQ
Q: When my client, typically written in C++ or Java, invoke narrow on an Orber object referenceit fails?

A: You must register your application inthe IFR by invoking oe_r egi st er () . If the object was created by a COS-
application, you must run install (e.g. cosEvent App:install ()).

A: Confirm, by consulting the IDL specifications, that the received object reference really inherit from the interface
you are trying to narrow it to.

Q: I amtrying to register my application in the IFR but it fails. Why?

68 | Ericsson AB. All Rights Reserved.: orber

1.13 Debugging

A: If one, or more, interface in your IDL-specification inherits from other interface(s), you must register them before
registering your application. Note, this also apply when you inherit interfaces supported by a COS-application. Hence,
they must beinstalled prior to registration of your application.

Q: | havea Orber client and server residing on two different Orber instancesbut | only get the'OBJECT_NOT_EXIST'
exception, even though | am sure that the object is still alive?

A: If thetwo Orber-ORB's are not intended to be a part of multi-node ORB, make sure that the two Orber-ORB's have
different domain names set (see configuration settings). The easiest way to confirm thisistoinvokeor ber : i nf o()
on each node.

Q: When I'mtrying to install and/or start Orber it fails?

A: Make sure that no other Orber-ORB is already running on the same node. If so, change the i i op_port
configuration parameter (see configuration settings).

Q: My Orber server isinvoked via [lOP but Orber cannot marshal the reply?

A: Consult your IDL file to confirm that your replies are of the correct type. If it is correct and the return type is,
for example, a struct, make sure you have set every field in the struct. If you do not do that it will be set to the atom
‘undefined’, which most certainly is not correct.

A: Check that you handlei nout and out parameters correctly (see the IDL specification). For example, a function
which have one out-parameter and should return void, then your call-back module should return {r epl y, {ok,
CQut Par an}, St at e}. Note, even though the return value isvoid (IDL) you must reply with ok.

Q: | cannot run Orber as a multi-node ORB?

A: Make sure that the Erlang distribution have been started for each node and the cooki es are correct. For more
information, consult the Syst em Docunent ati on

Ericsson AB. All Rights Reserved.: orber | 69

1.13 Debugging

2 Reference Manual

The Orber application is an Erlang implementation of a CORBA Object Request Broker.

70 | Ericsson AB. All Rights Reserved.: orber

any

any

Erlang module

This module contains functions that gives an interface to the CORBA any type.

Note that the any interface in orber does not contain a destroy function because the any type is represented as an
Erlang record and therefor will be removed by the garbage collector when not in use.

The type TC used below describes an IDL type and is a tuple according to the to the Erlang language mapping.
The type Any used below is defined as:

-record(any, {typecode, val ue}).

wheret ypecode isaTC tupleand val ue isan Erlang term of the type defined by the typecode field.

Exports

create() -> Result
creat e(Typecode, Value) -> Result

Types:
Typecode=TC
Value=term()
Result = Any

The create/0 function creates an empty any record and the create/2 function creates an initialized record.

set _typecode(A, Typecode) -> Result
Types.
A =Any
Typecode=TC
Result = Any
This function sets the typecode of A and returns a new any record.

get _typecode(A) -> Result
Types:

A =Any

Result=TC
This function returns the typecode of A.

set _val ue(A, Value) -> Result
Types:

A =Any

Value=term()

Result = Any

Ericsson AB. All Rights Reserved.: orber | 71

any

This function sets the value of A and returns a new any record.

get _value(A) -> Result
Types.

A =Any

Result =term()
This function returns the value of A.

72 | Ericsson AB. All Rights Reserved.: orber

fixed

fixed

Erlang module

This module contains functions that gives an interface to the CORBA fixed type.
Thetype Fi xed used below is defined as:

-record(fixed, {digits, scale, value}).

where di gi t s isthe total amount of digits it consists of and scal e isthe number of fractional digits. Theval ue
field contains the actual Fixed value represented as an integer. The limitations of each field are:

+ Digits- integer(), -1 > Digits < 32

+ Scale-integer(), -1 > Scale =< Digits

* Vaue- integer(), range (31 digits): £9999999999999999999999999999999

Sincethe Value part isrepresented by aninteger, it isvital that the Digits and Scale values are correct. Thisalso means
that trailing zeros cannot be left out in some cases:

« fixed<5,3> eq. 03.140d eg. 3140

o fixed<3,2> eg. 3.14d eq. 314

Leading zeros can be left out.

For your convenience, this module exports functions which handle unary (-) and binary (+- * /) operations legal for
the Fixed type. Since aunary + have no effect, this module do not export such afunction. Any of the binary operations
may cause an overflow (i.e. morethan 31 significant digits; leading and trailing zeros are not considered significant). If
thisisthe case, the Digit and Scale values are adjusted and the Value truncated (no rounding performed). This behavior
is compliant with the OMG CORBA specification. Each binary operation have the following upper bounds:

e Fixedl + Fixed2 - f i xed<max(d1l-s1,d2-s2) + max(sl,s2) + 1, nmax(sl,s2)>

e Fixedl - Fixed2 - fi xed<max(d1l-s1, d2-s2) + nax(sl,s2) + 1, nax(sl,s2)>

e Fixedl* Fixed2-fi xed<d1+d2, sl1+s2>

e Fixedl/Fixed2-fixed<(dl-s1+s2) + Sinf ,Sinf >

A quotient may have an arbitrary number of decimal places, which is denoted by a scale of Sinf.

Exports

create(Digits, Scale, Value) -> Result
Types:
Result = Fixed Type | {'EXCEPTION', # BAD_PARAM'{}}

Thisfunction createsanew instance of aFi xed Type. If thelimitationsis not fulfilled (e.g. overflow) an exception
israised.

get _typecode(Fi xed) -> Result

Types:
Result = TypeCode | { EXCEPTION', # BAD_PARAM'{}}

Ericsson AB. All Rights Reserved.: orber | 73

fixed

Returnsthe TypeCode which representsthe supplied Fixed type. If the parameter is not of the correct type, an exception
israised.

add(Fi xedl, Fixed2) -> Result
Types:
Result = Fixedl + Fixed2 | {{ EXCEPTION', # BAD_PARAM'{}}
Performs a Fixed type addition. If the parameters are not of the correct type, an exception is raised.

subtract (Fi xedl, Fixed2) -> Result
Types:
Result = Fixed1 - Fixed2 | {{ EXCEPTION', #BAD_PARAM'{}}

Performs a Fixed type subtraction. If the parameters are not of the correct type, an exception is raised.

mul ti ply(Fi xedl, Fixed2) -> Result
Types:
Result = Fixed1 * Fixed2 | {'EXCEPTION', # BAD_PARAM'{}}
Performs a Fixed type multiplication. If the parameters are not of the correct type, an exception is raised.

di vi de(Fi xed1, Fixed2) -> Result
Types.
Result = Fixed1/ Fixed2 | {'EXCEPTION', # BAD_PARAM'{}}
Performs a Fixed type division. If the parameters are not of the correct type, an exception is raised.

unary_m nus(Fi xed) -> Result
Types:
Result = -Fixed | {'EXCEPTION', #BAD_PARAM'{}}
Negates the supplied Fixed type. If the parameter is not of the correct type, an exception is raised.

74 | Ericsson AB. All Rights Reserved.: orber

corba

corba

Erlang module

This module contains functions that are specified on the CORBA module level. It aso contains some functions for
creating and disposing objects.

Exports

create(Modul e, Typel D) -> nject

creat e(Modul e, Typel D, Env) -> bject

create(Modul e, Typel D, Env, Optonsl) -> (Cbject
create | ink(Mdule, TypelD) -> nject

create | ink(Mdule, TypelD, Env) -> bject

create_|l i nk(Mdul e, Typel D, Env, Options2) -> Reply

Types:
M odule = atom()
Typel D =string()
Env =term()
Optionsl = [{persistent, Bool} | {regname, RegName} | {local _typecheck, Bool}]

Options2 = [{sup_child, Bool} | {persistent, Bool} | {regname, RegName} | {pseudo, Bool} |
{local_typecheck, Bool}]

RegName = {local, atom()} | {global, term()}

Reply = #objref | {ok, Pid, #objref}

Bool =true|false

Object = #objref
These functions start anew server object. If you start it without RegName it can only be accessed through the returned
object key. Started with a RegName the name is registered locally or globally.
Typel D isthe repository 1D of the server abject type and could for example look like "I1DL :StackModule/Stack:1.0".
Module is the name of the interface APl module.
Env is the arguments passed which will be passed to the implementations init call-back function.

A server started with create/2, create/3 or create/4 does not care about the parent, which means that the parent is not
handled explicitly in the generic process part.

A server started with create_link2, create |ink/3 or create_link/4 isinitialy linked to the caller, the parent, and it will
terminate whenever the parent process terminates, and with the same reason as the parent. If the server traps exits, the
terminate/2 call-back function is called in order to clean up before the termination. These functions should be used
if the server isaworker in asupervision tree.

If you use the option {sup_chi I d, true} create link/4 will return { ok, Pid, #objref}, otherwise
#obj r ef , and make it possible to start a server as a supervisor child (stdlib-1.7 or later).

If you use the option { per si st ent, true} youalsomust usetheoption{regnane, {global, Nane}}.
This combination makes it possible to tell the difference between a server permanently terminated or in the process
of restarting.

The option { pseudo, true}, alow usto create an object which is not a server. Using { pseudo, true}
overrides al other start options. For more information see section Modul e_I nt er f ace.

Ericsson AB. All Rights Reserved.: orber | 75

corba

If aserver isstarted using theoption{ per si st ent, true} theobject key will not be removed unlessit terminates
with reason normal or shutdown. Hence, if persistent servers is used as supervisor children they should be transient
and the objectkeys gc_time should be modified (default equalsi nfi ni ty).

Theoption{ | ocal _t ypecheck, bool ean() },whichoverridesthe Local Typechecking environment flag, turns
on or off typechecking. If activated, parameters, replies and raised exceptions will be checked to ensure that the data
is correct, when invoking operations on CORBA Objects within the same Orber domain. Due to the extra overhead,
this option MAY ONLY be used during testing and development.

Exanpl e:

corba: create(' StackModul e_Stack', "IDL: StackMbdul e/ St ack: 1. 0", {10, test})

di spose(bj ect) -> ok
Types:
Object = #objref
Thisfunction isused for terminating the execution of aserver object. Invoking thisoperation on aNIL object reference,

e.g., thereturnvalueof cor ba: creat e_ni | _obj r ef / 0, awaysreturn ok. For valid object references, invoking
this operation more than once, will result in a system exception.

create nil _objref() -> nject
Types:
Object = #objref representing NIL.
Creates an object reference that represents the NIL value. Attempts to invoke operations using the returned object
reference will return a system exception.

creat e_subobj ect _key(Chject, Key) -> Result

Types:
Object = #objref
Key =term()

Result = #objref

Thisfunction isused to create asubobject in aserver object. It can for example be useful when one wants unique access
to separate rows in amnesiaor an ETStable. The Result is an object reference that will be seen as a unique reference
to the outside world but will access the same server object where one can use the get_subobject_key/1 function to
get the private key value.

Key is stored in the object reference Object. If it is a binary it will be stored asis and otherwise it is converted to a
binary before storage.

get _subobj ect key(Object) -> Result
Types:

Object = #objref

Result = #binary

This function is used to fetch a subobject key from the object reference Object. The result is a always a binary, if it
was an Erlang term that was stored with create_subobject_key/2 one can to do binary_to_ternv1 to get the real value.

76 | Ericsson AB. All Rights Reserved.: orber

corba

get _pid(hject) -> Result
Types:
Object = #objref
Result = #pid | {error, Reason} | {'EXCEPTION',E}

This function is to get the process id from an object, which is a must when CORBA objects is started/handled in a
supervisor tree. The function will throw exceptionsif the key is not found or some other error occurs.

rai se(Excepti on)
Types:
Exception = record()

This function is used for raising corba exceptions as an Erlang user generated exit signal. It will throw the tuple
{' EXCEPTI ON', Exception} .

reply(To, Reply) -> true
Types:
To=client reference
Reply = IDL type
This function can be used by a CORBA object to explicitly send areply to a client that invoked a two-way operation.
If this operation is used, it is not possible to return areply in the call-back module.

To must be the From argument provided to the callback function, which requires that the IC option from was used
when compiling the IDL-file.

resolve_ initial _references(Objectld) -> Object
resolve_ initial _references(bjectld, Contexts) -> bject

Types.
Objectld = string()
Contexts = [Context]
Context = #10P_ServiceContext'{context_id = Ctxld, context_data = CtxData}
Ctxld = 70RBER_GENERIC_CTX_ID
CtxData = {interface, Interface} | {user specific, term()} | {configuration, Options}
I nterface = string()
Options = [{Key, Value}]
Key =sdl_client_verify | s3_client_depth | ssl_client_certfile| ssl_client_cacertfile | ssl_client_password |
ss_client_keyfile| sd_client_ciphers|sd_client_cachetimeout
Value = allowed value associated with the given key
Object = #objref
This function returns the object reference associated with the given object id. Initialy, only " NaneSer vi ce" is
available. To add or remove servicesuseadd_initial _service/2orrenove_initial _service/l.

The configuration context is used to override the global SSL client side configuration.

add_initial_service(Objectld, Object) -> bool ean()

Types.
Objectld = string()
Object = #objref

Ericsson AB. All Rights Reserved.: orber | 77

corba

This operation adlows us to add initial servicess which can be accessed by using
resol ve_initial _references/1 orthecorbal oc schema. If using an Id defined by the OMG, the given
object must be of the correct type; for more information see the Interoperable Naming Service. Returnsf al se if the
given id already exists.

renove_initial_service(Objectld) -> bool ean()
Types:
Objectld = string()

If we don not want a certain service to be accessible, invoking thisfunction will remove the association. Returnst r ue
if able to terminate the binding. If no such binding existed f al se isreturned.

list initial_services() -> [Objectld]
Types:

Objectld = string()
Thisfunction returns alist of allowed object id's.

resolve_initial _references_renmpte(Objectld, Address) -> (bject
resolve_initial _references_renote(hjectld, Address, Contexts) -> (Cbject

Types:
Objectld = string()
Address = [RemoteM odifier]
RemoteM odifier = string()
Contexts = [Context]
Context = #10P_ServiceContext'{context_id = Ctxld, context_data = CtxData}
Ctxld = 70RBER_GENERIC_CTX_ID
CtxData = {interface, I nterface} | {user specific, term()} | {configuration, Options}
Interface = string()
Options = [{Key, Value}]
Key =sd_client_verify | sd_client_depth | sd_client_certfile| ssl_client_cacertfile| ss_client_password |
ssl_client_keyfile| sd_client_ciphers|ss_client_cachetimeout
Value = allowed value associated with the given key
Object = #objref

This function returns the object reference for the object id asked for. The remote modifier string has the following
format: "ii op:// host: port™.

The configuration context is used to override the global SSL client side configuration.

Warning:
This operation is not supported by most ORB's. Hence, use cor ba: st ri ng_t o_obj ect/ 1 instead.

list _initial _services renote(Address) -> [Qbjectld]
list initial_services_renote(Address, Contexts) -> [Qbjectld]

Types.

78 | Ericsson AB. All Rights Reserved.: orber

corba

Address = [RemoteM odifier]

RemoteM odifier = string()

Contexts = [Context]

Context = #10P_ServiceContext'{context_id = Ctxld, context_data = CtxData}

Ctxld = 20RBER_GENERIC_CTX_ID

CtxData = {interface, Interface} | {user specific, term()} | {configuration, Options}

I nterface = string()

Options = [{Key, Value}]

Key =sdl_client_verify | s3_client_depth | ssl_client_certfile| ssl_client_cacertfile | ssl_client_password |

ss_client_keyfile| sd_client_ciphers| sd_client_cachetimeout

Value = allowed value associated with the given key

Objectld = string()
This function returns a list of allowed object id's. The remote modifier string has the following format: "i i op: //
host : port".

The configuration context is used to override the global SSL client side configuration.

Warning:
This operation is not supported by most ORB's. Hence, avoid using it.

object_to_string(Cbject) -> ICOR string
Types:
Object = #objref
IOR_string = string()
This function returns the object reference as the external string representation of an 10R.

string_to_object(IOR string) -> (Object
string_to_object(IOR string, Contexts) -> (bject
Types.
IOR_string = string()
Contexts = [Context]
Context = #10P_ServiceContext'{context_id = Ctxld, context_data = CtxData}
Ctxld = 70RBER_GENERIC_CTX_ID
CtxData = {interface, I nterface} | {user specific, term()} | {configuration, Options}
Interface = string()
Options = [{Key, Value}]
Key =sd_client_verify | sd_client_depth | sd_client_certfile| s3_client_cacertfile| sd_client_password |
ss_client_keyfile| sd_client_ciphers|sd_client_cachetimeout
Value = allowed value associated with the given key
Object = #objref
Thisfunction takesacor banane, cor bal oc or an IOR on the external string representation and returns the object
reference.

Ericsson AB. All Rights Reserved.: orber | 79

corba

To lookup the NameService reference, smply use "corbal oc:iiop:1l.2@23.0.0.012;: 4001/
NanmeSer vi ce"

We can also resolve an object from the NameService by using" cor banane: i i op: 1. 2@.23. 0. 0. 012: 4001/
NameSer vi ce#or g/ Er | ang/ MyQoj "

For more information about cor banane and cor bal oc, seethe User's Guide (I nteroperable Naming Service).
The configuration context is used to override the global SSL client side configuration.
How to handle the interface context is further described in the User's Guide.

print_object(Data [, Type]) -> ok | {"EXCEPTION, E} | {"{EXIT', R | string()
Types:
Data=10R_string | #objref (local or external) | cor baloc/corbaname string
Type=1loDevice|error_report | {error_report, Reason} | info_msg | {info_msg, Comment} | string
loDevice = seetheio-module
Reason = Comment = string()
The object represented by the supplied datais dissected and presented in amore readable form. The Type parameter is
optional; if not supplied standard output isused. For er r or _report andi nf o_msg theerror _| ogger module

is used, with or without Reason or Comment. If the atom st r i ng is supplied this function will return aflat list. The
| oDevi ce is passed to the operationi o: f or mat / 2.

If the supplied object is aloca reference, the output is equivalent to an object exported from the node this function
isinvoked on.

add_alternate_iiop_address(Object, Host, Port) -> NewObject | {' EXCEPTION ,
E}

Types:
Object = NewObject = local #objref
Host = string()

Port = integer ()

This operation creates a new instance of the supplied object containing an ALTERNATE IIOP_ADDRESS
component. Only the new instance contains the new component. When this object is passed to another ORB, which
supports the ALTERNATE_|IIOP_ADDRESS, requests will be routed to the alternate address if it is not possible to
communicate with the main address.

The ALTERNATE_IIOP_ADDRESS component requiresthat I1OP-1.2 is used. Hence, make sure both Orber and the
other ORB is correctly configured.

Note:

Make sure that the given Cbj ect isaccessible viathe alternate Host/port. For example, if the object is correctly
started as| ocal or pseudo, the object should be available on al nodes within a multi-node Orber installation.
Since only one instance exists for other object types, it will not be possible to accessit if the node it was started
on terminates.

orb_init(KeyValueList) -> ok | {'EXIT', Reason}
Types:

80 | Ericsson AB. All Rights Reserved.: orber

corba

KeyValuelList = [{Key, Value}]
Key = any key listed in the configuration chapter
Value = allowed value associated with the given key

This function allows the user to configure Orber in, for example, an Erlang shell. Orber may NOT be started prior to
invoking this operation. For more information, see configuration settings in the User's Guide.

Ericsson AB. All Rights Reserved.: orber | 81

corba_object

corba_object

Erlang module

This module contains the CORBA Object interface functions that can be called for all objects.

Exports

get _interface(Object) -> InterfaceDef
Types:
Object = #objref
I nterfaceDef = term()
This function returns the full interface description for an object.

is_nil(Object) -> bool ean()
Types:
Object = #objref
This function checks if the object reference has a nil object value, which denotes no object. It isthe reference that is
tested and no object implementation isinvolved in the test.

is_a(Object, Logical type id) -> Return
is_a(Object, Logical type id, Contexts) -> Return
Types.
Object = #objref
Logical_type id =string()
Contexts = [Context]
Context = #10P_ServiceContext'{context_id = Ctxld, context_data = CtxData}
Ctxld = 70RBER_GENERIC_CTX_ID
CtxData = {interface, I nterface} | {user specific, term()} | {configuration, Options}
Interface = string()
Options = [{Key, Value}]
Key =sd_client_verify | sd_client_depth | sd_client_certfile| ss_client_cacertfile| sd_client_password |
ssl_client_keyfile| s3l_client_ciphers| sd_client_cachetimeout
Value = allowed value associated with the given key
Return = boolean() | {'EXCEPTION', E}

The Logical_type id isastring that is a share type identifier (repository id). The function returnstrue if the object is
an instance of that type or an ancestor of the "most derived" type of that object.

The configuration context is used to override the global SSL client side configuration.

Note: Other ORB suppliers may not support this function completely according to the OMG specification. Thus, a
is a call may raise an exception or respond unpredictable if the Object islocated on aremote node.

is_renote(Object) -> bool ean()
Types.

82 | Ericsson AB. All Rights Reserved.: orber

corba_object

Object = #objref

This function returns true if an object reference is remote otherwise false.

non_exi stent (Gbject) -> Return
non_exi stent (Obj ect, Contexts) -> Return

Types.
Object = #objref
Contexts = [Context]
Context = #10P_ServiceContext'{context_id = Ctxld, context_data = CtxData}
Ctxld = 20RBER_GENERIC_CTX_ID
CtxData = {interface, I nterface} | {user specific, term()} | {configuration, Options}
I nterface = string()
Options = [{Key, Value}]
Key =sd_client_verify | sdl_client_depth | sd_client_certfile| s3_client_cacertfile| ss_client_password |
ssl_client_keyfile| sd_client_ciphers| sd_client_cachetimeout
Value = allowed value associated with the given key
Return = boolean() | {{EXCEPTION', E}

This function can be used to test if the object has been destroyed. It does this without invoking any application level
code. The ORB returnstrueif it knows that the object is destroyed otherwise false.

The configuration context is used to override the global SSL client side configuration.

Note: The OMG have specified two different operators, _not _exi st ent (CORBA version 2.0 and 2.2) and
_non_exi st ent (CORBA version 2.3), to be used for this function. It is not mandatory to support both versions.
Thus, anon_existent call may raise an exception or respond unpredictable if the Object is located on a remote node.
Depending on which version, ORB:s you intend to communicate with supports, you can either use this function or
not existent/ 1.

not _exi stent (Obj ect) -> Return
not _exi stent (Object, Contexts) -> Return

Types:
Object = #objref
Contexts = [Context]
Context = #10P_ServiceContext'{context_id = Ctxld, context_data = CtxData}
Ctxld = 70O0RBER_GENERIC_CTX_ID
CtxData = {interface, Interface} | {user specific, term()} | {configuration, Options}
Interface = string()
Options = [{Key, Value}]
Key =sd_client_verify | sd_client_depth | sd_client_certfile| ssl_client_cacertfile| ss_client_password |
ssl_client_keyfile| sd_client_ciphers| sdl_client_cachetimeout
Value = allowed value associated with the given key
Return = boolean() | {' EXCEPTION', E}

This function is implemented due to Interoperable purposes. Behaves as non_exi st ent except the operator
_not _exi st ent isused when communicating with other ORB:s.

The configuration context is used to override the global SSL client side configuration.

Ericsson AB. All Rights Reserved.: orber | 83

corba_object

i s_equival ent (Cbj ect, O herCbject) -> bool ean()
Types:

Object = #objref

Other Object = #objr ef

This function is used to determine if two object references are equivalent so far the ORB easily can determine. It
returnstrueif the target object reference is equal to the other object reference and fal se otherwise.

hash(Gbj ect, Maximum -> int()
Types.

Object = #objref

Maximum = int()

This function returns a hash value based on the object reference that not will change during the lifetime of the object.
The Maximum parameter denotes the upper bound of the value.

84 | Ericsson AB. All Rights Reserved.: orber

orber

orber

Erlang module

This module contains the functions for starting and stopping the application. It also has some utility functions to get
some of the configuration information from running application.

Exports

start() -> ok
start (Type) -> ok

Types.
Type=temporary | per manent
Starts the Orber application (it also starts mnesiaif it is not running). Which Ty pe parameter is supplied determines

the behavior. If not supplied Orber is started ast enpor ar y. See the Reference Manual application(3) for further
information.

junmp_start(Attributes) -> ok | {' EXIT', Reason}
Types.

Attributes= Port | Options

Port = integer ()

Options = [{Key, Value}]

Key = any key listed in the configuration chapter

Value = allowed value associated with the given key
Installs and starts the Orber and the M nesia applications with the configuration parametersdormai nandi i op_port
setto" | P- nunber : Port" and the supplied Port respectively. Theses settings are in most cases sufficient to ensure
that no clash with any other Orber instance occur. If this operation fails, check if the listen port (iiop_port) is aready

in use. This function MAY ONLY be used during development and tests; how Orber is configured when using this
operation may change at any time without warning.

stop() -> ok
Stops the Orber application.

info() -> ok
info(loType) -> ok | {'EXIT', Reason} | string()

Types:
loType=info msg|string|io|{io, loDevice}

Generates an Info Report, which contain Orber's configuration settings. If no | o Ty pe issupplied, i nf o_nmsg isused
(seethe error_logger documentation). When the atom string is supplied this function will return aflat list. For i o and
{io, loDevice},io:format/1andi o:format/ 3 isused respectively.

exception_info(Exception) -> {ok, string()} | {error, Reason}

Returns a printable string, which describes the supplied exception in greater detail. Note, this function is mainly
intended for system exceptions.

Ericsson AB. All Rights Reserved.: orber | 85

orber

i S_system exception(Exception) -> true | fal se

Returnstrueif the supplied exception is a system defined exception, otherwise false.

get _tables() -> [Tabl es]
Returns alist of the Orber specific Mnesiatables. Thislist isrequired to restore Mnesiaif it has been partitioned.

get _ORBInitRef() -> string() | undefined

This function returns undefined if we will resolve references locally, otherwise a string describing which host
we will contact if the Key given to cor ba: resol ve_initial _references/ 1 matchesthe Key set in this
configuration variable. For more information see the user's guide.

get _ORBDefaultlnitRef() -> string() | undefined

This function returns undefined if we will resolve references locally, otherwise a string describing which host, or
hosts, fromwhichwewill try toresolvetheKey giventocor ba: resol ve_initi al _references/ 1.Formore
information see the user's guide.

domai n() -> string()
This function returns the domain name of the current Orber domain as a string.

iiop_port() ->int()

This function returns the port-number, which is used by the 11OP protocol. It can be configured by setting the
application variable iiop_port, if it isnot set it will have the default number 4001.

iiop_out_ports() ->0] {Mn, Max}
The return value of this operation is what the configuration parameter iiop_out_ports has been set to.

iiop_out_ports_randon() -> true | false
Return the value of the configuration parameter iiop_out_ports_random.

iiop_out ports attenpts() -> int()
Return the value of the configuration parameter iiop_out_ports_attempts.

iiop_ssl_port() ->int()

This function returns the port-number, which is used by the secure I1OP protocol. It can be configured by setting the
application variable iiop_ssl_port, if it isnot set it will have the default number 4002 if Orber isto configured to run
in secure mode. Otherwise it returns -1.

iiop_tineout() ->int() (mlliseconds)

This function returns the timeout value after which outgoing 110OP requests terminate. It can be configured by setting
the application variableiiop_timeout TimeVal (seconds), if it isnot set it will havethe default valueinfinity. If arequest
times out a system exception, e.g. TIMEOUT, is raised.

Note: theiiop_timeout configuration parameter (TimeVal) may only range between 0 and 1000000 seconds. Otherwise,
the default valueis used.

86 | Ericsson AB. All Rights Reserved.: orber

orber

Note: Earlier IC versions required that the compile option {ti meout, "nodul e: : i nterface"}, was used,
which alow the user to add an extra timeout parameter, e.g., nodul e_i nterface: functi on(Obj Ref,

Tinmeout, ... Argunents ...) or nodule_interface:function(ObjRef, [{tineout,
Timeout}], ... Arguments ...), instead of nodul e_i nterface: function(Obj Ref,
Argunments ...). Thisis no longer the case and if the extra Timeout is used, argument will override the

configuration parameter i i op_t i meout . It is, however, not possible to use i nfi ni ty to override the Timeout
parameter. The Timeout option is also valid for objects which resides within the same Orber domain.

iiop_connection_tineout() ->int() (mlliseconds)

This function returns the timeout value after which outgoing I1OP connections terminate. It can be configured by
setting the application variableiiop_connection_timeout TimeVal (seconds), if itisnot set it will have the default value
infinity. The connection will not be terminated if there are pending reguests.

Note: the iiop_connection_timeout configuration parameter (TimeVal) may only range between 0 and 1000000
seconds. Otherwise, the default value is used.

iiop_connections() -> Result
iiop_connections(Direction) -> Result

Types.
Direction =in | out | inout
Result = [{Host, Port}] | [{Host, Port, Interface}] | {'EXIT',Reason}
Host = string()
Port = integer ()
Interface = string()
Reason = term()

Thelist returned by this operation contain tuples of remote hosts/ports Orber is currently connected to. If no Direction
is not supplied, both incoming and outgoing connections are included.

If aspecific local interface has been defined for the connection, this will be added to the returned tuple.

i i op_connections_pending() -> Result

Types:
Result = [{Host, Port}] | [{Host, Port, Interface}] | {'EXIT',Reason}
Host = string()

Port = integer ()
Interface = string()
Reason = term()

In some cases a connection attempt (i.e. trying to communicate with another ORB) may block due to a number of
reasons. This operation allows the user to check if thisis the case. The returned list contain tuples of remote hosts/
ports. Normally, the list is empty.

If aspecific local interface has been defined for the connection, this will be added to the returned tuple.

iiop_in_connection_ tinmeout() ->int() (mlliseconds)

This function returns the timeout value after which incoming I1OP connections terminate. It can be configured by
setting the application variable iiop_in_connection_timeout TimeVal (seconds), if it isnot set it will have the default
value infinity. The connection will not be terminated if there are pending requests.

Ericsson AB. All Rights Reserved.: orber | 87

orber

Note: the iiop_in_connection_timeout configuration parameter (TimeVa) may only range between 0 and 1000000
seconds. Otherwise, the default valueis used.

iiop_acl() -> Result
Types:

Result = [{Direction, Filter}] | [{Direction, Filter, [I nterface]}]

Direction =tcp_in|sd_in|tcp_out | ss_out

Filter = string()

Interface = string()
Returns the ACL configuration. The Fi | t er uses a extended format of Classess Inter Domain Routing (CIDR).
For example, " 123. 123. 123. 10" limitsthe connection to that particular host, while" 123. 123. 123. 10/ 17"
allowsconnectionsto or from any host equal tothe 17 most significant bits. Orber also allow the user to specify acertain
port or port range, for example, " 123. 123. 123. 10/ 17#4001" and " 123. 123. 123. 10/ 17#4001/ 5001"
respectively. |Pv4 or none compressed | Pv6 strings are accepted.
Thelistof | nt er f aces, IPv4 or IPv6 strings, are currently only used for outgoing connections and may only contain
one address. If set and access is granted, Orber will use that local interface when connecting to the other ORB. The
module orber_acl provides operations for evaluating the access control for filters and addresses.

activate_audit_trail () -> Result
activate audit_trail (Verbosity) -> Result

Types:

Verbosity = stealth | normal | verbose

Result = ok | {error, Reason}

Reason = string()
Activatesaudit/trail for all existingincoming and outgoing IOP connections. TheVer bosi t y parameter, st eal t h,
nor mal or ver bose, determines which of the built in interceptorsis used (or ber _iiop_tracer_steal th,

orber _iiop_tracer_silent ororber_iiop_tracer respectively). If noverbosity level is supplied, then
thenor mal will be used.

In case Orber is configured to use other interceptors, the audit/trail interceptors will smply be added to that list.

deactivate_audit_trail() -> Result
Types:

Result = ok | {error, Reason}

Reason = string()

Deactivates audit/trail for all existing incoming and outgoing 11OP connections. In case Orber is configured to use
other interceptors, those will still be used.

add listen_interface(lP, Type) -> Result
add listen_interface(lP, Type, Port) -> Result
add listen_interface(lP, Type, ConfigurationParaneters) -> Result

Types.
IP=string
Type=normal | ssl
Port =integer() >0
ConfigurationParameters=[{Key, Value}]

88 | Ericsson AB. All Rights Reserved.: orber

orber

Key =flags|iiop_in_connection_timeout | iiop_max_fragments|iiop_max_in_requests | interceptors|

iiop_port |iiop_ssl_port

Value = asdescribed in the User's Guide

Result = {ok, Ref} | {error, Reason} | {{ EXCEPTION', # BAD_PARAM'{}}

Ref = #Ref

Reason = string()
Create anew processthat handle requestsfor creating anew incoming |1OP connection viathe given interface and port.
If the latter is excluded, Orber will usethevalueof thei i op_port orii op_ssl _port configuration parameters.

The Type parameter determines if it is supposed to be IIOP or 11OP via SSL. If successful, the returned #Ref shall
bepassedto or ber : renpve_| i st en_i nt er f ace/ 1 when the connection shall be terminated.

It is aso possible to supply configuration parameters that override the global configuration. The
iiop_in_connection_timeout, iiop_max_fragments, iiop_max_in_requests and interceptors parameters simply
overrides the global counterparts (See the Configuration chapter in the User's Guide). But the following parameters
there are afew restrictions:
« flags- currently it isonly possible to override the global setting for theUse Current Interface in

| ORand Excl ude CodeSet Conponent flags.

e iiop_port - requiresthat Use Current Interface in | ORisactivated andthe supplied Type is
nor mal . If so, exported IOR:swill contain the I1OP port defined by this configuration parameter. Otherwise,
the global setting will be used.

e iiop_sd_port - amost equivalenttoi i op_port . Thedifferenceisthat Type shall bessl and that exported
IOR:swill contain the I1OP via SSL port defined by this configuration parameter.

If it is not possible to add a listener based on the supplied interface and port, the error message is one of the ones
describedini net and/or ss| documentation.

remove_listen_interface(Ref) -> ok
Types:
Ref = #Ref
Terminates the listen process, associated with the supplied #Ref , for incoming a connection. The Ref parameter is

the return value from the or ber : add_| i sten_i nt er f ace/ 2/ 3 operation. When terminating the connection,
all associated requests will not deliver areply to the clients.

cl ose_connecti on(Connection) -> Result
cl ose_connecti on(Connection, Interface) -> Result

Types:

Connection = Object | [{Host, Port}]

Object = #objref (external)

Host = string()

Port = string()

Interface = string()

Result = ok | {'"EXCEPTION', #BAD_PARAM'{}}
Will try to close all outgoing connections to the host/port combinations found in the supplied object reference or
the given list of hosts/ports. If a#' | OP_Ser vi ceCont ext' {} containing alocal interface has been used when

communicating with the remote object (see also Module_Interface), that interface shall be passed as the second
argument. Otherwise, connections viathe default local interface, will be terminated.

Ericsson AB. All Rights Reserved.: orber | 89

orber

Note:

Since severa clients maybe communicates via the same connection, they will be affected when invoking this
operation. Other clients may re-create the connection by invoking an operation on the target object.

secure() -> no | ssl

This function returns the security mode Orber is running in, which is either no if it is an insecure domain or the type
of security mechanism used. For the moment the only security mechanism is s3l. This is configured by setting the
application variable secure.

ssl _server_certfile() -> string()

This function returns a path to a file containing a chain of PEM encoded certificates for the Orber domain as server.
Thisis configured by setting the application variable ssl_server_certfile.

ssl _client _certfile() -> string()

This function returns a path to a file containing a chain of PEM encoded certificates used in outgoing calls in the
current process. The default value is configured by setting the application variable ssl_client_certfile.

set_ssl _client_certfile(Path) -> ok
Types:
Path = string()

This function takes a path to a file containing a chain of PEM encoded certificates as parameter and sets it for the
current process.

ssl _server _verify() ->0| 1| 2

This function returns the type of verification used by SSL during authentication of the other peer for incoming calls.
It is configured by setting the application variable ssl_server_verify.

ssl _client _verify() ->0 | 1| 2

This function returns the type of verification used by SSL during authentication of the other peer for outgoing calls.
The default value is configured by setting the application variable s3_client_verify.

set _ssl _client_verify(Value) -> ok
Types:
Value=0|1|2
This function setsthe SSL verification type for the other peer of outgoing calls.

ssl _server_depth() ->int()

This function returns the SSL verification depth for incoming calls. It is configured by setting the application variable
ssl_server_depth.

ssl_client _depth() -> int()

This function returns the SSL verification depth for outgoing calls. The default value is configured by setting the
application variable s3_client_depth.

90 | Ericsson AB. All Rights Reserved.: orber

orber

set _ssl _client_depth(Depth) -> ok
Types:
Depth =int()
This function setsthe SSL verification depth for the other peer of outgoing calls.

obj ectkeys gc tinme() -> int() (seconds)

This function returns the timeout value after which after which terminated object keys, related to servers started with
theconfiguration parameter { per si st ent, true},will beremoved. It can be configured by setting the application
variable objectkeys gc_time TimeVal (seconds), if it isnot set it will have the default value infinity.

Objects terminating with reason normal or shutdown are removed automatically.

Note: the objectkeys gc_time configuration parameter (TimeVal) may only range between 0 and 1000000 seconds.
Otherwise, the default value is used.

orber _nodes() -> RetVal
Types.
RetVal = [node()]
This function returns the list of node names that this orber domain consists of.

i nstal |l (NodeList) -> ok
i nstal |l (NodeLi st, Options) -> ok

Types:
Nodel ist = [node()]
Options=[Option]
Option ={install_timeout, Timeout} | {ifr_storage type, TableType} | {nameservice storage type,
TableType} | {initialreferences_storage type, TableType} | {load_order, Priority}
Timeout = infinity | integer ()
TableType = disc_copies | ram_copies
Priority = integer()
This function installs all the necessary mnesia tables and load default data in some of them. If one or more Orber

tables already exists the installation fails. The function uninstall may be used, if it is safe, i.e., no other application
isrunning Orber.

Preconditions:
* amnesiaschemamust exist before the installation
* mnesiaisrunning on the other nodesif the new installation shall be amulti node domain

Mnesiawill be started by the function if it is not already running on the installation node and if it was started it will
be stopped afterwards.

The options that can be sent to the installation program is:
e {install _tineout, Tinmeout} -thistimeoutishow longwewill wait for the tables to be created. The
Timeout value can be infinity or an integer number in milliseconds. Default isinfinity.

« ({ifr_storage_type, Tabl eType} - thisoption setsthetype of tables used for the interface repository.
The TableType can be disc_copies or ram_copies. Default isdisc_copies.

« {initialreferences_storage type, Tabl eType} - thisoption setsthetype of table used for
storing initial references. The TableType can be disc_copies or ram_copies. Default isram_copies.

Ericsson AB. All Rights Reserved.: orber | 91

orber

« {naneservice_storage_type, Tabl eType} -thedefault behavior of Orber istoinstall the
NameService as ram_copies. This option makes it possible to change thisto disc_copies. But the user should be
aware of that if anode isrestarted, all local object references stored in the NameService is not valid. Hence, you
cannot switch to disc_copies and expect exactly the same behavior as before.

e {load_order, Priority} -perdefaultthepriority issetto 0. Using this option it will change the
priority of in which order Mnesiawill load Orber internal tables. For more information, consult the Mnesia
documentation.

uninstall () -> ok
This function stops the Orber application, terminates all server objects and removes all Orber related mnesia tables.

Note: Since other applications may be running on the same node using mnesia uninstall will not stop the mnesia
application.

add_node(Node, Options) -> RetVal
Types:
Node = node()
Options= IFRStorageType | [KeyValug]
| FRStor ageType = StorageType
StorageType = disc_copies | ram_copies
KeyValue = {ifr_storage type, StorageType} | {initialreferences storage type, StorageType} |
{nameservice_storage type, StorageType} | {type, Type}
Type =temporary | per manent
RetVal = ok | exit()
This function add given node to a existing Orber node group and starts Orber on the new node. or ber : add_node
is called from a member in the Orber node group.
Preconditions for new node:
e Erlang started on the new node using the option - mesi a extra_db_nodes, eg.,erl -snane
new _node_nane -mmesi a extra_db_nodes Connect ToNodes_ Li st
* Thenew node'sdomai n nameisthe same for the nodes we want to connect to.
e Mnesiaisrunning on the new node (no new schema created).
* |If thenew nodewill usedi sc_copi es the schema type must be changed using:
mesi a: change_t abl e_copy_type(schema, node(), disc_copies).
Orber will be started by the function on the new node.
Failsif:
* Orber aready installed on given node.
* Mnesianot started as described above on the new node.
* Impossibleto copy datain Mnesiatables to the new node.
e Not able to start Orber on the new node, due to, for example, thei i op_port isaready in use.

Thefunction do not remove aready copied tables after afailure. Useor ber : r enove_node to removethesetables.

renove_node(Node) -> Ret Val
Types.

Node = node()

RetVal = ok | exit()

92 | Ericsson AB. All Rights Reserved.: orber

orber

This function removes given node from a Orber node group. The Mnesia application is not stopped.

configure(Key, Value) -> ok | {"EXIT', Reason}

Types:
Key = orbDefaultlnitRef | orblnitRef | giop_version | iiop_timeout | iiop_connection_timeout |
iiop_setup_connection_timeout | iiop_in_connection_timeout | objectkeys gc time| orber_debug level
Value = allowed value associated with the given key

Thisfunction allows the user to configure Orber in, for example, an Erlang shell. It ispossibleto invokeconf i gur e
at any time the keys specified above.

Any other key must be set before installing and starting Orber.
Trying to change the configuration in any other way is NOT allowed since it may affect the behavior of Orber.
For more information regarding allowed values, see configuration settingsin the User's Guide.

Note:

Configuring the IlOPtimeout valueswill not affect already existing connections. If you want aguaranteed uniform
behavior, you must set these parameters from the start.

Ericsson AB. All Rights Reserved.: orber | 93

orber_ifr

orber _ifr

Erlang module

This module contains functions for managing the Interface Repository (IFR). This documentation should be used in
conjunction with the documentation in chapter 6 of 2.3. Whenever the term IFR object is used in this manual page, it
refersto a pseudo object used only for interaction with the IFR rather than a CORBA object.

Initialization of the IFR

The following functions are used to initialize the Interface Repository and to obtain the initial reference to the
repository.

Exports

i nit(Nodes, Ti neout) -> ok
Types:

Nodes = list()

Timeout = integer () | infinity

This function should be called to initialize the IFR. It creates the necessary mnesia-tables. A mnesia schema should
exist, and mnesia must be running.

find repository() -> #I FR Repository_objref

Find the IFR object reference for the Repository. This reference should be used when adding objects to the IFR, and
when extracting information from the IFR. The first time this function is called, it will create the repository and all
the primitive definitions.

General methods

The following functions are the methods of the IFR. The first argument is aways an #IlFR_objref, i.e. the IFR
(pseudo)object on which to apply this method. These functions are useful when the type of 1FR object is not know, but
they are somewhat slower than the specific functions listed below which only accept a particular type of |FR object
asthefirst argument.

Exports

get _def kind(Qbjref) -> Return

Types:
Objref = # FR_objref
Return = atom() (one of dk_none, dk_all, dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef, dk_Alias, dk_Struct, dk_Union, dk_Enum, dk_Primitive,
dk_String, dk_Wstring, dk_Fixed, dk_Sequence, dk_Array, dk_Repository)

Objref isan IFR object of any kind. Returns the definition kind of the IFR object.
destroy(hjref) -> Return

Types:
Objref = #1FR_object

94 | Ericsson AB. All Rights Reserved.: orber

orber_ifr

Return = tuple()

Objref isan IFR object of any kind except |RObject, Contained and Container. Destroys that object and its contents
(if any). Returns whatever mnesia:transaction returns.

get _id(Objref) -> Return
Types:
Objref = #l FR_object
Return = string()
Objref isan IFR object of any kind that inherits from Contained. Returns the repository id of that object.

set _id(Qbjref,Id) -> ok
Types:
Objref = #IFR_object
Id =string()
Objref isan IFR object of any kind that inherits from Contained. Sets the repository id of that object.

get _nane(Objref) -> Return
Types:
Objref = # FR_object
Return = string()
Objref isan IFR object of any kind that inherits from Contained. Returns the name of that object.

set _nane(Objref, Nane) -> ok

Types.
Objref = #1FR_object
Name = string()

Objref isan IFR object of any kind that inherits from Contained. Sets the name of that object.

get _version(Qojref) -> Return
Types:
Objref = #IFR_object
Return = string()
Objref isan IFR object of any kind that inherits from Contained. Returns the version of that object.

set _version(Objref, Version) -> ok
Types:
Objref = # FR_object
Version = string()
Objref isan IFR object of any kind that inherits from Contained. Sets the version of that object.

get _defined_in(Objref) -> Return

Types.
Objref = #1FR_object

Ericsson AB. All Rights Reserved.: orber | 95

orber_ifr

Return = #lFR_Container_objref

Objref isan IFR object of any kind that inherits from Contained. Returns the Container object that the object is defined
in.

get _absolute _name(bjref) -> Return
Types:
Objref = #lFR_object
Return = string()
Objref isan IFR object of any kind that inherits from Contained. Returns the absol ute (scoped) name of that object.

get _containing_repository(Qjref) -> Return
Types:

Objref = #FR_object

Return = #IFR_Repository_objref

Objref isan IFR object of any kind that inherits from Contained. Returns the Repository that is eventually reached by
recursively following the object's defined_in attribute.

descri be(Objref) -> Return
Types:
Objref = # FR_object
Return = tuple() (a contained_description record) | {exception, _}
Objref isan IFR object of any kind that inherits from Contained. Returns a tuple describing the object.

nmove(Obj r ef , New_cont ai ner, New_nane, New version) -> Return
Types.
Objref = #IFR_objref
New_container = #lFR_Container_objref
New_name = string()
New_version = string()
Return = ok | {exception, _}
Objref is an IFR object of any kind that inherits from Contained. New_container is an IFR object of any kind that

inheritsfrom Container. Removes Objref from its current Container, and addsit to New_container. The name attribute
is changed to New_name and the version attribute is changed to New_version.

| ookup(Qbj ref, Search_nane) -> Return
Types:

Objref = #1FR_objref

Search_name = string()

Return = #lFR_object

Objref is an IFR object of any kind that inherits from Container. Returns an IFR object identified by search_name
(a scoped name).

contents(Qbjref,Linmt_type, Excl ude_inherited) -> Return
Types:

96 | Ericsson AB. All Rights Reserved.: orber

orber_ifr

Objref = #IFR_objref

Limit_type = atom() (one of dk_none, dk_all, dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef, dk_Alias, dk_Struct, dk_Union, dk_Enum, dk_Primitive,
dk_String, dk_Wstring, dk_Fixed, dk_Sequence, dk_Array, dk_Repository)

Exclude inherited = atom() (true or false)
Return =list() (alist of IFR#_objects)

Objref isan IFR object of any kind that inherits from Container. Returns the contents of that IFR object.

| ookup_nanme(Obj ref, Search_nane, Level s _ to_search, Limt_type,
Excl ude_inherited) -> Return

Types:
Objref = #IFR_objref
Search_name = string()
Levels to_search = integer()
Limit_type=atom() (one of dk_none, dk_all, dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef, dk_Alias, dk_Struct, dk_Union, dk_Enum, dk_Primitive,
dk_String, dk_Wstring, dk_Fixed, dk_Sequence, dk_Array, dk_Repository)
Exclude_inherited = atom() (true or false)
Return = list() (alist of #l FR_objects)

Objref is an IFR object of any kind that inherits from Container. Returns a list of #IFR_objects with an id matching
Search_name.

descri be_contents(Qojref,Limt_type, Excl ude_i nherited, Max_returned_objs) ->
Return

Types:
Objref = #FR_objref
Limit_type = atom() (one of dk_none, dk_all, dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef, dk_Alias, dk_Struct, dk_Union, dk_Enum, dk_Primitive,
dk_String, dk_Wstring, dk_Fixed, dk_Sequence, dk_Array, dk_Repository)
Exclude inherited = atom() (true or false)
Return = list() (alist of tuples (contained_description records) | {exception, _}

Objref is an IFR object of any kind that inherits from Container. Returns a list of descriptions of the IFR objects in
this Container's contents.

creat e_nodul e(bjref, I d, Nane, Versi on) -> Return
Types.
Objref = #IFR_objref
Id =string()
Name = string()
Version = string()
Return = #lFR_ModuleDef _objref
Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type ModuleDef.

create_constant (Qbjref, 1 d, Nane, Versi on, Type, Val ue) -> Return
Types:

Ericsson AB. All Rights Reserved.: orber | 97

orber_ifr

Objref = #IFR_objref

Id =string()

Name = string()

Version = string()
Type=#FR_IDLType_objref
Value = any()

Return = #lFR_ConstantDef_objr ef

Objref isan IFR object of any kind that inherits from Container. Creates an IFR object of the type ConstantDef.

create_struct (Objref,1d, Nanme, Versi on, Menbers) -> Return
Types:

Objref = # FR_objref

Id =string()

Name = string()

Version = string()

Members=list() (list of structmember records)

Return = #IFR_StructDef_objref

Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type StructDef.

create_uni on(Cbjref, 1 d, Name, Versi on, Di scri m nator_type, Menbers) -> Return
Types:

Objref = #FR_aobjref

Id =string()

Name = string()

Version = string()

Discriminator_type=#FR_IDLType Objref

Members=list() (list of unionmember records)

Return = #lFR_UnionDef_objref

Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type UnionDef.

create_enum Qbjref, |d, Nane, Versi on, Menbers) -> Return
Types:
Objref = # FR_objref
Id =string()
Name = string()
Version = string()
Members=list() (list of strings)
Return = #lFR_EnumDef_objref
Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type EnumDef.

create_alias(ojref,1d, Nane, Version, Original _type) -> Return

Types:
Objref = #1FR_objref

98 | Ericsson AB. All Rights Reserved.: orber

orber_ifr

Id =string()
Name = string()
Version = string()
Original_type=#FR_IDLType Objref
Return = #lFR_AliasDef_objref
Objref isan IFR object of any kind that inherits from Container. Creates an IFR object of the type AliasDef.

create_interface(Qbjref,|d, Nane, Versi on, Base_interfaces) -> Return
Types:

Objref = #IFR_objref

Id =string()

Name = string()

Version = string()

Base interfaces=list() (alist of IFR_InterfaceDef_objrefsthat thisinterfaceinheritsfrom

Return = #lFR_InterfaceDef_objref

Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type InterfaceDef.

create_exception(Qbjref,|d, Nane, Versi on, Menbers) -> Return
Types.

Objref = #IFR_objref

Id =string()

Name = string()

Version = string()

Members = list() (list of structmember records)

Return = #lFR_ExceptionDef_objref

Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type ExceptionDef.

get _type(Objref) -> Return
Types.

Objref = #FR_objref

Return = tuple() (atypecode tuple)

Objref isan | FR aobject of any kind that inheritsfrom IDLType or an | FR object of the kind ConstantDef, ExceptionDef
or AttributeDef. Returns the typecode of the IFR object.

| ookup_i d(Qbj ref, Search_id) -> Return
Types.

Objref = #IlFR_Repository_objr ef

Search_id = string()

Return = #IFR_objref
Returns an IFR object matching the Search_id.

get primtive(Objref,Kind) -> Return
Types:

Ericsson AB. All Rights Reserved.: orber | 99

orber_ifr

Objref = #lFR_Repository_objref

Kind = atom() (one of pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong, pk_float, pk_double,
pk_boolean, pk_char, pk_octet, pk_any, pk_TypeCode, pk_Principal, pk_string, pk_wstring, pk_fixed,
pk_objref)

Return = #lFR_PrimitiveDef _objref

Returns a PrimitiveDef of the specified kind.

create_string(Qbjref,Bound) -> Return
Types:

Objref = #lFR_Repository_objr ef

Bound = integer () (unsigned long /= Q)

Return = #lFR_StringDef_objref
Creates an |FR objref of the type StringDef.

create_wstring(Qbjref, Bound) -> Return
Types:

Objref = #lFR_Repository_objr ef

Bound = integer () (unsigned long /= Q)

Return = #lFR_WstringDef_objref
Creates an |FR objref of the type WstringDef.

create fixed(ojref,Digits, Scale) -> Return
Types.

Objref = #lFR_Repository_objr ef

Digits = Scale = integer ()

Return = #IFR_FixedDef_objref
Creates an |FR objref of the type FixedDef.

creat e_sequence(bj ref, Bound, El emrent _type) -> Return
Types.

Objref = #IlFR_Repository_objref

Bound = integer () (unsigned long)

Element_type=#FR_IDLType objref

Return = #lFR_SequenceDef objref
Creates an |FR objref of the type SequenceDef.

create_array(ojref, Length, El enent _type) -> Return
Types:
Objref = #lFR_Repository_objref
Bound = integer () (unsigned long)
Element_type=#FR_IDLType_objref
Return = #lFR_ArrayDef_objref
Creates an |FR objref of the type ArrayDef.

100 | Ericsson AB. All Rights Reserved.: orber

orber_ifr

create_idltype(ojref, Typecode) -> Return
Types:

Objref = #lFR_Repository_objref

Typecode = tuple() (atypecodetuple)

Return = #lFR_IDL Type objref

Creates an |FR objref of the type IDLType.

get _type_def (Cbjref) -> Return
Types:

Objref = #IFR_objref

Return = #IFR_IDL Type _objref

Objref isan IFR object of the kind ConstantDef or AttributeDef. Returnsan IFR object of thetype IDLType describing
the type of the IFR object.

set _type_def (bjref, TypeDef) -> Return
Types:
Objref = # FR_objref
TypeDef = #IlFR_IDL Type_objr ef
Return = ok | {exception, _}
Objref isan IFR object of the kind ConstantDef or AttributeDef. Sets the type_def of the IFR Object.

get _value(ojref) -> Return
Types:
Objref = #lFR_ConstantDef_objr ef
Return = any()

Returns the value attribute of an IFR Object of the type ConstantDef.

set _val ue(ojref, Value) -> Return

Types.
Objref = #IlFR_ConstantDef_abjr ef
Value=any()

Return = ok | {exception, _}
Sets the value attribute of an IFR Object of the type ConstantDef.

get _nenbers(Objref) -> Return

Types:
Objref = #FR_objref
Return = list()

Objref is an IFR object the kind StructDef, UnionDef, EnumDef or ExceptionDef. For StructDef, UnionDef and
ExceptionDef: Returnsalist of structmember recordsthat are the constituent parts of the object. For EnumDef: Returns
alist of strings describing the enumerations.

Ericsson AB. All Rights Reserved.: orber | 101

orber_ifr

set _nenbers(Objref, Menbers) -> Return
Types:

Objref = #IFR_objref

Members = list()

Return = ok | {exception, }

Objref is an IFR object the kind StructDef, UnionDef, EnumDef or ExceptionDef. For StructDef, UnionDef and
ExceptionDef: Membersisalist of structmember records. For EnumDef: Membersis alist of strings describing the
enumerations. Sets the members attribute, which are the constituent parts of the exception.

get _discrimnator_type(Objref) -> Return
Types:
Objref = #IFR_UnionDef_objref
Return = tuple() (atypecode tuple)
Returns the discriminator typecode of an IFR object of the type UnionDef.

get _discrimnator_type def (Objref) -> Return
Types:
Objref =#IFR_UnionDef _objref
Return = #IFR_IDL Type_objref
Returns an IFR object of the type IDL Type describing the discriminator type of an IFR object of the type UnionDef.

set _discrimnator_type def (CObjref, TypeDef) -> Return
Types.

Objref = # FR_UnionDef_objref

Return = #lFR_IDL Type objref

Sets the attribute discriminator_type def, an IFR object of the type IDL Type describing the discriminator type of an
IFR object of the type UnionDef.

get _original _type def(Objref) -> Return
Types:
Objref = #IFR_AliasDef _objref
Return = #IFR_IDL Type _objref
Returns an IFR object of the type IDL Type describing the original type.

set_original _type def(Objref, TypeDef) -> Return
Types:

Objref =#IFR_AliasDef _objref

Typedef = #lFR_IDL Type _objref

Return = ok | {exception, _}
Setsthe original_type def attribute which describes the original type.

get _kind(Objref) -> Return
Types:

102 | Ericsson AB. All Rights Reserved.: orber

orber_ifr

Objref = #IFR_PrimitiveDef_objref
Return = atom()
Returns an atom describing the primitive type (See CORBA 2.0 p 6-21).

get _bound(bjref) -> Return
Types:
Objref = # FR_objref
Return = integer (unsigned long)
Objref isan IFR object the kind StringDef or SequenceDef. For StringDef: returns the maximum number of characters

in the string. For SequenceDef: Returns the maximum number of elements in the sequence. Zero indicates an
unbounded sequence.

set _bound(Qoj ref, Bound) -> Return
Types.
Objref = #IFR_objref
Bound = integer (unsigned long)
Return = ok | {exception, _}
Objref isan IFR object the kind StringDef or SequenceDef. For StringDef: Sets the maximum number of characters

in the string. Bound must not be zero. For SequenceDef: Sets the maximum number of elementsin the sequence. Zero
indicates an unbounded sequence.

get _elenent _type(Objref) -> Return
Types:
Objref = # FR_objref
Return = tuple() (atypecode tuple)
Objref isan IFR object the kind SequenceDef or ArrayDef. Returns the typecode of the elementsin the IFR object.

get _el enent _type_def (bjref) -> Return
Types:

Objref = #IFR_objref

Return = #lFR_IDL Type objref

Objref is an IFR object the kind SequenceDef or ArrayDef. Returns an IFR object of the type IDLType describing
the type of the elementsin Objref.

set _el enent _type_def (Obj ref, TypeDef) -> Return
Types:

Objref = #FR_objref

TypeDef = #IlFR_IDL Type_objref

Return = ok | {exception, _}

Objref isan IFR object the kind SequenceDef or ArrayDef. Sets the element_type def attribute, an IFR object of the
type IDL Type describing the type of the elementsin Objref.

get _length(Cbjref) -> Return
Types:

Ericsson AB. All Rights Reserved.: orber | 103

orber_ifr

Objref =#IFR_ArrayDef _objref
Return = integer () (unsigned long)
Returns the number of elementsin the array.

set _length(Objref, Length) -> Return
Types:

Objref = #IlFR_ArrayDef_objref

Length = integer () (unsigned long)
Sets the number of elementsin the array.

get _node(Objref) -> Return
Types.

Objref = # FR_objref

Return = atom()

Objref is an IFR object the kind AttributeDef or OperationDef. For AttributeDef: Return is an atom
(ATTR_NORMAL' or 'ATTR_READONLY") specifying the read/write access for this attribute. For OperationDef:
Returnis an atom ('OP_NORMAL' or 'OP_ONEWAY") specifying the mode of the operation.

set _node(Objref, Mode) -> Return
Types:
Objref = #IFR_objref
Mode = atom()
Return = ok | {exception, }
Objref is an IFR object the kind AttributeDef or OperationDef. For AttributeDef: Sets the read/write access for this

attribute. Mode is an atom (ATTR_NORMAL' or 'ATTR_READONLY"). For OperationDef: Sets the mode of the
operation. Mode isan atom ('OP_NORMAL' or 'OP_ONEWAY").

get _result(Cbjref) -> Return
Types:
Objref = #IFR_OperationDef_objr ef
Return = tuple() (atypecode tuple)
Returns a typecode describing the type of the value returned by the operation.

get _result_def(Objref) -> Return
Types:
Objref = #lFR_OperationDef_objref
Return = #IFR_IDL Type _objref
Returns an IFR object of the type IDLType describing the type of the result.

set _result _def(Qojref, ResultDef) -> Return
Types.

Objref = #lFR_OperationDef_objr ef

ResultDef =#FR_IDL Type objref

104 | Ericsson AB. All Rights Reserved.: orber

orber_ifr

Return = ok | {exception, _}

Setsthe type_def attribute, an IFR Object of the type IDL Type describing the resuilt.

get _parans(Cbjref) -> Return
Types:

Objref = #lFR_OperationDef_objr ef

Return = list() (list of parameter description records)
Returns alist of parameter description records, which describes the

set _parans(Cbjref, Parans) -> Return

Types:
Objref = #lFR_OperationDef_objref
Params = list() (list of parameter description records)
Return = ok | {exception, }

Setsthe params attribute, alist of parameter description records.

get _contexts(hjref) -> Return
Types:

Objref = #IFR_OperationDef_objref

Return = list() (list of strings)
Returns alist of context identifiers for the operation.

set _contexts(Objref, Contexts) -> Return
Types:

Objref =#lFR_OperationDef_objref

Contexts = list() (list of strings)

Return = ok | {exception, _}
Sets the context attribute for the operation.

get _exceptions(Objref) -> Return
Types:
Objref = #lFR_OperationDef_objref
Return = list() (list of #l FR_ExceptionDef_abjr efs)

parameters of the OperationDef.

Returns alist of exception types that can be raised by this operation.

set _exceptions(Qbjref, Exceptions) -> Return
Types.
Objref = #lFR_OperationDef_objr ef
Exceptions = list() (list of #l FR_ExceptionDef_objrefs)
Return = ok | {exception, _}
Sets the exceptions attribute for this operation.

Ericsson AB. All Rights Reserved.: orber | 105

orber_ifr

get _base_interfaces(Objref) -> Return
Types:

Objref = #IlFR_InterfaceDef_objref

Return = list() (list of #l FR_InterfaceDef_objr efs)

Returns alist of InterfaceDefs from which this InterfaceDef inherits.

set _base interfaces(Objref, Baselnterfaces) -> Return
Types.

Objref = #lFR_InterfaceDef_objr ef

Baselnterfaces = list() (list of #lFR_InterfaceDef_objrefs)

Return = ok | {exception, _}
Sets the Baselnterfaces attribute.

is a(Objref,Interface_id) -> Return
Types:
Objref = #IlFR_InterfaceDef_objref
Interface id =# FR_InterfaceDef objref
Return = atom() (true or false)

Returns true if the InterfaceDef either isidentical to or inherits from Interface id.

describe_interface(Cbjref) -> Return
Types:

Objref = #IlFR_InterfaceDef_objref

Return = tuple() (a fullinterfacedescription record)

Returns afull inter face description record describing the InterfaceDef.

create_attribute(Objref,|d, Nane, Versi on, Type, Mode) -> Return
Types.

Objref = #IFR_InterfaceDef_objref

Id =string()

Name = string()

Version = string()

Type=#FR_IDLType _objref

Mode=atom() CATTR_NORMAL' or 'ATTR_READONLY")

Return = #lFR_AttributeDef objref

Creates an |FR object of the type AttributeDef contained in this InterfaceDef.

create_operation(Qbjref,|d, Name, Versi on, Resul t, Mbde, Par ans,
Excepti ons, Contexts) -> Return

Types:
Objref = #IFR_InterfaceDef_objr ef
Id =string()
Name = string()

106 | Ericsson AB. All Rights Reserved.: orber

orber_ifr

Version = string()

Result =#|FR_IDL Type_objref

Mode = atom() (OP_NORMAL' or 'OP_ONEWAY")
Params = list() (list of parameter description records)
Exceptions = list() (list of #| FR_ExceptionDef_objr efs)
Contexts = list() (list of strings)

Return = #lFR_OperationDef_objref

Creates an |FR object of the type OperationDef contained in this InterfaceDef.

Ericsson AB. All Rights Reserved.: orber | 107

orber_tc

orber _tc

Erlang module

This module contains some functions that gives support in creating IDL typecodes that can be used in for example
the any types typecode field. For the simple types it is meaningless to use this API but the functions exist to get the
interface compl ete.

The type TC used below describes an IDL type and is a tuple according to the to the Erlang language mapping.

Exports

null () -> TC

void() -> TC

short() -> TC

unsi gned_short () -> TC
long() -> TC

unsi gned_l ong() -> TC
long_long() -> TC

unsi gned_l ong_l ong() -> TC
wchar () -> TC

float() -> TC

doubl e() -> TC

bool ean() -> TC

char() -> TC

octet() -> TC

any() -> TC

typecode() -> TC
principal () -> TC

These functions return the IDL typecodes for simple types.

obj ect _reference(ld, Nanme) -> TC
Types.

Id =string()

the repository 1D

Name = string()

the type name of the object

Function returnsthe IDL typecode for object_reference.

struct(ld, Name, ElementList) -> TC
Types:

Id = string()

the repository 1D

Name = string()

the type name of the struct

ElementList = [{M emberName, TC}]

alist of the struct elements

108 | Ericsson AB. All Rights Reserved.: orber

orber_tc

Member Name = string()
the element name

Function returns the IDL typecode for struct.

union(ld, Nanme, DiscrTC, Default, ElenentList) -> TC
Types:

Id =string()

the repository 1D

Name = string()

the type name of the union

DiscrTC=TC

the typecode for the unions discriminant

Default = integer ()

avalue that indicates which tuple in the element list that is default (value < 0 means no default)

ElementList = [{Label, Member Name, TC}]

alist of the union elements

Label =term()

the label value should be of the Discr TCtype

MemberName = string()

the element name

Function returnsthe IDL typecode for union.

enum(ld, Nane, ElenentList) -> TC
Types.

Id =string()

the repository 1D

Name = string()

the type name of the enum

ElementList = [Member Name]

alist of the enums elements

Member Name = string()

the element name

Function returns the IDL typecode for enum.

string(Length) -> TC
Types:

Length = integer ()

the length of the string (0 means unbounded)
Function returnsthe IDL typecode for string.

wstring(Length) -> TC

Types.
Length = integer()

Ericsson AB. All Rights Reserved.: orber | 109

orber_tc

the length of the wstring (0 means unbounded)
Function returns the IDL typecode for wstring.

fixed(Digits, Scale) -> TC
Types:

Digits = Scale = integer ()

the digits and scale parameters of a Fixed type
Function returnsthe IDL typecode for fixed.

sequence(El enTC, Length) -> TC
Types:

ElemTC=TC

the typecode for the sequence elements

Length = integer()

the length of the sequence (0 means unbounded)
Function returns the IDL typecode for sequence.

array(El enTC, Length) -> TC
Types.
ElemTC=TC
the typecode for the array elements
Length = integer()
the length of the array
Function returnsthe IDL typecode for array.

alias(ld, Nane, AliasTC) -> TC
Types:

Id =string()

the repository 1D

Name = string()

the type name of the alias

AliasTC=TC

the typecode for the type which the alias refer to

Function returns the IDL typecode for alias.

exception(ld, Nanme, ElenentList) -> TC
Types.

Id =string()

the repository 1D

Name = string()

the type name of the exception

ElementList = [{MemberName, TC}]

alist of the exception elements

110 | Ericsson AB. All Rights Reserved.: orber

orber_tc

Member Name = string()
the element name

Function returns the IDL typecode for exception.

get _tc(Ohject) -> TC
get _tc(ld) -> TC
Types:
Object =record()
an IDL specified struct, union or exception
Id =string()
the repository 1D

If the get_tc/1 getsarecord that isand IDL specified struct, union or exception as aparameter it returns the typecode.

If the parameter is arepository ID it uses the Interface Repository to get the typecode.

check _tc(TC) -> bool ean()
Function checks the syntax of an IDL typecode.

Ericsson AB. All Rights Reserved.: orber | 111

orber_acl

orber_acl

Erlang module

This module contains functions intended for analyzing Access Control List (ACL) filters. The filters uses a
extended format of Classless Inter Domain Routing (CIDR). For example, " 123. 123. 123. 10" limits the
connection to that particular host, while "123. 123. 123. 10/ 17" dlows connections to or from any host
equal to the 17 most significant bits. Orber also allow the user to specify a certain port or port range, for
example, " 123. 123. 123. 10/ 17#4001" and " 123. 123. 123. 10/ 17#4001/ 5001" respectively. IPv4 or
none compressed | Pv6 strings are accepted.

Exports

mat ch(I P, Direction) -> bool ean()
match(I P, Direction, Getlnfo) -> Reply

Types.

IP =tuple() | [integer ()]

Direction =tcp_in|sd_in|tcp_out | ss_out

Getlnfo = boolean()

Reply = boolean() | {boolean(), [I nterface], Portl nfo}

Interface = string()

Portinfo = integer () | {integer (), integer ()}
If Get | nf o isnot supplied or set to false, this operation returns a boolean which tells if the IPv4 or 1Pv6 address
would passthe ACL filter, defined by thei i op_ac!| configuration parameter, or not. When Get | nf o isset to true,
a tuple which, besides the boolean that tells if access was granted, also include the defined interfaces and port(s).

This operation requires that Orber is running and can be used on alive node to determine if Orber has been properly
configured.

verify(lP, Filter, Famly) -> Reply

Types:
P =string()
Filter = string()

Family = inet | inet6

Reply =true| {false, From, To} |{error, string()}
From =string()

To=string()

This operation returns true if the IPv4 or IPv6 address would pass the supplied ACL. If that is not the case, atuple
containing the accepted range is returned. This operation should only be used for test purposes.

range(Filter, Fanmly) -> Reply
Types:
Filter = string()
Family = inet | inet6
Reply = {ok, From, To} |{error, string()}
From = string()

112 | Ericsson AB. All Rights Reserved.: orber

orber_acl

To=string()

Returns the range of accepted |P addresses based on the supplied filter. This operation should only be used for test
purposes.

Ericsson AB. All Rights Reserved.: orber | 113

CosNaming

CosNaming

Erlang module

The naming service provides the principal mechanism for clients to find objects in an ORB based world. The naming
service provides an initial naming context that functions as the root context for all names. Given this context clients
can navigate in the name space.

Types that are declared on the CosNaming level are:

typedef string Istring;

struct NaneConponent {
Istring id;
I'string Kind;

IE

typedef sequence <NaneConponent> Nane;
enum Bi ndi ngType {nobj ect, ncontext};

struct Binding {

Nanme bi ndi ng_nane;

Bi ndi ngType bi ndi ng_t ype;
}s

typedef sequence <Bi ndi ng> Bi ndi ngLi st ;

To get access to the record definitions for the structs use: -include_I|ib("orber/COSS/
CosNam ng. hrl ") ..

Names are not an ORB object but the can be structured in components as seen by the definition above. There are no
reguirements on names so the service can support many different conventions and standards.

There are two different interfaces supported in the service:

* NamingContext
e Bindinglterator

114 | Ericsson AB. All Rights Reserved.: orber

CosNaming_NamingContext

CosNaming_NamingContext

Erlang module

Thisisthe object that defines name scopes, names must be unique within anaming context. Objects may have multiple
names and may exist in multiple naming contexts. Name context may be named in other contexts and cycles are
permitted.

The type NameConponent used below is defined as:

-record(' CosNam ng_NaneConponent', {id, kind=""}).

wherei d and ki nd are strings.
Thetype Bi ndi ng used below is defined as:

-record(' CosNam ng_Bi ndi ng', {binding_nane, binding type}).

wherebi ndi ng_nanme isaNameandbi ndi ng_t ype isanenumwhich hasthevaluesnobj ect andncont ext .
Both these records are defined in the file CosNami ng. hr | and it isincluded with:

-include_lib("orber/COSS/ CosNam ng/ CosNam ng. hrl").

There are anumber of exceptionsthat can be returned from functions in this interface.
¢ NotFound is defined as

-record(' CosNam ng_Nani ngCont ext _Not Found' ,
{rest_of _name, why}).

e CannotProceed is defined as

-record(' CosNam ng_Nam ngCont ext _Cannot Proceed' ,
{rest_of name, cxt}).

¢ InvalidNameis defined as

-record(' CosNam ng_Nam ngCont ext _I nval i dName', {}).

¢ NotFound is defined as

-record(' CosNami ng_Nanmi ngCont ext _Not Found', {}).

Ericsson AB. All Rights Reserved.: orber | 115

CosNaming_NamingContext

e AlreadyBound is defined as

-record(' CosNam ng_Nam ngCont ext Al readyBound', {}).

e NotEmpty isdefined as

-record(' CosNam ng_Nanmi ngCont ext _Not Enpty', {).

These exceptions are defined in the file CosNam ng_Nam ngCont ext . hr| and it isincluded with:

-include_lib("orber/COSS/ CosNam ng/ CosNam ng_Nami ngCont ext. hrl").

Exports

bi nd(Nam ngCont ext, Name, Object) -> Return
Types.

NameContext = #objr ef

Name = [NameComponent]

Object = #objref

Return = ok

Creates a binding of a name and an object in the naming context. Naming contexts that are bound using bind() do
not participate in name resolution.

r ebi nd(Nam ngCont ext, Name, Object) -> Return
Types:

NamingContext = #objref

Name = [NameComponent]

Object = #objref

Return = ok

Creates ahinding of a name and an object in the naming context even if the name is already bound. Naming contexts
that are bound using rebind() do not participate in name resolution.

bi nd_cont ext (Nam ngCont ext 1, Nanme, Nani ngCont ex2) -> Return
Types.

NamingContext1 = NamingContext2 =#objr ef

Name = [NameComponent]

Return = ok

The bind_context function creates a binding of a name and a naming context in the current context. Naming contexts
that are bound using bind_context() participate in name resolution.

rebi nd_cont ext (Nam ngCont ext 1, Nane, Nanmi ngContex2) -> Return
Types:

116 | Ericsson AB. All Rights Reserved.: orber

CosNaming_NamingContext

NamingContext1l = NamingContext2 =#objr ef
Name = [NameComponent]
Return = ok

Therebind_context function creates abinding of a name and a naming context in the current context even if the name
aready is bound. Naming contexts that are bound using rebind_context() participate in name resolution.

resol ve(Nam ngCont ext, Name) -> Return
Types:
NamingContext = #objr ef
Name = [NameComponent]
Return = Object
Object = #objref
The resolve function is the way to retrieve an object bound to a name in the naming context. The given name must

match exactly the bound name. The type of the object is not returned, clients are responsible for narrowing the object
to the correct type.

unbi nd(Nam ngCont ext, Nanme) -> Return
Types.

NamingContext = #objr ef

Name = [NameComponent]

Return = ok

The unbind operation removes a name binding from the naming context.

new_cont ext (Nam ngContext) -> Return
Types:

NamingContext = #objr ef

Return = #objref

The new_context operation creates a new naming context.

bi nd_new cont ext (Nani ngCont ext, Name) -> Return
Types.

NamingContext = #objr ef

Name = [NameComponent]

Return = #abjr ef

The new_context operation creates a new naming context and binds it to Name in the current context.

destroy(Nam ngContext) -> Return

Types.
NamingContext = #objr ef
Return = ok

The destroy operation disposes the NamingContext object and removes it from the name server. The context must be
empty e.g. not contain any bindings to be removed.

Ericsson AB. All Rights Reserved.: orber | 117

CosNaming_NamingContext

i st(Nam ngContext, HowMany) -> Return
Types:
NamingContext = #objref
HowMany = int()
Return ={ok, BindingList, Bindinglterator}
BindingList = [Binding]
Bindinglterator = #objref
The list operation returns a BindingList with a number of bindings up-to HowMany from the context. It also returns

a Bindinlterator which can be used to step through the list. If the total number of existing bindings are less than, or
equal to, the Howiviny parameter a NIL object referenceis returned.

Note:

One must destroy the Bindinglterator, unless it is a NIL object reference, by using 'Bindinglterator':destroy().
Otherwise one can get dangling objects.

118 | Ericsson AB. All Rights Reserved.: orber

CosNaming_NamingContextExt

CosNaming_NamingContextExt

Erlang module

To get access to the record definitions for the structures use:

-include_Ilib("orber/COSS/ CosNani ng/ CosNami ng. hrl ™).

This module also exports the functions described in:

e CosNaming_NamingContext

Exports

to_string(Nam ngContext, Nane) -> Return
Types.
NameContext = #objr ef
Name = [NameComponent]
Return = string() | { EXCEPTION', NamingContext::InvalidName{}}

Stringifies a Nane sequence to a string.

t o_name(Nam ngCont ext, NanmeString) -> Return
Types.
NameContext = #objr ef
NameString = string()
Return = [NameComponent] | {'EXCEPTION', NamingContext::InvalidName{}}

Converts a stringified Nane to a Name sequence.

to_url (Nam ngCont ext, AddressString, NameString) -> Return
Types:
NameContext = #objr ef
Address = NameString = string()
Return = URL String | { EXCEPTION', NamingContext::InvalidName(}} | { EXCEPTION',
NamingContextExt::InvalidAddress{}}

This operation takes a cor bal oc string and a stringified Nanme sequence as input and returns a fully formed URL
string.

resol ve_str(Nam ngCont ext, NameString) -> Return
Types:

NameContext = #objr ef

NameString = string()

Ericsson AB. All Rights Reserved.: orber | 119

CosNaming_NamingContextExt

Return = #objref | {{EXCEPTION', NamingContext::InvalidName(}} |
{'EXCEPTION', NamingContext::NotFound{why, rest_of_name}} | {{EXCEPTION"',
NamingContext::CannotProceed{cxt, rest_of name}}

This operation takes a stringified Name sequence as input and returns the associated, if any, object.

120 | Ericsson AB. All Rights Reserved.: orber

CosNaming_Bindinglterator

CosNaming_Bindinglterator

Erlang module

Thisinterface allows aclient to iterate over the Bindinglist it has been initiated with.
The type NameConponent used below is defined as:

-record(' CosNam ng_NaneConponent', {id, kind=""}).

i d and ki nd are strings.
Thetype Bi ndi ng used below is defined as:

-record(' CosNam ng_Bi ndi ng', {binding_nane, binding type}).

bi ndi ng_nane isaNanme = [NameConponent] and bi ndi ng_t ype is an enum which has the values
nobj ect and ncont ext .

Both these records are defined in the file CosNami ng. hr | and it isincluded with:

-include_lib("orber/COSS/ CosNam ng/ CosNam ng. hrl").

Exports

next _one(Bindinlterator) -> Return
Types.

Bindinglterator = #objref

Return = {bool(), Binding}

This operation returns the next binding and a boolean. The latter is set to true if the binding is valid otherwise false.
If the boolean is false there are no more bindings to retrieve.

next _n(Bi ndinlterator, HowMany) -> Return
Types:

Bindinglterator = #objr ef

HowMany =int()

BindingList = [Binding]

Return = {bool(), BindingL st}

This operation returns a binding list with at most HowMany bindings. If there are no more bindings it returns false
otherwise true.

Ericsson AB. All Rights Reserved.: orber | 121

CosNaming_Bindinglterator

destroy(Bindinglterator) -> Return

Types:
Bindinglterator = #objref
Return = ok

This operation destroys the binding iterator.

122 | Ericsson AB. All Rights Reserved.: orber

Iname

Iname

Erlang module

Thisinterfaceisapart of the nameslibrary which isused to hide the representation of names. In Orbers Erlang mapping
the pseudo-object names and the real IDL names have the same representation but it is desirable that the clients uses
the names library so they will not be dependent of the representation. The Iname interface supports handling of names
e.g. adding and removing name components.

Notethat thelnameinterfacein orber doesnot contain adestroy function becausethe Namesare represented as standard
Erlang lists and therefor will be removed by the garbage collector when not in use.

The type NarmeConponent used below is defined as:
-record(' CosNam ng_NaneConponent', {id, kind=""}).

i d and ki nd are strings.
Therecord isdefined in the file CosNamni ng. hr | and it isincluded with:

-include_Ilib("orber/COSS/ CosNani ng/ CosNami ng. hrl").

Exports

create() -> Return
Types.

Return = [NameComponent]
This function returns a new name.

i nsert_conponent (Nane, N, NaneConponent) -> Return

Types:
Name = [NameComponent]
N =int()

Return = Name

This function returns a name where the new name component has been inserted as component Nin Name.

get _conponent (Nane, N) -> Return

Types:
Name = [NameComponent]
N =int()

Return = NameComponent

This function returnsthe N: t h name component in Name.

Ericsson AB. All Rights Reserved.: orber | 123

Iname

del et e_conponent (Name, N) -> Return

Types:
Name = [NameComponent]
N =int()

Return = Name
This function deletes the N: t h name component from Name and returns the new name.

num conponent (Name) -> Return

Types:
Name = [NameComponent]
Return =int()

This function returns a the number of name components in Name.

equal (Nanel, Nanme2) -> Return
Types:
Namel = Name2 = [NameComponent]
Return = bool()

This function returns true if the two names are equal and false otherwise.

| ess_t han(Nanel, Nane2) -> Return
Types.
Namel = Name2 = [NameComponent]
Return = bool()

This function returns true if Namel are lesser than Name2 and fal se otherwise.

to_idl _form Name) -> Return
Types:
Name = [NameComponent]
Return = Name

This function just checks if Name is a correct IDL name before returning it because the name representation is the
same for pseudo and IDL namesin orber.

fromidl form Nane) -> Return
Types:

Name = [NameComponent]

Return = Name

This function just returns the Name because the name representation is the same for pseudo and IDL names in orber.

124 | Ericsson AB. All Rights Reserved.: orber

Iname_component

Iname_component

Erlang module

Thisinterfaceisapart of the namelibrary, which isused to hide the representation of names. In Orbers Erlang mapping
the pseudo-object names and thereal IDL names have the same representation but it is desirable that the clientsusesthe
names library so they will not be dependent of the representation. The Iname_component interface supports handling
of name components e.g. set and get of the struct members.

Note that the Iname_component interface in orber does not contain a destroy function because the NameComponents
are represented as Erlang records and therefor will be removed by the garbage collector when not in use.

The type NarmeConponent used below is defined as:
-record(' CosNam ng_NaneConponent', {id, kind=""}).

i d and ki nd are strings.
Therecord isdefined in the file CosNamni ng. hr | and it isincluded with:

-include_Ilib("orber/COSS/ CosNani ng/ CosNami ng. hrl").

Exports

create() -> Return
Types.
Return = NameComponent
This function returns a new name component.

get i d(NaneConponent) -> Return
Types:
Return = string()
This function returns the id string of a name component.

set i d(NaneConponent, I1d) -> Return
Types:
Id =string()
Return = NameComponent
This function sets the id string of a name component and returns the component.

get ki nd(NameConponent) -> Return

Types:
Return = string()

Ericsson AB. All Rights Reserved.: orber | 125

Iname_component

This function returns the id string of a name component.

set ki nd(NameConponent, Kind) -> Return
Types:
Kind = string()
Return = NameComponent
This function sets the kind string of a name component and returns the component.

126 | Ericsson AB. All Rights Reserved.: orber

Module_lInterface

Module_Interface

Erlang module

This module contains the stub/skeleton functions generated by IC.
Starting a Orber server can be done in three ways:

* Normal - when the server dies Orber forgets all knowledge of the server.

e Supervisor child - adding the configuration parameter { sup_chi I d, true} theoe_create_I|ink/2
function returns{ ok, Pi d, Obj Ref} which can be handled by the application supervisor/stdlib-1.7 or
later.

» Persistent object reference - adding the configuration parameters{ per si st ent, true} and{regnane,
{global, term()}} Orberwill remember the object reference until the server terminates with reason
normal or shutdown. Hence, if the server is started as a transient supervisor child we do not receive a
'OBJECT_NOT_EXIST" exception when it has crashed and is being restarted.

The Orber stub can be used to start apseudo obj ect, which will create a non-server implementation. A pseudo
object introduce some limitations:

 Thefunctionsoe_create_link/2isequa tooe_create/ 2,i.e, nolink can or will be created.

e TheBlF:s self() andprocess_flag(trap_exit,true) behavesincorrectly.

e Thel Coption{{inpl, "M:I"}, "other_inpl"} hasno effect. The cal-back functions must be
implemented in afilecalledM | _i nmpl . er |

e Thel Coptionf r omhas no effect.
e The call-back functions must be implemented asif thel Coption{t his, "M : 1"} wasused.

e Server St at e changes have no effect. The user can provide information viathe Env start parameter and the
State returned fromi ni t / 2 will be the State passed in following invocations.

» If acall-back function replieswith the Ti meout parameter set it have no effect.

e Operations defined asoneway are blocking until the operation replies.

* Theoption{ pseudo, true} overridesall other start options.

e Only the functions, besides own definitions, i ni t / 2 (called viaoe create*/2) andt er m nat e/ 2 (caled via
corba:dispose/1) must be implemented.

By adopting therulesfor pseudo objectsdescribed abovewecanuseoe_cr eat e/ 2 tocreateser ver or pseudo
objects, by excluding or including the option { pseudo, true}, without changing the call-back module.

If you start aobject without { r egnane, RegNane} it can only be accessed through the returned object key. Started
witha{regname, RegNane} thenameisregistered locally or globally.

Warning:

To avoid flooding Orber with old object references start erlang using the flag -orber objectkeys gc time Time,
which will remove all object referencesrelated to servers being dead for Time seconds. To avoid extra overhead,
i.e., performing garbage collect if no persistent objectsare started, the objectkeys gc_timedefault valueisinfinity.
For more information, see the orber and corba documentation.

Ericsson AB. All Rights Reserved.: orber | 127

Module_Interface

Exports

Modul e_Interface:typel () -> Typeld
Types:

Typeld = string(), e.g., " IDL:Module/Interface: 1.0"
Returns the Type ID related to this stub/skeleton

Modul e_I nterface: oe_create() -> ObjRef
Types:

ObjRef = #object reference
Start a Orber server.

Modul e_Interface:oe_create |ink() -> bj Ref
Types:

ObjRef = #object reference
Start alinked Orber server.

Modul e_I nterface: oe_create(Env) -> bj Ref
Types:

Env =term()

ObjRef = #object reference

Start a Orber server passing Envtoi nit/ 1.

Modul e_I nterface: oe_create_link(Env) -> ObjRef
Types.

Env =term()

ObjRef = #object reference

Start alinked Orber server passing Envtoi nit/ 1.

Modul e_I nterface: oe_create(Env, Options) -> ObjRef
Types:

Env =term()

ObjRef = #object reference

Options = [{sup_child, false} | {persistent, Bool} | {regname, RegName} | {pseudo, Bool} |
{local_typecheck, Bool} | {survive exit, Bool} | {create_options, [CreateOpts]|}]

Bool =true|false
RegName = {global, term()} | {local, atom()}
CreateOpts = {debug, [Dbg]} | {timeout, Time}
Dbg =trace| log | statistics | {log_to _file, FileName}
Start a Orber server passing Envtoi nit/ 1.
If the option { pseudo, true} isused, al other options are overridden. As default, this option is set to false.

128 | Ericsson AB. All Rights Reserved.: orber

Module_lInterface

This function cannot be used for starting a server as supervisor child. If started as per si st ent, the options
[{persistent, true}, {regnanme, {global, term()}}] mustbeused and Orber will only forget the
object reference if it terminates with reason normal or shutdown.

Theoption{ | ocal _t ypecheck, bool ean() },whichoverridesthe Local Typechecking environment flag, turns
on or off typechecking. If activated, parameters, replies and raised exceptions will be checked to ensure that the data
is correct, when invoking operations on CORBA Objects within the same Orber domain. Due to the extra overhead,
this option MAY ONLY be used during testing and development.

{survive_exit, bool ean()} overridesthe EXIT Tolerance environment flag. If activated, the server will not
terminate, even though the call-back module returns EXIT.

Ti me specifieshow long time, in milliseconds, the server is allowed to spend initializing. For more information about
the Dbg options, seethe sys module.

Modul e_I nterface: oe_create_|ink(Env, Options) -> Return
Types:

Env =term()

Return = ObjRef | {ok, Pid, ObjRef}

ObjRef = #object reference

Options = [{sup_child, Bool} | {persistent, Bool} | {regname, RegName} | {pseudo, Bool} |
{local_typecheck, Bool} | {survive_exit, Bool} | {create_options, [CreateOpts]|}]

Bool =true| false

RegName = {global, term()} | {local, atom()}
CreateOpts = {debug, [Dbg]} | {timeout, Time}

Dbg =trace| log | statistics | {log_to file, FileName}

Start alinked Orber server passing Env toi nit/ 1.

If the option { pseudo, true} isused, al other options are overridden and no link will be created. As defaullt,
this option is set to false.

This function can be used for starting a server as persistent or supervisor child. At the moment [{ per si st ent,
true}, {regname, {global, term()}}] must beusedto start a server as persistent, i.e., if a server died
and isin the process of being restarted a call to the server will not raise’ OBJECT _NOT_EXI ST' exception. Orber
will only forget the object referenceif it terminates with reason normal or shutdown, hence, the server must be started
astransient (for more information see the supervisor documentation).

Theoptions{| ocal _t ypecheck, boolean()} and{survive_exit, bool ean()} behavesinthesame
way asfor oe_creat e/ 2.

Ti me specifies how long time, in milliseconds, the server is alowed to spend initializing. For more information about
the Dbg options, seethe sys module.

Modul e_I nterface: own_functions(Obj Ref, Argl, ..., ArgN) -> Reply
Modul e_I nterface: own_functi ons(Cbj Ref, Options, Argl, ..., ArgN) -> Reply
Types:

ObjRef = #object reference

Options = [Option] | Timeout

Option = {timeout, Timeout} | {context, [Context]}

Timeout = infinity | integer (milliseconds)

Context = #10P_ServiceContext'{context_id = Ctxld, context_data = CtxData}

Ericsson AB. All Rights Reserved.: orber | 129

Module_Interface

Ctxld = 70RBER_GENERIC_CTX_ID

CtxData = {interface, Interface} | {user specific, term()} | {configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key =sd_client_verify | sd_client_depth | sd_client_certfile| ssl_client_cacertfile| ss_client_password |

ssl_client_keyfile| sd_client_ciphers|ss_client_cachetimeout

Value = allowed value associated with the given key

ArgX = specified in the IDL -code.

Reply = specified in the | DL -code.
The default value for the Ti meout optionisi nfi ni ty. IPv4 or IPv6 addresses are accepted as local Interface.
The configuration context is used to override the global SSL client side configuration.

Togainaccessto#' | OP_Ser vi ceCont ext ' {} record and the ?ORBER_GENERI C_CTX_| D macro, you must
add-include_lib("orber/include/corba. hrl"). toyour module.

CALLBACK FUNCTIONS

The following functions should be exported from a CORBA callback module. Note, a complete template of the call-
back module can be generated automatically by compiling the IDL-file with the IC option { be, er| _t enpl at e}.
One should also add the same compile options, for examplet hi s or f r om used when generating the stub/skeleton
modules.

Exports

Modul e_Interface_inpl:init(Env) -> Call Reply
Types.
Env =term()
CallReply = {0k, State} | {ok, State, Timeout} | ignore | {stop, StopReason}
State = term()
Timeout = int() >= 0| infinity
StopReason = term()

Whenever anew server is started, init/1 isthe first function called in the specified call-back module.

Modul e_I nterface_inpl:termn nate(Reason, State) -> ok

Types.
Reason =term()
State=term()

This call-back function is called whenever the server is about to terminate.

Modul e_I nterface_i npl : code_change(d dVsn, State, Extra) -> CallReply
Types:

OldVsn = undefined | term()

State =term()

Extra=term()

CallReply = {ok, NewState}

NewState = term()

130 | Ericsson AB. All Rights Reserved.: orber

Module_lInterface

Update theinternal St at e.

Modul e_Interface_inpl:handle_ info(lnfo, State) -> Call Reply

Types.
Info=term()
State=term()

CallReply = {noreply, State} | {noreply, State, Timeout} | {stop, StopReason, State}
Timeout = int() >= 0| infinity
StopReason = normal | shutdown | term()

If the configuration parameter {{handle info, "Module::Interface"}, true} is passed to IC and
process flag(trap_exit,true) is set in the init() call-back this function must be exported.

Note:

To be able to handle the Ti meout optionin Cal | Repl y in the call-back module the configuration parameter
{{handle_info, "Module::Interface"}, true} must be passed to I C.

Modul e_Interface_inpl:own_functions(State, Argl, ..., ArgN) -> Call Reply
Modul e_I nterface_i npl : own_functions(This, State, Argl, ..., ArgN ->
Cal | Reply
Modul e_I nterface_i npl : own_functions(This, From State, Argl, ..., ArgN) ->
Ext Cal | Reply
Modul e_I nterface_i npl : own_functions(From State, Argl, ..., ArgN ->
Ext Cal | Reply
Types:
This = the servers#object reference
State=term()

ArgX = specified in the DL -code.
CallReply = {reply, Reply, State} | {reply, Reply, State, Timeout} | {stop, StopReason, Reply, State} |
{stop, StopReason, State} | corba:raise(Exception)

ExtCallReply = CallReply | corba:reply(From, Reply), {noreply, State} | corba:reply(From, Reply),
{noreply, State, Timeout}

Reply = specified in the IDL -code.
Timeout = int() >= 0] infinity
StopReason = normal | shutdown | term()
All two-way functions must return one of the listed replies or raise any of the exceptions listed in the IDL code (i.e.

raises(...)). If the IC compile options this and/or from are used, the implementation must accept the This and/or From
parameters.

Modul e_I nterface_i npl : own_functions(State, Argl, ..., ArgN) -> CastReply
Modul e_Interface_inpl:own_functions(This, State, Argl, ..., ArgN) ->
Cast Reply
Types.

This =the servers#object reference

State=term()

Ericsson AB. All Rights Reserved.: orber | 131

Module_Interface

CastReply = {noreply, State} | {noreply, State, Timeout} | {stop, StopReason, State}
ArgX = specified in the IDL -code.

Reply = specified in the IDL -code.

Timeout = int() >= 0| infinity

StopReason = normal | shutdown | term()

All one-way functions must return one of the listed replies. If the IC compile option thisis used, the implementation
must accept the This parameter.

132 | Ericsson AB. All Rights Reserved.: orber

interceptors

interceptors

Erlang module

This module contains the mandatory functions for user supplied native interceptors and their intended behavior. See
also the User's Guide.

Warning:

Using | nt er cept or s may reduce the through-put significantly if the supplied interceptors invoke expensive
operations. Hence, one should always supply interceptors which cause as little overhead as possible.

Warning:

It is possble to adter the Data, Bin and Args paameter for the in_reply
and out reply, in_reply encoded, in_request_encoded, out reply encoded and
out request _encoded,i n_request andout request respectively. But, if it isdone incorrectly, the
conseguences can be serious.

Note:

The Ext r a parameter is set to 'undefined' by Orber when calling thefirst interceptor and may be set to any Erlang
term. If an interceptor change this parameter it will be passed on to the next interceptor in the list uninterpreted.

Note:

The Ref parameter is set to ‘'undefined by Orber when calling new_ i n_connection or
new_out _connecti on using the first interceptor. The user supplied interceptor may set NewRef to any
Erlang term. If an interceptor change this parameter it will be passed on to the next interceptor in the list
uninterpreted.

Exports

new_i n_connecti on(Ref, PeerHost, PeerPort) -> NewRef
new_ i n_connection(Ref, PeerHost, PeerPort, SocketHost, SocketPort) -> NewRef

Types:
Ref =term() | undefined
PeerHost = SocketHost = string(), e.g., " myHost@myServer" or " 192.0.0.10"
Peer Port = SocketPort = integer ()
NewRef =term() | {'EXIT', Reason}

Ericsson AB. All Rights Reserved.: orber | 133

interceptors

When a new connection is requested by a client side ORB this operation is invoked. If more than one interceptor
is supplied, eg., {native, ['nylnterceptorl', 'nylnterceptor2']}, the return value from
'mylnterceptorl’ is passed to ‘mylnterceptor2' as Ref . Initially, Orber uses the atom 'undefined' as Ref parameter
when calling the first interceptor. The return value from the last interceptor, in the example above 'mylnterceptor?’,
is passed to all other functions exported by the interceptors. Hence, the Ref parameter can, for example, be used asa
unique identifier to mnesia or ets where information/restrictions for this connection is stored.

The PeerHost and PeerPort variables supplied data of the client ORB which requested a new connection. SocketHost
and SocketPort are the local interface and port the client connected to.

If, for some reason, we do not allow the client ORB to connect simply invoke exi t (Reason) .

new_out _connection(Ref, PeerHost, PeerPort) -> NewRef
new _out _connection(Ref, PeerHost, PeerPort, SocketHost, SocketPort) -> NewRef

Types:
Ref =term() | undefined
PeerHost = SocketHost = string(), e.g., " myHost@myServer" or " 192.0.0.10"
Peer Port = SocketPort = integer ()
NewRef =term() | {'EXIT', Reason}
When a new connection is set up this function is invoked. Behaves just like new_i n_connect i on; the only

difference is that the PeerHost and PeerPort variables identifies the target ORB's bootstrap data and SocketHost and
SocketPort are the local interface and port the client ORB connected via.

cl osed_i n_connection(Ref) -> NewRef
Types.

Ref =term()

NewRef =term()

When an existing connection is terminated this operation is invoked. The main purpose of this function isto make it
possible for a user to clean up all data associated with the associated connection.

The input parameter Ref isthereturn valuefromnew_i n_connecti on/ 3.

cl osed_out _connection(Ref) -> NewRef
Types:

Ref =term()

NewRef =term()

When an existing connection is terminated this operation is invoked. The main purpose of this function isto make it
possible for a user to clean up all data associated with the associated connection.

Theinput parameter Ref isthereturn value from new_out _connecti on/ 3.

in reply(Ref, bj, Cx, Op, Data, Extra) -> Reply
Types.

Ref =term()

Obj = #objref

Ctx = [#10P_ServiceContext'{}]

Op =atom()

Data = [Result, OutParameter 1, ..., OutPramater N]

134 | Ericsson AB. All Rights Reserved.: orber

interceptors

Reply = {NewData, NewExtra}

When replies are delivered from the server side ORB to the client side ORB this operation is invoked. The Dat a
parameter isalistinwhichthefirst element isthereturn value value fromthetarget object and therest isaall parameters
defined asout ori nout inthe IDL-specification.

in_reply_encoded(Ref, Obj, Cx, Op, Bin, Extra) -> Reply
Types.

Ref =term()

Obj = #objref

Ctx = [#10P_ServiceContext'{}]

Op =atom()

Bin =#binary

Reply = {NewBin, NewEXxtra}

When replies are delivered from the server side ORB to the client side ORB this operation is invoked. The Bi n
parameter is the reply body still uncoded.

in_request(Ref, nj, Cx, Op, Args, Extra) -> Reply
Types.

Ref =term()

Obj = #objref

Ctx = [#10P_ServiceContext'{}]

Op =atom()

Args=[Argument] - defined in the | DL -specification

Reply = {NewArgs, NewExtra}
When anew request arrives at the server side ORB this operation isinvoked.

i n_request _encoded(Ref, nj, Cx, Oy, Bin, Extra) -> Reply
Types:
Ref =term()
Obj = #objref
Ctx = [#10P_ServiceContext'{}]
Op =atom()
Bin = #binary
Reply = {NewBin, NewExtra}
When anew request arrives at the server side ORB this operation isinvoked before decoding the request body.

out reply(Ref, Qoj, Cx, Op, Data, Extra) -> Reply
Types.

Ref =term()

Obj = #objref

Ctx = [#10P_ServiceContext'{}]

Op =atom()

Data = [Result, OutParameter1, ..., OutPramater N]

Ericsson AB. All Rights Reserved.: orber | 135

interceptors

Reply = {NewData, NewExtra}

After the target object have been invoked this operation is invoked with the result. The Dat a parameter isalistin
which the first element is the return value value from the target object and the rest is aall parameters defined as out
ori nout intheIDL-specification.

out _reply_encoded(Ref, oj, Cx, Op, Bin, Extra) -> Reply
Types.
Ref =term()
Obj = #objref
Ctx = [#10P_ServiceContext'{}]
Op =atom()
Bin =#binary
Reply = {NewBin, NewExtra}
This operation issimilar to out _r epl y; the only differenceis that the reply body have been encoded.

out _request(Ref, Obj, Ctx, Op, Args, Extra) -> Reply
Types.

Ref =term()

Obj = #objref

Ctx = [#10P_ServiceContext'{}]

Op =atom()

Args=[Argument] - defined in the | DL -specification

Reply = {NewArgs, NewExtra}
Before arequest is sent to the server side ORB, out _r equest isinvoked.

out _request_encoded(Ref, Obj, Cx, Op, Bin, Extra) -> Reply
Types:
Ref =term()
Obj = #objref
Ctx = [#10P_ServiceContext'{}]
Op =atom()
Bin = #binary
Reply = {NewBin, NewExtra}
Thisoperation issimilar to out _r equest ; the only differenceis that the request body have been encoded.

136 | Ericsson AB. All Rights Reserved.: orber

orber_diagnostics

orber_diagnostics

Erlang module

This module contains functions which makes it possible to run simple tests.

Warning:
Functions exported by this module may only be used during test and development phase.

Exports

naneservice() -> Result
naneservi ce(Fl ags) -> Result

Types:

Flags = integer ()

Result = ok | {'EXCEPTION', E}
Displays all objects stored in the NameService. Existent checks are, per default, also performed on all local objects.
This can also be activated for external objects by setting the flag 16#01. The displayed information is the stringified

Name described in CosNaming_NamingContextExt, non existent status (true | false | external | undefined) and the I FR-
Id:

host/
host/resour ces/
host/resources/ MyObj/ [false] |IDL: MyMod/ MyIntf:1.0

m ssi ng_nodul es() -> Count
Types:
Count = integer()

This operation list missing modules generated by 1C and required by Orber. Requires that all API:s are registered in
the IFR.

Ericsson AB. All Rights Reserved.: orber | 137

	orber
	User's Guide
	The Orber Application
	Content Overview
	Brief Description of the User's Guide
	ORB Kernel and IIOP Support
	Interface Repository
	IDL to Erlang Mapping
	CosNaming Service
	Resolving Initial References from Java or C++
	Orber Stub/Skeleton
	CORBA Exceptions
	Interceptors
	OrberWeb
	Debugging

	Introduction to Orber
	Overview
	Benefits
	Purpose and Dependencies
	Prerequisites

	The Orber Application
	ORB Kernel and IIOP
	The Object Request Broker (ORB)
	Internet Inter-Object Protocol (IIOP)

	Interface Repository
	Interface Repository(IFR)

	Installing Orber
	Installation Process
	Preparation
	Jump Start Orber
	Install Single Node Orber
	Install RAM Based Multi Node Orber
	Install Disk Based Multi Node Orber

	Configuration
	Orber Environment Flags

	Firewall Configuration
	Interface Configuration

	OMG IDL to Erlang Mapping
	OMG IDL to Erlang Mapping - Overview
	OMG IDL Mapping Elements
	Getting Started
	Basic OMG IDL Types
	Template OMG IDL Types and Complex Declarators
	String/WString Data Types
	Sequence Data Type
	Array Data Type
	Fixed Data Type

	Constructed OMG IDL Types
	Struct Data Type
	Enum Data Type
	Union Data Type

	Scoped Names and Generated Files
	Scoped Names
	Generated Files

	Typecode, Identity and Name Access Functions
	References to Constants
	References to Objects Defined in OMG IDL
	Exceptions
	Access to Attributes
	Invocations of Operations
	Implementing the DB Application
	Reserved Compiler Names and Keywords
	Type Code Representation

	CosNaming Service
	Overview of the CosNaming Service
	The Basic Use-cases of the Naming Service
	Fetch Initial Reference to the Naming Service
	Creating a Naming Context
	Binding and Unbinding Names to Objects
	Resolving a Name to an Object
	Listing the Bindings in a NamingContext
	Destroying a Naming Context

	Interoperable Naming Service
	IOR
	corbaloc
	corbaname

	How to use security in Orber
	Security in Orber
	Introduction
	Enable Usage of Secure Connections
	Configurations when Orber is Used on the Server Side
	Configurations when Orber is Used on the Client Side

	Orber Stubs/Skeletons
	Orber Stubs and Skeletons Description
	Server Start
	Pseudo Objects
	Call-back Module

	CORBA System and User Defined Exceptions
	System Exceptions
	Status Field
	Minor Field
	Supported System Exceptions

	User Defined Exceptions
	Throwing Exceptions
	Catching Exceptions

	Orber Interceptors
	Using Interceptors
	Configure Orber to Use Interceptors
	Creating Interceptors

	Interceptor Example

	OrberWeb
	Using OrberWeb
	The Menu Frame
	The Configuration Data Frame
	The IFR Data Frame
	The NameService Data Frame
	The Object Creation Data Frame

	Starting OrberWeb

	Debugging
	Tools and FAQ
	Tools
	FAQ

	Reference Manual
	any
	create/0
	create/2
	set_typecode/2
	get_typecode/1
	set_value/2
	get_value/1

	fixed
	create/3
	get_typecode/1
	add/2
	subtract/2
	multiply/2
	divide/2
	unary_minus/1

	corba
	create/2
	create/3
	create/4
	create_link/2
	create_link/3
	create_link/4
	dispose/1
	create_nil_objref/0
	create_subobject_key/2
	get_subobject_key/1
	get_pid/1
	raise/1
	reply/2
	resolve_initial_references/1
	resolve_initial_references/2
	add_initial_service/2
	remove_initial_service/1
	list_initial_services/0
	resolve_initial_references_remote/2
	resolve_initial_references_remote/3
	list_initial_services_remote/1
	list_initial_services_remote/2
	object_to_string/1
	string_to_object/1
	string_to_object/2
	print_object/1
	add_alternate_iiop_address/3
	orb_init/1

	corba_object
	get_interface/1
	is_nil/1
	is_a/2
	is_a/3
	is_remote/1
	non_existent/1
	non_existent/2
	not_existent/1
	not_existent/2
	is_equivalent/2
	hash/2

	orber
	start/0
	start/1
	jump_start/1
	stop/0
	info/0
	info/1
	exception_info/1
	is_system_exception/1
	get_tables/0
	get_ORBInitRef/0
	get_ORBDefaultInitRef/0
	domain/0
	iiop_port/0
	iiop_out_ports/0
	iiop_out_ports_random/0
	iiop_out_ports_attempts/0
	iiop_ssl_port/0
	iiop_timeout/0
	iiop_connection_timeout/0
	iiop_connections/0
	iiop_connections/1
	iiop_connections_pending/0
	iiop_in_connection_timeout/0
	iiop_acl/0
	activate_audit_trail/0
	activate_audit_trail/1
	deactivate_audit_trail/0
	add_listen_interface/2
	add_listen_interface/3
	add_listen_interface/3
	remove_listen_interface/1
	close_connection/1
	close_connection/2
	secure/0
	ssl_server_certfile/0
	ssl_client_certfile/0
	set_ssl_client_certfile/1
	ssl_server_verify/0
	ssl_client_verify/0
	set_ssl_client_verify/1
	ssl_server_depth/0
	ssl_client_depth/0
	set_ssl_client_depth/1
	objectkeys_gc_time/0
	orber_nodes/0
	install/1
	install/2
	uninstall/0
	add_node/2
	remove_node/1
	configure/2

	orber_ifr
	init/2
	find_repository/0
	get_def_kind/1
	destroy/1
	get_id/1
	set_id/2
	get_name/1
	set_name/2
	get_version/1
	set_version/2
	get_defined_in/1
	get_absolute_name/1
	get_containing_repository/1
	describe/1
	move/4
	lookup/2
	contents/3
	lookup_name/5
	describe_contents/4
	create_module/4
	create_constant/6
	create_struct/5
	create_union/6
	create_enum/5
	create_alias/5
	create_interface/5
	create_exception/5
	get_type/1
	lookup_id/2
	get_primitive/2
	create_string/2
	create_wstring/2
	create_fixed/3
	create_sequence/3
	create_array/3
	create_idltype/2
	get_type_def/1
	set_type_def/2
	get_value/1
	set_value/2
	get_members/1
	set_members/2
	get_discriminator_type/1
	get_discriminator_type_def/1
	set_discriminator_type_def/2
	get_original_type_def/1
	set_original_type_def/2
	get_kind/1
	get_bound/1
	set_bound/2
	get_element_type/1
	get_element_type_def/1
	set_element_type_def/2
	get_length/1
	set_length/2
	get_mode/1
	set_mode/2
	get_result/1
	get_result_def/1
	set_result_def/2
	get_params/1
	set_params/2
	get_contexts/1
	set_contexts/2
	get_exceptions/1
	set_exceptions/2
	get_base_interfaces/1
	set_base_interfaces/2
	is_a/2
	describe_interface/1
	create_attribute/6
	create_operation/9

	orber_tc
	null/0
	void/0
	short/0
	unsigned_short/0
	long/0
	unsigned_long/0
	long_long/0
	unsigned_long_long/0
	wchar/0
	float/0
	double/0
	boolean/0
	char/0
	octet/0
	any/0
	typecode/0
	principal/0
	object_reference/2
	struct/3
	union/5
	enum/3
	string/1
	wstring/1
	fixed/2
	sequence/2
	array/2
	alias/3
	exception/3
	get_tc/1
	get_tc/1
	check_tc/1

	orber_acl
	match/2
	match/3
	verify/3
	range/2

	CosNaming
	CosNaming_NamingContext
	bind/3
	rebind/3
	bind_context/3
	rebind_context/3
	resolve/2
	unbind/2
	new_context/1
	bind_new_context/2
	destroy/1
	list/2

	CosNaming_NamingContextExt
	to_string/2
	to_name/2
	to_url/3
	resolve_str/2

	CosNaming_BindingIterator
	next_one/1
	next_n/2
	destroy/1

	lname
	create/0
	insert_component/3
	get_component/2
	delete_component/2
	num_component/1
	equal/2
	less_than/2
	to_idl_form/1
	from_idl_form/1

	lname_component
	create/0
	get_id/1
	set_id/2
	get_kind/1
	set_kind/2

	Module_Interface
	Module_Interface:typeID/0
	Module_Interface:oe_create/0
	Module_Interface:oe_create_link/0
	Module_Interface:oe_create/1
	Module_Interface:oe_create_link/1
	Module_Interface:oe_create/2
	Module_Interface:oe_create_link/2
	Module_Interface:own_functions/4
	Module_Interface:own_functions/5
	Module_Interface_impl:init/1
	Module_Interface_impl:terminate/2
	Module_Interface_impl:code_change/3
	Module_Interface_impl:handle_info/2
	Module_Interface_impl:own_functions/4
	Module_Interface_impl:own_functions/5
	Module_Interface_impl:own_functions/6
	Module_Interface_impl:own_functions/5
	Module_Interface_impl:own_functions/4
	Module_Interface_impl:own_functions/5

	interceptors
	new_in_connection/3
	new_in_connection/5
	new_out_connection/3
	new_out_connection/5
	closed_in_connection/1
	closed_out_connection/1
	in_reply/6
	in_reply_encoded/6
	in_request/6
	in_request_encoded/6
	out_reply/6
	out_reply_encoded/6
	out_request/6
	out_request_encoded/6

	orber_diagnostics
	nameservice/0
	nameservice/1
	missing_modules/0

