
Create Your Own Language
How to implement a language on top of

Erlang Virtual Machine (BEAM)

Hamidreza Soleimani
Backend Developer / Architect @ BisPhone

Tehran Linux User Group
August 6, 2015

Why should we create
a new language?

Lisp

Javascript
XML

PHP

Python

Haskell

Erlang
Go Ruby

Java

CProlog

Scala

SQL

SQL

Elixir

C++

Rust

Perl

C# Objectiv-CSQL

There are lots of Languages!
By category:  
Programming, Query, Domain Specific, etc

By Paradigm: 
Imperative, Declarative (Logic, Functional), Structured (Object
Oriented, Modular), etc

By Implementation: 
Compiled, Interpreted, Mixed, etc

By Type System: 
Static, Dynamic, Strong, Weak, etc

So why should we create it?

Reason 1: Implementing a new idea

Reason 2: Solving a new problem

Reason 3: Mastering language concepts

Reason 4: Just for fun!

How can we create
a new language?

1. Designing

1.1. Identifying the problem

1.2. Planning the target platform/machine

1.3. Determining language category, paradigm, types, etc

2. Implementing Frontend
2.1. Lexical Scanning (Token Generating)  
 (example: lex, flex, leex, etc)

2.2. Syntax & Semantics Parsing (AST Generating)  
 (example: yacc, bison, yecc)

2.3. Preprocessing

2.4. Lint Analyzing

2.5. Generating Intermediate Language  
 (example: GCC IR, LLVM IR, BEAM Bytecode, Java Bytecode)

3. Implementing Backend

3.1. Analyzing Intermediate Language

3.2. Optimizing

3.3. Generating Machine Code

3.4. Evaluating and Executing

Lets look inside Erlang
compiler

– Holy Wikipedia

What is Erlang?

“Erlang is a general-purpose, functional, concurrent,
garbage-collected programming language and
runtime system, with eager evaluation, single

assignment, and dynamic typing. It was originally
designed by Ericsson to support distributed, fault-
tolerant, soft real-time, highly available, non-stop

applications. It supports hot swapping, so that code
can be changed without stopping a system.”

Code Generation Steps
Erlang Source Code

Parse Transformed & Preprocessed Code (erlc -P)

Source Transformed Code (erlc -E)

Abstract Syntax Tree (erlc +dabstr)

Expanded Abstract Syntax Tree (erlc +dexp)

Core Erlang (erlc +to_core)

Assembler Code (erlc -S)

BEAM Bytecode (erlc)

Source Code
$ vim test.erl

Parse Transformed Code
$ erlc -P test.erl

Source Transformed Code
$ erlc -E test.erl

AST Code
$ erlc +dabstr test.erl

Expanded AST Code
$ erlc +dexp test.erl

Core Erlang Code
$ erlc +to_core test.erl

Assembler Code
$ erlc -S test.erl

BEAM Byte Code
$ erlc test.erl

Lets create a query language
for Tnesia

– https://github.com/bisphone/Tnesia

What is Tnesia?

“Tnesia is a time-series data storage which lets you
run time-based queries on a large amount of data,
without scanning the whole set of data, and in a

key-value manner. It can be used embedded inside
an Erlang application, or stand-alone with HTTP
interface to outside which talks in a simple query

language called TQL.”

https://github.com/bisphone/Tnesia

The Problem
It seems that its Erlang API looks strange to non-Erlang developer!

The Solution
Create a Query Language (TQL) that can be used over HTTP.

TQL Concepts
Syntax Types

Lexical Scanning
Using leex which is a Erlang lexer

Definitions Rules

Parsing

Non-terminals Terminals Rules

Using yecc which is an Erlang parser generator

Root-symbol

Evaluating
Evaluating AST in Erlang without any intermediate code generation

Question || Comment

- https://hamidreza-s.github.com

https://hamidreza-s.github.com

