Tipping the Webscale

with XMPP & WebSockets

FFFFFFF



Sonny Scroggin

email/xmpp: sonny@scrogg.in + github/twitter: @scrogson



Nashville, TN



> bluebox

bluebox.net


http://bluebox.net

WHAT WE'LL COVER

+ INTRODUCTION TO THE XMPP PROTOCOL
+ SERVERS

+ CLIENTS

+ COMPONENTS

- HOW TO APPLY



EXTENSIBLE MESSAGING & PRESENCE PROTOCOL



@ CORE SERVICES

Channel Encryption

Authentication

Presence

Roster

Messaging (one-to-one, multi-party)
Service Discovery

Notifications (Publish/Subscribe)
Capabilities Advertisement

Data Forms

Peer-to-Peer Media Sessions



© WHY XMPP?

Why XMPP?

Open - free, public, and easy to understand

Standard - RFC 6120/ 6121 /6122
Proven - first developed in 1998 and is very stable

Decentralized - similar to email, run your own server
Secure - SASL and TLS built-in

Extensible - build on top of the core protocols



@ WHO USES IT?

Apple - iMessage, Push Notifications, Bonjour

Google - GoogleTalk, Push Notifications

Cisco - Webex
Facebook - chat

WhatsApp - started with ejabberd

Chesspark - online chess game



ROUTING / ADDRESSING



© ROUTING / ADDRESSING

JID (Jabber ID) - addressing similar to email

Bare - <user>@<server>

Full - <user>@<server>/<resource>

Resource - allows multiple sessions per user

- Automatically generated by the server if not specified
+ Messages can be addressed to either the bare JID or full JID
+ Messages to the bare JID route to the full JID with the highest priority



BASIC CONNECTION LIFECYCLE



@ BASIC CONNECTION LIFECYCLE

Client initiates a TCP connection to the server

Sends stream header

Negotiates stream features and authentication mechanisms
The client binds to a resource

The client sends presence to the server

The client requests its roster

The client sends and receives messages to/from others

The client ends the session and closes the connection



COMMUNICATION PRIMATIVES



@ COMMUNICATION PRIMATIVES

XML Stanzas

Fragments of XML sent over an XML stream

<message/>
<presence/>

<iq/>



© COMMUNICATION PRIMATIVES

Common Attributes

to: specifies the JID of the intended recipient

from: specifies the JID of the sender

type: specifies the purpose or context of the message

xml:lang: specifies the default language of any such human-readable XML character data

id: used by the originating entity to track any response or error stanza that it might receive

in relation to the generated stanza from another entity



@ STANZAS: MESSAGE

The <message/> stanza is a "push” mechanism.

One entity pushes information to another entity, similar to the communications that occur in a

system such as email.

The payload in the case of instant messaging is a <body/> element, but it can also include any

other custom elements to extend the protocol.

<message
to="romeo@im.montagque. Lit"
id=""sa7f8df"
type="chat"
xml: lang="en">
<body>Where art thou, Romeo?</body>
</message>

NOTE: Juliet's server will add the "from" attribute when routing the message.



@ STANZAS: PRESENCE

The <presence/> stanzais a "broadcast" or "publish/

subscribe" mechanism.

- Multiple entities receive information (in this case, network availability information)
about an entity to which they have subscribed.

-+ Sets and shows the availability of the entity that is connected.

Announce availability on the server

<presence/>



@ STANZAS: PRESENCE

Announce you're away
<presence>

<show>away</show>
</presence>

Do not disturb

<presence>

<show>dnd</show>

<status>working hardcore...</status>
</presence>

Going offline

<presence type="unavailable"/>



@ STANZAS: PRESENCE

Subscriptions

Juliet requests a subscription to Romeo's presence

<presence to="romeo@im.montague.lit" type="subscribe"/>

Romeo gladly excepts

<presence to="juliet@im.capulet. lit" type="subscribed"/>



@ STANZAS: 1Q

The <1qg/> stanza is a "request/response" mechanism, similar
iIn some ways to HTTP.

Enables an entity to make a request of, and receive a response from, the server
or another entity.
Request type Is either "get" or "set".
Response type is either "result” or "error”.
- Service discovery

Juliet requests Romeo's vCard

<1gq to="romeo@im.montague. lit" type="get" 1id="s8f7">
<vCard xmlns="vcard-temp"/>
</1q>



@ STANZAS: 1Q

Romeo's server responds

<iq
to="juliet@im.capulet. lit/balcony"
from="romeo@im.montague. Lit"
type="result"
id="s8f7">
<vCard xmlns="vcard-temp"'>
<EMAIL>
<USERID>romeo@montagque. lLi1t</USERID>
</EMAIL>
<FN>Romeo Montague</FN>
</vCard>
</1iq>



@ STANZAS: 1Q

Roster request

<ig to="im.capulet.lit" type='"get" id="s8f7">
<query xmlns="jabber:iq:roster"/>
</1q>

Server response

<iq to="juliet@im.capulet.lit/balcony"” type="result" id="s8f7"
from="1im. capulet. Lit">
<query xmlns="jabber:iqg:roster">
<item jid="romeo@im.montague.lit" name="Romeo Montague"
subscription="both">
<group=>Lover</group>
</1tem>
</query>
</1q>



SERVICE DISCOVERY



@ SERVICE DISCOVERY

Query clients or servers about features/capabilities

Enables you to find out which features are supported by another entity, as well as any additional
entities that are associated with it (e.g., rooms hosted at a chat room service).

disco#info query

<iq

to="juliet@im.capulet. lit/balcony"

type="get"

1d="s8f7">

<query xmlns="http://jabber.org/protocol/disco#info"/>
</1ig>



@ SERVICE DISCOVERY

disco#info response

<iq

from="juliet@im.capulet.lit/balcony’
to="romeo@im.montagque. lit/library"

type="result"’
id="'a2a3'>
<query xmlns="'http://jabber.org/protocol/disco#info'>
<identity category='client' type='pc' name='Adium'/>

<feature
<feature
<feature
<feature
<feature
<feature

</query>
</1qg>

var="http
var="http
var="http
var="http
var="http
var="http

://jabber.
://jabber.
://jabber.

://jabber.
://jabber.
://jabber.

org/protocol/caps'/>
org/protocol/chatstates'/>
org/protocol/muc'/>

org/protocol/muc#user’'/>
org/protocol/xhtml-im'/>
org/protocol/commands’/>



@ SERVICE DISCOVERY

disco#items query

<iq

to="1im.capulet. lit"

type="get"

id="s8f7">

<query xmlns="http://jabber.org/protocol/disco#items" />
</1qg>

disco#items response

<iq
from="'"im.capulet. lit"'
to='juliet@im.capulet.lit/balcony"
id="'1396"
type="'result'>
<query xmlns='http://jabber.org/protocol/disco#items'>
<item jid='conference.im.capulet.lit'/>
<item jid='pubsub.im.capulet.lit'/>
<item jid='vjud.im.capulet.lit'/>
<item jid='im.capulet.lit' node='announce' name='Announcements'/>
<item jid='im.capulet.lit' name='Configuration' node='config'/>
<item jid='im.capulet.lit' name='User Management' node='user'/>
<item jid='im.capulet.lit' name='Online Users' node='online users'/>
<item jid='im.capulet.lit' name='All Users' node='all users'/>
</query>
</ig>



SERVERS




© SERVERS

ejabberd

https://github.com/processone/ejabberd

The World's Most Popular XMPP Server Application

Alexey Shchepin started ejabberd in November 2002

Written in Erlang
Version 1.0 in December 2005
Supports most popular XMPP services

Extremely flexible (gen_mod, ejabberd_hooks)



© SERVERS

MongooselM

https://github.com/esl/MongooselM

Erlang Solutions forked ejabberd at version 2.1.8

OTP compliant project structure

Improved the build process

Removed obsolete/rarely used modules to reduce maintenance burden
Reduction of runtime memory consumption

Test coverage of the system according to corresponding RFCs and XEPs.

MongooselM provides high availability, ease of deployment, development, and reliability in
production. It's aimed at large, complex enterprise level deployments where real-time
communication is critical for business success.



CLIENTS



© CLIENTS

Stanza.io

https://github.com/otalk/stanza.io

Modern XMPP in the browser, with a JSON API.

Stanza.io is a library for using modern XMPP in the browser, and it does that by
exposing everything as JSON. Unless you insist, you have no need to ever see or
touch any XML when using stanza.io.

Useful when connecting directly to a websocket enabled XMPP server and you
have built custom server modules to handle your business logic.



@ CLIENTS: STANZA.IO

Example Echo Client

var XMPP = require('stanza.io'); // if using browserify

var client = XMPP.createClient({
jid: 'echobot@example.com',
password: 'hunter2',

transport: ‘websocket',
wsURL: 'wss://example.com:5281/xmpp—-websocket"

});

client.on('session:started', function () {
client.getRoster();
client.sendPresence():

});

client.on('chat', function (msg) {
client.sendMessage({
to: msg.from,

body: 'You sent: ' + msg.body
});
});

client.connect();

Borrowed from the stanza.io README



© CLIENTS

Hedwig

https://github.com/scrogson/hedwig

XMPP Client/Bot Framework

Hedwig is an XMPP client and bot framework written in Elixir. It allows you to build

custom response handlers to fit your business logic.

Simply configure Hedwig with credentials and custom handlers and you're set!



@ CLIENTS: HEDWIG

Hedwig Client Configuration

use Mix.Config
alias Hedwig.Handlers

config :hedwig,
clients: [
%1
jid: "juliet@im.capulet.lit",
password: "ROm30!"
nickname: "romeosgirl",
resource: "balcony",
rooms: [
"lobby@conference. im.capulet. Lit"
1,
handlers: [
{Handlers.Help, %{}},
{Handlers.GreatSuccess, %{}}
]
s
]



@ CLIENTS: HEDWIG

Example Handler

defmodule Hedwig.Handlers.GreatSuccess do
use Hedwig.Handler

@links [
"http://mjanja.co.ke/wordpress/wp—content/uploads/2013/09/borat_great_success.jpg",
"https://www.youtube.com/watch?v=r13riaRKGo0"

]

def handle_event(%Message{} = msg, opts) do
cond do
hear ~r/great success(!)?/i, msg —> process msg
true —> :ok
end
{:0k, opts}
end

def handle_event(_, opts), do: {:o0k, opts}

defp process(msg) do
: random.seed(:o0s.timestamp)
link = Enum.shuffle(@links) |> List.first
reply(msg, Stanza.body(link))
end
end



COMPONENTS




© COMPONENTS

XEP-0114: Jabber Component Protocol

Allows you to extend server functionality
External - connects to server or vice versa
Handshakes and authenticates with the server
Can be written in any language

Can interact on the whole domain or subdomain

Can alter stanzas including the to/from attributes



N~
\ I~

N
Phoenix Framework




© PHOENIX

Phoenix

https://github.com/phoenixframework/phoenix

Elixir Web Framework

Phoenix is a web framework targeting full-featured, fault tolerant applications with
realtime functionality. It has support for WebSockets baked-in.



© PHOENIX

Router

defmodule MyApp.Router do
use Phoenix.Router

pipeline :browser do
plug :accepts, ~w(html)
plug :fetch_session
end

pipeline :api do
plug :accepts, ~w(json)
end

scope "/", alias: MyApp do
pipe_through :browser

get "/pages/:page", PageController, :show

resources '"/users'", UserController do
resources "/comments", CommentController
end
end

scope '"/api', alias: MyApp.Api do
pipe_through :api

resources "/users'", UserController
end

channel "xmpp", XMPPChannel
end






@ IDEAS

4 XMPP Server

Hedwig Client

A
v

XMPP Channel

e WebSocket

A

v

Client







FFFFFFF



FFFFFFF



