
Keeping a System Running
Forever

how I keep systems running

“forever”

everything is terrible

the network is terrible

the libraries are buggy

communication between humans is hard

the specifications will be wrong

I make mistakes all the time

prepare for the worst case

“I'm selfish, impatient and a little insecure. I
make mistakes, I am out of control and at

times hard to handle. But if you can't handle
me at my worst, then you sure as hell don't

deserve me at my best.”

- Marilyn Monroe
 - My Software

start (and restart) safely

ground rules: ugh, state!

state is the most important thing

state is also where pain lives

get rid of bad state

know what state you can go back to

it’s all about the guarantees

init(Args) ->
 State = init_state(Args),
 {ok, NewState} = connect(State),
 {ok, NewState}.

[...]

handle_info(reconnect, State) ->
 case connect(State) of
 {ok, NewState} -> {noreply, NewState};
 _ -> self() ! reconnect, {noreply, S}
 end;

it’s all about the guarantees

init(Args) ->
 %% don’t guarantee connections
 self() ! reconnect,
 {ok, init_state(Args)}.

[...]

handle_info(reconnect, State) ->
 case connect(State) of
 {ok, NewState} -> {noreply, NewState};
 _ -> self() ! reconnect, {noreply, S}
 end;

it’s all about the guarantees

you can’t guarantee what you don’t control

you steal control on these issues

BUT

it’s useless to boot fast if you boot wrong

it’s useless to boot at all if you boot wrong

Plan for Overload

your system is a bathroom sink

edge

deep

normal operations

temporary overload

prolonged overload

crash dump!

if we make it bigger, it’s gonna handle

more flow

optimize away!

bigger sinks!

bigger drains!

bigger pipes!

bottlenecks you don’t control

paid to solve the wrong problem

pick what has to give

block on input
(back-pressure)

drop data on the floor
(shed load)

it’s a business decision

ask for permission

edge

deep

is more ok?

random drop

when some loss is acceptable (sample size!)

can be made adaptive

works even better producer-side

random(Rate) ->
 maybe_seed(),
 random:uniform() =< Rate.

case drop:random(0.95) of
 true -> send();
 false -> drop()
end

queue buffers

more control than random drop

can drop from either end of the queue if full

useful if you need messages in order

better for low latency

no requirement for ordering

discard oldest data, or all data too old

stack buffers

overload handling

use processes or ETS tables to ask permission

os_mon, SASL

https://github.com/jlouis/safetyvalve

https://github.com/uwiger/jobs

https://github.com/klarna/circuit_breaker

https://github.com/ferd/pobox

how do you tell users?

Respect End-to-End principles

Make idempotent APIs

Tell about losses

Put usage limits, however high

Overload must be planned for

 it defines your margin of error

DANGER ZONE

laid-back area

be ready to get your hands dirty

design experiment

find a problem

gather data

form hypothesisprove hypothesis

fix problem

introspect everything
traces, processes, GC, memory, the network, other nodes

ERLANG-IN-ANGER.COM

http://jobs.heroku.com/

