
© 2014 Bruce Tate

Fear
and the Evolution of Languages

Bruce A. Tate

© 2014 Bruce Tate

42 miles, day and night
paddle along lake travis, 42 miles (about 70 Km), winds gusting to 25MPH (40KPH)

© 2014 Bruce Tate

Fear shapes places
On a scale that’s more grand, you can see the marks of fear all over the world. The most
pronounced is the Great Wall of China.

© 2014 Bruce Tate

(You can see it from space)
You can even see it from space. Fear visible from space. It’s a great force on the planet.
Shapes the way we behave by shaping the way that we think.

© 2014 Bruce Tate

Fear vs. Discovery
There’s always been a great tension between fear and discovery.
Usually, for any great discovery, fear must be overcome.

© 2014 Bruce Tate

Fear and language
 creation

So I wanted to do a talk about fear’s impact on language creation, but those things are in conflict.

© 2014 Bruce Tate

Many studies and many books.
Think “Writers block”

© 2014 Bruce Tate

Fear and language
 creation

So that idea is out...

© 2014 Bruce Tate

Fear and language
 adoption

What I can talk about is fear and language adoption
long history... FUD ... appeal to fear...

© 2014 Bruce Tate

Geoffrey More 1991
groundbreaking technical marketing.

© 2014 Bruce Tate

Technology Adoption Curve

© 2014 Bruce Tate

Technology Adoption Curve

Innovators

Early
Adoptors

Early
Majority

Late
Majority

Laggards

© 2014 Bruce Tate

 Language Adoption Curve

Early
Adoptors

Early
Majority

Late
Majority

Laggards

Innovators

© 2014 Bruce Tate

JavaCobo C++

Visual Basic PhPFortran

...

...

 Language Adoption Curve
Curve comes in waves
The language curves are irregular... each language in each niche

© 2014 Bruce Tate

HLL Structure OOP Functiona

 Paradigm Adoption Curve
Paradigm adoption curves are more regular... every 20 years or so...
You can almost set your watch by it. Java and OOP was 1996...

© 2014 Bruce Tate

Language Adoption and Fear

The Chasm

In Moore’s book... early adopters are there
not enough momentum for early majority

© 2014 Bruce Tate

Language Adoption and Fear

End: Moore; Begin: Tate

End Moore’s theories... begin Bruce’s theories
2 main fears associated with crossing the chasm

© 2014 Bruce Tate

Paralyzing
Fear

Language Adoption and Fear
Paralyzing fear. This fear is why creating and selling new technology is so different.

© 2014 Bruce Tate

Paralyzing
Fear

Language Adoption and Fear
Paralyzing fear makes the chasm wider and delays majority adoption

© 2014 Bruce Tate

Will we have to retool?

What will it cost me?

Will it be abandoned?

Will it break?

Will I lack talent?
Paralyzing

Fear

Is it too difficult to learn?

Some big words here... HIGH RISK meets HIGH COST
Stop the business for a couple of months and we’ll see if this is going to work..

© 2014 Bruce Tate

Language Adoption and Fear
The chasm stops looking like this:

© 2014 Bruce Tate

Language Adoption and Fear
and starts looking more like this

© 2014 Bruce Tate

Language Adoption and Fear
This chasm is especially difficult for languages.
“Change the way you think” is scary, and risk.

© 2014 Bruce Tate

Paralyzing
Fear

Cobol

Language Adoption and Fear

© 2014 Bruce Tate

Paralyzing
Fear

C(++)

Language Adoption and Fear

© 2014 Bruce Tate

Paralyzing
Fear

Java

Language Adoption and Fear

© 2014 Bruce Tate

Language Adoption and Fear

Longer cycles

Paradigm adoption is even harder.

© 2014 Bruce Tate

Language Adoption and Fear

Bigger chasms

© 2014 Bruce Tate

Motivating
Fear

Language Adoption and Fear
second major type of fear

© 2014 Bruce Tate

Motivating
Fear

Language Adoption and Fear
Some external factor motivates the customers so strongly that
it crosses the chasm

© 2014 Bruce Tate

Java

Language Adoption and Fear

C++

For example, C++ is entrenched firmly as the language of choice
(also, Visual Basic and a few others)

© 2014 Bruce Tate

Paralyzing
Fear

Motivating
Fear

Language Adoption and Fear

-Too much to learn
-Proprietary
-Old hardware

Usually, the paralyzing fear is too much to overcome
When the motivating fear gets big enough or the paralyzing fear shrinks,

© 2014 Bruce Tate

Paralyzing
Fear

Motivating
Fear

-C++ Syntax
-Internet
-JVM

+ Deployment

Language Adoption and Fear
We didn’t know how to do client/server. Even when we could get the applications right
We couldn’t get the management right. The big issue

© 2014 Bruce Tate

Deployment Problem

(10 diskettes)

(As late as the mid 1990s)

© 2014 Bruce Tate

Deployment Problem

(10 diskettes) X (9 registers per store)

© 2014 Bruce Tate

Deployment Problem

(10 diskettes) X (9 registers per store) X (5 stores)

© 2014 Bruce Tate

Deployment Problem

(10 diskettes) X
(9 registers per store) X

(5 stores) X
(3 services) X

(n fixpacks/year) ...

© 2014 Bruce Tate

Deployment Problem

Now add...

© 2014 Bruce Tate

IT

Multiple vendors
Sanctioned application code

Unsanctioned apps and macros
Fragile techniques
(screen scraping)

Unprotected memory
Multiple tiers

Just keep throwing variables at the hundreds or thousands of clients that users had to manage
With app development that could not keep up

© 2014 Bruce Tate

it

Multiple vendors
Sanctioned application code

Unsanctioned apps and macros
Fragile techniques
(screen scraping)

Unprotected memory
Multiple tiers

Even to the point of writing business applications in basic
Or scraping and advancing the screen when the Cobol apps could not be refit

© 2014 Bruce Tate~~~~~~~~~~~~~~~~~~~~~~~~~~~

Multiple vendors
Sanctioned application code

Unsanctioned apps and macros
Fragile techniques
(screen scraping)

Unprotected memory
Multiple tiers

And often with large chunks in C++ (with no memory protection across applications)
The weight was crushing

© 2014 Bruce Tate

Java crosses the chasm
It’s a very different thing to deploy a browser. Just a browser. And everything else can live in the
browser.

© 2014 Bruce Tate

Java crosses the chasm
The promise was applets but servlets worked better.

© 2014 Bruce Tate

Java crosses the chasm
So here we stand

© 2014 Bruce Tate

Java

Java crosses the chasm
With a two ton elephant sitting just on the other side of the chasm

© 2014 Bruce Tate

Java
Erlang (Elixir)

Clojure
Haskell

JavaScript
Scala ...

Java crosses the chasm
and the language of your dreams sitting just on the other side.
What pressing fear can make that elephant get up and move?

© 2014 Bruce Tate

Today

Paralyzing
Fear

Motivating
Fear

What’s

© 2014 Bruce Tate

Today

Paralyzing
Fear

Motivating
Fear

?

What’s happening to make the paralyzing fears less oppressive?

© 2014 Bruce Tate

1. Building communities is easier

Example: Rails. Language developed in Japan, promoted and discovered by British expatriate in
Dallas, gave rise to a framework invented in Denmark with a core team that spans most of the
continents (not Africa or Antarctica)
Internet makes it easy to find answers and fix problems... unprecedented access high on the food
chain

© 2014 Bruce Tate

2. OO languages, FP features

You have heard me say that new paradigms need bridge languages. C++ served that purpose for
OOP.
Even Java has closures now. C++ was a bridge language to OOP, just as languages like Scala and
even Ruby help us bridge to fp

© 2014 Bruce Tate

3. Deployment options abound

You can already deploy Elixir using Heroku, and we’re not even to version 1.0 yet. You don’t have
to invest in the software and infrastructure.

© 2014 Bruce Tate

4. Interfaces are cleaner

The Internet makes it easy for elements of an application to communicate. All kinds of good
options abound to integrate the old to the new so that it’s easier to take the journey with smaller
steps. This makes all of the difference in the world. My company will start writing Elixir this year.
We’ll start with the back-end.

© 2014 Bruce Tate

Today

Paralyzing
Fear

Motivating
Fear

?

© 2014 Bruce Tate

1. Code complexity
(always first)

Complexity is always motivational --- things getting harder --- universal driver across time
today’s app is distributed, secure, concurrent, integrated, fast, interactive, global, stable... list
goes on
Java has crosscutting concerns and is running out of meaningful ways to manage them.

© 2014 Bruce Tate

defmodule!VidStore!do
((use!StateMachine
!
!!state!:available,![
!!!!rent:![!to:!:rented,!
!!!!!!!!!!!!calls:![!&VidStore.renting/1!]]]
!!
!!state!:rented,![
!!!!return:![!to:!:available,!
!!!!!!!!!!!!!!calls:![!&VidStore.returning/1!]],
!!!!lose:![!to:!:lost,!
!!!!!!!!!!!!calls:![!&VidStore.losing/1!]]]
!!state!:lost,![]
!!
!!...
end

In Elixir, I can use macros to provide code organization at compile time that is not available to me
at run time.
I can effectively rewrite the AST to change the language.

© 2014 Bruce Tate

defmodule!VidStore!do
((use!StateMachine
!
!!state!:available,![
!!!!rent:![!to:!:rented,!
!!!!!!!!!!!!calls:![!&VidStore.renting/1!]]]
!!
!!state!:rented,![
!!!!return:![!to:!:available,!
!!!!!!!!!!!!!!calls:![!&VidStore.returning/1!]],
!!!!lose:![!to:!:lost,!
!!!!!!!!!!!!calls:![!&VidStore.losing/1!]]]
!!state!:lost,![]
!!
!!...
end

VidStore.rent video

VidStore.return video

video |> rent |> lose

You’ve seen the benefits at the API side, but the client of that API also gets benefits.
It’s trivial to take a video through its states.

© 2014 Bruce Tate

2. Multicore and Distribution
(the real Y2K)

This is the greatest challenge our generation of programmers will solve. Success or failure will
define us.

© 2014 Bruce Tate

defmodule Chatroom do
 use OtpDsl.GenServer, initial_state: HashDict.new()

 defcall enter(name), users do
 send_all(users, "#{name} has entered the room")
 reply(:ok, Dict.put(users, name, _from))
 end

 defcall leave(name), users do
 d = Dict.delete(users, name)
 send_all(users, "#{name} has left the room")
 reply(:ok, d)
 end

 defcall message(name, message) do
 send_all(users, message)
 reply(:ok, d)
 end

 defp send_all(users, message) do
 Enum.each(Dict.values(users), User.send_line(&1, message))
 end
end

code example: Copyright © 2014 - Peter Minten

© 2014 Bruce Tate

replaces...

© 2014 Bruce Tate

defmodule Chatroom2 do
 use GenServer.Behaviour
 def enter(name) do
 :gen_server.call(:chatroom, { :enter, name })
 end

 def leave(name) do
 :gen_server.call(:chatroom, { :leave, name })
 end

 def message(name, message) do
 :gen_server.call(:chatroom, { :message, name, message })
 end

 def init(_args) do
 { :ok, HashDict.new() }
 end

 def handle_call({ :enter, name }, from, users) do
 send_all(users, "#{name} has entered the room")
 { :reply, :ok, Dict.put(users, name, from) }
 end

 def handle_call({ :leave, name }, _from, users) do
 d = Dict.delete(users, name)
 send_all(users, "#{name} has left the room")
 { :reply, :ok, d }
 end

 def handle_call({ :message, name, message }, _from, users) do
 send_all(users, message)
 { :reply, :ok, users }
 end

 defp send_all(users, message) do
 Enum.each(Dict.to_list(users), fn { user, pid } ->
 User.send_line(user, message)
 end)
 end
end code example: Copyright © 2014 - Peter Minten

© 2014 Bruce Tate

replaces...

© 2014 Bruce Tate

Too big to show

© 2014 Bruce Tate

References

DSL from Dave Thomas:
https://github.com/pragdave/otp_dsl

Example from Peter Minten

Thinking in Elixir: Hiding Your Messages
http://pminten.github.io/blog/2013/09/14/thinking-in-elixir-hide-your-messages/

code example: Copyright © 2014 - Peter Minten

© 2014 Bruce Tate

3. Browser complexity
Is JavaScript the best we can do?

© 2014 Bruce Tate

import!Mouse
import!Window

drawPaddle!w!h!x!=
!!filled!black!(rect!80!10)!!!!!!!!!|>
!!moveX!(toFloat!x!9!toFloat!w!/!2)!|>
!!moveY!(9(toFloat!h!*!0.45))
!!
display!(w,!h)!x!=!collage!w!h
!![!drawPaddle!w!h!x!]

main!=!lift2!display!Window.dimensions!Mouse.x

Benefits: Strong typing to catch those bugs our JS developers miss
End to Callback Hell.
Compiles to JavaScript

© 2014 Bruce Tate

Java
Erlang (Elixir)

Clojure
Haskell

JavaScript
Scala ...

This is what it’s going to take

© 2014 Bruce Tate

Erlang (Elixir)
Clojure
Haskell

JavaScript
Scala ...

to remove Java and OOP

© 2014 Bruce Tate

Erlang (Elixir)
Clojure
Haskell

JavaScript
Scala ...

and cross the chasm

© 2014 Bruce Tate

?

© 2014 Bruce Tate

References

DSL from Dave Thomas:
https://github.com/pragdave/otp_dsl

Example from Peter Minten

Thinking in Elixir: Hiding Your Messages
http://pminten.github.io/blog/2013/09/14/thinking-in-elixir-hide-your-messages/

code example: Copyright © 2014 - Peter Minten

Talks in PDF form at

