
Heavy Industry Erlang
Erlang User Conference 2014, Stockholm

PLC

Standards

• IEC 61131 - classical PLCs

• IEC 61499 - distributed PLCs

• Some big companies have their own „Standards“

How to program?

Ladder Diagram (LD)
and Instruction List (IL)

--+----[]--+----[\]----()

 | start | stop run

 | |

 +----[]--+

 run

LD A

ADD 5

ST C10. PV

LD %IX10

ST C10. CU

CAL C10

Structured Text (ST)
and Function-Blocks Diagram (FBD)

VAR

 X, Y, Z, RES1, RES2 : REAL;

 EN1, V : BOOL;

END_VAR

RES1 := DIV(IN1 := COS(X), IN2 := SIN(Y), ENO => EN1);

RES2 := MUL(SIN(X), COS(Y));

Z := ADD(EN := EN1, IN1 := RES1, IN2 := RES2, ENO => V)

Sequence Function Chart

Predecessor System written in C on RTEMS

• Boschrexroth ID40 RFID System And some Objective-C

http://www.boschrexroth.com/en/xc/products/product_groups/assembly_technology_1/material_information_flow_technology/identification_systems/id_40/index

Application

• Next Generation RFID System

• Industry 4.0, Smart Factory System

• Distributed data sharing and material routing in Erlang

• Programmability by PLC Programmers

• Research Project: Cyber-physical IT-Systems to handle the
complexity of a new Generation of multi adaptive Factories

Distributed PLC
with IEC61499

Voter

Reset

Vote

Ready

Voted

State

A
B
C

VAR_INPUT

 A : BOOL;

 B : BOOL;

 C : BOOL;

END_VAR

VAR_OUTPUT

 State : BOOL;

END_VAR

Voter

Reset

Vote

Ready

Voted

State

A
B
C

FUNCTION_BLOCK VOTER

EVENT_INPUT

 Reset;

 Vote WITH A, B, C;

END_EVENT

EVENT_OUTPUT

 Ready;

 Voted WITH State;

END_EVENT

ALGORITHM ResetAlg IN ST;

 State := 0;

END_ALGORITHM

ALGORITHM VoteAlg IN ST;

 IF State = 0 THEN

 State := (A AND B) OR (B AND C)

 OR (A AND C);

 END_IF;

END_ALGORITHM

Voter

Reset

Vote

Ready

Voted

State

A
B
C

EC_STATES

 Ready : ResetAlg -> Ready;

 Voted : VoteAlg -> Voted;

END_STATES

EC_TRANSITIONS

 Ready TO Voted := Vote;

 Voted TO Voted := Vote;

 Voted TO Ready := Reset;

END_TRANSITIONS

IEC61499 Compiler

st_parse.yrl

st_ast.erl

st_core.erl

st_scan.xrl

compile(from_core) fb_lib.erl

st_comp.erl

voter.st

fb_run.erl

voter.beam

Mapping on Processes
fb_run.erl

voter.st

fb_targets()

{Sender, Event, Data}

fb_run.erl

output.st

vote1

out1

{Ev, Nvar} =fb_map(Fb, Msg, Variables)

Core Erlang Tips

• cerl:abstract/1

• Use version of core_lint.erl with extra io calls
uncommented

• compile:forms(Core_ast, [from_core,
report, verbose, clint0])

Event flows with Data

Voter

Reset

Vote

Ready

Voted

State

A
B
C

Events and Data diverge

Voter

Reset

Vote

Ready

Voted

State

A
B
C

Mending Dataflow

Voter

Reset

Vote

Ready

Voted

State

A
B
C

Demo

RTEMS Realtime Operating
System

• For Hard-Real-Time and/or Embedded Applications

• Small Resource Usage

• ≥ 32KB RAM, ≥ 96KB ROM, ≥ 12 MHz Clock

• Reliable Realtime Behaviours with pluggable Schedulers

• Context switch 10μs on 25MHz MC68360

• Posix API (among others)

• Processes are actually Threads

• No virtual memory

• No memory protection

• Runs on basically all 32bit Architectures (and some
16bit)

• Can be ported to everything ≥ 32 Bit

• SMP Support

• http://www.rtems.org

http://www.rtems.org

Mainboard

Mini ITX

Intel Atom

FreeBSD, Erlang

Ethernet Switch / USB Hub

Gateways

custom

Freescale

MPC5517

RTEMS

Gateways

custom

Freescale

MPC5517

RTEMS

USB USBEthernet

+

=
www.grisp.org

http://www.grisp.org

Erlang Code

C

Application

Hardware

Erlang Runtime

Driver Driver

Network Filesystem

Posix Classic
API

...
Linked in

DriverNIF

Demo

Hard Realtime Erlang
Processes

t
t0 tD tR

Earliest Deadline First

t
t0 tD

t0 tD

Hard Realtime Erlang
Processes

• Fixed two part Heaps

• Optional interruptible GC

• Crash on Deadline Miss or out of Heap

• Optional Auto-Restart

• Static analysis on Communication Graph

Thanks to
• For funding the Erlang and RTEMS port IEC61499

compiler and being a great partner for innovations
like this:

• For great RTEMS support, nice hardware design
and helping out with the RTEMS Intro slides

http://www.boschrexroth.com/
http://www.embedded-brains.de/

