Knit: A new tool for
Releases and Upgrades

Paul Joseph Davis
Sr. Software Engineer

@LEVING

w Cloudant

© 2014 IBM Corporation

[Jomi]]
el
[
Tl

Summary

* Hot Code Loading
* Releases

* Upgrades

* Appups and Relups
* Using Upgrades

* More about Knit

* How things Break

w Cloudant

an IBM® Company

© 2014 IBM Corporation

w Cloudant

an IBM® Company

Hot Code Loading

You’ve Probably Used Hot Code Loading

Eshell V5.8.2 (abort with AG)
1> c(foo).
{ok, foo}

w Cloudant

an IBM® Company

Hot Code Loading Constraints

* Only allowed two versions of a module in the VM

* Processes with code from vl are killed automatically when v3 is
loaded

* Processes run new code by calling exported functions

w Cloudant

an IBM® Company

© 2014 IBM Corporation

||

[HTRL
||u“[|
Tl

Example 1 - A Successful Upgrade

-module(good_upgrade) .
-~export([start/0, loop/0]).

start() ->
erlang:spawn(?MODULE, 1loop, [1).

loop() ->
Vsn = lists:keyfindQvsn, 1, ?MODULE:module_infoCattributes)),

10:format("Version: ~p~n", [Vsn]),
timer:sleep(2000),
?MODULE : Loop(). % Notice the use of ?MODULE

w Cloudant

an IBM® Company

© 2014 IBM Corporation

”rm“
l
J|

[T
“-ll

Example 1 - A Successful Upgrade

Eshell V5.8.2 (abort with AG)

1> c(good_upgrade).

{ok,good_upgrade}

2> good_upgrade:start().

<0.38.0>

{vsn, [285322158962536634385124857288843166172]}

{vsn, [285322158962536634385124857288843166172]}

3> c(good_upgrade).

{ok,good_upgrade}

Vsn: {vsn,[243367076262672122378804240543149085496}
Vsn: {vsn,[243367076262672122378804240543149085496}

4> c(good_upgrade).

{ok,good_upgrade}

Version: {vsn,[160372567835089398502372253338826710031]}
Version: {vsn,[160372567835089398502372253338826710031]}

w Cloudant

an IBM® Company

© 2014 IBM Corporation

Example 2 - Upgrade Failure

-module(bad_upgrade) .
~export([start/0, loop/0]).

start() ->
erlang:spawn(?MODULE, 1loop, [1).

loop() ->
Vsn = lists:keyfind(Cvsn, 1, ?MODULE:module_infoCattributes)),

1o0:format("Version: ~p~n", [Vsn]),
timer:sleep(2000),
loop(). % No more ?MODULE

w Cloudant

an IBM® Company

© 2014 IBM Corporation

Example 2 - Upgrade Failure

Eshell V5.8.2 (abort with AG)

1> c(bad_upgrade).

{ok,bad_upgrade}

2> bad_upgrade:start().

<0.38.0>
{vsn,[181013074981266123478501823959170679836]}
{vsn,[181013074981266123478501823959170679836]}
3> c(bad_upgrade).

{ok,bad_upgrade}

{vsn, [168525046126506918599002166162913726653]}
{vsn, [168525046126506918599002166162913726653]}
4> erlang:monitor(process, pid(@, 38, 0)).
#Ref<0.0.0.109>

5> flush().

ok

{vsn, [168525046126506918599002166162913726653]}
{vsn, [168525046126506918599002166162913726653]}
6> c(bad_upgrade).

{ok,bad_upgrade}

7> flush(Q).

Shell got {'DOWN',#Ref<0.0.0.109>,process,<0.38.0>,killed}

ok

w Cloudant

an IBM® Company

10

© 2014 IBM Corporation

I Llll‘l
' n

g
il

[Jom]]

Hot Code Loading in Production

* Ops duty, 3am Saturday morning.
* Fires are burning.

* | need alog message!

laptop $ vim apps/app/src/foo.erl

laptop $ rebar compile

laptop $ scp apps/app/ebin/foo.beam prodl:/opt/relname/1lib/app-vsn/ebin/foo.beam
laptop $ ssh prodl

prodl $ remsh

Eshell V5.8.2 (abort with AG)

1> nl(foo).

abcast

2>

w Cloudant

an IBM® Company

1

© 2014 IBM Corporation

[Jomi]]
el
[
Tl

Be Careful!

/1 vs nl/1 - “The problem came back!”
nl/1 and node reboots

Upgrades can un-patch code

What code is this server running?!
Behavior changes are a bit harder
code_change/3 not called for |/1, nl/1x

w Cloudant

an IBM® Company

12

© 2014 IBM Corporation

Which Processes Might Die?

* erlang:check_old_code/1
* check_old_code(Module::atom()) -> boolean()
* erlang:check_process_code/2,3
* check_process_code(Pid::pid(), Module::atom()) -> boolean()

find_old_code() ->
Al1Pids = processes(),
AllMods = [M || {M, F} <- code:all_loaded(), F /= preloaded],
lists:flatmap(fun(Pid) ->
FiltFun = fun(Mod) -> check_process_code(Pid, Mod) end,
case lists:filter(FiltFun, AllMods) of
1 -> [1;
BadMods -> [{Pid, process_info(Pid, registered_name), BadMods}]
end
end, lists:sort(Al1Pids)).

w Cloudant

an IBM® Company

13

© 2014 IBM Corporation

Releases

w Cloudant

an IBM® Company

© 2014 IBM Corporation

What’s a Release?

* Generally: A tarball containing everything to run an Erlang
Application (capital A)

* Although not necessarily...
* Optional Erlang VM
* Optional Application specific data and utilities

* Aset of compiled applications that contain a single Erlang
Application (capital A)

* More Generally: Compiled Erlang modules with extra metadata
as a single file

w Cloudant

an IBM® Company

15

© 2014 IBM Corporation

I I||II|
' n

g
il

[Jom]]

Contents of a Release

— erts-5.8.2
— 1lib
I — $appl-$appvsnl
| | — ebin
| | L— priv
| — $app2-$appvsn2
I I — ebin
| | L— 1include
| — ...
L— releases
— $relvsn
I — $relname.rel
| — $relname.script
| L— $relname.boot
— RELEASES

L— start_erl.data

w Cloudant

an IBM® Company

16

© 2014 IBM Corporation

Important Files

* lib/
* erts-Svsn/
* releases/

* releases/RELEASES - Textual Erlang term describing each
release the node has run or unpacked

* releases/start_erl.data - Text file containing “Sertsvsn Srelvsn”
 5.8.20.0.1
* releases/Srelvsn/Srelname.rel - Description of the release

* releases/Srelvsn/Srelname.boot - Binary Erlang term describing
how to start the release

w Cloudant

an IBM® Company

© 2014 IBM Corporation

Generating a Release

systools - Very low level library interface
reltool - Slightly higher library interface
rebar - Command line interface to reltool using reltool.config

relx - Replaces reltool and systools
knit - rebar style reltool.config command line interface (for now)

w Cloudant

an IBM® Company

18

© 2014 IBM Corporation

”HI

I Llll‘l
' n

|3-||[|
I

w Cloudant

an IBM® Company

Upgrades

What’s an Upgrade?

* Turn aVM running a release at version A and turn itinto a
release running version B

* Upgrade or downgrade
* No requirement for linearity
* In practice its mostly just upgrades
* Make another upgrade if something isn’t working
* Upgrade failure causes the node to reboot

w Cloudant

an IBM® Company

20

© 2014 IBM Corporation

I I||II|
ALl]

III“I'
il

[Jom]]

Contents of an Upgrade

— 1ib
I — $appl-$appvsnl
| I — ebin
| | L— priv
I F— $app2-%$appvsn2
I I — ebin
I I L— 1include
| — ...
L— releases
F— $relvsn2
| — $relname.boot
| — start.boot
| L— relup

L— $relname-$relvsn.rel

w Cloudant

an IBM® Company

21

© 2014 IBM Corporation

[Jomi]]
el
[
Tl

Important Files

* lib/

* releases/Srelname-Srelvsn.rel

* releases/Srelvsn/start.boot

* releases/Srelvsn/Srelname.boot

* releases/Srelvsn/relup

w Cloudant

an IBM® Company

22

© 2014 IBM Corporation

|
[THL
Mgyl

]|

”“Il
“-Il

What’s a relup?

* An Erlang term “script” that contains the instructions to effect
the upgrade for the entire release

* Compiled from app ups

* Usesonly the “low-level” instruction set

w Cloudant

an IBM® Company

23

© 2014 IBM Corporation

relup format

{Vsn,
{UpFromVsn, Descr, Instructions},

{DownToVsn, Descr, Instructions},

w Cloudant

an IBM® Company

24

© 2014 IBM Corporation

|
e
il
|l|||

”HII

What’s an appup?

* An Erlang term “script” that contains instructions to effect an
upgrade for a single application

* Can contain either “high-level” or “low-level” instructions

* High-level instructions compiled by systools into low-level
Instructions

* Not quite a direct expansion

w Cloudant

an IBM® Company

25

© 2014 IBM Corporation

Appups and Relups

w Cloudant

an IBM® Company

Instructions

* Both a high and low level instruction set
* High levelis roughly a macro (C pre-processor, not Lisp)

* Handles adding, reloading, and removing code from the Erlang
VM

* Various other instructions related to modifying application
state, running arbitrary functions, upgrading the VM itself

w Cloudant

an IBM® Company

27

© 2014 IBM Corporation

Example: High-Level instruction

update,

Mod, % Module name as an atom

ModType, % dynamic or static, usually dynamic

Timeout, % time 1imit to suspend a processes running Mod
Change, % soft or {advanced, Extra}

PrePurge, % soft_purge or brutal_purge

PostPurge, % soft_purge or brutal_purge

DepMods % list of modules as atoms this module depends on

w Cloudant

an IBM® Company

28

© 2014 IBM Corporation

Example: Corresponding low-level instrs.

{suspend, [Mod]},

{load, {DepModl,PrePurge,PostPurge}},
{load, {DepMod2,PrePurge,PostPurge}},
{load, {DepModN, PrePurge,PostPurge}},
{load, {Mod,PrePurge,PostPurge}},

{code_change,up, [{Mod, [1}1},
{resume,[Mod]}]},

w Cloudant

an IBM® Company

29

© 2014 IBM Corporation

Other Instructions to be Aware Of

* point_of_no_return - VM reboots on error after this
* There are limits on what can happen before this instruction
* {apply, M, F, A} - Run an arbitrary function

* {sync_nodes, Id, Nodes} - Synchronize the upgrade on a set of
nodes

* {add_application, Application}
* {remove_application, Application}

 {restart_application, Application} - Nuke everything and let
supervisors restart

* restart_emulator - Nuke things harder
* restart_new_emulator - Upgrade the Erlang VM

w Cloudant

an IBM® Company

30

© 2014 IBM Corporation

How to Create an appup

* Manually - Steep learning curve
* rebar - Easy-ish without any ability to affect the generated

appup

* rebar/manual hybrid - Generate base template with rebar,

tweak by hand

* knit - Generates appups based on a set of module attributes

w Cloudant

an IBM® Company

31

© 2014 IBM Corporation

Knit’s Module Attributes

* knit_priority - Knit specific, allows for rough ordering of
modules

* knit_extra - Passed to code_change/3 for behaviors
* knit_depends - Set the module dependencies

* knit_timeout - Set a timeout for the upgrade

* knit_purge - Set Pre/PostPurge strategies

* knit_apply - Call a function as part of the upgrade, can control
when the function is run

w Cloudant

an IBM® Company

32

© 2014 IBM Corporation

|
[THL
Mgyl

]|

”“Il
“-Il

Creating a relup

* systools:make_relup/4 - Not really
* rebar/relx/knit

* Once you have appups created the command line tools are
roughly equal

* rebar takes a few more manual/scripted steps than the
others

w Cloudant

an IBM® Company

33

© 2014 IBM Corporation

Applying an Upgrade

w Cloudant

an IBM® Company

||
il
T

I Llll‘l
' n

”HII

Preparation

Extract a release somewhere

Start it

Copy an upgrade tarball to its "releases directory
Run three release_handler functions

w Cloudant

an IBM® Company

35

© 2014 IBM Corporation

release handler

re
re
re

lease_handler:unpack_release(RelNameWithVsn).
lease_handler:install_release(RelVsn).

lease_handler:make_permanent(RelVsn).

w Cloudant

an IBM® Company

36

© 2014 IBM Corporation

release_handler:unpack_release/1

* Extract and validate ReINameWithVsn.rel from "releases/
SRelNameWithVsn.rel®

* Expands the upgrade tarball over top of the running release
* Uses keep_old_files so it doesn’t clobber existing files

* Updates releases/RELEASES with the new release
information

w Cloudant

an IBM® Company

37

© 2014 IBM Corporation

release_handler:install _release/1

Updates each application’s version, description, and
environment

Applies the relup script
Notifies each application of environment configuration changes

* via each application’s {mod, {Mod, Args}} from
Sappname.app
* Runs Mod:config_change/3

* Mod:config_change(Changed, New, Removed)
Marks the release as installed
* Anode reboot at this point reverts to the previous version

w Cloudant

an IBM® Company

38

© 2014 IBM Corporation

release_handler:make_permanent/1

* Updates releases/start_erl.data”
* Updates releases/RELEASES updating the current release
statuses

* Updates init ’scommand line arguments to reflect the new
values for -boot and -config if they changed

w Cloudant

an IBM® Company

39 © 2014 IBM Corporation

”HII

I Llll‘l
' n

gl
1|||

w Cloudant

an IBM® Company

More about Knit

* Upgrade tarba

Knit Stuff

https://github.com/davisp/knit

appups

Still very alpha, mostly a test bed for ideas on how to generate

README goal is “Just type knit” for 80% of use cases
Still depends on reltool.config which is non-trivial. Considering

replacing this approach

simplicity

Removes a lot of reltools/systools knobs in the interest of

|s could be slimmed down considerably

* Considering inj

upgrades

ecting extra tooling to help with applying

w Cloudant

an IBM® Company

41

© 2014 IBM Corporation

https://github.com/davisp/knit

w Cloudant

an IBM® Company

How Stuff Breaks

[Jomi]]
el
[
Tl

No Receive Timeout

wait_for_thing() ->
receive
{thing, Thing} -> do(Thing)

end.

-export([wait_for_thing/0]).
wait_for_thing() ->
receive
{thing, Thing} -> do(Thing)
after 60000 ->
?MODULE:wait_for_thing()

end.

w Cloudant

an IBM® Company

43

© 2014 IBM Corporation

Sharing Records

Sharing between modules or processes

Don’t

Use modules that wrap access
* Yes, its a bit icky accessor/mutator style code
* Butit makes upgrades so much easier

Very close internally do dictating no records in .hrl files
* Butlegacy code...

w Cloudant

an IBM® Company

44

© 2014 IBM Corporation

[Jomi]]
el
[
Tl

Messages in the ether

* Old versions of records and messages can exist for a
surprisingly long time

* Ordering of code loading can cause surprises

w Cloudant

an IBM® Company

45 © 2014 IBM Corporation

Anonymous Functions

Are the deuvil...

You don’t have to be executing them for them to break
upgrades

APl design
* For callbacks allow either {M, F, A}

* Or at least {Fun, Acc} so that Fun can be specified as fun
Module:Function/2"

Probably the most common cause of broken upgrades

w Cloudant

an IBM® Company

46

© 2014 IBM Corporation

Supervision Tree Changes

* The dynamic child specification complicates things
* Much harder to automatically create the necessary appup/relup

instructions automatically

* knit_apply should make these possible without more direct

intervention

* Luckily its not a super common requirement (hopefully)

w Cloudant

an IBM® Company

47

© 2014 IBM Corporation

Don’t spam release_handler (the process)

* release_handler does some heavy weight operations in process

* Using release_handler:which_releases/0 to get the current
release version is not a good idea

* Generally it just makes applying upgrades painfully slow

w Cloudant

an IBM® Company

48

© 2014 IBM Corporation

RPC Protocol Upgrades

* One of the harder upgrades to make

* Requires special attention when relying code on foreign nodes
* We still haven’t played with sync_nodes internally

* Not entirely sure if there’s a knit specific solution

w Cloudant

an IBM® Company

49

© 2014 IBM Corporation

|
[THL
Mgyl

]|

”“Il
“-Il

w Cloudant

an IBM® Company

Questions?

(Also, we’re hiring)

50

© 2014 IBM Corporation

[Jomi]]
el
[
Tl

Links

nttp://learnyousomeerlang.com/release-is-the-word

nttp://learnyousomeerlang.com/relups

* http://www.er

ang.org/d

oc/man/relup.html

* http://www.er

oc/man/appup.html

* http://www.er

ang.org/c
ang.org/c

oc/man/reltool.html

* http://www.er

ang.org/d

oc/man/systools.html

w Cloudant

an IBM® Company

51

© 2014 IBM Corporation

http://learnyousomeerlang.com/release-is-the-word
http://learnyousomeerlang.com/relups
http://www.erlang.org/doc/man/relup.html
http://www.erlang.org/doc/man/appup.html
http://www.erlang.org/doc/man/reltool.html
http://www.erlang.org/doc/man/systools.html

