
locks
Distributed Scalable Locking
by Ulf Wiger, Co-Founder, Feuerlabs

Why? Isn’t locking bad?
• No, locking arbitrates access to shared resources

• Help ensure consistency

• In short:  
When you need locks, you really need them

• Problems with locks:

• Scalability

• Complexity (if not made implicit)

Locking challenges
• Distribution-related

• Deadlock/livelock detection/prevention

• Scalability

• Fault tolerance (incl netsplits)

• General

• Read/write locking

• Hierarchical locks (e.g. table/obj locks)

Intro: Dependency graphs

A B

A waits for B

A B

Deadlock

A B

Deadlock

C

Distributed dependencies
• Central dependency graph

• Bad (single point of failure & bottleneck)

• Deadlock Prevention—dependencies only one way

• Gives phantom deadlocks

• Unnecessary aborts/retries hurt performance

• Probes—replicate dependency info

• (This is basically what we’re doing)

The ‘locks’ algorithm
• Designed by Wiger in 1993

• Model-checked by Arts & Fredlund 1999-2000

• Extended by Wiger in 2012-13

• Read+write locks

• Hierarchical locks

• Multi-node locks

• gen_leader-type behavior

The locks implementation
• locks_agent represents a transaction context

• Asynchronous messaging, reactive design

• Locks automatically released if process dies

locks_server

locks_agent

user process

locks_server

locks_agent

user process

Erlang-style locking
• The lock itself is a process

• Transaction context is a process

• Asynchronous message passing

• Distributed dependency analysis

Client  
C1

Example: simple lock
Client  
C2

Lock  
L1

Lock
L2

L1 ! {lock, C1}

C1 ! {L1, [C1]}

L1 ! {lock, C2}

C1 ! C2 ! {L1, [C1, C2]}

L1 ! {unlock, C1}

C2 ! {L1, [C2]}

Lock
L3

Client
C3

Lock server
responds with all

clients in the queue

2 clients, 1 lock  
3 operations 
7 messages

Client  
C1

Simple deadlock
Client  
C2

Lock  
L1

Lock  
L2

L1 ! {lock, C1}

C1 ! {L1, [C1]}

L1 ! {lock, C2}

C1 ! C2 ! {L1, [C1, C2]}

L2 ! {surrender, C2}

C1 ! C2 ! {L2, [C1, C2]}

Lock
L3

Client
C3

L2 ! {lock, C2}

C2 ! {L2, [C2]}

L2 ! {lock, C1}

C1 ! C2 ! {L2, [C2, C1]}Deadlock!Deadlock!

Complexity
• 2 clients

• 2 locks

• 4 operations [1]

• 2 dependencies [2]

• 1 deadlock resolution [3]

!

• (4*2 + 2*1 + 1*(2+1) = 13 messages)
[1] [2] [3]

Client  
C1

Indirect deadlock (1)
Client  
C2

Lock  
L1

Lock  
L2

L1 ! {lock, C1}

C1 ! {L1, [C1]}

Lock  
L3

Client  
C3

L2 ! {lock, C2}

C2 ! {L1, [C2]}

L2 ! {lock, C1}

C1 ! C2 ! {L2, [C2, C1]}

L3 ! {lock, C3}

C3 ! {L3, [C3]}

L2 ! {lock, C2}

C2 ! C3 ! {L2, [C3, C2]}
L1 ! {lock, C3}

C1 ! C3 ! {L1, [C1, C3]}

Fill-in-the-blanks
• Share lock dependency D with

• Greater client C, which holds a lock

• If C is not involved in D

http://www.cs.colostate.edu/~cs551/CourseNotes/Deadlock/DDCMHAlg.html

Chandy-Misra-Hass Detection Algorithm (1983)!
• Each waiting process sends probe  

to each lock holder it waits for!
• Each probe receiver passes it on  

to lock holders it waits for

http://www.cs.colostate.edu/~cs551/CourseNotes/Deadlock/DDSilGal94.html

Silberschatz-Galvin Detection Algorithm (1993)!
• Mark external dependencies in WFG!
• Send complementary info to other site

http://www.cs.colostate.edu/~cs551/CourseNotes/Deadlock/DDCMHAlg.html
http://www.cs.colostate.edu/~cs551/CourseNotes/Deadlock/DDSilGal94.html

Client  
C1

Indirect deadlock (2)
Client  
C2

Lock  
L1

Lock  
L2

Lock  
L3

Client  
C3

L2 ! {lock, C1}

C1 ! C2 ! {L2, [C2, C1]}

L2 ! {lock, C2}

C2 ! C3 ! {L3, [C3, C2]}

L1 ! {lock, C3}

C1 ! C3 ! {L1, [C1, C3]}C2 ! {L1, [C1, C3]}

Deadlock!

C3 ! {L2, [C2, C1]}

Deadlock!

L3 ! {surrender, C3}

C2 ! C3 ! {L3, [C2, C3]}

Complexity
• 3 clients

• 3 locks

• 6 operations [1]

• 3 direct dependencies [2]

• 2 indirect dependencies [3]

• 1 deadlock resolution [4]

!

• (6*2 + 3*1 + 2*1 + 1*(2+1) = 20 messages)
[1] [2] [4][3]

Always surrender?
• Problematic if client has already acted on the lock

• {abort_on_deadlock, true}, will

• Surrender lock iff the client has not yet been
informed of the lock

• Otherwise, abort

Multi-node locks
• Each {Obj,Node} pair is a separate lock

• Transaction agent keeps track of how many nodes
are needed for request to be served

• All requested

• A majority of all requested

• All/majority nodes that are alive

Read/write locks
• Write locks = exclusive

• Read locks = shared

• The only key aspect for dependency analysis is
who waits for whom:

• Write locks wait for read and write locks

• Read locks wait for write, but not read, locks

• Queue: #lock{queue = [{r,[C1,C2]}, {w,C3}, {r,[C4]}]}

Hierarchical locks
• Lock ID is a list: [kvdb, my_db, my_tab, obj1]

• Key enabler: implicit locks

• Dependency analysis sees no difference

#lock{id=[a,b], q=[{w,C1}]}

#lock{id=[a,b,c,1], q=[{iw,C1},{r,[C2]}]}

#lock{id=[a,b,c,1,x], q=[{iw,C1}, {ir,[C2]}, {w,C3}]}

Scalability: Large transactions
• Test: claim N independent 

locks within one transaction 
(measure: latency)

• Roughly constant cost per lock 
request, even with 1000s of locks

• Starting cost:

• ~ 100 us  
(locks:begin_transaction/0)

• ~ 20 us + ~50 us  
(locks: spawn_agent/1)

Eshell V5.9.2 (abort with ^G)
1> bench:simple_locks(1).
[{1,174.2}]
2> bench:simple_locks(1000,1010).
[{1000,229.7},
 {1001,244.6},
 {1002,239.9},
 {1003,212.6},
 {1004,183.6},
 …]
3> bench:simple_locks(3000,3010).
[{3000,255.7},
 {3001,266.5},
 {3002,251.5},
 {3003,206.5},
 {3004,183.0},
 …]
4> bench:simple_locks(5000,5010).
[{5000,283.1},
 {5001,282.3},
 {5002,260.5},
 {5003,232.0},
 {5004,192.9},
 …]

Leader Election
• All candidate try to lock Resource on all nodes

• Deadlock very likely!

• …but detected and resolved

locks_server

locks_leader

locks_server

locks_leader

locks_server

locks_leader

Leader Election (2)
• Asynchronous lock requests

• Lock queue informs of new nodes

• …automatic discovery

locks_server

locks_leader

locks_server

locks_leader

locks_server

locks_leader

Leader Election (3)
• Workers must not attempt to lock!

• locks:watch(OID, Nodes)

• Detect and contact candidates

locks_server

locks_leader

locks_server

locks_leader

locks_server

locks_leader

A better gen_leader?
• Handles dynamic (Erlang-style) networks

• Can have multiple candidates on the same node

• Candidates don’t have to be registered

• Netsplit handling with conflict resolution

• Extended API with e.g. ask_candidates/2  
(allows for state merging upon election

Status
• Currently integrating into the kvdb DBMS

• Feuerlabs Exosense test suites pass using ‘locks’

• The gproc ‘uw-locks_leader’ branch uses ‘locks’ for
global properties

• Unit test exercises various weird locking scenarios

!

• https://github.com/uwiger/locks

https://github.com/uwiger/locks

