
Property-based Testing
for non-functional requirements

Macías López
macias.lopez@udc.es

MADS Research Group – Universidade da Coruña (Galiza, Spain)

Erlang User Conference
Stockholm, June 9th 2014

EUC (2014) PBT for non-functional reqs 1 / 26

Outline

1 Introduction

2 Functional testing

3 Non-functional testing

4 Feedback

EUC (2014) PBT for non-functional reqs 2 / 26

Introduction
Why should we test software?

It increases your confidence in the code you write.

Tests could be used as documentation.

It helps finding bugs earlier, so the impact is much lower.

Reduce costs:

I “50% project budget”

I “At least 1/3 and probably more than 1/2 of the project budget”

EUC (2014) PBT for non-functional reqs 3 / 26

Introduction
Why should we test software?

It increases your confidence in the code you write.

Tests could be used as documentation.

It helps finding bugs earlier, so the impact is much lower.

Reduce costs:

I “50% project budget”

I “At least 1/3 and probably more than 1/2 of the project budget”

EUC (2014) PBT for non-functional reqs 3 / 26

Introduction
Remembering some concepts...

Sucessful tests are those that find bugs.

Testing cannot prove that the software has not bugs.

Testing cannot prove that the software fulfill its specification.

Sometimes, more testing implies finding less bugs.

EUC (2014) PBT for non-functional reqs 4 / 26

Introduction
Good practices

Tests should be independent from each other.

Tests should be repeatable.

Tests should be guided by the specification.

After testing, the system should remain as it was.

Test code should be separated from the code itself.

EUC (2014) PBT for non-functional reqs 5 / 26

Introduction
Testing techniques

Static vs dynamic

I Software must be running or not

White-box vs black-box

I We need access to software internals or not

Positive vs negative

I Software testing in normal conditions or not

EUC (2014) PBT for non-functional reqs 6 / 26

Introduction
Testing levels

Unit testing: isolate each part of the program and show that the individual

parts fit the specification.

Integration testing: individual software modules are combined and tested

as a group.

System testing: the whole software system is evaluated

Acceptance testing: the software we built fits bussiness requirements.

EUC (2014) PBT for non-functional reqs 7 / 26

Introduction

Depending on what we want to test:

Functional testing: what the software will do.

Non-functional testing: related to requirements that describe not

what the software will do, but how the software will do it.

But in general, testing is identified by its functional side...

EUC (2014) PBT for non-functional reqs 8 / 26

Introduction

Depending on what we want to test:

Functional testing: what the software will do.

Non-functional testing: related to requirements that describe not

what the software will do, but how the software will do it.

But in general, testing is identified by its functional side...

EUC (2014) PBT for non-functional reqs 8 / 26

Introduction

Depending on what we want to test:

Functional testing: what the software will do.

Non-functional testing: related to requirements that describe not

what the software will do, but how the software will do it.

But in general, testing is identified by its functional side...

EUC (2014) PBT for non-functional reqs 8 / 26

Functional testing
In the Erlang world

EUnit

I The classic xUnit approach

I Test cases are implemented manually as part of test functions

I Integrated with rebar.

I Typical assertions

F assert(BoolExpr)

F assertNot(BoolExpr)

F assertMatch(Pattern, Expr)

F assertEqual(Expected, Expr)

Example!

EUC (2014) PBT for non-functional reqs 9 / 26

Functional testing
In the Erlang world

EUnit

I The classic xUnit approach

I Test cases are implemented manually as part of test functions

I Integrated with rebar.

I Typical assertions

F assert(BoolExpr)

F assertNot(BoolExpr)

F assertMatch(Pattern, Expr)

F assertEqual(Expected, Expr)

Example!

EUC (2014) PBT for non-functional reqs 9 / 26

Functional testing
In the Erlang world

EUnit

I The classic xUnit approach

I Test cases are implemented manually as part of test functions

I Integrated with rebar.

I Typical assertions

F assert(BoolExpr)

F assertNot(BoolExpr)

F assertMatch(Pattern, Expr)

F assertEqual(Expected, Expr)

Example!

EUC (2014) PBT for non-functional reqs 9 / 26

Functional testing
In the Erlang world

EUnit

I The classic xUnit approach

I Test cases are implemented manually as part of test functions

I Integrated with rebar.

I Typical assertions

F assert(BoolExpr)

F assertNot(BoolExpr)

F assertMatch(Pattern, Expr)

F assertEqual(Expected, Expr)

Example!
EUC (2014) PBT for non-functional reqs 9 / 26

Functional testing
In the Erlang world

CommonTest

I Automates the execution of test functions.

I We can analyse past execution of test functions.

I Includes coverage data.

I Setting it up can be difficult.

I Ideal for integration testing.

EUC (2014) PBT for non-functional reqs 10 / 26

Functional testing
In the Erlang world

CommonTest

I Automates the execution of test functions.

I We can analyse past execution of test functions.

I Includes coverage data.

I Setting it up can be difficult.

I Ideal for integration testing.

EUC (2014) PBT for non-functional reqs 10 / 26

Functional testing
In the Erlang world

CommonTest

I Functions to setup and teardown the complete suite or test case

I We can avoid certain testcases

I Test suites can affect to different Erlang nodes.

Example!

EUC (2014) PBT for non-functional reqs 11 / 26

Functional testing
In the Erlang world

CommonTest

I Functions to setup and teardown the complete suite or test case

I We can avoid certain testcases

I Test suites can affect to different Erlang nodes.

Example!

EUC (2014) PBT for non-functional reqs 11 / 26

Functional testing
Property-based testing

Uses declarative statements to specify properties that the software needs

to satisfy according to its specification.

Using this approach:

Test cases can be automatically derived from those properties.

Test cases can be automatically run and diagnosed.

The tools we use to perform PBT in Erlang:

QuickCheck / PropEr

EUC (2014) PBT for non-functional reqs 12 / 26

Functional testing
Property-based testing

Uses declarative statements to specify properties that the software needs

to satisfy according to its specification.

Using this approach:

Test cases can be automatically derived from those properties.

Test cases can be automatically run and diagnosed.

The tools we use to perform PBT in Erlang:

QuickCheck / PropEr

EUC (2014) PBT for non-functional reqs 12 / 26

Functional testing
Property-based testing

Uses declarative statements to specify properties that the software needs

to satisfy according to its specification.

Using this approach:

Test cases can be automatically derived from those properties.

Test cases can be automatically run and diagnosed.

The tools we use to perform PBT in Erlang:

QuickCheck / PropEr

EUC (2014) PBT for non-functional reqs 12 / 26

Property-based testing
The process

Define properties for our code.

Run test cases using QuickCheck/PropEr generators.

Check whether the defined properties hold or not.

One interesting feature of Quickcheck/PropEr:

I When a failing test case is found, QuickCheck/PropEr automatically

shrinks it to the smallest equivalent counterexample.

Properties themselves are also written in Erlang.

State-machine based testing for complex systems.

EUC (2014) PBT for non-functional reqs 13 / 26

Property-based testing
The process

Define properties for our code.

Run test cases using QuickCheck/PropEr generators.

Check whether the defined properties hold or not.

One interesting feature of Quickcheck/PropEr:

I When a failing test case is found, QuickCheck/PropEr automatically

shrinks it to the smallest equivalent counterexample.

Properties themselves are also written in Erlang.

State-machine based testing for complex systems.

EUC (2014) PBT for non-functional reqs 13 / 26

Property-based testing
The process

Define properties for our code.

Run test cases using QuickCheck/PropEr generators.

Check whether the defined properties hold or not.

One interesting feature of Quickcheck/PropEr:

I When a failing test case is found, QuickCheck/PropEr automatically

shrinks it to the smallest equivalent counterexample.

Properties themselves are also written in Erlang.

State-machine based testing for complex systems.

EUC (2014) PBT for non-functional reqs 13 / 26

Property-based testing
The process

Define properties for our code.

Run test cases using QuickCheck/PropEr generators.

Check whether the defined properties hold or not.

One interesting feature of Quickcheck/PropEr:

I When a failing test case is found, QuickCheck/PropEr automatically

shrinks it to the smallest equivalent counterexample.

Properties themselves are also written in Erlang.

State-machine based testing for complex systems.

EUC (2014) PBT for non-functional reqs 13 / 26

Property-based testing
Simple example

“After we have applied the delete function to a list of numbers

and an specific number, such number should not appear in the

resulting list.”

Property in QuickCheck:
prop_lists_delete() ->

?FORALL(I, eqc_gen:int(),

?FORALL(List, eqc_gen:list(eqc_gen:int()),

not lists:member(I, lists:delete(I, List)))).

EUC (2014) PBT for non-functional reqs 14 / 26

Property-based testing
Simple example

“After we have applied the delete function to a list of numbers

and an specific number, such number should not appear in the

resulting list.”

Property in QuickCheck:
prop_lists_delete() ->

?FORALL(I, eqc_gen:int(),

?FORALL(List, eqc_gen:list(eqc_gen:int()),

not lists:member(I, lists:delete(I, List)))).

EUC (2014) PBT for non-functional reqs 14 / 26

Property-based testing
Simple example

“After we have applied the delete function to a list of numbers

and an specific number, such number should not appear in the

resulting list.”

Property in QuickCheck:
prop_lists_delete() ->

?FORALL(I, eqc_gen:int(),

?FORALL(List, eqc_gen:list(eqc_gen:int()),

not lists:member(I, lists:delete(I, List)))).

EUC (2014) PBT for non-functional reqs 15 / 26

Property-based testing
Simple example

“After we have applied the delete function to a list of numbers

and an specific number, such number should not appear in the

resulting list.”

Property in QuickCheck:
prop_lists_delete() ->

?FORALL(I, eqc_gen:int(),

?FORALL(List, eqc_gen:list(eqc_gen:int()),

not lists:member(I, lists:delete(I, List)))).

EUC (2014) PBT for non-functional reqs 16 / 26

Property-based testing
Simple example

Sample of generator output:
2> eqc_gen:sample(eqc_gen:list(eqc_gen:int())).

[10,-2,-9,6]

[-8,6,-11]

[-7,-3,7]

[3]

[]

[11,8,14,12,3]

[-4]

...

EUC (2014) PBT for non-functional reqs 17 / 26

Property-based testing
Simple example

Running test cases means running the property.

Running the property:
3> eqc:quickcheck(test:prop_lists_delete()).

..

OK, passed 100 tests

true

QuickCheck tutorial by Thomas Arts

EUC (2014) PBT for non-functional reqs 18 / 26

Property-based testing
Simple example

Running test cases means running the property.

Running the property:
3> eqc:quickcheck(test:prop_lists_delete()).

..

OK, passed 100 tests

true

QuickCheck tutorial by Thomas Arts

EUC (2014) PBT for non-functional reqs 18 / 26

Property-based testing
Simple example

Running test cases means running the property.

Running the property:
3> eqc:quickcheck(test:prop_lists_delete()).

..

OK, passed 100 tests

true

QuickCheck tutorial by Thomas Arts

EUC (2014) PBT for non-functional reqs 18 / 26

Functional testing

Functional testing is not enough...

In specific domains when the results are produced or how long they

take to be available can be decisive.

Normally these requirements arise at very later stages of

development process.

Or even when the system is deployed!

EUC (2014) PBT for non-functional reqs 19 / 26

Functional testing

Functional testing is not enough...

In specific domains when the results are produced or how long they

take to be available can be decisive.

Normally these requirements arise at very later stages of

development process.

Or even when the system is deployed!

EUC (2014) PBT for non-functional reqs 19 / 26

Functional testing

Functional testing is not enough...

In specific domains when the results are produced or how long they

take to be available can be decisive.

Normally these requirements arise at very later stages of

development process.

Or even when the system is deployed!

EUC (2014) PBT for non-functional reqs 19 / 26

Functional testing

Functional testing is not enough...

In specific domains when the results are produced or how long they

take to be available can be decisive.

Normally these requirements arise at very later stages of

development process.

Or even when the system is deployed!

EUC (2014) PBT for non-functional reqs 19 / 26

Non-functional testing

Many requirements can be considered as non-functional (also known as
extra-functional):

Performance

Dependability

Security

Reliability

...

These requirements are generally informally stated, they are often
contradictory. It is difficult to keep traces of what we have tested.

EUC (2014) PBT for non-functional reqs 20 / 26

Non-functional testing

Many requirements can be considered as non-functional (also known as
extra-functional):

Performance

Dependability

Security

Reliability

...

These requirements are generally informally stated, they are often
contradictory. It is difficult to keep traces of what we have tested.

EUC (2014) PBT for non-functional reqs 20 / 26

Non-functional testing

Many requirements can be considered as non-functional (also known as
extra-functional):

Performance

Dependability

Security

Reliability

...

These requirements are generally informally stated, they are often
contradictory. It is difficult to keep traces of what we have tested.

EUC (2014) PBT for non-functional reqs 20 / 26

Non-functional testing

The question
Can we property-based test any of these non-functional requirements?

Work in progress
Library for testing non-functional requirements to be used in combination

with property-based testing tools

EUC (2014) PBT for non-functional reqs 21 / 26

Non-functional testing

The question
Can we property-based test any of these non-functional requirements?

Work in progress
Library for testing non-functional requirements to be used in combination

with property-based testing tools

EUC (2014) PBT for non-functional reqs 21 / 26

Non-functional testing

Among all possible non-functional requirements, select one and implement

a prototype of properties.

Performance
From a black-box approach

Possible properties

I “The response time is less than a value T”

I “The average response time of N requests is less than a value T”

Example!

EUC (2014) PBT for non-functional reqs 22 / 26

Non-functional testing

Among all possible non-functional requirements, select one and implement

a prototype of properties.

Performance

From a black-box approach

Possible properties

I “The response time is less than a value T”

I “The average response time of N requests is less than a value T”

Example!

EUC (2014) PBT for non-functional reqs 22 / 26

Non-functional testing

Among all possible non-functional requirements, select one and implement

a prototype of properties.

Performance
From a black-box approach

Possible properties

I “The response time is less than a value T”

I “The average response time of N requests is less than a value T”

Example!

EUC (2014) PBT for non-functional reqs 22 / 26

Non-functional testing

Among all possible non-functional requirements, select one and implement

a prototype of properties.

Performance
From a black-box approach

Possible properties

I “The response time is less than a value T”

I “The average response time of N requests is less than a value T”

Example!

EUC (2014) PBT for non-functional reqs 22 / 26

Non-functional testing

Among all possible non-functional requirements, select one and implement

a prototype of properties.

Performance
From a black-box approach

Possible properties

I “The response time is less than a value T”

I “The average response time of N requests is less than a value T”

Example!

EUC (2014) PBT for non-functional reqs 22 / 26

Performance testing

Before running the tests, set a specific workload in the system. Possible

integration with:

Tsung

Megaload

Use ?SETUP macro.

PBT is partially integrated in Megaload. Diana Corbacho’s tutorial.

EUC (2014) PBT for non-functional reqs 23 / 26

Performance testing

Before running the tests, set a specific workload in the system. Possible

integration with:

Tsung

Megaload

Use ?SETUP macro.

PBT is partially integrated in Megaload. Diana Corbacho’s tutorial.

EUC (2014) PBT for non-functional reqs 23 / 26

Performance testing
Queue example

Due to the internal implementation of queues in Erlang, the response time

of removing the first element of the queue after a lot of insertions, should

be slightly high.

We can build a state-machine in combination with our library to

check that.

Example!

EUC (2014) PBT for non-functional reqs 24 / 26

Performance testing
Queue example

Due to the internal implementation of queues in Erlang, the response time

of removing the first element of the queue after a lot of insertions, should

be slightly high.

We can build a state-machine in combination with our library to

check that.

Example!

EUC (2014) PBT for non-functional reqs 24 / 26

Performance testing
Queue example

Due to the internal implementation of queues in Erlang, the response time

of removing the first element of the queue after a lot of insertions, should

be slightly high.

We can build a state-machine in combination with our library to

check that.

Example!

EUC (2014) PBT for non-functional reqs 24 / 26

Feedback

More properties related to performance?

I Simulate incresing memory, disk or network usage

Move to grey-box testing to get info at earlier stages?

What non-functional requirement would you like to have tools for

testing it?

How could PBT help when testing that requirements?

EUC (2014) PBT for non-functional reqs 25 / 26

Feedback

More properties related to performance?

I Simulate incresing memory, disk or network usage

Move to grey-box testing to get info at earlier stages?

What non-functional requirement would you like to have tools for

testing it?

How could PBT help when testing that requirements?

EUC (2014) PBT for non-functional reqs 25 / 26

Feedback

More properties related to performance?

I Simulate incresing memory, disk or network usage

Move to grey-box testing to get info at earlier stages?

What non-functional requirement would you like to have tools for

testing it?

How could PBT help when testing that requirements?

EUC (2014) PBT for non-functional reqs 25 / 26

Feedback

More properties related to performance?

I Simulate incresing memory, disk or network usage

Move to grey-box testing to get info at earlier stages?

What non-functional requirement would you like to have tools for

testing it?

How could PBT help when testing that requirements?

EUC (2014) PBT for non-functional reqs 25 / 26

Feedback

More properties related to performance?

I Simulate incresing memory, disk or network usage

Move to grey-box testing to get info at earlier stages?

What non-functional requirement would you like to have tools for

testing it?

How could PBT help when testing that requirements?

EUC (2014) PBT for non-functional reqs 25 / 26

Feedback

More properties related to performance?

I Simulate incresing memory, disk or network usage

Move to grey-box testing to get info at earlier stages?

What non-functional requirement would you like to have tools for

testing it?

How could PBT help when testing that requirements?

EUC (2014) PBT for non-functional reqs 25 / 26

Audience ! thanks

EUC (2014) PBT for non-functional reqs 26 / 26

	Introduction
	Functional testing
	Non-functional testing
	Feedback

