Property-based Testing
for non-functional requirements

Macias Lopez
macias.lopez@udc.es

MADS Research Group — Universidade da Corufa (Galiza, Spain)

Erlang User Conference
Stockholm, June 9th 2014

oOs =

EUC (2014) PBT for non-functional reqs 1/26



Outline

0 Introduction
9 Functional testing
e Non-functional testing

@ Feedback

88T

EUC (2014)

PBT for non-functional reqs

=

2/26



Introduction

Why should we test software?

@ ltincreases your confidence in the code you write.
@ Tests could be used as documentation.

@ It helps finding bugs earlier, so the impact is much lower.

oOs =

EUC (2014) PBT for non-functional reqs 3/26



Introduction

Why should we test software?

@ ltincreases your confidence in the code you write.
@ Tests could be used as documentation.

@ It helps finding bugs earlier, so the impact is much lower.
@ Reduce costs:
» “50% project budget”
» “Atleast 1/3 and probably more than 1/2 of the project budget”

oOs =

EUC (2014) PBT for non-functional reqs 3/26



Introduction

Remembering some concepts...

@ Sucessful tests are those that find bugs.
@ Testing cannot prove that the software has not bugs.
@ Testing cannot prove that the software fulfill its specification.

@ Sometimes, more testing implies finding less bugs.

oOs =

EUC (2014) PBT for non-functional reqs 4/26



Introduction

Good practices

Tests should be independent from each other.

@ Tests should be repeatable.

Tests should be guided by the specification.

After testing, the system should remain as it was.

Test code should be separated from the code itself.

oOs =

EUC (2014) PBT for non-functional reqs 5/26



Introduction

Testing techniques

@ Static vs dynamic

» Software must be running or not
@ White-box vs black-box

» We need access to software internals or not
@ Positive vs negative

» Software testing in normal conditions or not

oOs =

EUC (2014) PBT for non-functional reqs 6/26



Introduction

Testing levels

Unit testing: isolate each part of the program and show that the individual
parts fit the specification.

Integration testing: individual software modules are combined and tested
as a group.

System testing: the whole software system is evaluated

Acceptance testing: the software we built fits bussiness requirements.

oOs =

EUC (2014) PBT for non-functional reqs 7126



Introduction

Depending on what we want to test:

oOs =

EUC (2014) PBT for non-functional reqs 8/26



Introduction

Depending on what we want to test:

@ Functional testing: what the software will do.

@ Non-functional testing: related to requirements that describe not

what the software will do, but how the software will do it.

oOs =

EUC (2014) PBT for non-functional reqs 8/26



Introduction

Depending on what we want to test:

@ Functional testing: what the software will do.

@ Non-functional testing: related to requirements that describe not

what the software will do, but how the software will do it.

But in general, testing is identified by its functional side...

oOs =

EUC (2014) PBT for non-functional reqs 8/26



Functional testing

In the Erlang world

oOs =

EUC (2014) PBT for non-functional reqs 9/26



Functional testing

In the Erlang world

@ EUnit

oOs =

EUC (2014) PBT for non-functional reqs 9/26



Functional testing

In the Erlang world

@ EUnit

» The classic xUnit approach
» Test cases are implemented manually as part of test functions
» Integrated with rebar.
» Typical assertions
* assert(BoolExpr)
* assertNot (BoolExpr)
* assertMatch(Pattern, Expr)

* assertEqual (Expected, Expr)

oOs =

EUC (2014) PBT for non-functional reqs 9/26



Functional testing

In the Erlang world

@ EUnit

» The classic xUnit approach
» Test cases are implemented manually as part of test functions
» Integrated with rebar.
» Typical assertions
* assert(BoolExpr)
* assertNot (BoolExpr)
* assertMatch(Pattern, Expr)

* assertEqual (Expected, Expr)

m -
0%s Example! -

EUC (2014) PBT for non-functional reqs 9/26



Functional testing

In the Erlang world

@ CommonTest

oOs =

EUC (2014) PBT for non-functional reqs 10/26



Functional testing

In the Erlang world

@ CommonTest

» Automates the execution of test functions.

» We can analyse past execution of test functions.

v

Includes coverage data.

v

Setting it up can be difficult.

v

Ideal for integration testing.

oOs =

EUC (2014) PBT for non-functional reqs 10/26



Functional testing

In the Erlang world

@ CommonTest

» Functions to setup and teardown the complete suite or test case
» We can avoid certain testcases

» Test suites can affect to different Erlang nodes.

oOs =

EUC (2014) PBT for non-functional reqs 11/26



Functional testing

In the Erlang world

@ CommonTest

» Functions to setup and teardown the complete suite or test case
» We can avoid certain testcases

» Test suites can affect to different Erlang nodes.

Example!

oOs =

EUC (2014) PBT for non-functional reqs 11/26



Functional testing
Property-based testing

Uses declarative statements to specify properties that the software needs

to satisfy according to its specification.

EUC (2014) PBT for non-functional reqs 12/26



Functional testing
Property-based testing

Uses declarative statements to specify properties that the software needs

to satisfy according to its specification.

Using this approach:

@ Test cases can be automatically derived from those properties.

@ Test cases can be automatically run and diagnosed.

EUC (2014) PBT for non-functional reqs 12/26



Functional testing
Property-based testing

Uses declarative statements to specify properties that the software needs

to satisfy according to its specification.

Using this approach:
@ Test cases can be automatically derived from those properties.
@ Test cases can be automatically run and diagnosed.

The tools we use to perform PBT in Erlang:

@ QuickCheck / PropEr

EUC (2014) PBT for non-functional reqs 12/26



Property-based testing

The process

@ Define properties for our code.
@ Run test cases using QuickCheck/PropEr generators.

@ Check whether the defined properties hold or not.

EUC (2014) PBT for non-functional reqs 13/26



Property-based testing
The process
@ Define properties for our code.
@ Run test cases using QuickCheck/PropEr generators.

@ Check whether the defined properties hold or not.

@ One interesting feature of Quickcheck/PropEr:

» When a failing test case is found, QuickCheck/PropEr automatically

shrinks it to the smallest equivalent counterexample.

EUC (2014) PBT for non-functional reqs 13/26



Property-based testing

The process

Define properties for our code.

@ Run test cases using QuickCheck/PropEr generators.

Check whether the defined properties hold or not.

One interesting feature of Quickcheck/PropEr:

» When a failing test case is found, QuickCheck/PropEr automatically

shrinks it to the smallest equivalent counterexample.

Properties themselves are also written in Erlang.

EUC (2014) PBT for non-functional reqs 13/26



Property-based testing

The process

Define properties for our code.

@ Run test cases using QuickCheck/PropEr generators.

Check whether the defined properties hold or not.

One interesting feature of Quickcheck/PropEr:

» When a failing test case is found, QuickCheck/PropEr automatically

shrinks it to the smallest equivalent counterexample.

Properties themselves are also written in Erlang.

@ State-machine based testing for complex systems.

EUC (2014) PBT for non-functional reqs 13/26



Property-based testing

Simple example

“After we have applied the delete function to a list of numbers
and an specific number, such number should not appear in the

resulting list.”

EUC (2014) PBT for non-functional reqs 14 /26



Property-based testing
Simple example
“After we have applied the delete function to a list of numbers
and an specific number, such number should not appear in the

resulting list.”

Property in QuickCheck:
prop_lists_delete() ->

PFORALL(I, eqc_gen:int(),
7FORALL(List, egc_gen:list(eqc_gen:int()),

not lists:member(I, lists:delete(I, List)))).

EUC (2014) PBT for non-functional reqs 14/26



Property-based testing
Simple example
“After we have applied the delete function to a list of numbers
and an specific number, such number should not appear in the

resulting list.”

Property in QuickCheck:
prop_lists_delete() ->

PFORALL(I, eqc_gen:int(),
7FORALL(List, egc_gen:list(eqc_gen:int()),

not lists:member(I, lists:delete(I, List)))).

EUC (2014) PBT for non-functional reqs 15/26



Property-based testing
Simple example
“After we have applied the delete function to a list of numbers
and an specific number, such number should not appear in the

resulting list.”

Property in QuickCheck:
prop_lists_delete() ->

PFORALL(I, eqc_gen:int(),
7FORALL(List, egc_gen:list(eqc_gen:int()),

not lists:member(I, lists:delete(I, List)))).

EUC (2014) PBT for non-functional reqs 16/26



Property-based testing

Simple example

Sample of generator output:
2> eqc_gen:sample(eqc_gen:list(eqc_gen:int())).

[10,-2,-9,6]
[-8,6,-11]
[-7,-3,7]

(3]

(1
[11,8,14,12,3]

[-4]

v

EUC (2014) PBT for non-functional reqs 17/26




Property-based testing

Simple example

Running test cases means running the property.

oOs =

EUC (2014) PBT for non-functional reqs 18/26



Property-based testing

Simple example

Running test cases means running the property.

Running the property:
3> eqc:quickcheck(test:prop_lists_delete()).

0K, passed 100 tests

true
.

oOs =

EUC (2014) PBT for non-functional reqs 18/26



Property-based testing

Simple example

Running test cases means running the property.

Running the property:
3> eqc:quickcheck(test:prop_lists_delete()).

0K, passed 100 tests

true
.

QuickCheck tutorial by Thomas Arts
AR T =

EUC (2014) PBT for non-functional reqs 18/26



Functional testing

Functional testing is not enough...

oOs =

EUC (2014) PBT for non-functional reqs 19/26



Functional testing

Functional testing is not enough...

@ In specific domains when the results are produced or how long they

take to be available can be decisive.

oOs =

EUC (2014) PBT for non-functional reqs 19/26



Functional testing

Functional testing is not enough...

@ In specific domains when the results are produced or how long they

take to be available can be decisive.

@ Normally these requirements arise at very later stages of

development process.

oOs =

EUC (2014) PBT for non-functional reqs 19/26



Functional testing

Functional testing is not enough...

@ In specific domains when the results are produced or how long they

take to be available can be decisive.

@ Normally these requirements arise at very later stages of

development process.

@ Or even when the system is deployed!

oOs =

EUC (2014) PBT for non-functional reqs 19/26



Non-functional testing

Many requirements can be considered as non-functional (also known as
extra-functional):

oOs =

EUC (2014) PBT for non-functional reqs 20/26



Non-functional testing

Many requirements can be considered as non-functional (also known as
extra-functional):

@ Performance
@ Dependability

@ Security
@ Reliability
° ..
AR T =

EUC (2014) PBT for non-functional reqs 20/26



Non-functional testing

Many requirements can be considered as non-functional (also known as
extra-functional):

@ Performance
@ Dependability
@ Security

@ Reliability

° ..

These requirements are generally informally stated, they are often
contradictory. It is difficult to keep traces of what we have tested.

oOs =

EUC (2014) PBT for non-functional reqs 20/26



Non-functional testing

The question
Can we property-based test any of these non-functional requirements? J

oOs =

EUC (2014) PBT for non-functional reqs 21/26



Non-functional testing

The question

Can we property-based test any of these non-functional requirements? J

Work in progress

Library for testing non-functional requirements to be used in combination

with property-based testing tools

AT ==

—

EUC (2014) PBT for non-functional reqs 21/26



Non-functional testing

Among all possible non-functional requirements, select one and implement

a prototype of properties.

oOs =

EUC (2014) PBT for non-functional reqs 22/26



Non-functional testing

Among all possible non-functional requirements, select one and implement

a prototype of properties.

Performance

o0 =

EUC (2014) PBT for non-functional reqs 22/26



Non-functional testing

Among all possible non-functional requirements, select one and implement

a prototype of properties.

Performance
@ From a black-box approach

o0 =

EUC (2014) PBT for non-functional reqs 22/26



Non-functional testing

Among all possible non-functional requirements, select one and implement

a prototype of properties.
Performance
@ From a black-box approach
@ Possible properties

“The response time is less than a value T”

“The average response time of N requests is less than a value T~

o0 =

EUC (2014) PBT for non-functional reqs 22/26



Non-functional testing

Among all possible non-functional requirements, select one and implement

a prototype of properties.

Performance
@ From a black-box approach

@ Possible properties

“The response time is less than a value T”

“The average response time of N requests is less than a value T~

Example! -
Qs =<

EUC (2014) PBT for non-functional reqs 22/26



Performance testing

Before running the tests, set a specific workload in the system. Possible

integration with:

@ Tsung
@ Megaload
AR T =

EUC (2014) PBT for non-functional reqs 23/26



Performance testing

Before running the tests, set a specific workload in the system. Possible

integration with:
@ Tsung
@ Megaload

Use ?SETUP macro.

PBT is partially integrated in Megaload. Diana Corbacho’s tutorial.

oOs =

EUC (2014) PBT for non-functional reqs 23/26



Performance testing

Queue example

Due to the internal implementation of queues in Erlang, the response time
of removing the first element of the queue after a lot of insertions, should

be slightly high.

oOs =

EUC (2014) PBT for non-functional reqs 24/26



Performance testing

Queue example

Due to the internal implementation of queues in Erlang, the response time
of removing the first element of the queue after a lot of insertions, should

be slightly high.

@ We can build a state-machine in combination with our library to

check that.

oOs =

EUC (2014) PBT for non-functional reqs 24/26



Performance testing

Queue example

Due to the internal implementation of queues in Erlang, the response time
of removing the first element of the queue after a lot of insertions, should

be slightly high.

@ We can build a state-machine in combination with our library to

check that.

Example!

oOs =

EUC (2014) PBT for non-functional reqs 24/26



Feedback

oOs =

EUC (2014) PBT for non-functional reqs 25/26



Feedback

@ More properties related to performance?

oOs =

EUC (2014) PBT for non-functional reqs 25/26



Feedback

@ More properties related to performance?

» Simulate incresing memory, disk or network usage

oOs =

EUC (2014) PBT for non-functional reqs 25/26



Feedback

@ More properties related to performance?

» Simulate incresing memory, disk or network usage

@ Move to grey-box testing to get info at earlier stages?

oOs =

EUC (2014) PBT for non-functional reqs 25/26



Feedback

@ More properties related to performance?

» Simulate incresing memory, disk or network usage
@ Move to grey-box testing to get info at earlier stages?

@ What non-functional requirement would you like to have tools for

testing it?

oOs =

EUC (2014) PBT for non-functional reqs 25/26



Feedback

@ More properties related to performance?

» Simulate incresing memory, disk or network usage
@ Move to grey-box testing to get info at earlier stages?
@ What non-functional requirement would you like to have tools for
testing it?

@ How could PBT help when testing that requirements?

oOs =

EUC (2014) PBT for non-functional reqs 25/26



Audience ! thanks

oOs =

EUC (2014) PBT for non-functional reqs 26/26



	Introduction
	Functional testing
	Non-functional testing
	Feedback

