Graphical editing support for
QuickCheck models
eqgc_graphedit

Thomas Arts, Kirill Bogdanov, Alex Gerdes, John Hughes

This project has received funding from the
EU FP7 Collaborative project PROWESS, grant number 317820,
http://www.prowessproject.eu

http://www.prowessproject.eu

Testing with QuickCheck

* QuickCheck permits one to write generators
for test data and pre/postconditions.

* [he expectation is that user provides a model,
based on which test data is randomly generated.

 |llustration of testing a write operation:
write_args(_) -> [key(), int()].
write(Key, Value) -> lock:write(Key, Value).

write_post(_,[Key,Value],Res) -> eqg(Res,ok).

Global state

operation this is a type of the element of the
name precondition global state global state

write_pre(S) -> S#state.started precondition

generator for
arguments

write_args(S) -> [key(), int()].

list of arguments to pass to operation returns a generator
write of the system under test for integers

returns a generator
for keys

Global state is a record-type of type state with element
started, passed as an argument to all operations.

Testing write

Assuming started is a
global state reflecting

using global state

0oolean component of the

If the system was started,

write_args(S) -> [key(), int()].

write(Key, Value) -

> lock:write(Key, Value).

write_pre(S) -> S#state.started

write_post(S,[Key,

write_next(S, Res,

S#state{kvs = [{Key,Value}

Value],Res) -> eq(Res,ok).
Key, Value]) ->

oroplists:delete(Key,S#state.kvs)]}.

L ocker example

unlock

e Can be started/stopped @ @

e Can be locked/unlocked lock

* Does not include read/write \ stop

Stop start

|
|

U
U

U

Part of this diagram in pure QuickCheck

OC
OC
OC

i
i

i

OC
OC
OC

~Very easy to make a mistake in one of

K_pre(S) -> S#state.started andalso not S#state.locked.
<_args(S) -> [].
<_next(S,Res,|])-> S#state{locked=true}.

K_pre(S) -> S#state.started andalso S#state.locked.
K_args(S) -> [].

K_next(S,Res,[])-> S#state{locked=false}.

unlock

the above expressions (locked) unlocked

lock

stop

- \‘/Start

Now if we are doing something more complex

B

clickToEditStateOr Transition
1
editState
selectCommand
sclectState
selectCommandFP

clickToEditStateOrTransition selectTransition y clickAdd

selectCommandfFP
editTransitionSel

T T YTy

selectCommand

addStatelnvalid

clickToAddState tateCancel

addState selectCommandFP

clickAdd —

“.m

editTransitionFT selectS\tate
removeState
selectCommandFP
close \ seleotuothim
close
nsition
acleciTranetiton " IO
close / | T™—
clickConnect Jmmand
close —
selectCommanc
selectCommandFP \
_ edit
clickConnect

|
!
(

I;, _———— e ——

Py 7 PuDOREY VY TN SN N PUSEN Ty Soes

attcmptTransatlonBctwcchmns

| A lot of effort will go mto state malntenance l'

selectCommand

clickAdd

clickBack

selectCommandFP

addTransmonFr

selectCommand

e e o A AR A . SN A _A N . __ _Bal_

Adding the ‘lock’ state

@ Back Click in an empty space to place a new node.

/_/’l““\

Add Node

State name |locked

Initial?

Addition of the unlock transition

@ Back Click on 2 node and drag the edge to another node to connect them.

lock

start
stopped \

Add Transition

" unlock * |Weight: Il

| save | | cancel |

Stop

What we dig

Developed a tool to edit graphical models.
Names of operations are extracted from Erlang code.

For the above example, the resulting model is half the
size of the traditional model ...

... .and much easier to maintain.

Test failures and frequencies are automatically
extracted from results of test execution.

Frequencies

lock
23%

stop
I 2 5%
g

sta rted

unlock \
21%

start
31%

Running tests produces a distribution of transitions

Welights can be updated

lock
23%

welght 1 stop

25%
weight: 1
Iocked //////

\ sta rted
unlock \ @

21%
weight: 1 start
31%
weight: 1

Changing weights makes operations of interest run
more frequently.

Doing this for real

* You have access to both QuickCheck tool and the
graphical editor either on the USB stick or online at
http://quvig.de/euc2015

* The .zip file contains both egc_graphedit (the graphical
editing tool plus tutorial material) and time-limited
version of QuickCheck that you need to install first.

* Your task Is to start with lock_stage1 and revise it sO
that is passes tests, then add read/write transitions.
(no need to edit the .erl file, it is enough to just edit the
diagram).

http://quviq.de/euc2015

Conclusions

Existing QuickCheck models are hard to develop for
complex state-transition diagrams.

Developed interface to edit such diagrams.
Part of the most recent version of QuickCheck.

Tested using itself,

