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Testing with QuickCheck

* QuickCheck permits one to write generators
for test data and pre/postconditions.

* [he expectation is that user provides a model,
based on which test data is randomly generated.

 |llustration of testing a write operation:
write_args(_) -> [key(), int()].
write(Key, Value) -> lock:write(Key, Value).

write_post(_,[Key,Value],Res) -> eqg(Res,ok).



Global state

operation this is a type of the element of the
name precondition global state  global state

write_pre(S) -> S#state.started precondition

generator for
arguments

write_args(S) -> [ key(), int() ].

list of arguments to pass to operation returns a generator
write of the system under test for integers

returns a generator
for keys

Global state is a record-type of type state with element
started, passed as an argument to all operations.



Testing write

Assuming started is a
global state reflecting

using global state

0oolean component of the

If the system was started,

write_args(S) -> [key(), int()].

write(Key, Value) -

> lock:write(Key, Value).

write_pre(S) -> S#state.started

write_post(S,[Key,

write_next(S, Res,

S#state{kvs = [{Key,Value}

Value],Res) -> eq(Res,ok).
Key, Value]) ->

oroplists:delete(Key,S#state.kvs)]}.



L ocker example
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Part of this diagram in pure QuickCheck
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~Very easy to make a mistake in one of

K_pre(S) -> S#state.started andalso not S#state.locked.
<_args(S) -> [].
<_next(S,Res,|])-> S#state{locked=true}.

K_pre(S) -> S#state.started andalso S#state.locked.
K_args(S) -> [].

K_next(S,Res,[])-> S#state{locked=false}.
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the above expressions (locked ) unlocked
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Now if we are doing something more complex
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Adding the ‘lock’ state

@ Back Click in an empty space to place a new node.
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Initial?




Addition of the unlock transition

@ Back Click on 2 node and drag the edge to another node to connect them.
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What we dig

Developed a tool to edit graphical models.
Names of operations are extracted from Erlang code.

For the above example, the resulting model is half the
size of the traditional model ...

... .and much easier to maintain.

Test failures and frequencies are automatically
extracted from results of test execution.



Frequencies
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Running tests produces a distribution of transitions



Welights can be updated
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Changing weights makes operations of interest run
more frequently.



Doing this for real

* You have access to both QuickCheck tool and the
graphical editor either on the USB stick or online at
http://quvig.de/euc2015

* The .zip file contains both egc_graphedit (the graphical
editing tool plus tutorial material) and time-limited
version of QuickCheck that you need to install first.

* Your task Is to start with lock_stage1 and revise it sO
that is passes tests, then add read/write transitions.
(no need to edit the .erl file, it is enough to just edit the
diagram).


http://quviq.de/euc2015

Conclusions

Existing QuickCheck models are hard to develop for
complex state-transition diagrams.

Developed interface to edit such diagrams.
Part of the most recent version of QuickCheck.

Tested using itself,



