
Developing Erlang At
Yahoo

Nick Gerakines and Mark Zweifel

1

Lots of “Official”
Languages

• C/C++

• Java

• PHP

• Perl

2

Unofficial Languages

• Ruby

• Python

• Objective-C

• ... Erlang!

3

Not the first to go
down this path.

4

Delicious

5

2.0 Launch is Huge

• Out on July 31st -- Over a year in the
making

• Complete rewrite, front to back

6

Uses Erlang!

7

• Mostly C++ (is OO, I know)

• Ties to several subsystems to delegate
large tasks, aka spam, search, algo, etc

• Several subsystems built in Erlang

8

Use Case #1
Data Migrations

9

Rewrites are hard.
More than just a row-to-row data copy.

10

Not just one.

2.0 involved simultaneous front-
end and back-end development

There were several migrations
of the entire system done over

the course of development

11

• Written in Perl

• Multiple threading models used

• No throttling or scaling of work in real-
time

• Hard to debug

• Start/Stop was a nightmare

First Attempt

12

Second Attempt

• Rewritten into Erlang services

• Crazy-fast

• System was introspective and self-monitoring

• Dynamic scaling/throttling

• Live migration status updates

^ last

13

Compute, Store &
Write

• Created large snapshots of the entire d1
system for processing

• Phase 1 -- Compute diffs and store

• Fragmented Mnesia stores around ~50
gigs a piece, up to 6 “cells”

• Phase 2 -- Write data into d2 system

14

Caveats

• Reading from a static data store (stopped
slave).

• Activatee load tests and QA work.

• Multiple backends for migrations, stress
test /QA environment and a “gold”
production image.

15

Concurrency saved
migrations

16

Ports!

• Several systems required interfaces to Perl
scripts or C/C++ libraries

• Leveraged data auditing tool in Perl

• Could recycle non-Erlang code to really
maximize efficiency

• Included Yahoo! specific functions, string/
language encoding and detection.

17

Use Case #2
Rolling Migrations

18

There was no before
This entire system was written in Erlang from scratch

to bring the entire d2 system up to date to the second.

19

Architecture
• d1 Reader loop -- Monitors changes in the

d1 system

• d1 Processing loop -- Would act on the
changes and prepare them for d2 input

20

Mnesia

Erlang/OTP

Yeah, that’s it.

21

Use Case #3
Algorithmics

22

Before

• Perl on top of cron jobs

• Perl can be difficult to manage

• Jobs can be very database intensive

23

After

• Rewritten into a number of small, independent
systems

• Systems can be tweaked while live and running in
production

• No cron, all running in real time

• Self-monitoring recursive operations

24

Concurrency

• Could leverage 600-700% of the CPU

• Computations were made friendly to
parallel processing

• Introspection facilities let us scale up and
down load to run at peak throughput

25

Mnesia

Erlang/OTP

Sound familiar?

26

Delicious
Complications

27

“If we knew what we
were doing, it wouldn't

be called research,
would it?”

 -- Albert Einstein

28

• Erlang is very different.

• Engineers are usually stubborn.

• Not enough critical mass at Yahoo to be
unquestionable.

• Tension was already high, adding a new
language into the mix added uncertainty.

29

Using Erlang At Yahoo

30

Strengths

• Extremely good at fault-tolerant distributed applications.

• Ideal for messaging, communications and logging.

• Long running jobs with heavy monitoring requirements.

• Agile development process

• Many different interfaces

• RPC baked in for free

31

Weaknesses

• There are documentation gaps.

• Hasn’t achieved critical mass yet.

• The community is thin.

32

What We Did

• Internal packages and builds for multiple
platforms.

• Created a simple build process based on a
single Erlang install path.

• Standardized start/stop processes.

33

Thanks

Nick Gerakines <gerakine@yahoo-inc.com>
Mark Zweifel <markez@yahoo-inc.com>
Yogish Baliga <baliga@yahoo-inc.com>

Chris Goffinet <goffinet@yahoo-inc.com>

34

mailto:gerakine@yahoo-inc.com
mailto:gerakine@yahoo-inc.com
mailto:markez@yahoo-inc.com
mailto:markez@yahoo-inc.com
mailto:baliga@yahoo-inc.com
mailto:baliga@yahoo-inc.com
mailto:cgoffinet@yahoo-inc.com
mailto:cgoffinet@yahoo-inc.com

