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Lots of “Official” 
Languages

• C/C++

• Java

• PHP

• Perl
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Unofficial Languages

• Ruby

• Python

• Objective-C

• ... Erlang!
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Not the first to go 
down this path.
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Delicious
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2.0 Launch is Huge

• Out on July 31st -- Over a year in the 
making

• Complete rewrite, front to back
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Uses Erlang!
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• Mostly C++ (is OO, I know)

• Ties to several subsystems to delegate 
large tasks, aka spam, search, algo, etc

• Several subsystems built in Erlang
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Use Case #1
Data Migrations
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Rewrites are hard.
More than just a row-to-row data copy.
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Not just one.

2.0 involved simultaneous front-
end and back-end development

There were several migrations 
of the entire system done over 

the course of development
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• Written in Perl

• Multiple threading models used

• No throttling or scaling of work in real-
time

• Hard to debug

• Start/Stop was a nightmare

First Attempt
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Second Attempt

• Rewritten into Erlang services

• Crazy-fast

• System was introspective and self-monitoring

• Dynamic scaling/throttling

• Live migration status updates

^ last
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Compute, Store & 
Write

• Created large snapshots of the entire d1 
system for processing

• Phase 1 -- Compute diffs and store

• Fragmented Mnesia stores around ~50 
gigs a piece, up to 6 “cells”

• Phase 2 -- Write data into d2 system
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Caveats

• Reading from a static data store (stopped 
slave).

• Activatee load tests and QA work.

• Multiple backends for migrations, stress 
test /QA environment and a “gold” 
production image.
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Concurrency saved 
migrations
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Ports!

• Several systems required interfaces to Perl 
scripts or C/C++ libraries

• Leveraged data auditing tool in Perl

• Could recycle non-Erlang code to really 
maximize efficiency

• Included Yahoo! specific functions, string/
language encoding and detection.
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Use Case #2
Rolling Migrations
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There was no before
This entire system was written in Erlang from scratch 

to bring the entire d2 system up to date to the second.
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Architecture
• d1 Reader loop -- Monitors changes in the 

d1 system

• d1 Processing loop -- Would act on the 
changes and prepare them for d2 input
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Mnesia

Erlang/OTP

Yeah, that’s it.
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Use Case #3
Algorithmics
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Before

• Perl on top of cron jobs

• Perl can be difficult to manage

• Jobs can be very database intensive
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After

• Rewritten into a number of small, independent 
systems

• Systems can be tweaked while live and running in 
production

• No cron, all running in real time

• Self-monitoring recursive operations
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Concurrency

• Could leverage 600-700% of the CPU

• Computations were made friendly to 
parallel processing

• Introspection facilities let us scale up and 
down load to run at peak throughput
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Mnesia

Erlang/OTP

Sound familiar?
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Delicious 
Complications
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“If we knew what we 
were doing, it wouldn't 

be called research, 
would it?”

    -- Albert Einstein
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• Erlang is very different.

• Engineers are usually stubborn.

• Not enough critical mass at Yahoo to be 
unquestionable.

• Tension was already high, adding a new 
language into the mix added uncertainty.
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Using Erlang At Yahoo
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Strengths

• Extremely good at fault-tolerant distributed applications.

• Ideal for messaging, communications and logging.

• Long running jobs with heavy monitoring requirements.

• Agile development process

• Many different interfaces

• RPC baked in for free

31



Weaknesses

• There are documentation gaps.

• Hasn’t achieved critical mass yet.

• The community is thin.
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What We Did

• Internal packages and builds for multiple 
platforms.

• Created a simple build process based on a 
single Erlang install path.

• Standardized start/stop processes.
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Thanks

Nick Gerakines <gerakine@yahoo-inc.com>
Mark Zweifel <markez@yahoo-inc.com>
Yogish Baliga <baliga@yahoo-inc.com>

Chris Goffinet <goffinet@yahoo-inc.com>
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