
SSH
Copyright © 2005-2012 Ericsson AB. All Rights Reserved.

SSH 2.1.1
September 3 2012

Copyright © 2005-2012 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 3 2012

Ericsson AB. All Rights Reserved.: SSH | 1

2 | Ericsson AB. All Rights Reserved.: SSH

1 Reference Manual

The SSH application is an erlang implementation of the secure shell protocol.

ssh

Ericsson AB. All Rights Reserved.: SSH | 3

ssh
Erlang module

Interface module for the SSH application.

SSH
• ssh requires the crypto and public_key applications.

• Supported SSH-version is 2.0

• Currently supports only a minimum of mac and encryption algorithms i.e. hmac-sha1, and aes128-cb and 3des-
cbc.

COMMON DATA TYPES
Type definitions that are used more than once in this module:

boolean() = true | false

string() = list of ASCII characters

ssh_daemon_ref() - opaque to the user returned by ssh:daemon/[1,2,3]

ssh_connection_ref() - opaque to the user returned by ssh:connect/3

ip_address() - {N1,N2,N3,N4} % IPv4 | {K1,K2,K3,K4,K5,K6,K7,K8} % IPv6

subsystem_spec() = {subsystem_name(), {channel_callback(),
channel_init_args()}}

subsystem_name() = string()

channel_callback() = atom() - Name of the erlang module implementing the
subsystem using the ssh_channel behavior see ssh_channel(3)

channel_init_args() = list()

Exports

close(ConnectionRef) -> ok

Types:

ConnectionRef = ssh_connection_ref()

Closes a ssh connection.

connect(Host, Port, Options) ->

connect(Host, Port, Options, Timeout) -> {ok, ssh_connection_ref()} | {error,
Reason}

Types:

Host = string()

Port = integer()

The default is 22, the registered port for SSH.

Options = [{Option, Value}]

Timeout = infinity | integer(milliseconds)

ssh

4 | Ericsson AB. All Rights Reserved.: SSH

Connects to an SSH server. No channel is started this is done by calling ssh_connect:session_channel/2.

Options are:

{user_dir, string()}

Sets the user directory e.i. the directory containing ssh configuration files for the user such as known_hosts,
id_rsa, id_dsa and authorized_key. Defaults to the directory normally referred to as ~/.ssh

{dsa_pass_phrase, string()}

If the user dsa key is protected by a pass phrase it can be supplied with this option.

{rsa_pass_phrase, string()}

If the user rsa key is protected by a pass phrase it can be supplied with this option.

{silently_accept_hosts, boolean()}

When true hosts are added to the file known_hosts without asking the user. Defaults to false.

{user_interaction, boolean()}

If false disables the client to connect to the server if any user interaction is needed such as accepting that the
server will be added to the known_hosts file or supplying a password. Defaults to true. Even if user interaction
is allowed it can be suppressed by other options such as silently_accept_hosts and password. Do note that it may
not always be desirable to use those options from a security point of view.

{public_key_alg, ssh_rsa | ssh_dsa}

Sets the preferred public key algorithm to use for user authentication. If the the preferred algorithm fails of some
reason, the other algorithm is tried. The default is to try ssh_rsa first.

{connect_timeout, timeout()}

Sets a timeout on the transport layer connection. Defaults to infinity.

{user, String}

Provide a user name. If this option is not given, ssh reads from the environment (LOGNAME or USER on unix,
USERNAME on Windows).

{password, string()}

Provide a password for password authentication. If this option is not given, the user will be asked for a password
if the password authentication method is attempted.

{user_auth, Fun/3}

Provide a fun for password authentication. The fun will be called as fun(User, Password, Opts) and
should return true or false.

{key_cb, atom() = KeyCallbackModule}

Provide a special call-back module for key handling. The call-back module should be modeled after
the ssh_file module. The functions that must be exported are: private_host_rsa_key/2,
private_host_dsa_key/2, lookup_host_key/3 and add_host_key/3. This is considered
somewhat experimental and will be better documented later on.

{fd, file_descriptor()}

Allow an existing file-descriptor to be used (simply passed on to the transport protocol).

{ip_v6_disabled, boolean()}

Determines if SSH shall use IPv6 or not.

ssh

Ericsson AB. All Rights Reserved.: SSH | 5

connection_info(ConnectionRef, [Option]) ->[{Option, Value}]

Types:

Option = client_version | server_version | peer

Value = term()

Retrieves information about a connection.

daemon(Port) ->

daemon(Port, Options) ->

daemon(HostAddress, Port, Options) -> ssh_daemon_ref()

Types:

Port = integer()

HostAddress = ip_address() | any

Options = [{Option, Value}]

Option = atom()

Value = term()

Starts a server listening for SSH connections on the given port.

Options are:

{subsystems, [subsystem_spec()]
Provides specifications for handling of subsystems. The "sftp" subsystem-spec can be retrieved
by calling ssh_sftpd:subsystem_spec/1. If the subsystems option in not present the value of
[ssh_sftpd:subsystem_spec([])] will be used. It is of course possible to set the option to the empty
list if you do not want the daemon to run any subsystems at all.

{shell, {Module, Function, Args} | fun(string() = User) - > pid() |
fun(string() = User, ip_address() = PeerAddr) -> pid()}

Defines the read-eval-print loop used when a shell is requested by the client. Example use the erlang shell:
{shell, start, []} which is the default behavior.

{ssh_cli,{channel_callback(), channel_init_args()}}
Provide your own cli implementation, e.i. a channel callback module that implements a shell and command
execution. Note that you may customize the shell read-eval-print loop using the option shell which is much
less work than implementing your own cli channel.

{user_dir, String}

Sets the user directory e.i. the directory containing ssh configuration files for the user such as known_hosts,
id_rsa, id_dsa and authorized_key. Defaults to the directory normally referred to as ~/.ssh

{system_dir, string()}

Sets the system directory, containing the host files that identifies the host for ssh. The default is /etc/ssh, note
that SSH normally requires the host files there to be readable only by root.

{auth_methods, string()}

Comma separated string that determines which authentication methodes that the server should support and in
what order they will be tried. Defaults to "publickey,keyboard_interactive,password"

{user_passwords, [{string() = User, string() = Password}]}

Provide passwords for password authentication.They will be used when someone tries to connect to the server
and public key user authentication fails. The option provides a list of valid user names and the corresponding
password.

ssh

6 | Ericsson AB. All Rights Reserved.: SSH

{password, string()}

Provide a global password that will authenticate any user. From a security perspective this option makes the
server very vulnerable.

{pwdfun, fun/2}

Provide a function for password validation. This is called with user and password as strings, and should return
true if the password is valid and false otherwise.

{fd, file_descriptor()}

Allow an existing file-descriptor to be used (simply passed on to the transport protocol).

{ip_v6_disabled, boolean()}

Determines if SSH shall use IPv6 or not (only used when HostAddress is set to any).

shell(Host) ->

shell(Host, Option) ->

shell(Host, Port, Option) -> _

Types:

Host = string()

Port = integer()

Options - see ssh:connect/3

Starts an interactive shell to an SSH server on the given Host. The function waits for user input, and will not return
until the remote shell is ended (e.g. on exit from the shell).

start() ->

start(Type) -> ok | {error, Reason}

Types:

Type = permanent | transient | temporary

Reason = term()

Starts the Ssh application. Default type is temporary. See also application(3) Requires that the crypto application has
been started.

stop() -> ok

Stops the Ssh application. See also application(3)

stop_daemon(DaemonRef) ->

stop_daemon(Address, Port) -> ok

Types:

DaemonRef = ssh_daemon_ref()

Address = ip_address()

Port = integer()

Stops the listener and all connections started by the listener.

stop_listener(DaemonRef) ->

stop_listener(Address, Port) -> ok

Types:

ssh

Ericsson AB. All Rights Reserved.: SSH | 7

DaemonRef = ssh_daemon_ref()

Address = ip_address()

Port = integer()

Stops the listener, but leaves existing connections started by the listener up and running.

ssh_channel

8 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel
Erlang module

Ssh services are implemented as channels that are multiplexed over an ssh connection and communicates via the ssh
connection protocol. This module provides a callback API that takes care of generic channel aspects such as flow
control and close messages and lets the callback functions take care of the service specific parts.

COMMON DATA TYPES
Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

boolean() = true | false

string() = list of ASCII characters

timeout() = infinity | integer() - in milliseconds.

ssh_connection_ref() - opaque to the user returned by ssh:connect/3 or sent to
a ssh channel process

ssh_channel_id() = integer()

ssh_data_type_code() = 1 ("stderr") | 0 ("normal") are currently valid values
see RFC 4254 section 5.2.

Exports

call(ChannelRef, Msg) ->

call(ChannelRef, Msg, Timeout) -> Reply | {error, Reason}

Types:

ChannelRef = pid()

As returned by start_link/4

Msg = term()

Timeout = timeout()

Reply = term()

Reason = closed | timeout

Makes a synchronous call to the channel process by sending a message and waiting until a reply arrives or a timeout
occurs. The channel will call CallbackModule:handle_call/3 to handle the message. If the channel process
does not exist {error, closed} is returned.

cast(ChannelRef, Msg) -> ok

Types:

ChannelRef = pid()

As returned by start_link/4

Msg = term()

Sends an asynchronous message to the channel process and returns ok immediately, ignoring if the destination node or
channel process does not exist. The channel will call CallbackModule:handle_cast/2 to handle the message.

ssh_channel

Ericsson AB. All Rights Reserved.: SSH | 9

enter_loop(State) -> _

Types:

State = term() - as returned by ssh_channel:init/1

Makes an existing process into a ssh_channel process. Does not return, instead the calling process will enter the
ssh_channel process receive loop and become a ssh_channel process. The process must have been started
using one of the start functions in proc_lib, see proc_lib(3). The user is responsible for any initialization of the process
and needs to call ssh_channel:init/1.

init(Options) -> {ok, State} | {ok, State, Timeout} | {stop, Reason}

Types:

Options = [{Option, Value}]

The following options must be present:

{channel_cb, atom()}
The module that implements the channel behavior.

{init_args(), list()}
The list of arguments to the callback modules init function.

{cm, connection_ref()}
Reference to the ssh connection.

{channel_id, channel_id()}
Id of the ssh channel.

Note:
This function is normally not called by the user, it is only needed if for some reason the channel
process needs to be started with help of proc_lib instead calling ssh_channel:start/4 or
ssh_channel:start_link/4

reply(Client, Reply) -> _

Types:

Client - opaque to the user, see explanation below

Reply = term()

This function can be used by a channel to explicitly send a reply to a client that called call/[2,3] when the reply
cannot be defined in the return value of CallbackModule:handle_call/3.

Client must be the From argument provided to the callback function handle_call/3. Reply is an arbitrary
term, which will be given back to the client as the return value of ssh_channel:call/[2,3].

start(SshConnection, ChannelId, ChannelCb, CbInitArgs) ->

start_link(SshConnection, ChannelId, ChannelCb, CbInitArgs) -> {ok,
ChannelRef} | {error, Reason}

Types:

SshConnection = ssh_connection_ref()

ChannelId = ssh_channel_id()

As returned by ssh_connection:session_channel/[2,4]

ChannelCb = atom()

ssh_channel

10 | Ericsson AB. All Rights Reserved.: SSH

The name of the module implementing the service specific parts of the channel.

CbInitArgs = [term()]

Argument list for the init function in the callback module.

ChannelRef = pid()

Starts a processes that handles a ssh channel. Will be called internally by the ssh daemon or explicitly by the ssh client
implementations. A channel process traps exit signals by default.

CALLBACK FUNCTIONS
The functions init/1, terminate/2, handle_ssh_msg/2 and handle_msg/2 are the functions that are required to provide
the implementation for a server side channel, such as a ssh subsystem channel that can be plugged into the erlang ssh
daemon see ssh:daemon/[2, 3]. The handle_call/3, handle_cast/2 code_change/3 and enter_loop/1 functions are only
relevant when implementing a client side channel.

CALLBACK TIMEOUTS
If an integer timeout value is provided in a return value of one of the callback functions, a timeout will occur unless a
message is received within Timeout milliseconds. A timeout is represented by the atom timeout which should be
handled by the handle_msg/2 callback function. The atom infinity can be used to wait indefinitely, this is the default
value.

Exports

CallbackModule:code_change(OldVsn, State, Extra) -> {ok, NewState}

Types:

Converts process state when code is changed.

This function is called by a client side channel when it should update its internal state during a release upgrade/
downgrade, i.e. when the instruction {update,Module,Change,...} where Change={advanced,Extra}
is given in the appup file. See OTP Design Principles for more information. Any new connection will benefit from
a server side upgrade but already started connections on the server side will not be affected.

Note:
If there are long lived ssh connections and more than one upgrade in a short time this may cause the old connections
to fail as only two versions of the code may be loaded simultaneously.

In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, OldVsn is {down,Vsn}. Vsn is defined
by the vsn attribute(s) of the old version of the callback module Module. If no such attribute is defined, the version
is the checksum of the BEAM file.

State is the internal state of the channel.

Extra is passed as-is from the {advanced,Extra} part of the update instruction.

The function should return the updated internal state.

CallbackModule:init(Args) -> {ok, State} | {ok, State, Timeout} | {stop,
Reason}

Types:

Args = term()

ssh_channel

Ericsson AB. All Rights Reserved.: SSH | 11

Last argument to ssh_channel:start_link/4.

State = term()

Timeout = timeout()

Reason = term()

Makes necessary initializations and returns the initial channel state if the initializations succeed.

For more detailed information on timeouts see the section CALLBACK TIMEOUTS.

CallbackModule:handle_call(Msg, From, State) -> Result

Types:

Msg = term()

From = opaque to the user should be used as argument to
ssh_channel:reply/2

State = term()

Result = {reply, Reply, NewState} | {reply, Reply, NewState, Timeout}
| {noreply, NewState} | {noreply , NewState, Timeout} | {stop, Reason,
Reply, NewState} | {stop, Reason, NewState}

Reply = term() - will be the return value of ssh_channel:call/[2,3]

Timeout = timeout()

NewState = term() - a possible updated version of State

Reason = term()

Handles messages sent by calling ssh_channel:call/[2,3]

For more detailed information on timeouts see the section CALLBACK TIMEOUTS.

CallbackModule:handle_cast(Msg, State) -> Result

Types:

Msg = term()

State = term()

Result = {noreply, NewState} | {noreply, NewState, Timeout} | {stop,
Reason, NewState}

NewState = term() - a possible updated version of State

Timeout = timeout()

Reason = term()

Handles messages sent by calling ssh_channel:cast/2

For more detailed information on timeouts see the section CALLBACK TIMEOUTS.

CallbackModule:handle_msg(Msg, State) -> {ok, State} | {stop, ChannelId,
State}

Types:

Msg = timeout | term()

State = term()

Handle other messages than ssh connection protocol, call or cast messages sent to the channel.

Possible erlang 'EXIT'-messages should be handled by this function and all channels should handle the following
message.

ssh_channel

12 | Ericsson AB. All Rights Reserved.: SSH

{ssh_channel_up, ssh_channel_id(), ssh_connection_ref()}
This is the first messages that will be received by the channel, it is sent just before the ssh_channel:init/1
function returns successfully. This is especially useful if the server wants to send a message to the client
without first receiving a message from the client. If the message is not useful for your particular problem just
ignore it by immediately returning {ok, State}.

CallbackModule:handle_ssh_msg(Msg, State) -> {ok, State} | {stop,
ssh_channel_id(), State}

Types:

Msg = {ssh_cm, ssh_connection_ref(), SshMsg}

SshMsg = tuple() - see message list below

State = term()

Handles ssh connection protocol messages that may need service specific attention.

All channels should handle the following messages. For channels implementing subsystems the handle_ssh_msg-
callback will not be called for any other messages.

{ssh_cm, ssh_connection_ref(), {data, ssh_channel_id(), ssh_data_type_code(),
binary() = Data}}

Data has arrived on the channel. When the callback for this message returns the channel behavior will adjust
the ssh flow control window.

{ssh_cm, ssh_connection_ref(), {eof, ssh_channel_id()}}
Indicteas that the other side will not send any more data.

{ssh_cm, ssh_connection_ref(), {signal, ssh_channel_id(), ssh_signal()}}
A signal can be delivered to the remote process/service using the following message. Some systems may not
implement signals, in which case they should ignore this message.

{ssh_cm, ssh_connection_ref(), {exit_signal, ssh_channel_id(), string() =
exit_signal, string() = ErrorMsg, string() = LanguageString}}

A remote execution may terminate violently due to a signal then this message may be received. For details on
valid string values see RFC 4254 section 6.10

{ssh_cm, ssh_connection_ref(), {exit_status, ssh_channel_id(), integer() =
ExitStatus}}

When the command running at the other end terminates, the following message can be sent to return the exit
status of the command. A zero 'exit_status' usually means that the command terminated successfully.

Channels implementing a shell and command execution on the server side should also handle the following messages.

{ssh_cm, ssh_connection_ref(), {env, ssh_channel_id(), boolean() = WantReply,
string() = Var, string() = Value}}

Environment variables may be passed to the shell/command to be started later. Note that before the callback
returns it should call the function ssh_connection:reply_request/4 with the boolean value of WantReply as
the second argument.

{ssh_cm, ConnectionRef, {exec, ssh_channel_id(), boolean() = WantReply,
string() = Cmd}}

This message will request that the server start the execution of the given command. Note that before the
callback returns it should call the function ssh_connection:reply_request/4 with the boolean value of
WantReply as the second argument.

{ssh_cm, ssh_connection_ref(), {pty, ssh_channel_id(), boolean() = WantReply,
{string() = Terminal, integer() = CharWidth, integer() = RowHeight, integer()
= PixelWidth, integer() = PixelHight, [{atom() | integer() = Opcode,
integer() = Value}] = TerminalModes}}}

A pseudo-terminal has been requested for the session. Terminal is the value of the TERM environment variable
value (e.g., vt100). Zero dimension parameters must be ignored. The character/row dimensions override the

ssh_channel

Ericsson AB. All Rights Reserved.: SSH | 13

pixel dimensions (when nonzero). Pixel dimensions refer to the drawable area of the window. The Opcode
in the TerminalModes list is the mnemonic name, represented as an lowercase erlang atom, defined in
RFC 4254 section 8, or the opcode if the mnemonic name is not listed in the RFC. Example OP code: 53,
mnemonic name ECHO erlang atom: echo. Note that before the callback returns it should call the
function ssh_connection:reply_request/4 with the boolean value of WantReply as the second argument.

{ssh_cm, ConnectionRef, {shell, boolean() = WantReply}}
This message will request that the user's default shell be started at the other end. Note that before the callback
returns it should call the function ssh_connection:reply_request/4 with the value of WantReply as the
second argument.

{ssh_cm, ssh_connection_ref(), {window_change, ssh_channel_id(), integer()
= CharWidth, integer() = RowHeight, integer() = PixWidth, integer() =
PixHeight}}

When the window (terminal) size changes on the client side, it MAY send a message to the other side to inform
it of the new dimensions.

The following message is completely taken care of by the ssh channel behavior

{ssh_cm, ssh_connection_ref(), {closed, ssh_channel_id()}}
The channel behavior will send a close message to the other side if such a message has not already been sent
and then terminate the channel with reason normal.

CallbackModule:terminate(Reason, State) -> _

Types:

Reason = term()

State = term()

This function is called by a channel process when it is about to terminate. Before this function is called
ssh_connection:close/2 will be called if it has not been called earlier. This function should be the opposite of
CallbackModule:init/1 and do any necessary cleaning up. When it returns, the channel process terminates
with reason Reason. The return value is ignored.

ssh_connection

14 | Ericsson AB. All Rights Reserved.: SSH

ssh_connection
Erlang module

This module provides an API to the ssh connection protocol. Not all features of the connection protocol are officially
supported yet. Only the ones supported are documented here.

COMMON DATA TYPES
Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

boolean() = true | false

string() = list of ASCII characters

timeout() = infinity | integer() - in milliseconds.

ssh_connection_ref() - opaque to the user returned by ssh:connect/3 or sent to
a ssh channel processes

ssh_channel_id() = integer()

ssh_data_type_code() = 1 ("stderr") | 0 ("normal") are currently valid values
see RFC 4254 section 5.2.

ssh_request_status() = success | failure

MESSAGES SENT TO CHANNEL PROCESSES
As a result of the ssh connection protocol messages on the form {ssh_cm, ssh_connection_ref(),
term()} will be sent to a channel process. The term will contain information regarding the ssh connection protocol
event, for details see the ssh channel behavior callback handle_ssh_msg/2

Exports

adjust_window(ConnectionRef, ChannelId, NumOfBytes) -> ok

Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

NumOfBytes = integer()

Adjusts the ssh flowcontrol window.

Note:
This will be taken care of by the ssh_channel behavior when the callback handle_ssh_msg/2 has returned after
processing a {ssh_cm, ssh_connection_ref(), {data, ssh_channel_id(), ssh_data_type_code(), binary()}} message,
and should normally not be called explicitly.

close(ConnectionRef, ChannelId) -> ok

Types:

ssh_connection

Ericsson AB. All Rights Reserved.: SSH | 15

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Sends a close message on the channel ChannelId

Note:
This function will be called by the ssh channel behavior when the channel is terminated see ssh_channel(3) and
should normally not be called explicitly.

exec(ConnectionRef, ChannelId, Command, TimeOut) -> ssh_request_status()

Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Command = string()

Timeout = timeout()

Will request that the server start the execution of the given command, the result will be received as:

N X {ssh_cm, ssh_connection_ref(), {data, ssh_channel_id(),
ssh_data_type_code(), binary() = Data}}

The result of executing the command may be only one line or thousands of lines depending on the command.
1 X {ssh_cm, ssh_connection_ref(), {eof, ssh_channel_id()}}

Indicates that no more data will be sent.
0 or 1 X {ssh_cm, ssh_connection_ref(), {exit_signal, ssh_channel_id(),
string() = ExitSignal, string() = ErrorMsg, string() = LanguageString}}

Not all systems send signals. For details on valid string values see RFC 4254 section 6.10
0 or 1 X {ssh_cm, ssh_connection_ref(), {exit_status, ssh_channel_id(),
integer() = ExitStatus}}

It is recommended by the ssh connection protocol that this message shall be sent, but that may not
always be the case.

1 X {ssh_cm, ssh_connection_ref(), {closed, ssh_channel_id()}}
Indicates that the ssh channel started for the execution of the command has now been shutdown.

These message should be handled by the client. The ssh channel behavior can be used when writing a client.

exit_status(ConnectionRef, ChannelId, Status) -> ok

Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Status = integer()

Sends the exit status of a command to the client.

reply_request(ConnectionRef, WantReply, Status, CannelId) -> ok

Types:

ConnectionRef = ssh_connection_ref()

WantReply = boolean()

Status = ssh_request_status()

ssh_connection

16 | Ericsson AB. All Rights Reserved.: SSH

ChannelId = ssh_channel_id()

Sends status replies to requests where the requester has stated that they want a status report e.i . WantReply =
true, if WantReply is false calling this function will be a "noop". Should be called after handling an ssh connection
protocol message containing a WantReply boolean value. See the ssh_channel behavior callback handle_ssh_msg/2

send(ConnectionRef, ChannelId, Data) ->

send(ConnectionRef, ChannelId, Data, Timeout) ->

send(ConnectionRef, ChannelId, Type, Data) ->

send(ConnectionRef, ChannelId, Type, Data, TimeOut) -> ok | {error, timeout}

Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Data = binary()

Type = ssh_data_type_code()

Timeout = timeout()

Sends channel data.

send_eof(ConnectionRef, ChannelId) -> ok

Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Sends eof on the channel ChannelId.

session_channel(ConnectionRef, Timeout) ->

session_channel(ConnectionRef, InitialWindowSize, MaxPacketSize, Timeout) ->
{ok, ssh_channel_id()} | {error, Reason}

Types:

ConnectionRef = ssh_connection_ref()

InitialWindowSize = integer()

MaxPacketSize = integer()

Timeout = timeout()

Reason = term()

Opens a channel for a ssh session. A session is a remote execution of a program. The program may be a shell, an
application, a system command, or some built-in subsystem.

setenv(ConnectionRef, ChannelId, Var, Value, TimeOut) -> ssh_request_status()

Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Var = string()

Value = string()

Timeout = timeout()

Environment variables may be passed to the shell/command to be started later.

ssh_connection

Ericsson AB. All Rights Reserved.: SSH | 17

shell(ConnectionRef, ChannelId) -> ssh_request_status()

Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Will request that the user's default shell (typically defined in /etc/passwd in UNIX systems) be started at the other end.

subsystem(ConnectionRef, ChannelId, Subsystem, Timeout) ->
ssh_request_status()

Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Subsystem = string()

Timeout = timeout()

Sends a request to execute a predefined subsystem.

ssh_sftp

18 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp
Erlang module

This module implements an SFTP (SSH FTP) client. SFTP is a secure, encrypted file transfer service available for SSH.

COMMON DATA TYPES
Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

ssh_connection_ref() - opaque to the user returned by ssh:connect/3

timeout() = infinity | integer() - in milliseconds.

TIMEOUTS
If the request functions for the sftp channel return {error, timeout} it does not mean that the request did not reach
the server and was not performed, it only means that we did not receive an answer from the server within the time
that was expected.

Exports

start_channel(ConnectionRef) ->

start_channel(ConnectionRef, Options) ->

start_channel(Host, Options) ->

start_channel(Host, Port, Options) -> {ok, Pid} | {ok, Pid, ConnectionRef} |
{error, Reason}

Types:

Host = string()

ConnectionRef = ssh_connection_ref()

Port = integer()

Options = [{Option, Value}]

Reason = term()

If not provided, setups a ssh connection in this case a connection reference will be returned too. A ssh channel process
is started to handle the communication with the SFTP server, the returned pid for this process should be used as input
to all other API functions in this module.

Options are:

{timeout, timeout()}

The timeout is passed to the ssh_channel start function, and defaults to infinity.

All other options are directly passed to ssh:connect/3 or ignored if a connection is already provided.

stop_channel(ChannelPid) -> ok

Types:

ChannelPid = pid()

Stops a sftp channel. If the ssh connection should be closed call ssh:close/1.

ssh_sftp

Ericsson AB. All Rights Reserved.: SSH | 19

read_file(ChannelPid, File) ->

read_file(ChannelPid, File, Timeout) -> {ok, Data} | {error, Reason}

Types:

ChannelPid = pid()

File = string()

Data = binary()

Timeout = timeout()

Reason = term()

Reads a file from the server, and returns the data in a binary, like file:read_file/1.

write_file(ChannelPid, File, Iolist) ->

write_file(ChannelPid, File, Iolist, Timeout) -> ok | {error, Reason}

Types:

ChannelPid = pid()

File = string()

Iolist = iolist()

Timeout = timeout()

Reason = term()

Writes a file to the server, like file:write_file/2. The file is created if it's not there.

list_dir(ChannelPid, Path) ->

list_dir(ChannelPid, Path, Timeout) -> {ok, Filenames} | {error, Reason}

Types:

ChannelPid = pid()

Path = string()

Filenames = [Filename]

Filename = string()

Timeout = timeout()

Reason = term()

Lists the given directory on the server, returning the filenames as a list of strings.

open(ChannelPid, File, Mode) ->

open(ChannelPid, File, Mode, Timeout) -> {ok, Handle} | {error, Reason}

Types:

ChannelPid = pid()

File = string()

Mode = [Modeflag]

Modeflag = read | write | creat | trunc | append | binary

Timeout = timeout()

Handle = term()

Reason = term()

Opens a file on the server, and returns a handle that is used for reading or writing.

ssh_sftp

20 | Ericsson AB. All Rights Reserved.: SSH

opendir(ChannelPid, Path) ->

opendir(ChannelPid, Path, Timeout) -> {ok, Handle} | {error, Reason}

Types:

ChannelPid = pid()

Path = string()

Timeout = timeout()

Reason = term()

Opens a handle to a directory on the server, the handle is used for reading directory contents.

close(ChannelPid, Handle) ->

close(ChannelPid, Handle, Timeout) -> ok | {error, Reason}

Types:

ChannelPid = pid()

Handle = term()

Timeout = timeout()

Reason = term()

Closes a handle to an open file or directory on the server.

read(ChannelPid, Handle, Len) ->

read(ChannelPid, Handle, Len, Timeout) -> {ok, Data} | eof | {error, Error}

pread(ChannelPid, Handle, Position, Len) ->

pread(ChannelPid, Handle, Position, Len, Timeout) -> {ok, Data} | eof |
{error, Error}

Types:

ChannelPid = pid()

Handle = term()

Position = integer()

Len = integer()

Timeout = timeout()

Data = string() | binary()

Reason = term()

Reads Len bytes from the file referenced by Handle. Returns {ok, Data}, or eof, or {error, Reason}. If
the file is opened with binary, Data is a binary, otherwise it is a string.

If the file is read past eof, only the remaining bytes will be read and returned. If no bytes are read, eof is returned.

The pread function reads from a specified position, combining the position and read functions.

aread(ChannelPid, Handle, Len) -> {async, N} | {error, Error}

apread(ChannelPid, Handle, Position, Len) -> {async, N} | {error, Error}

Types:

ChannelPid = pid()

Handle = term()

Position = integer()

Len = integer()

ssh_sftp

Ericsson AB. All Rights Reserved.: SSH | 21

N = term()

Reason = term()

Reads from an open file, without waiting for the result. If the handle is valid, the function returns {async, N},
where N is a term guaranteed to be unique between calls of aread. The actual data is sent as a message to the calling
process. This message has the form {async_reply, N, Result}, where Result is the result from the read,
either {ok, Data}, or eof, or {error, Error}.

The apread function reads from a specified position, combining the position and aread functions.

write(ChannelPid, Handle, Data) ->

write(ChannelPid, Handle, Data, Timeout) -> ok | {error, Error}

pwrite(ChannelPid, Handle, Position, Data) -> ok

pwrite(ChannelPid, Handle, Position, Data, Timeout) -> ok | {error, Error}

Types:

ChannelPid = pid()

Handle = term()

Position = integer()

Data = iolist()

Timeout = timeout()

Reason = term()

Write data to the file referenced by Handle. The file should be opened with write or append flag. Returns ok
if successful and {error, Reason} otherwise.

Typical error reasons are:

ebadf

The file is not opened for writing.

enospc

There is a no space left on the device.

awrite(ChannelPid, Handle, Data) -> ok | {error, Reason}

apwrite(ChannelPid, Handle, Position, Data) -> ok | {error, Reason}

Types:

ChannelPid = pid()

Handle = term()

Position = integer()

Len = integer()

Data = binary()

Timeout = timeout()

Reason = term()

Writes to an open file, without waiting for the result. If the handle is valid, the function returns {async, N}, where
N is a term guaranteed to be unique between calls of awrite. The result of the write operation is sent as a message
to the calling process. This message has the form {async_reply, N, Result}, where Result is the result
from the write, either ok, or {error, Error}.

The apwrite writes on a specified position, combining the position and awrite operations.

ssh_sftp

22 | Ericsson AB. All Rights Reserved.: SSH

position(ChannelPid, Handle, Location) ->

position(ChannelPid, Handle, Location, Timeout) -> {ok, NewPosition | {error,
Error}

Types:

ChannelPid = pid()

Handle = term()

Location = Offset | {bof, Offset} | {cur, Offset} | {eof, Offset} | bof |
cur | eof

Offset = int()

Timeout = timeout()

NewPosition = integer()

Reason = term()

Sets the file position of the file referenced by Handle. Returns {ok, NewPosition (as an absolute offset) if
successful, otherwise {error, Reason}. Location is one of the following:

Offset

The same as {bof, Offset}.

{bof, Offset}

Absolute offset.

{cur, Offset}

Offset from the current position.

{eof, Offset}

Offset from the end of file.

bof | cur | eof

The same as above with Offset 0.

read_file_info(ChannelPid, Name) ->

read_file_info(ChannelPid, Name, Timeout) -> {ok, FileInfo} | {error, Reason}

Types:

ChannelPid = pid()

Name = string()

Handle = term()

Timeout = timeout()

FileInfo = record()

Reason = term()

Returns a file_info record from the file specified by Name or Handle, like file:read_file_info/2.

read_link_info(ChannelPid, Name) -> {ok, FileInfo} | {error, Reason}

read_link_info(ChannelPid, Name, Timeout) -> {ok, FileInfo} | {error, Reason}

Types:

ChannelPid = pid()

Name = string()

Handle = term()

ssh_sftp

Ericsson AB. All Rights Reserved.: SSH | 23

Timeout = timeout()

FileInfo = record()

Reason = term()

Returns a file_info record from the symbolic link specified by Name or Handle, like
file:read_link_info/2.

write_file_info(ChannelPid, Name, Info) ->

write_file_info(ChannelPid, Name, Info, Timeout) -> ok | {error, Reason}

Types:

ChannelPid = pid()

Name = string()

Info = record()

Timeout = timeout()

Reason = term()

Writes file information from a file_info record to the file specified by Name, like file:write_file_info.

read_link(ChannelPid, Name) ->

read_link(ChannelPid, Name, Timeout) -> {ok, Target} | {error, Reason}

Types:

ChannelPid = pid()

Name = string()

Target = string()

Reason = term()

Read the link target from the symbolic link specified by name, like file:read_link/1.

make_symlink(ChannelPid, Name, Target) ->

make_symlink(ChannelPid, Name, Target, Timeout) -> ok | {error, Reason}

Types:

ChannelPid = pid()

Name = string()

Target = string()

Reason = term()

Creates a symbolic link pointing to Target with the name Name, like file:make_symlink/2.

rename(ChannelPid, OldName, NewName) ->

rename(ChannelPid, OldName, NewName, Timeout) -> ok | {error, Reason}

Types:

ChannelPid = pid()

OldName = string()

NewName = string()

Timeout = timeout()

Reason = term()

Renames a file named OldName, and gives it the name NewName, like file:rename/2

ssh_sftp

24 | Ericsson AB. All Rights Reserved.: SSH

delete(ChannelPid, Name) ->

delete(ChannelPid, Name, Timeout) -> ok | {error, Reason}

Types:

ChannelPid = pid()

Name = string()

Timeout = timeout()

Reason = term()

Deletes the file specified by Name, like file:delete/1

make_dir(ChannelPid, Name) ->

make_dir(ChannelPid, Name, Timeout) -> ok | {error, Reason}

Types:

ChannelPid = pid()

Name = string()

Timeout = timeout()

Reason = term()

Creates a directory specified by Name. Name should be a full path to a new directory. The directory can only be
created in an existing directory.

del_dir(ChannelPid, Name) ->

del_dir(ChannelPid, Name, Timeout) -> ok | {error, Reason}

Types:

ChannelPid = pid()

Name = string()

Timeout = timeout()

Reason = term()

Deletes a directory specified by Name. The directory should be empty.

ssh_sftpd

Ericsson AB. All Rights Reserved.: SSH | 25

ssh_sftpd
Erlang module

Specifies a channel process to handle a sftp subsystem.

COMMON DATA TYPES
subsystem_spec() = {subsystem_name(), {channel_callback(),
channel_init_args()}}

subsystem_name() = "sftp"

channel_callback() = atom() - Name of the erlang module implementing the subsystem using the
ssh_channel behavior see ssh_channel(3)

channel_init_args() = list() - The one given as argument to function
subsystem_spec/1.

Exports

subsystem_spec(Options) -> subsystem_spec()

Types:

Options = [{Option, Value}]

Should be used together with ssh:daemon/[1,2,3]

Options are:

{cwd, String}

Sets the initial current working directory for the server.

{file_handler, CallbackModule}

Determines which module to call for communicating with the file server. Default value is ssh_sftpd_file
that uses the file and filelib API:s to access the standard OTP file server. This option may be used to plug in the
use of other file servers.

{max_files, Integer}

The default value is 0, which means that there is no upper limit. If supplied, the number of filenames returned to
the sftp client per READDIR request, is limited to at most the given value.

{root, String}

Sets the sftp root directory. The user will then not be able to see any files above this root. If for instance the root is
set to /tmp the user will see this directory as / and if the user does cd /etc the user will end up in /tmp/etc.

	SSH
	Reference Manual
	ssh
	close/1
	connect/3
	connect/4
	connection_info/2
	daemon/1
	daemon/2
	daemon/3
	shell/1
	shell/2
	shell/3
	start/0
	start/1
	stop/0
	stop_daemon/1
	stop_daemon/2
	stop_listener/1
	stop_listener/2

	ssh_channel
	call/2
	call/3
	cast/2
	enter_loop/1
	init/1
	reply/2
	start/4
	start_link/4
	CallbackModule:code_change/3
	CallbackModule:init/1
	CallbackModule:handle_call/3
	CallbackModule:handle_cast/2
	CallbackModule:handle_msg/2
	CallbackModule:handle_ssh_msg/2
	CallbackModule:terminate/2

	ssh_connection
	adjust_window/3
	close/2
	exec/4
	exit_status/3
	reply_request/4
	send/3
	send/4
	send/4
	send/5
	send_eof/2
	session_channel/2
	session_channel/4
	setenv/5
	shell/2
	subsystem/4

	ssh_sftp
	start_channel/1
	start_channel/2
	start_channel/2
	start_channel/3
	stop_channel/1
	read_file/2
	read_file/3
	write_file/3
	write_file/4
	list_dir/2
	list_dir/3
	open/3
	open/4
	opendir/2
	opendir/3
	close/2
	close/3
	read/3
	read/4
	pread/4
	pread/5
	aread/3
	apread/4
	write/3
	write/4
	pwrite/4
	pwrite/5
	awrite/3
	apwrite/4
	position/3
	position/4
	read_file_info/2
	read_file_info/3
	read_link_info/2
	read_link_info/3
	write_file_info/3
	write_file_info/4
	read_link/2
	read_link/3
	make_symlink/3
	make_symlink/4
	rename/3
	rename/4
	delete/2
	delete/3
	make_dir/2
	make_dir/3
	del_dir/2
	del_dir/3

	ssh_sftpd
	subsystem_spec/1

