
crypto
Copyright © 1999-2013 Ericsson AB. All Rights Reserved.

crypto 2.3
January 29 2013

Copyright © 1999-2013 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

January 29 2013

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

2 | Ericsson AB. All Rights Reserved.: crypto

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

1.1 Licenses
This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.1.1 OpenSSL License

/* ==
 * Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY

1.1 Licenses

Ericsson AB. All Rights Reserved.: crypto | 3

 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

1.1.2 SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the rouines from the library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

1.1 Licenses

4 | Ericsson AB. All Rights Reserved.: crypto

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

1.1 Licenses

Ericsson AB. All Rights Reserved.: crypto | 5

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

crypto

6 | Ericsson AB. All Rights Reserved.: crypto

crypto
Application

The purpose of the Crypto application is to provide message digest and DES encryption for SMNPv3. It provides
computation of message digests MD5 and SHA, and CBC-DES encryption and decryption.

Configuration
The following environment configuration parameters are defined for the Crypto application. Refer to application(3)
for more information about configuration parameters.

debug = true | false <optional>

Causes debug information to be written to standard error or standard output. Default is false.

OpenSSL libraries
The current implementation of the Erlang Crypto application is based on the OpenSSL package version 0.9.8 or higher.
There are source and binary releases on the web.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

The same URL also contains links to some compiled binaries and libraries of OpenSSL (see the Related/
Binaries menu) of which the Shining Light Productions Win32 and OpenSSL pages are of interest for the Win32
user.

For some Unix flavours there are binary packages available on the net.

If you cannot find a suitable binary OpenSSL package, you have to fetch an OpenSSL source release and compile it.

You then have to compile and install the library libcrypto.so (Unix), or the library libeay32.dll (Win32).

For Unix The crypto_drv dynamic driver is delivered linked to OpenSSL libraries in /usr/local/lib, but the
default dynamic linking will also accept libraries in /lib and /usr/lib.

If that is not applicable to the particular Unix operating system used, the example Makefile in the Crypto priv/
obj directory, should be used as a basis for relinking the final version of the port program.

For Win32 it is only required that the library can be found from the PATH environment variable, or that they reside
in the appropriate SYSTEM32 directory; hence no particular relinking is need. Hence no example Makefile for
Win32 is provided.

SEE ALSO
application(3)

href
href

crypto

Ericsson AB. All Rights Reserved.: crypto | 7

crypto
Erlang module

This module provides a set of cryptographic functions.

References:

• md4: The MD4 Message Digest Algorithm (RFC 1320)

• md5: The MD5 Message Digest Algorithm (RFC 1321)

• sha: Secure Hash Standard (FIPS 180-2)

• hmac: Keyed-Hashing for Message Authentication (RFC 2104)

• des: Data Encryption Standard (FIPS 46-3)

• aes: Advanced Encryption Standard (AES) (FIPS 197)

• ecb, cbc, cfb, ofb, ctr: Recommendation for Block Cipher Modes of Operation (NIST SP 800-38A).

• rsa: Recommendation for Block Cipher Modes of Operation (NIST 800-38A)

• dss: Digital Signature Standard (FIPS 186-2)

The above publications can be found at NIST publications, at IETF.

Types

byte() = 0 ... 255
ioelem() = byte() | binary() | iolist()
iolist() = [ioelem()]
Mpint() = <<ByteLen:32/integer-big, Bytes:ByteLen/binary>>

Exports

start() -> ok
Starts the crypto server.

stop() -> ok
Stops the crypto server.

info() -> [atom()]
Provides the available crypto functions in terms of a list of atoms.

info_lib() -> [{Name,VerNum,VerStr}]
Types:

Name = binary()

VerNum = integer()

VerStr = binary()

Provides the name and version of the libraries used by crypto.

href
href

crypto

8 | Ericsson AB. All Rights Reserved.: crypto

Name is the name of the library. VerNum is the numeric version according to the library's own versioning scheme.
VerStr contains a text variant of the version.

> info_lib().
[{<<"OpenSSL">>,9469983,<<"OpenSSL 0.9.8a 11 Oct 2005">>}]

Note:
From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
opensslv.h) used when crypto was compiled. The text variant represents the OpenSSL library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

md4(Data) -> Digest
Types:

Data = iolist() | binary()

Digest = binary()

Computes an MD4 message digest from Data, where the length of the digest is 128 bits (16 bytes).

md4_init() -> Context
Types:

Context = binary()

Creates an MD4 context, to be used in subsequent calls to md4_update/2.

md4_update(Context, Data) -> NewContext
Types:

Data = iolist() | binary()

Context = NewContext = binary()

Updates an MD4 Context with Data, and returns a NewContext.

md4_final(Context) -> Digest
Types:

Context = Digest = binary()

Finishes the update of an MD4 Context and returns the computed MD4 message digest.

md5(Data) -> Digest
Types:

Data = iolist() | binary()

Digest = binary()

Computes an MD5 message digest from Data, where the length of the digest is 128 bits (16 bytes).

crypto

Ericsson AB. All Rights Reserved.: crypto | 9

md5_init() -> Context
Types:

Context = binary()

Creates an MD5 context, to be used in subsequent calls to md5_update/2.

md5_update(Context, Data) -> NewContext
Types:

Data = iolist() | binary()

Context = NewContext = binary()

Updates an MD5 Context with Data, and returns a NewContext.

md5_final(Context) -> Digest
Types:

Context = Digest = binary()

Finishes the update of an MD5 Context and returns the computed MD5 message digest.

sha(Data) -> Digest
Types:

Data = iolist() | binary()

Digest = binary()

Computes an SHA message digest from Data, where the length of the digest is 160 bits (20 bytes).

sha_init() -> Context
Types:

Context = binary()

Creates an SHA context, to be used in subsequent calls to sha_update/2.

sha_update(Context, Data) -> NewContext
Types:

Data = iolist() | binary()

Context = NewContext = binary()

Updates an SHA Context with Data, and returns a NewContext.

sha_final(Context) -> Digest
Types:

Context = Digest = binary()

Finishes the update of an SHA Context and returns the computed SHA message digest.

hash(Type, Data) -> Digest
Types:

Type = md4 | md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512

Data = iodata()

Digest = binary()

crypto

10 | Ericsson AB. All Rights Reserved.: crypto

Computes a message digest of type Type from Data.

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

hash_init(Type) -> Context
Types:

Type = md4 | md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512

Initializes the context for streaming hash operations. Type determines which digest to use. The returned context should
be used as argument to hash_update.

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

hash_update(Context, Data) -> NewContext
Types:

Data = iodata()

Updates the digest represented by Context using the given Data. Context must have been generated using
hash_init or a previous call to this function. Data can be any length. NewContext must be passed into the next
call to hash_update or hash_final.

hash_final(Context) -> Digest
Types:

Digest = binary()

Finalizes the hash operation referenced by Context returned from a previous call to hash_update. The size of
Digest is determined by the type of hash function used to generate it.

md5_mac(Key, Data) -> Mac
Types:

Key = Data = iolist() | binary()

Mac = binary()

Computes an MD5 MAC message authentification code from Key and Data, where the the length of the Mac is 128
bits (16 bytes).

md5_mac_96(Key, Data) -> Mac
Types:

Key = Data = iolist() | binary()

Mac = binary()

Computes an MD5 MAC message authentification code from Key and Data, where the length of the Mac is 96 bits
(12 bytes).

hmac(Type, Key, Data) -> Mac
hmac(Type, Key, Data, MacLength) -> Mac
Types:

Type = md5 | sha | sha224 | sha256 | sha384 | sha512

Key = iodata()

Data = iodata()

MacLength = integer()

crypto

Ericsson AB. All Rights Reserved.: crypto | 11

Mac = binary()

Computes a HMAC of type Type from Data using Key as the authentication key.

MacLength will limit the size of the resultant Mac.

hmac_init(Type, Key) -> Context
Types:

Type = md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512

Key = iolist() | binary()

Context = binary()

Initializes the context for streaming HMAC operations. Type determines which hash function to use in the HMAC
operation. Key is the authentication key. The key can be any length.

hmac_update(Context, Data) -> NewContext
Types:

Context = NewContext = binary()

Data = iolist() | binary()

Updates the HMAC represented by Context using the given Data. Context must have been generated using an
HMAC init function (such as hmac_init). Data can be any length. NewContext must be passed into the next call
to hmac_update.

hmac_final(Context) -> Mac
Types:

Context = Mac = binary()

Finalizes the HMAC operation referenced by Context. The size of the resultant MAC is determined by the type of
hash function used to generate it.

hmac_final_n(Context, HashLen) -> Mac
Types:

Context = Mac = binary()

HashLen = non_neg_integer()

Finalizes the HMAC operation referenced by Context. HashLen must be greater than zero. Mac will be a binary
with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the
underlying hash, the returned hash will have fewer than HashLen bytes.

sha_mac(Key, Data) -> Mac
sha_mac(Key, Data, MacLength) -> Mac
Types:

Key = Data = iolist() | binary()

Mac = binary()

MacLenength = integer() =< 20

Computes an SHA MAC message authentification code from Key and Data, where the default length of the Mac is
160 bits (20 bytes).

crypto

12 | Ericsson AB. All Rights Reserved.: crypto

sha_mac_96(Key, Data) -> Mac
Types:

Key = Data = iolist() | binary()

Mac = binary()

Computes an SHA MAC message authentification code from Key and Data, where the length of the Mac is 96 bits
(12 bytes).

des_cbc_encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text according to DES in CBC mode. Text must be a multiple of 64 bits (8 bytes). Key is the DES key,
and IVec is an arbitrary initializing vector. The lengths of Key and IVec must be 64 bits (8 bytes).

des_cbc_decrypt(Key, IVec, Cipher) -> Text
Types:

Key = Cipher = iolist() | binary()

IVec = Text = binary()

Decrypts Cipher according to DES in CBC mode. Key is the DES key, and IVec is an arbitrary initializing vector.
Key and IVec must have the same values as those used when encrypting. Cipher must be a multiple of 64 bits (8
bytes). The lengths of Key and IVec must be 64 bits (8 bytes).

des_cbc_ivec(Data) -> IVec
Types:

Data = iolist() | binary()

IVec = binary()

Returns the IVec to be used in a next iteration of des_cbc_[encrypt|decrypt]. Data is the encrypted data
from the previous iteration step.

des_cfb_encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text according to DES in 8-bit CFB mode. Key is the DES key, and IVec is an arbitrary initializing vector.
The lengths of Key and IVec must be 64 bits (8 bytes).

des_cfb_decrypt(Key, IVec, Cipher) -> Text
Types:

Key = Cipher = iolist() | binary()

IVec = Text = binary()

Decrypts Cipher according to DES in 8-bit CFB mode. Key is the DES key, and IVec is an arbitrary initializing
vector. Key and IVec must have the same values as those used when encrypting. The lengths of Key and IVec
must be 64 bits (8 bytes).

crypto

Ericsson AB. All Rights Reserved.: crypto | 13

des_cfb_ivec(IVec, Data) -> NextIVec
Types:

IVec = iolist() | binary()

Data = iolist() | binary()

NextIVec = binary()

Returns the IVec to be used in a next iteration of des_cfb_[encrypt|decrypt]. IVec is the vector used in
the previous iteration step. Data is the encrypted data from the previous iteration step.

des3_cbc_encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher
Types:

Key1 =Key2 = Key3 Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text according to DES3 in CBC mode. Text must be a multiple of 64 bits (8 bytes). Key1, Key2, Key3,
are the DES keys, and IVec is an arbitrary initializing vector. The lengths of each of Key1, Key2, Key3 and IVec
must be 64 bits (8 bytes).

des3_cbc_decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text
Types:

Key1 = Key2 = Key3 = Cipher = iolist() | binary()

IVec = Text = binary()

Decrypts Cipher according to DES3 in CBC mode. Key1, Key2, Key3 are the DES key, and IVec is an arbitrary
initializing vector. Key1, Key2, Key3 and IVec must and IVec must have the same values as those used when
encrypting. Cipher must be a multiple of 64 bits (8 bytes). The lengths of Key1, Key2, Key3, and IVec must
be 64 bits (8 bytes).

des3_cfb_encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher
Types:

Key1 =Key2 = Key3 Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text according to DES3 in 8-bit CFB mode. Key1, Key2, Key3, are the DES keys, and IVec is an
arbitrary initializing vector. The lengths of each of Key1, Key2, Key3 and IVec must be 64 bits (8 bytes).

May throw exception notsup for old OpenSSL versions (0.9.7) that does not support this encryption mode.

des3_cfb_decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text
Types:

Key1 = Key2 = Key3 = Cipher = iolist() | binary()

IVec = Text = binary()

Decrypts Cipher according to DES3 in 8-bit CFB mode. Key1, Key2, Key3 are the DES key, and IVec is an
arbitrary initializing vector. Key1, Key2, Key3 and IVec must and IVec must have the same values as those used
when encrypting. The lengths of Key1, Key2, Key3, and IVec must be 64 bits (8 bytes).

May throw exception notsup for old OpenSSL versions (0.9.7) that does not support this encryption mode.

des_ecb_encrypt(Key, Text) -> Cipher
Types:

crypto

14 | Ericsson AB. All Rights Reserved.: crypto

Key = Text = iolist() | binary()

Cipher = binary()

Encrypts Text according to DES in ECB mode. Key is the DES key. The lengths of Key and Text must be 64
bits (8 bytes).

des_ecb_decrypt(Key, Cipher) -> Text
Types:

Key = Cipher = iolist() | binary()

Text = binary()

Decrypts Cipher according to DES in ECB mode. Key is the DES key. The lengths of Key and Cipher must be
64 bits (8 bytes).

blowfish_ecb_encrypt(Key, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

Cipher = binary()

Encrypts the first 64 bits of Text using Blowfish in ECB mode. Key is the Blowfish key. The length of Text must
be at least 64 bits (8 bytes).

blowfish_ecb_decrypt(Key, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

Cipher = binary()

Decrypts the first 64 bits of Text using Blowfish in ECB mode. Key is the Blowfish key. The length of Text must
be at least 64 bits (8 bytes).

blowfish_cbc_encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text using Blowfish in CBC mode. Key is the Blowfish key, and IVec is an arbitrary initializing vector.
The length of IVec must be 64 bits (8 bytes). The length of Text must be a multiple of 64 bits (8 bytes).

blowfish_cbc_decrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Decrypts Text using Blowfish in CBC mode. Key is the Blowfish key, and IVec is an arbitrary initializing vector.
The length of IVec must be 64 bits (8 bytes). The length of Text must be a multiple 64 bits (8 bytes).

blowfish_cfb64_encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

crypto

Ericsson AB. All Rights Reserved.: crypto | 15

Encrypts Text using Blowfish in CFB mode with 64 bit feedback. Key is the Blowfish key, and IVec is an arbitrary
initializing vector. The length of IVec must be 64 bits (8 bytes).

blowfish_cfb64_decrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Decrypts Text using Blowfish in CFB mode with 64 bit feedback. Key is the Blowfish key, and IVec is an arbitrary
initializing vector. The length of IVec must be 64 bits (8 bytes).

blowfish_ofb64_encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text using Blowfish in OFB mode with 64 bit feedback. Key is the Blowfish key, and IVec is an arbitrary
initializing vector. The length of IVec must be 64 bits (8 bytes).

aes_cfb_128_encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text according to AES in Cipher Feedback mode (CFB). Key is the AES key, and IVec is an arbitrary
initializing vector. The lengths of Key and IVec must be 128 bits (16 bytes).

aes_cfb_128_decrypt(Key, IVec, Cipher) -> Text
Types:

Key = Cipher = iolist() | binary()

IVec = Text = binary()

Decrypts Cipher according to AES in Cipher Feedback Mode (CFB). Key is the AES key, and IVec is an arbitrary
initializing vector. Key and IVec must have the same values as those used when encrypting. The lengths of Key and
IVec must be 128 bits (16 bytes).

aes_cbc_128_encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text according to AES in Cipher Block Chaining mode (CBC). Text must be a multiple of 128 bits (16
bytes). Key is the AES key, and IVec is an arbitrary initializing vector. The lengths of Key and IVec must be 128
bits (16 bytes).

aes_cbc_128_decrypt(Key, IVec, Cipher) -> Text
Types:

Key = Cipher = iolist() | binary()

IVec = Text = binary()

crypto

16 | Ericsson AB. All Rights Reserved.: crypto

Decrypts Cipher according to AES in Cipher Block Chaining mode (CBC). Key is the AES key, and IVec is an
arbitrary initializing vector. Key and IVec must have the same values as those used when encrypting. Cipher must
be a multiple of 128 bits (16 bytes). The lengths of Key and IVec must be 128 bits (16 bytes).

aes_cbc_ivec(Data) -> IVec
Types:

Data = iolist() | binary()

IVec = binary()

Returns the IVec to be used in a next iteration of aes_cbc_*_[encrypt|decrypt]. Data is the encrypted
data from the previous iteration step.

aes_ctr_encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

IVec = Cipher = binary()

Encrypts Text according to AES in Counter mode (CTR). Text can be any number of bytes. Key is the AES key
and must be either 128, 192 or 256 bits long. IVec is an arbitrary initializing vector of 128 bits (16 bytes).

aes_ctr_decrypt(Key, IVec, Cipher) -> Text
Types:

Key = Cipher = iolist() | binary()

IVec = Text = binary()

Decrypts Cipher according to AES in Counter mode (CTR). Cipher can be any number of bytes. Key is the AES
key and must be either 128, 192 or 256 bits long. IVec is an arbitrary initializing vector of 128 bits (16 bytes).

aes_ctr_stream_init(Key, IVec) -> State
Types:

State = { K, I, E, C }

Key = K = iolist()

IVec = I = E = binary()

C = integer()

Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key is the AES key and must
be either 128, 192, or 256 bts long. IVec is an arbitrary initializing vector of 128 bits (16 bytes). This state is for use
with aes_ctr_stream_encrypt and aes_ctr_stream_decrypt.

aes_ctr_stream_encrypt(State, Text) -> { NewState, Cipher}
Types:

Text = iolist() | binary()

Cipher = binary()

Encrypts Text according to AES in Counter mode (CTR). This function can be used to encrypt a stream of text using
a series of calls instead of requiring all text to be in memory. Text can be any number of bytes. State is initialized
using aes_ctr_stream_init. NewState is the new streaming encryption state that must be passed to the next call to
aes_ctr_stream_encrypt. Cipher is the encrypted cipher text.

crypto

Ericsson AB. All Rights Reserved.: crypto | 17

aes_ctr_stream_decrypt(State, Cipher) -> { NewState, Text }
Types:

Cipher = iolist() | binary()

Text = binary()

Decrypts Cipher according to AES in Counter mode (CTR). This function can be used to decrypt a stream of
ciphertext using a series of calls instead of requiring all ciphertext to be in memory. Cipher can be any number of
bytes. State is initialized using aes_ctr_stream_init. NewState is the new streaming encryption state that must be
passed to the next call to aes_ctr_stream_encrypt. Text is the decrypted data.

erlint(Mpint) -> N
mpint(N) -> Mpint
Types:

Mpint = binary()

N = integer()

Convert a binary multi-precision integer Mpint to and from an erlang big integer. A multi-precision integer is a binary
with the following form: <<ByteLen:32/integer, Bytes:ByteLen/binary>> where both ByteLen and
Bytes are big-endian. Mpints are used in some of the functions in crypto and are not translated in the API for
performance reasons.

rand_bytes(N) -> binary()
Types:

N = integer()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses the crypto library pseudo-
random number generator.

strong_rand_bytes(N) -> binary()
Types:

N = integer()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng
seeded and periodically mixed with operating system provided entropy. By default this is the RAND_bytes method
from OpenSSL.

May throw exception low_entropy in case the random generator failed due to lack of secure "randomness".

rand_uniform(Lo, Hi) -> N
Types:

Lo, Hi, N = Mpint | integer()

Mpint = binary()

Generate a random number N, Lo =< N < Hi. Uses the crypto library pseudo-random number generator. The
arguments (and result) can be either erlang integers or binary multi-precision integers. Hi must be larger than Lo.

strong_rand_mpint(N, Top, Bottom) -> Mpint
Types:

N = non_neg_integer()

Top = -1 | 0 | 1

crypto

18 | Ericsson AB. All Rights Reserved.: crypto

Bottom = 0 | 1

Mpint = binary()

Generate an N bit random number using OpenSSL's cryptographically strong pseudo random number generator
BN_rand.

The parameter Top places constraints on the most significant bits of the generated number. If Top is 1, then the two
most significant bits will be set to 1, if Top is 0, the most significant bit will be 1, and if Top is -1 then no constraints
are applied and thus the generated number may be less than N bits long.

If Bottom is 1, then the generated number is constrained to be odd.

May throw exception low_entropy in case the random generator failed due to lack of secure "randomness".

mod_exp(N, P, M) -> Result
Types:

N, P, M, Result = Mpint

Mpint = binary()

This function performs the exponentiation N ^ P mod M, using the crypto library.

rsa_sign(DataOrDigest, Key) -> Signature
rsa_sign(DigestType, DataOrDigest, Key) -> Signature
Types:

DataOrDigest = Data | {digest,Digest}

Data = Mpint

Digest = binary()

Key = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]

E, N, D = Mpint

Where E is the public exponent, N is public modulus and D is the private exponent.

P1, P2, E1, E2, C = Mpint

The longer key format contains redundant information that will make the calculation faster. P1,P2 are first and
second prime factors. E1,E2 are first and second exponents. C is the CRT coefficient. Terminology is taken
from RFC 3447.

DigestType = md5 | sha | sha224 | sha256 | sha384 | sha512

The default DigestType is sha.

Mpint = binary()

Signature = binary()

Creates a RSA signature with the private key Key of a digest. The digest is either calculated as a DigestType digest
of Data or a precalculated binary Digest.

rsa_verify(DataOrDigest, Signature, Key) -> Verified
rsa_verify(DigestType, DataOrDigest, Signature, Key) -> Verified
Types:

Verified = boolean()

DataOrDigest = Data | {digest|Digest}

Data, Signature = Mpint

Digest = binary()

crypto

Ericsson AB. All Rights Reserved.: crypto | 19

Key = [E, N]

E, N = Mpint

Where E is the public exponent and N is public modulus.

DigestType = md5 | sha | sha224 | sha256 | sha384 | sha512

The default DigestType is sha.

Mpint = binary()

Verifies that a digest matches the RSA signature using the signer's public key Key. The digest is either calculated as
a DigestType digest of Data or a precalculated binary Digest.

May throw exception notsup in case the chosen DigestType is not supported by the underlying OpenSSL
implementation.

rsa_public_encrypt(PlainText, PublicKey, Padding) -> ChipherText
Types:

PlainText = binary()

PublicKey = [E, N]

E, N = Mpint

Where E is the public exponent and N is public modulus.

Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding

ChipherText = binary()

Encrypts the PlainText (usually a session key) using the PublicKey and returns the cipher. The Padding
decides what padding mode is used, rsa_pkcs1_padding is PKCS #1 v1.5 currently the most used mode and
rsa_pkcs1_oaep_padding is EME-OAEP as defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty
encoding parameter. This mode is recommended for all new applications. The size of the Msg must be less than
byte_size(N)-11 if rsa_pkcs1_padding is used, byte_size(N)-41 if rsa_pkcs1_oaep_padding
is used and byte_size(N) if rsa_no_padding is used. Where byte_size(N) is the size part of an Mpint-1.

rsa_private_decrypt(ChipherText, PrivateKey, Padding) -> PlainText
Types:

ChipherText = binary()

PrivateKey = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]

E, N, D = Mpint

Where E is the public exponent, N is public modulus and D is the private exponent.

P1, P2, E1, E2, C = Mpint

The longer key format contains redundant information that will make the calculation faster. P1,P2 are first and
second prime factors. E1,E2 are first and second exponents. C is the CRT coefficient. Terminology is taken
from RFC 3447.

Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding

PlainText = binary()

Decrypts the ChipherText (usually a session key encrypted with rsa_public_encrypt/3) using the PrivateKey
and returns the message. The Padding is the padding mode that was used to encrypt the data, see
rsa_public_encrypt/3.

rsa_private_encrypt(PlainText, PrivateKey, Padding) -> ChipherText
Types:

PlainText = binary()

crypto

20 | Ericsson AB. All Rights Reserved.: crypto

PrivateKey = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]

E, N, D = Mpint

Where E is the public exponent, N is public modulus and D is the private exponent.

P1, P2, E1, E2, C = Mpint

The longer key format contains redundant information that will make the calculation faster. P1,P2 are first and
second prime factors. E1,E2 are first and second exponents. C is the CRT coefficient. Terminology is taken
from RFC 3447.

Padding = rsa_pkcs1_padding | rsa_no_padding

ChipherText = binary()

Encrypts the PlainText using the PrivateKey and returns the cipher. The Padding decides what padding mode
is used, rsa_pkcs1_padding is PKCS #1 v1.5 currently the most used mode. The size of the Msg must be less
than byte_size(N)-11 if rsa_pkcs1_padding is used, and byte_size(N) if rsa_no_padding is used.
Where byte_size(N) is the size part of an Mpint-1.

rsa_public_decrypt(ChipherText, PublicKey, Padding) -> PlainText
Types:

ChipherText = binary()

PublicKey = [E, N]

E, N = Mpint

Where E is the public exponent and N is public modulus

Padding = rsa_pkcs1_padding | rsa_no_padding

PlainText = binary()

Decrypts the ChipherText (encrypted with rsa_private_encrypt/3) using the PrivateKey and returns the
message. The Padding is the padding mode that was used to encrypt the data, see rsa_private_encrypt/3.

dss_sign(DataOrDigest, Key) -> Signature
dss_sign(DigestType, DataOrDigest, Key) -> Signature
Types:

DigestType = sha

DataOrDigest = Mpint | {digest,Digest}

Key = [P, Q, G, X]

P, Q, G, X = Mpint

Where P, Q and G are the dss parameters and X is the private key.

Digest = binary() with length 20 bytes

Signature = binary()

Creates a DSS signature with the private key Key of a digest. The digest is either calculated as a SHA1 digest of Data
or a precalculated binary Digest.

A deprecated feature is having DigestType = 'none' in which case DataOrDigest is a precalculated SHA1
digest.

dss_verify(DataOrDigest, Signature, Key) -> Verified
dss_verify(DigestType, DataOrDigest, Signature, Key) -> Verified
Types:

Verified = boolean()

crypto

Ericsson AB. All Rights Reserved.: crypto | 21

DigestType = sha

DataOrDigest = Mpint | {digest,Digest}

Data = Mpint | ShaDigest

Signature = Mpint

Key = [P, Q, G, Y]

P, Q, G, Y = Mpint

Where P, Q and G are the dss parameters and Y is the public key.

Digest = binary() with length 20 bytes

Verifies that a digest matches the DSS signature using the public key Key. The digest is either calculated as a SHA1
digest of Data or is a precalculated binary Digest.

A deprecated feature is having DigestType = 'none' in which case DataOrDigest is a precalculated SHA1
digest binary.

rc2_cbc_encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

Ivec = Cipher = binary()

Encrypts Text according to RC2 in CBC mode.

rc2_cbc_decrypt(Key, IVec, Cipher) -> Text
Types:

Key = Text = iolist() | binary()

Ivec = Cipher = binary()

Decrypts Cipher according to RC2 in CBC mode.

rc4_encrypt(Key, Data) -> Result
Types:

Key, Data = iolist() | binary()

Result = binary()

Encrypts the data with RC4 symmetric stream encryption. Since it is symmetric, the same function is used for
decryption.

dh_generate_key(DHParams) -> {PublicKey,PrivateKey}
dh_generate_key(PrivateKey, DHParams) -> {PublicKey,PrivateKey}
Types:

DHParameters = [P, G]

P, G = Mpint

Where P is the shared prime number and G is the shared generator.

PublicKey, PrivateKey = Mpint()

Generates a Diffie-Hellman PublicKey and PrivateKey (if not given).

dh_compute_key(OthersPublicKey, MyPrivateKey, DHParams) -> SharedSecret
Types:

crypto

22 | Ericsson AB. All Rights Reserved.: crypto

DHParameters = [P, G]

P, G = Mpint

Where P is the shared prime number and G is the shared generator.

OthersPublicKey, MyPrivateKey = Mpint()

SharedSecret = binary()

Computes the shared secret from the private key and the other party's public key.

exor(Data1, Data2) -> Result
Types:

Data1, Data2 = iolist() | binary()

Result = binary()

Performs bit-wise XOR (exclusive or) on the data supplied.

DES in CBC mode
The Data Encryption Standard (DES) defines an algorithm for encrypting and decrypting an 8 byte quantity using an
8 byte key (actually only 56 bits of the key is used).

When it comes to encrypting and decrypting blocks that are multiples of 8 bytes various modes are defined (NIST SP
800-38A). One of those modes is the Cipher Block Chaining (CBC) mode, where the encryption of an 8 byte segment
depend not only of the contents of the segment itself, but also on the result of encrypting the previous segment: the
encryption of the previous segment becomes the initializing vector of the encryption of the current segment.

Thus the encryption of every segment depends on the encryption key (which is secret) and the encryption of the
previous segment, except the first segment which has to be provided with an initial initializing vector. That vector
could be chosen at random, or be a counter of some kind. It does not have to be secret.

The following example is drawn from the old FIPS 81 standard (replaced by NIST SP 800-38A), where both the plain
text and the resulting cipher text is settled. The following code fragment returns `true'.

 Key = <<16#01,16#23,16#45,16#67,16#89,16#ab,16#cd,16#ef>>,
 IVec = <<16#12,16#34,16#56,16#78,16#90,16#ab,16#cd,16#ef>>,
 P = "Now is the time for all ",
 C = crypto:des_cbc_encrypt(Key, IVec, P),
 % Which is the same as
 P1 = "Now is t", P2 = "he time ", P3 = "for all ",
 C1 = crypto:des_cbc_encrypt(Key, IVec, P1),
 C2 = crypto:des_cbc_encrypt(Key, C1, P2),
 C3 = crypto:des_cbc_encrypt(Key, C2, P3),

 C = <<C1/binary, C2/binary, C3/binary>>,
 C = <<16#e5,16#c7,16#cd,16#de,16#87,16#2b,16#f2,16#7c,
 16#43,16#e9,16#34,16#00,16#8c,16#38,16#9c,16#0f,
 16#68,16#37,16#88,16#49,16#9a,16#7c,16#05,16#f6>>,
 <<"Now is the time for all ">> ==
 crypto:des_cbc_decrypt(Key, IVec, C).

The following is true for the DES CBC mode. For all decompositions P1 ++ P2 = P of a plain text message P
(where the length of all quantities are multiples of 8 bytes), the encryption C of P is equal to C1 ++ C2, where C1 is
obtained by encrypting P1 with Key and the initializing vector IVec, and where C2 is obtained by encrypting P2 with
Key and the initializing vector last8(C1), where last(Binary) denotes the last 8 bytes of the binary Binary.

crypto

Ericsson AB. All Rights Reserved.: crypto | 23

Similarly, for all decompositions C1 ++ C2 = C of a cipher text message C (where the length of all quantities
are multiples of 8 bytes), the decryption P of C is equal to P1 ++ P2, where P1 is obtained by decrypting C1 with
Key and the initializing vector IVec, and where P2 is obtained by decrypting C2 with Key and the initializing vector
last8(C1), where last8(Binary) is as above.

For DES3 (which uses three 64 bit keys) the situation is the same.

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	Reference Manual
	crypto
	crypto
	start/0
	stop/0
	info/0
	info_lib/0
	md4/1
	md4_init/0
	md4_update/2
	md4_final/1
	md5/1
	md5_init/0
	md5_update/2
	md5_final/1
	sha/1
	sha_init/0
	sha_update/2
	sha_final/1
	hash/2
	hash_init/1
	hash_update/2
	hash_final/1
	md5_mac/2
	md5_mac_96/2
	hmac/3
	hmac/4
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	sha_mac/2
	sha_mac/3
	sha_mac_96/2
	des_cbc_encrypt/3
	des_cbc_decrypt/3
	des_cbc_ivec/1
	des_cfb_encrypt/3
	des_cfb_decrypt/3
	des_cfb_ivec/2
	des3_cbc_encrypt/5
	des3_cbc_decrypt/5
	des3_cfb_encrypt/5
	des3_cfb_decrypt/5
	des_ecb_encrypt/2
	des_ecb_decrypt/2
	blowfish_ecb_encrypt/2
	blowfish_ecb_decrypt/2
	blowfish_cbc_encrypt/3
	blowfish_cbc_decrypt/3
	blowfish_cfb64_encrypt/3
	blowfish_cfb64_decrypt/3
	blowfish_ofb64_encrypt/3
	aes_cfb_128_encrypt/3
	aes_cfb_128_decrypt/3
	aes_cbc_128_encrypt/3
	aes_cbc_128_decrypt/3
	aes_cbc_ivec/1
	aes_ctr_encrypt/3
	aes_ctr_decrypt/3
	aes_ctr_stream_init/2
	aes_ctr_stream_encrypt/2
	aes_ctr_stream_decrypt/2
	erlint/1
	mpint/1
	rand_bytes/1
	strong_rand_bytes/1
	rand_uniform/2
	strong_rand_mpint/3
	mod_exp/3
	rsa_sign/2
	rsa_sign/3
	rsa_verify/3
	rsa_verify/4
	rsa_public_encrypt/3
	rsa_private_decrypt/3
	rsa_private_encrypt/3
	rsa_public_decrypt/3
	dss_sign/2
	dss_sign/3
	dss_verify/3
	dss_verify/4
	rc2_cbc_encrypt/3
	rc2_cbc_decrypt/3
	rc4_encrypt/2
	dh_generate_key/1
	dh_generate_key/2
	dh_compute_key/3
	exor/2

