
Graphics System (GS)
Copyright © 1997-2013 Ericsson AB. All Rights Reserved.

Graphics System (GS) 1.5.15.2
January 29 2013

Copyright © 1997-2013 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

January 29 2013

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 1

1.1 GS - The Graphics System

2 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1 GS User's Guide

The Graphics System application, GS, is a library of routines for writing graphical user interfaces. Programs written
using GS work on all Erlang platforms and do not depend upon the underlying windowing system.

1.1 GS - The Graphics System
1.1.1 Introduction

Warning:
GS is not recommended for use in new applications. Instead we recommend WX for applications that need a
graphical user interface.

GS is not maintained and we plan to deprecate and remove it from the distribution as soon as possible, maybe
already in the next major release (R15).

This section describes the general graphics interface to Erlang. This system was designed with the following
requirements in mind:

• a graphics system which is easy to learn

• a graphics system which is portable to many different platforms.

Erlang has been implemented on a wide range of platforms and the graphics system works on all these platforms. Erlang
applications can be written towards the same graphics API and the application can run on all supported platforms
without modification.

1.1 GS - The Graphics System

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 3

Figure 1.1: Graphics Interface for Erlang

1.1.2 Basic Architecture of GS
The basic building block in the graphics system is the graphical object. Objects are created in a hierarchical fashion
where each object has a parent. The most common object types are:

• window

• button

• label

• list box

• frame.

Whenever a new object is created, a unique object identifier is returned. This object identifier makes it possible to
configure the object by changing its appearance and behaviour. This configuration of the object is controlled by the
Options, also known as attributes or properties. These include width and height. Most options have a value of a specified
type, but not all.

Whenever an Erlang process creates a graphical object, it is said to own the object. The graphics system must keep
track of the owner of every graphical object in order to forward incoming events to the owner-process and kill the
appropriate graphics window if the owner process suddenly dies.

1.2 Interface Functions

4 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

Figure 1.2: Owner Process

Events are messages which are sent from the graphical object to the owner-process. The events the owner-process is
informed about may include:

• the user has clicked on a button

• the user has entered text into an entry field

• the user has taken some action on the object, like moving the window.

Figure 1.3: Events Delivered to Owner Process

1.2 Interface Functions
1.2.1 Overview
The following interface functions are included with the graphics system:

• gs:start(). This function starts the graphics server and returns its object identifier. If the graphics server
has already been started, it returns its original identifier.

• gs:stop(). This function stops the graphics server and closes all windows which gs has launched. This
function is not the opposite of gs:start/0 because gs:stop/1 causes all applications to lose the graphics
server and the objects created with the gs system.

• gs:create(Objtype, Parent, Options). This function creates a new object of specified Objtype
as a child to the specified Parent. It configures the object with Options and returns the identifier for the
object, or {error,Reason}.

• gs:create(Objtype, Name, Parent, Options). This function is identical to the previously listed
function, except that a Name is specified to reference the object. Name is an atom.

1.2 Interface Functions

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 5

• gs:destroy(IdOrName). This function destroys an object and all its children.

• gs:config(IdOrNeme, Options). This function configures an object with Options. It returns ok, or
{error,Reason}.

• gs:read(Id_or_Name, OptionKey). This function reads the value of an object option. It returns the
value, or {error,Reason}.

The above list contains all the function which are needed with the graphics system. For convenience, the following
aliases also exist:

• gs:create(Obttype, Parent).

• gs:create(Objtype, Parent, Options).

• gs:create(Objtype, Parent, Option).

• gs:create(Objtype, Name, Parent, Options).

• gs:create(Objtype, Name, Parent, Option).

• gs:Objecttype(Parent).

• gs:Objecttype(Parent,Options).

• gs:Objecttype(Parent, Option).

• gs:Objecttype(Name, Parent, Options).

• gs:Objecttype(Name, Parent, Option).

• gs:config(IdOrName, Option).

These shorthands can be used as follows:

• gs:window(gs:start(), {map,true}).

• gs:button(W).

• gs:config(B,{label,{text,"Hi!"}}).

The create_tree/2 function is useful for creating a large hierarchy of objects. It has the following syntax:

create_tree(ParentId,Tree) -> | {error,Reason}

Tree is a list of Object, and Object is any of the following:

• {ObjectType,Name,Options,Tree}

• {ObjectType,Options,Tree}

• {ObjectType,Options}

The following example constructs a window which contains two objects, a button and a frame with a label:

R = [{window,[{map,true}],
 [{button,[{label,{text,"Butt1"}}]},
 {frame,[{y,40}],[{label,[{label,{text,"Lbl1"}}]}]}]}],
gs:create_tree(gs:start(),R).

1.2.2 A First Example
The first action required is to start up the graphics server. This operation returns an identifier for the server process,
which registers itself under the name gs. If a graphics server was already started, its identifier is returned. We can now
create objects and configure the behavior and appearance of these objects. When all objects are created and configured

1.2 Interface Functions

6 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

in a top level window, we map it on the screen to make it visible. The example below shows how to create a window
with a button that says "Press Me".

-module(ex1).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([init/0]).

init() ->
 S = gs:start(),
 %% the parent of a top-level window is the gs server
 Win = gs:create(window,S,[{width,200},{height,100}]),
 Butt = gs:create(button,Win,[{label, {text,"Press Me"}}]),
 gs:config(Win, {map,true}),
 loop(Butt).

loop(Butt) ->
 receive
 {gs, Butt, click, Data, Args} ->
 io:format("Hello There~n",[]),
 loop(Butt)
 end.

The following steps were completed in this code:

• start a graphics server

• create a window of specified width and height

• create a button with the text "Press Me"

• map the window on the screen

• enter the event loop.

The event loop is where we receive events from gs. In this case, we want to receive a click event from the button.
This event is delivered when the user presses the button.

Figure 2.1: "Press Me" Button Example

The Erlang gs system includes many examples. All examples in this document can be found in the doc/
users_guide/examples/ directory. In addition, there is an example directory which contains examples of fractal
trees, bouncing balls, a color editor, and a couple of other gs applications.

1.2 Interface Functions

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 7

1.2.3 Creating Objects
You create an object of a specified type with the create/3 or the create/4 function. The difference is that the
create/4 function allows you to assign names to the objects. You can then refer to the object instead of using the
object identifier. The two forms of the create function look as follows:

ObjId = gs:create(Objtype, Parent, Options)
ObjId = gs:create(Objtype, Name, Parent, Options)

Examples of built-in object types are:

• window

• frame

• menu

• button

• radio button

• list box.

Objects are created in a hierarchical order. The top level object is the window object which is a container object for
most other object types.

Figure 2.2: Hierarchy of Objects

A frame object is like a sub-window but also a container object which can have children objects.

The create/3 or create/4 functions return an object identifier, or the tuple {error, Reason}. The object
identifier uniquely identifies the object within the system. The object identifier is used to:

• reconfigure an object

• identify events from a particular object.

1.2.4 Ownership
The process which creates an object is said to own the object. When a process dies, all objects owned by the process are
destroyed. The ownership also means that all events generated by a specific object are delivered to the owner process.
The graphics server keeps track of all Erlang processes that create objects. It is therefore able to take appropriate
actions if a process should die.

1.2.5 Naming Objects
As shown previously, the create/4 function can be used to name objects. The name should be a unique atom which
is used to reference the object. The advantage of naming objects is that we do not have to pass object identifiers
as arguments to the event loop. Instead, we can use the object name in our code. To name objects in the following
example, the code gives the name win1 to the window, and b1 to the button.

1.2 Interface Functions

8 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

-module(ex2).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([init/0]).

init() ->
 S = gs:start(),
 gs:create(window,win1,S,[{width,200},{height,100}]),
 gs:create(button,b1,win1,[{label, {text,"Press Me"}}]),
 gs:config(win1, {map,true}),
 loop().

loop() ->
 receive
 {gs, b1, click, Data, Args} ->
 io:format("Hello World!~n",[]),
 loop()
 end.

The name is local for the process which creates the object. This means that the name have a meaning only for one
process. Different processes can give different objects the same name. When passing references to objects between
processes, the object identifier has to be used because names only has a meaning in a process context. If necessary,
the object identifier can be retrieved by reading the id option.

When using distributed Erlang, objects should be named carefully. A named object always refers to an object in the
graphics system on the node where it was created. The syntax {Name,Node} should be used when referring to a
named object on another node.

The following example receives a canvas object from another node and creates a line named myline1 that will appear
in the canvas. Also, this example demonstrates how to configure the line using the special syntax.

foo() ->
 receive
 {gs_obj,Canvas,FromNode} -> ok
 end,
 gs:create(line,myline1,Canvas,[{coords,[{10,10},{20,20}]}]),
 gs:config({myline1,FromNode},[{buttonpress,true}]).

Unnamed objects are transparent. For example, a line object can be created from a canvas on another node and then
configured as any other object.

bar() ->
 receive
 {gs_obj,Canvas,_FromNode} -> ok
 end,
 L = gs:create(line,Canvas,[{coords,[{10,10},{20,20}]}]),
 gs:config(L,[{buttonpress,true}]).

1.3 Options

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 9

1.3 Options
1.3.1 The Option Concept
Each object has a set of options. The options are key-value tuples and the key is an atom. Depending on the option,
the value can be any Erlang term. Typical options are: x, y, width, height, text, and color. A list of options should be
supplied when an object is created . It is also possible to reconfigure an object with the function gs:config/2. The
following example shows one way to create a red button with the text "Press Me" on it:

Butt = gs:create(button,Win, [{x,10},{y,10}]),
gs:config(Butt, [{width,50},{height,50},{bg,red}]),
gs:config(Butt, [{label, {text,"Press Me"}},{y,20}]),

The evaluation order of options is not defined. This implies that the grouping of options shown in the following
example is not recommended:

Rect = gs:create(rectangle,Can, [{coords,[{10,10},{20,20}]},
 {move,{5,5}}]),

After the operation, the rectangle can be at position [{10,10},{20,20}] or [{15,15},{25,25}]. The
following example produces a deterministic behaviour:

Rect = gs:create(rectangle,Can,[{coords,[{10,10},{20,20}]},
gs:config(Rect,[{move,{5,5}}]),

The value of each option can be read individually with the read/2 function as shown in the following example:

Value = gs:read(ObjectId,Option)

The next example shows how to read the text and the width options from a button:

Text = gs:read(Butt, text),
Width = gs:read(Butt, width),

1.3.2 The Option Tables
Each object is described in terms of its options. The options are listed in a table as is shown in the following example:

{Option,Value} Default Description

{fg, Color} <unspec> Foreground color of the object

1.3 Options

10 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

{map, Bool} false Visibility on the screen

...

Table 3.1: Options

The <unspec> default value means that either gs or the back-end provides the default value. For example, the fg
option can be used as follows:

Rect = gs:create(rectangle, Window, [{fg, red}]),
Color = gs:read(Rect, fg),

1.3.3 Config-Only Options
Most options are read/write key-value tuples such as {select,true|false} and {map,true|false, but some
options are by nature write-only, or read-only. For example, buttons can flash for a short time and canvas objects can
be moved dx, dy. The following table exemplifies some config-only options:

Config-Only Description

flash Causes the object to flash for 2 seconds.

raise Raises the object on top of other overlapping objects.

{move, {Dx, Dy}} Moves the object relative to its current position.

Table 3.2: Config-Only Options

gs:config(Button,[flash]), causes the button to flash.

1.3.4 Read-Only Options
The opposite of config-only options are read-only options. The following table exemplifies some read-only options:

Read-Only Return Description

size Int The number of items (entries).

{get, Index} String The entry at index Index.

Table 3.3: Read-Only Options

EntryString = gs:read(Listbox,{get, Index}), is an example.

1.3.5 Data Types
As previously stated, each object is described in terms of its options. This section defines the data types for options.

1.4 Events

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 11

Anchor|Align.
n|w|s|e|nw|se|ne|sw|center

Atom.
An Erlang atom such as myWay.

Bool.
true or false

Color.
{R,G,B}, or a the predefined name red,green, blue, white, black, grey, or yellow. For example
{0,0,0} is black and {255,255,255} is white.

Cursor.
A mouse cursor, or any of the following: arrow, busy, cross, hand, help, resize, text, or parent.
parent has a special meaning, namely that this object will have the same cursor as its parent.

FileName.
FileName is a string. The file name may include a directory path and should point out a file of a suitable type.
The path can be either absolute or relative to the directory from where Erlang was started.

Float.
Any float, for example 3.1415.

Font.
A Font is represented as a two or three tuple:{Family,Size} or {Family,Style,Size}, where Style
is bold, italic, or a combination of those in a list. Size is an arbitrary integer. Family is a typeface of
type times, courier, helvetica, symbol, new_century_schoolbook, or screen (which is a
suitable screen font).

Int.
Any integer number, for example 42.

Label.
A label can either be a plain text label {text, String}, or an image {image, FileName} where
FileName should point out a bitmap.

String.
An Erlang list of ASCII bytes. For example, "Hi there"=[72,105,32,116,104,101,114,101]

Term.
Any Erlang term.

In cases where the type is self-explanatory, the name of the parameter is used. For example, {move, {Dx,Dy}}.

1.4 Events
1.4.1 Event Messages
Events are messages which are sent to the owner process of the object when the user interacts with the object in some
way. A simple case is the user pressing a button. An event is then delivered to the owner process of the button (the
process that created the button). In the following example, the program creates a button object and enables the events
click and enter. This example shows that events are enabled in the same way as objects are configured with options.

B = gs:create(button,Win, [{click,true},{enter,true}]),
event_loop(B).

The process is now ready to receive click and enter events from the button. The events delivered are always five tuples
and consist of:

1.4 Events

12 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

{gs, IdOrName, EventType, Data, Args}

• gs is a tag which says it is an event from the gs graphics server.

• IdOrName contains the object identifier or the name of the object in which the event occurred.

• EventType contains the type of event which has occurred. In the example shown, it is either click or
enter.

• Data is a field which the user can set to any Erlang term. It is very useful to have the object store arbitrary data
which is delivered with the event.

• Args is a list which contains event specific information. In a motion event, the Args argument would contain
the x and y coordinates.

There are two categories of events:

• generic events

• object specific events.

1.4.2 Generic Events
Generic events are the same for all types of objects. The following table shows a list of generic event types which
the graphics server can send to a process. For generic events, the Args argument always contains the same data,
independent of which object delivers it.

The following sub-sections explains the event types and what they are used for.

Event Args Description

buttonpress [ButtonNo,X,Y|_]
A mouse button was pressed over
the object.

buttonrelease [ButtonNo,X,Y|_]
A mouse button was released over
the object.

enter []
Delivered when the mouse pointer
enters the objects area.

focus [Int|_]
Keyboard focus has changed. 0
means lost focus. 1 means gained
focus.

keypress [KeySym,Keycode, Shift, Control|_] A key has been pressed.

leave [] Mouse pointer leaves the object.

motion [X,Y|_]
The mouse pointer is moving in
the object. Used when tracking the
mouse in a window.

Table 4.1: Generic Event Types

1.4 Events

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 13

The Buttonpress and Buttonrelease Events
These events are generated when a mouse button is pressed or released inside the object frame of a window, or frame
object type. The button events are not object specific (compare to click). The format of the buttonpress event is:

{gs,ObjectId,buttonpress,Data,[MouseButton,X,Y|_]}

The mouse button number which was pressed is the first argument in the Args field list. This number is either 1,
2 or 3, if you have a three button mouse. The X and Y coordinates are sent along to track in what position the user
pressed down the button. These events are useful for programming things like "rubberbanding", which is to draw out
an area with the mouse. In detail, this event can be described as pressing the mouse button at a specific coordinate
and releasing it at another coordinate in order to define a rectangular area. This action is often used in combination
with motion events.

The Enter and Leave Events
These events are generated when the mouse pointer (cursor) enters or leaves an object.

The Focus Event
The focus event tracks which object currently holds the keyboard focus. Only one object at a time can hold the keyboard
focus. To have the keyboard focus means that all keypresses from the keyboard will be delivered to that object. The
format of a focus event is:

{gs,ObjectId,focus, Data,[FocusFlag|_]}

The FocusFlag argument is either 1, which means that the object has gained keyboard focus, or 0, which means that
the object has lost keyboard focus.

The Keypress Event
This event is generated by an object which receives text input from the user, like entry objects. It can also be generated
by window objects. The format of a keypress event is:

{gs,ObjectId,keypress,Data,[Keysym,Keycode,Shift,Control|_]}

The Keysym argument is either the character key which was pressed, or a word which describes which key it
was. Examples of Keysyms are; a,b,c.., 1,2,3..., 'Return', 'Delete', 'Insert', 'Home', 'BackSpace',
'End'. The Keycode argument is the keycode number for the key that was pressed. Either the Keysym or the
Keycode argument can be used to find out which key was pressed. The Shift argument contains either a 0 or a 1
to indicate if the Shift key was held down when the character key was pressed. The Control argument is similar to the
Shift key argument, but applies to the Control key instead of the Shift key.

The Motion Event
The motion event is used to track the mouse position in a window. When the user moves the mouse pointer (cursor)
to a new position a motion event is generated. The format of a motion event is:

{gs,ObjectId,motion,Data,[X,Y|_]}

1.4 Events

14 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

The current x and y coordinates of the cursor are sent along in the Args field.

1.4.3 Object Specific Events
The click and doubleclick events are the object specific event types. Only some objects have these events and the Args
field of the events vary for different type of objects. A click on a check button generates a click event where the data
field contains the on/off value of the indicator. On the other hand, the click event for a list box contains information
on which item was chosen.

Event Args Description

click <object specific>
Pressing a button or operating on a
object in some predefined way.

double-click <object specific>
Pressing the mouse button twice
quickly. Useful with list boxes.

Table 4.2: Object Specific Events

1.4.4 Matching Events Against Object Identifiers
Events can be matched against the object identifier in the receive statement. The disadvantage of matching against
identifiers is that the program must pass the object identifiers as arguments to the event loop.

-module(ex3).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([init/0]).

init() ->
 S = gs:start(),
 W = gs:create(window,S,[{width,300},{height,200}]),
 B1 = gs:create(button,W,[{label, {text,"Button1"}},{y,0}]),
 B2 = gs:create(button,W,[{label, {text,"Button2"}},{y,40}]),
 gs:config(W, {map,true}),
 loop(B1,B2).

loop(B1,B2) ->
 receive
 {gs,B1,click,_Data,_Arg} -> % button 1 pressed
 io:format("Button 1 pressed!~n",[]),
 loop(B1,B2);
 {gs,B2,click,_Data,_Arg} -> % button 2 pressed
 io:format("Button 2 pressed!~n",[]),
 loop(B1,B2)
 end.

1.4.5 Matching Events Against Object Names
Another solution is to name the objects using the create/4 function. In this way, the program does not have to pass
any parameters which contain object identifiers for each function call made.

1.4 Events

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 15

-module(ex4).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([init/0]).

init() ->
 S = gs:start(),
 gs:create(window,win1,S,[{width,300},{height,200}]),
 gs:create(button,b1,win1,[{label, {text,"Button1"}},{y,0}]),
 gs:create(button,b2,win1,[{label, {text,"Button2"}},{y,40}]),
 gs:config(win1, {map,true}),
 loop(). %% look, no args!

loop() ->
 receive
 {gs,b1,click,_,_} -> % button 1 pressed
 io:format("Button 1 pressed!~n",[]),
 loop();
 {gs,b2,click,_,_} -> % button 2 pressed
 io:format("Button 2 pressed!~n",[]),
 loop()
 end.

1.4.6 Matching Events Against the Data Field
A third solution is to set the data option to some value and then match against this value. All built-in objects have an
option called data which can be set to any Erlang term. For example, we could set the data field to a tuple {Mod,
Fun,Args} and have the receiving function make an apply on the contents of the data field whenever certain
events arrive.

-module(ex5).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([start/0, init/0, b1/0, b2/0]).

start() ->
 spawn(ex5, init, []).

init() ->
 S = gs:start(),
 W = gs:create(window,S,[{map,true}]),
 gs:create(button,W,[{label,{text,"Button1"}},{data,{ex5,b1,[]}},{y,0}]),
 gs:create(button,W,[{label,{text,"Button2"}},{data,{ex5,b2,[]}},{y,40}]),
 loop().

loop()->
 receive
 {gs,_,click,{M,F,A},_} -> % any button pressed
 apply(M,F,A),
 loop()
 end.

b1() ->
 io:format("Button 1 pressed!~n",[]).
b2() ->

1.5 Fonts

16 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

 io:format("Button 2 pressed!~n",[]).

1.4.7 Experimenting with Events
A good way of learning how events work is to write a short demo program like the one shown below and test how
different events work.

-module(ex6).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([start/0,init/0]).

start() ->
 spawn(ex6,init,[]).

init() ->
 S = gs:start(),
 W = gs:create(window,S,[{map,true},{keypress,true},
 {buttonpress,true},{motion,true}]),
 gs:create(button,W,[{label,{text,"PressMe"}},{enter,true},
 {leave,true}]),
 event_loop().

event_loop() ->
 receive
 X ->
 io:format("Got event: ~w~n",[X]),
 event_loop()
 end.

1.5 Fonts
1.5.1 The Font Model
Text related objects can be handled with the font option {font,Font}. A Font is represented as a two or three tuple:

• {Family,Size}

• {Family,Style,Size}

Examples of fonts are: {times,12}, {symbol,bold,18}, {courier,[bold,italic],6},
{screen,12}.

The most important requirement with the font model is to ensure that there is always a "best possible" font present.
For example, if an application tries to use the font {times,17} on a computer system which does not have this font
available, the gs font model automatically substitutes {times,16}.

Note that GS requires that the following fonts are available if using an X-server display:

• fixed

• -*-courier-*

• -*-times-*

• -*-helvetica-*

• -*-symbol-*

• "-*-new century schoolbook-"

1.5 Fonts

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 17

• -*-screen-*

To find out which font is actually chosen by the gs, use the option {choose_font,Font}. For example, the
following situation might occur:

1> <input>G=gs:start().</input>
{1,<0.20.0>}
2><input>gs:read(G,{choose_font,{times,38}}).</input>
{times,[],38}
3> <input>gs:read(G,{choose_font,{screen,italic,6}}).</input>
{courier,italic,6}
4>

When programming with fonts, it is often necessary to find the size of a string which uses a specific font.
{font_wh,Font} returns the width and height of any string and any font. The following example illustrates its
usage:

Figure 5.1: Font Examples

-module(ex15).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/3 $ ').

-export([start/0,init/0]).

start() -> spawn(ex15, init, []).

init() ->
 I=gs:start(),

1.6 Default Values

18 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

 Win=gs:create(window, I,
 [{width, 400},{height, 250},
 {title,"Font Demo"},{map, true}]),
 E = gs:create(canvas, can1,Win,
 [{x,0},{y, 0},{width,400},{height,250}]),
 Fonts = [{times,19},{screen,16},{helvetica,bold,21},
 {symbol,12},{times,[bold,italic],33},{courier,6}],
 show_fonts_in_boxes(Fonts,0),
 receive
 {gs,_Id,destroy,_Data,_Arg} -> bye
 end.

show_fonts_in_boxes([],_) -> done;
show_fonts_in_boxes([Font|Fonts],Y) ->
 Txt = io_lib:format("Hi! ~p",[Font]),
 {Width,Height} = gs:read(can1,{font_wh,{Font,Txt}}),
 Y2=Y+Height+2,
 gs:create(rectangle,can1,[{coords,[{0,Y},{Width,Y2}]}]),
 gs:create(text,can1,[{font,Font},{text,Txt},{coords,[{0,Y+1}]}]),
 show_fonts_in_boxes(Fonts,Y2+1).

1.6 Default Values
1.6.1 The Default Value Model
When a new object is created, a set of options is provided by the application. Options which are not explicitly given
are taken care of by the parent (the container object).

B=gs:create(button,Win,[{x,0},{label,{text,"press Me"}}]).

In the example shown above, the window provides default values for options like location and background color. If
an application cannot use the default values provided by GS, new ones can be configured. For example, the following
code creates a red button at location y=30.

gs:config(Win,[{default,button,{y,30}},
{default,button,{font,{courier,18}}}]),
B=gs:create(button,Win,[{x,0},{label,{text,"press Me"}}]).

The syntax for the default option is {default,Objecttype,{Option,DefaultValue}}, where
Objecttype is the name of any GS object. The special keywords all or buttons which denote button, radio
button, and check button can be used.

The semantics for the default option can be expressed as follows: If an object of kind Objecttype is created and
no value for Option is given, then use DefaultValue as the value. Only options of {Key,Value} syntax can
be given a default values. Default values may be inherited in several steps. In the following example, the button will
show the text "Cancel".

gs:config(Win,[{default,button,{label,{text,"Cancel"}}}]),
F=gs:create(frame,Win,[]),
B=gs:create(button,F,[]).

1.6 Default Values

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 19

Default values are inherited so that changed default values only affect new objects, not existing objects.

Default values only have meaning when creating child objects, since objects which cannot have children cannot have
default options. An example is buttons.

The following example illustrates how default options can be used:

Figure 6.1: Example of Default Options

-module(ex16).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/3 $ ').

-export([start/0,init/0]).

start() -> spawn(ex16, init, []).

init() ->
 I=gs:start(),
 Win=gs:create(window, I,
 [{width, 200},{height, 200},
 {title,"Default Demo"},{map, true}]),
 gs:create(canvas, can1,Win,
 [{x,0},{y, 0},{width,200},{height,200},
 {default,text,{font,{courier,bold,19}}},
 {default,text,{fg,blue}},
 {default,rectangle,{fill,red}},{default,text,{text,"Pow!"}},
 {default,oval,{fill,green}}]),
 {A,B,C} = erlang:now(),
 random:seed(A,B,C),
 loop().

loop() ->
 receive
 {gs,_Id,destroy,_Data,_Arg} -> bye
 after 500 ->
 XY = {random:uniform(200),random:uniform(200)},
 draw(random:uniform(3),XY),

1.7 The Packer

20 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

 loop()
 end.

draw(1,XY) ->
 gs:create(text,can1,[{coords,[XY]}]);
draw(2,XY) ->
 XY2 = {random:uniform(200),random:uniform(200)},
 gs:create(rectangle,can1,[{coords,[XY,XY2]}]);
draw(3,XY) ->
 XY2 = {random:uniform(200),random:uniform(200)},
 gs:create(oval,can1,[{coords,[XY,XY2]}]).

1.7 The Packer
1.7.1 The Packer
This section describes the geometry manager in GS.

When the user resizes a window, the application normally has to resize and move the graphical objects in the window
to fit its new size. This can be handled by a so called packer or geometry manager. In GS, the packer functionality is
a property of the frame object. A frame with the packer property may control the size and position of its children.

A packer frame organises its children according to a grid pattern of rows and columns. Each row or column has a
stretching property associated to it. Some columns may expand more than others and some may have a fixed size. The
grid pattern is in itself invisible, but the objects contained by it snap to fit the grid.

The packer controlled by the following options:

Frame options:
{packer_x,Packlist} where Packlist is list() of PackOption, and
{packer_y,Packlist} where Packlist is list() of PackOption.

PackOption is:
{stretch, Weight} where Weight is integer() > 0, or
{stretch, Weight, MinPixelSize, or}
{stretch, Weight, MinPixelSize, MaxPixelSize}, or
{fixed, PixelSize}

A Weight is a relative number that specifies how much of the total space of the frame a row or column will get. If
the frame has three columns with the weights 2, 1, 3 it tells the geometry manager that the first column should have
2/6, the second 1/6 and the third 3/6 of the space.

Note that giving a minimum or maximum width of one or more columns will change the relation and the way the
space is divided.

Then the objects contained by the frame use the following options to position themselves in the grid:
{pack_x,Column} where Column is integer(), or
{pack_x,{StartColumn,EndColumn}}

and
{pack_y,row} where row is integer(), or
{pack_y,{Startrow,Endrow}}

or, the the following option is a convenient shorthand:
{pack_xy,{Column,row}}

Consider the following example.

1.7 The Packer

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 21

-module(ex17).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/1 $ ').

-export([start/0,init/0]).

start() -> spawn(ex17, init, []).

init() ->
 WH = [{width,200},{height,300}],
 Win = gs:window(gs:start(),[{map,true},{configure,true},
 {title,"Packer Demo"}|WH]),
 gs:frame(packer,Win,[{packer_x,[{stretch,1,50},{stretch,2,50},
 {stretch,1,50}]},
 {packer_y,[{fixed,30},{stretch,1}]}]),
 gs:button(packer,[{label,{text,"left"}},{pack_xy,{1,1}}]),
 gs:button(packer,[{label,{text,"middle"}},{pack_xy,{2,1}}]),
 gs:button(packer,[{label,{text,"right"}},{pack_xy,{3,1}}]),
 gs:editor(packer,[{pack_xy,{{1,3},2}},{vscroll,true},{hscroll,true}]),
 gs:config(packer,WH), % refresh to initial size
 loop().

loop() ->
 receive
 {gs,_Id,destroy,_Data,_Arg} -> bye;
 {gs,_Id,configure,_Data,[W,H|_]} ->
 gs:config(packer,[{width,W},{height,H}]), % repack
 loop();
 Other ->
 io:format("loop got: ~p~n",[Other]),
 loop()
 end.

It defines a frame with three columns where the second should be twice as wide as the other but no column should
be smaller than 50 pixels wide. The frame has two rows where the first has a fixed height of 30 pixels and the last
row is totally flexible. Three buttons are placed next to each other on the first row, and below them an editor. The
editor covers all three columns.

1.7 The Packer

22 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

Figure 7.1: Frame with three columns

The picture below illustrates what happens when the window is resized.

Figure 7.2: Resized Frame

To repack the objects, the size of the packer frame has to be set explicitly. This is done by using the height and width
options as usual. Since the packer frame controls the size of its children, using the standard x, y, width, height options,
packer frames may be nested recursively.

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 23

The packer is very useful since it simplifies the programming. The programmer will not have to spend time fine tuning
x, y, width, height of each object, since these options are handled by the frame.

1.8 Built-In Objects
1.8.1 Overview
This section describes the built-in objects of the graphics interface. The following objects exist:

Window
An ordinary window.

Button
A simple press button.

Checkbutton
A button with a check-mark indicator.

Radiobutton
A button with an indicator that has an only-one-selected-at-a-time property.

Label
Shows a text or bitmap.

Frame
A plain container object. It is used for logical and visual grouping of objects.

Entry
A one-line object for entering text.

Listbox
A list of text strings.

Canvas
A drawing area which contains light-weight objects such as rectangle, line, etc.

Menu
A collection of objects for constructing pull-down and pop-up menus.

Grid
An object for showing tables. A kind of multi-column listbox.

Editor
A multi-line text editor.

Scale
To select a value within a range.

Some objects can act as container objects. The following table describes these relationships:

Objects Valid Parents

window window, gs

buttons, canvas, editor, entry, frame, grid, label, listbox,
menubar, scale

frame, window

arc, image, line, oval, polygon, rectangle, text canvas

menubutton menubar, window, frame

gridline grid

menuitem menu

1.8 Built-In Objects

24 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

menu
menubutton, menuitem (with {itemtype, cascade}),
window, frame (the last two are for pop-up menus)

Table 8.1: Relations Between Objects and Container Objects

1.8.2 Generic Options
Most objects have a common subset of options and will be referred to as generic options. They apply to most objects.

{Option,Value} Default Description

beep <unspec>
A beep will sound. Applies to all
objects.

{bg, Color} <unspec>
Background color. Applies to
objects which have a background
color.

{data, Term} []
Always delivered with the event in
the data field. Applies to all objects.

{default,Objecttype,{Key,Value}} <unspec>

Applies to all container objects.
Specifies the default value for
an option for children of type
Objecttype.

{enable, Bool} true

Objects can be enabled or disabled.
A disabled object cannot be clicked
on, and text cannot be entered.
Applies to buttons, menuitem, entry,
editor, scale.

{font, Font} <unspec>
Applies to all text related objects and
the grid.

{fg, Color} <unspec>
Foreground color. Applies to objects
which have a foreground color.

flush <unspec>
Ensures that front-end and back-
end are synchronized. Applies to all
objects.

{setfocus, Bool} <unspec>
Set or remove keyboard focus to this
object. Applies to objects which can
receive keyboard events.

Table 8.2: Generic Options

The following options apply to objects which can have a frame as parent. Coordinates are relative to the parent.

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 25

{Option,Value} Default Description

{cursor, Cursor} parent The appearance of the mouse cursor.

{height, Int} <unspec> The height in pixels.

{pack_x, Column|
{StartColumn,EndColumn}}

<unspec>
Packing position. See The Packer
section.

{pack_y, row|{Startrow,Endrow}} <unspec>
Packing position. See The Packer
section.

{pack_xy, {Column,row}} <unspec>
Packing position. See The Packer
section.

{width, Int} <unspec> The width in pixels.

{x, Int} <unspec>
The x coordinate within the parent
objects frame in pixels. 0 is to the
left.

{y, Int} <unspec>
The y coordinate in pixels. 0 is at the
top.

Table 8.3: Generic Options (Frame as Parent)

Config-Only Description

lower Lowers this object to the bottom in the visual hierarchy.

raise Lowers this object in the visual hierarchy.

Table 8.4: Generic Config-Only Options

The following table lists generic Read-Only options:

Read-Only Return Description

children [ObjectId1, ..., ObjectIdN] All children

{choose_font,Font} Font
Return the font that is actually used
if a particular font is given.

id ObjectId
Return the object id for this object.
Useful if the object is a named
object.

{font_wh,{Font,Text}} {Width,Height}
Return the size of a text in a
specified font. It returns the size of

1.8 Built-In Objects

26 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

the font that is actually chosen by
the back-end.

type Atom The type of this object.

parent ObjectId The parent of this object.

Table 8.5: Generic Read-Only Options

Generic Event Options
The table below lists all generic event options:

{Option,Value} Default

{buttonpress, Bool} false

{buttonrelease, Bool} false

{enter, Bool} false

{leave, Bool} false

{keypress, Bool} false

{motion, Bool} false

Table 8.6: Generic Event Options

1.8.3 Window
The basic object is the window object. It is the most common container object. All graphical applications use at least
one (top-level) window.

Figure 8.1: Empty Window titled "A Window".

The following tables show all window specific options:

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 27

{Option,Value} Default Description

{bg, Color} <unspec> {R,G,B} or a color name

{configure,Bool} false

Will generate a configureevent
when the window has been resized
or moved. The Argsfield contains
[Width,Height,X,Y|_]

{destroy,Bool} true

Will generate a destroyevent
when the window is destroyed
from the window manager. All GS
applications should handle this
event.

{iconname, String} <unspec>

{iconify, Bool} false

{map, Bool} false Make it visible on the screen

{title, String} <unspec>
The title of the window. The default
is the internal widget name which is
platform specific.

Table 8.7: Window Options

Config-Only Description

raise Raise window on top of all other windows.

lower Lower window to background.

Table 8.8: Window Config-Only Options

The following example shows how to create a window and configure it to enable various events.

-module(ex7).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([mk_window/0]).

mk_window() ->
 S= gs:start(),
 Win= gs:create(window,S,[{motion,true},{map,true}]),
 gs:config(Win,[{configure,true},{keypress,true}]),
 gs:config(Win,[{buttonpress,true}]),
 gs:config(Win,[{buttonrelease,true}]),
 event_loop(Win).

1.8 Built-In Objects

28 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

event_loop(Win) ->
 receive
 {gs,Win,motion,Data,[X,Y | Rest]} ->
 %% mouse moved to position X Y
 io:format("mouse moved to X:~w Y:~w~n",[X,Y]);
 {gs,Win,configure,Data,[W,H | Rest]} ->
 %% window was resized by user
 io:format("window resized W:~w H:~w~n",[W,H]);
 {gs,Win,buttonpress,Data,[1,X,Y | Rest]} ->
 %% button 1 was pressed at location X Y
 io:format("button 1 pressed X:~w Y:~w~n",[X,Y]);
 {gs,Win,buttonrelease,Data,[_,X,Y | Rest]} ->
 %% Any button (1-3) was released over X Y
 io:format("Any button released X:~w Y:~w~n",[X,Y]);
 {gs,Win,keypress,Data,[a | Rest]} ->
 %% key `a' was pressed in window
 io:format("key a was pressed in window~n");
 {gs,Win,keypress,Data,[_,65,1 | Rest]} ->
 %% Key shift-a
 io:format("shift-a was pressed in window~n");
 {gs,Win,keypress,Data,[c,_,_,1 | Rest]} ->
 %% CTRL_C pressed
 io:format("CTRL_C was pressed in window~n");
 {gs,Win,keypress,Data, ['Return' | Rest]} ->
 %% Return key pressed
 io:format("Return key was pressed in window~n")
 end,
 event_loop(Win).

1.8.4 Button

Figure 8.2: Radio Buttons, Check Buttons, and Ordinary Button

Buttons are the simplest and the most commonly used objects. You press them and get a click event. The following
tables show the options for all button types.

{Option,Value} Default Description

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 29

{align, Align} center Text alignment within the frame.

{justify, left | center | right} center
Justification is only valid when there
are several lines of text.

{label, Label} <unspec> Text or image to show.

{select, Bool} false
Check buttons and radio buttons.
true means that the button is
selected.

{underline, Int} <unspec>
Underline character N to indicate a
keyboard accelerator.

{group, Atom} <unspec>

Radio button: only one per group is
selected at one time. Check button:
All in the same group are selected
automatically.

{value, Atom} <unspec>
Radio buttons only. Groups radio
buttons together within a group.

Table 8.9: Options for all Button Types

Config-Only Description

flash Flash button

invoke Explicit button press.

toggle Check buttons only. Toggles select value.

Table 8.10: Config-Only Options for all Button types

Buttontype Event

normal {gs, itemId, click, Data, [Text| _]}

check {gs, itemId, click, Data, [Text, Group, Bool | _]}

radio {gs, itemId, click, Data, [Text, Group, Value | _]}

Table 8.11: >Events for all Button types

Buttons and check buttons are simple to understand, radio buttons are more difficult. Each radio button has a group
and a value option. The group option is used to group together two or more radio buttons. Normally, each radio button
within a group has a unique value which means that only one radio button can be selected at a time. If two (or more)
radio buttons share the same value and one of them is selected, then both will be selected and all others are de-selected.

1.8 Built-In Objects

30 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

The following short example shows how to program radio button logic in a situation where two of them share the
same value.

-module(ex8).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([start/0]).

start() ->
 gs:window(win,gs:start(),{map,true}),
 gs:radiobutton(rb1,win,[{label,{text,"rb1"}},{value,a},{y,0}]),
 gs:radiobutton(rb2,win,[{label,{text,"rb2"}},{value,a},{y,30}]),
 gs:radiobutton(rb3,win,[{label,{text,"rb3"}},{value,b},{y,60}]),
 rb_loop().

rb_loop() ->
 receive
 {gs,Any_Rb,click,Data,[Text, Grp, a | Rest]} ->
 io:format("either rb1 or rb2 is on.~n",[]),
 rb_loop();
 {gs,rb3,click,Data,[Text, Grp, b | Rest]} ->
 io:format("rb3 is selected.~n",[]),
 rb_loop()
 end.

Figure 8.3: Radio Button Group with Last Button Selected

The example shown creates three radio buttons which are members of the same group. The default behavior is that
all radio buttons created by the same process are members of the same group. Normally, only one in a group may be
selected at the same time, but since we defined the value-option to have the same value for rb1 and rb2, they will
both be selected/de-selected simultaneously. The normal radio button group behavior is that all radio buttons within
the same group have unique default values.

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 31

1.8.5 Label

{Option,Value} Default Description

{align,Align} center
How the text is aligned within the
frame.

{justify,left|right|center} left How to justify several lines of text.

{label,Label} <unspec> Text or image to show.

{underline,Int} <unspec>
Underline character N to indicate a
keyboard accelerator.

Table 8.12: Label Options

A label is a simple text field which is used to display text to the user. It is possible to have several lines of text by
inserting newline '\ ' characters between each line. The label object does not automatically adjust its size so that text
will fit inside. This has to be done manually, or the text may be clipped at the edges.

1.8.6 Frame
The frame object acts as a container for other objects. Its main use is to logically and visually group objects together.
Grouped objects can then be moved, displayed, or hidden in one single operation.

{Option,Value} Default Description

{bw,Int} <unspec> Border width

{packer_x,PackList} <unspec>
Makes the frame pack its children.
See the packer section.

{packer_y,PackList} <unspec>
Makes the frame pack its children.
See the packer section.

Table 8.13: Frame Options

It is possible to have frame objects within frame objects so that large hierarchical structures of objects can be created.

1.8 Built-In Objects

32 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8.7 Entry

Figure 8.4: Label and Entry Objects for User Input

{Option,Value} Default Description

{justify, left|right|center} left Text justification in entry field.

{text, String} <unspec>
Use this option to initially set some
text, and to read the text.

Table 8.14: Entry Options

Entrys are used to prompt the user for text input.

Config-Only Description

{delete, {From, To}} Deletes the characters within index {From,To}.

{delete, last} Deletes the last character.

{delete, Index} Deletes the character at position Index.

{insert, {Index, String}}
Inserts text at the specific character position. Index
starts from 0.

{select, {From, To}} Selects a range.

{select, clear} De-selects selected text.

Table 8.15: Entry Config-Only Options

A common usage of the entry object is to listen for the 'Return' key event and then read the text field. The following
example shows a simple dialog which prompts the user for a name and returns the tuple {name,Name} when a name
is entered, or cancel if the cancel button is pressed.

-module(ex9).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 33

-vsn('$Revision: /main/release/2 $ ').

-export([start/0,init/1]).

start() ->
 spawn(ex9, init, [self()]),
 receive
 {entry_reply, Reply} -> Reply
 end.

init(Pid) ->
 S = gs:start(),
 Win = gs:create(window,S,[{title,"Entry Demo"},
 {width,150},{height,100}]),
 gs:create(label,Win,[{label,{text,"What's your name?"}},
 {width,150}]),
 gs:create(entry,entry,Win,[{x,10},{y,30},{width,130},
 {keypress,true}]),
 gs:create(button,ok,Win,[{width,45},{y,60},{x,10},
 {label,{text,"Ok"}}]),
 gs:create(button,cancel,Win,[{width,60},{y,60},{x,80},
 {label,{text,"Cancel"}}]),
 gs:config(Win,{map,true}),
 loop(Pid).

loop(Pid) ->
 receive
 {gs,entry,keypress,_,['Return'|_]} ->
 Text=gs:read(entry,text),
 Pid ! {entry_reply,{name,Text}};
 {gs,entry,keypress,_,_} -> % all other keypresses
 loop(Pid);
 {gs,ok,click,_,_} ->
 Text=gs:read(entry,text),
 Pid ! {entry_reply,{name,Text}};
 {gs,cancel,click,_,_} ->
 Pid ! {entry_reply,cancel};
 X ->
 io:format("Got X=~w~n",[X]),
 loop(Pid)
 end.

The program draws the dialog and waits for the user to either press the return key or click one of the buttons. It then
reads the text option of the entry and returns the string to the client process.

1.8.8 Listbox
A listbox is a list of labels with optional scroll bars attached. The user selects one or more predefined alternative
entries. You can add and remove entries in the listbox. The first element in a listbox has index 0.

{Option,Value} Default Description

{hscroll, Bool | top | bottom} true Horizontal scroll bar.

{items, [String, String ... String]} <unspec> All items (entries) in the listbox.

{scrollbg, Color} <unspec> Foreground color of scroll bar.

{scrollfg, Color} <unspec> Background color of scroll bar.

1.8 Built-In Objects

34 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

{selectmode, single | multiple} single
Controls if it is possible to have
several items selected at the same
time.

{vscroll, Bool | left | right} true Vertical scroll bar.

Table 8.16: Listbox Options

Config-Only Description

{add, {Index, String}} Add an item at specified index.

{add, String} Add an item last.

{change, {Index,String}} Change one item.

clear Delete all items.

{del, Index | {From, To}}
Delete an item at specified index, or all from index
From to index To.

{see, Index} Make the item at specified index visible.

{selection, Index | {From,To}| clear} Select an item (highlight it). Clear erases the selection.

Table 8.17: Listbox Cinfig-only Options

Read-Only Return Description

selection ListOfStrings
Returns current selection. All
selected item indices will be
returned in a list.

size Int
The number of items (entries) in the
listbox.

{get, Index} String Returns item at specified index.

Table 8.18: Listbox Read-Only Options

Event

{gs, ListBox, click, Data, [Index, Text,Bool | _]}

{gs, ListBox, doubleclick, Data, [Index, Text,Bool | _]}

Table 8.19: Listbox Events

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 35

Bool is true if object is selected, false if de-selected.

Note that click and doubleclick are two discrete events: if you have subscribed to both, you will receive both a
click event and a doubleclick event when double-clicking on one item (since two rapid clickings are regarded
as both a click and a doubleclick). The subscription of doubleclick events does not result in the click
events being unsubscribed!

The following example shows a simple application which prompts the user for a text item. The user has the following
options:

• browse the items and then double-click the required item

• type the name into the entry field and then press the Return key

• select the required item and then click the OK button.

Figure 8.5: Simple Browser Dialog

-module(ex10).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([start/0, init/3]).

start() ->
 start("Pick a fruit:",
 [apple, banana, lemon, orange, strawberry,
 mango, kiwi, pear, cherry,pineapple,peach,apricot]).

start(Text,Items) ->
 spawn(ex10,init,[self(),Text,Items]),
 receive
 {browser,Result} -> Result
 end.

init(Pid,Text,Items) ->
 S=gs:start(),
 Win=gs:window(S,[{width,250},{height,270},
 {title,"Browser"}]),
 Lbl=gs:label(Win,[{label,{text,Text}},{width,250}]),
 Entry=gs:entry(Win,[{y,35},{width,240},{x,5},
 {keypress,true},
 {setfocus,true}]),
 Lb=gs:listbox(Win,[{x,5},{y,65},{width,160},
 {height,195},{vscroll,right},
 {click,true},{doubleclick,true}]),
 Ok=gs:button(Win,[{label,{text,"OK"}},
 {width,40},{x,185},{y,175}]),
 Cancel=gs:button(Win,[{label,{text,"Cancel"}},

1.8 Built-In Objects

36 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

 {x,175},{y,225},{width,65}]),
 gs:config(Lb,[{items,Items}]),
 gs:config(Win,{map,true}),
 browser_loop(Pid,Ok,Cancel,Entry,Lb).

browser_loop(Pid,Ok,Cancel,Entry,Lb) ->
 receive
 {gs,Ok,click,_,_} ->
 Txt=gs:read(Entry,text),
 Pid ! {browser,{ok,Txt}};
 {gs,Cancel,click,_,_} ->
 Pid ! {browser,cancel};
 {gs,Entry,keypress,_,['Return'|_]} ->
 Txt=gs:read(Entry,text),
 Pid ! {browser,{ok,Txt}};
 {gs,Entry,keypress,_,_} ->
 browser_loop(Pid,Ok,Cancel,Entry,Lb);
 {gs,Lb,click,_,[Idx, Txt|_]} ->
 gs:config(Entry,{text,Txt}),
 browser_loop(Pid,Ok,Cancel,Entry,Lb);
 {gs,Lb,doubleclick,_,[Idx, Txt|_]} ->
 Pid ! {browser,{ok,Txt}};
 {gs,_,destroy,_,_} ->
 Pid ! {browser,cancel};
 X ->
 io:format("Got X=~w~n",[X]),
 browser_loop(Pid,Ok,Cancel,Entry,Lb)
 end.

1.8.9 Canvas
The canvas object is a simple drawing area. The user can draw graphical objects and move them around the drawing
area. The canvas also has optional scroll bars which can be used to scroll the drawing area. The graphical objects that
can be created on a canvas object are:

• arc

• image

• line

• oval

• polygon

• rectangle

• text.

These objects must have a canvas object as a parent, but they are otherwise similar to all other basic objects. The
following tables show the options which apply to canvas objects.

{Option,Value} Default Description

{bg, Color} <unspec> Color of the drawing area.

{hscroll, Bool | top | bottom} false Horizontal scroll bar.

{scrollbg, Color} <unspec> Foreground color of scroll bar.

{scrollfg, Color} <unspec> Background color of scroll bar.

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 37

{scrollregion, {X1,Y1,X2,Y2}} <unspec>
The size of the drawing area to be
scrolled.

{vscroll, Bool | left | right} false Vertical scroll bar.

Table 8.20: Canvas Options

Read-Only Return Description

{hit, {X,Y}} list of ObjectId Returns the canvas objects at X,Y.

{hit, [{X1,Y1},{X2,Y2}]} list of ObjectId
Returns the canvas objects which are
hit by the rectangle.

Table 8.21: Canvas Read-Only Options

Canvas objects have the same types of events as other objects. The following Config-Only options also apply to canvas
objects:

Config-Only Description

lower Lowers the object.

{move, {Dx, Dy}} Moves object relative to its current position.

raise Raises the object above all other objects.

Table 8.22: Canvas Config-Only Options

The following sections describe the graphical objects which can be drawn on a canvas object.

The Canvas Arc Object
The canvas arc object is defined within a rectangle and is drawn from a start angle to the extent angle. Origo is in
the center of the rectangle.

Figure 8.6: Canvas Arc Object

gs:create(arc,Canvas,[{coords,[{10,10},{80,80}]},{fill,yellow}]).

1.8 Built-In Objects

38 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

{Option,Value} Default Description

{bw, Int} 1 Defines the width.

{coords, [{X1,Y1},{X2,Y2}]}
Defines a rectangle to draw the arc
within.

{extent, Degrees}

{fg, Color}

{fill, Color|none} none Defines fill color of arc object.

{start, Degrees}

{style, arc} No line segments.

{style, chord}
A single line segment connects the
two end points of the perimeter
section.

{style, pieslice} This Style
Two lines are drawn between the
center of the oval and each end of
the perimeter section.

Table 8.23: Canvas Arc Options

The Canvas Image Object
The canvas image object displays images and moves them around in a simple way. The currently supported image
formats are bitmap and gif.

Figure 8.7: Canvas Image Object

gs:create(image,Canvas,[{load_gif,"brick.gif"}]).

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 39

{Option,Value} Default Description

{anchor, Anchor} nw
Anchor reference specified by
{X,Y} .

{bg, Color} <unspec> Background color. Pixel value 0.

{bitmap, FileName} <unspec>
A bitmap file which contains a bmp
bitmap.

{coords, [{X,Y}]} <unspec> Position on the canvas.

{fg, Color} <unspec> Foreground color. Pixel value 1.

{load_gif, FileName} <unspec> Loads a gif image.

Table 8.24: Canvas Image Object Options

The Canvas Line Object

Figure 8.8: Line Object Drawn on a Canvas

gs:create(line,Canvas,
 [{coords,[{25,25},{50,50},{50,40},{85,75}]},
 {arrow,last},{width,2}]).

{Option,Value} Default Description

{arrow, both | none | first | last} none
Draws arrows at the end points of
the line.

{coords, [{X1,Y1},{X2,Y2}, ...
{Xn,Yn}]}

<unspec>
A list of coordinates. The line will
be drawn between all pairs in the
list.

{fg, Color} <unspec> The color of the line.

{smooth, Bool} false Smoothing with Bezier splines.

1.8 Built-In Objects

40 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

{splinesteps, Int} <unspec>

{width, Int} 1 The width of the line.

Table 8.25: Canvas Line Object Options

The Canvas Oval Object

Figure 8.9: Oval Object Drawn on a Canvas

gs:create(oval,Canvas,
 [{coords,[{25,25},{125,75}]},{fill,red},{bw,2}]).

{Option,Value} Default Description

{bw, Int} 1 Width.

{coords, [{X1,Y1},{X2,Y2}]} <unspec>
Bounding rectangle which defines
shape of object.

{fg, Color}

{fill, Color|none} none Object fill color.

Table 8.26: Canvas Oval Object Options

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 41

The Canvas Polygon Object

Figure 8.10: Canvas Polygon Object

gs:create(polygon,Canvas,
 [{coords,[{10,10},{50,50},{75,30}]}]).

{Option,Value} Default Description

{bw, Int} 1 Width.

{coords, [{X1,Y1},{X2,Y2} |
{Xn,Yn}]}

<unspec>
Defines all points in the polygon.
There may be any number of points
in the polygon.

{fg, Color} black The color of the polygon outline.

{fill, Color|none} none

{smooth, Bool} false Smoothing with Bezier splines.

{splinesteps, Int} <unspec>

Table 8.27: Canvas Polygon Object Options

1.8 Built-In Objects

42 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

The Canvas Rectangle Object

Figure 8.11: Rectangle Object Created on a Canvas

gs:create(rectangle,Canvas,
 [{coords,[{30,30},{70,70}]},{fill,cyan},{bw,2}]).

{Option,Value} Default Description

{bw, Int} 1 The width of the border line.

{coords, [{X1,Y1},{X2,Y2}]} <unspec> Defines rectangle coordinates.

{fg, Color} <unspec> The color of the border line.

{fill, Color|none} none Fill color of rectangle.

Table 8.28: Canvas Rectangle Object Options

The Canvas Text Object

Figure 8.12: Canvas Text Object

gs:create(text,C,[{coords,[{50,50}]},
 {font,{times,18}},
 {fg,red},

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 43

 {text,"Hello World!"}]).

{Option,Value} Default Description

{anchor, Anchor} nw
Anchor reference specified by
{X,Y}.

{coords, [{X, Y}]} <unspec> Position in the canvas.

{fg, Color} <unspec>
Text color (background color is the
canvas color).

{justify, left | center | right} <unspec>
Tex justification. Only valid with
several lines of text.

{text, String} <unspec> The text string to display.

{width, Int}
The width in pixels. The text will
be wrapped into several lines to fit
inside the width.

Table 8.29: Canvas Text Object Options

1.8.10 Menu
Menus consist of four object types:

• the menu bar

• the menu button

• the menu

• the menu item.

Menu Bar
The menu bar is a simple object. It is placed at the top of the window and contains menu items. {x,y} or width cannot
be controlled since, by definition, the menu bar is placed at the top of the window.

{Option,Value} Default Description

<only generic options>

Table 8.30: Menu Bar Options

Menu Button
The menu button displays a menu when pressed. The width of the menu button is automatically determined by the
size of the text.

{Option,Value} Default Description

1.8 Built-In Objects

44 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

{align, Align} center Text alignment within the frame.

{justify, left | center | right} center
Justification is only valid when there
are several lines of text.

{label,{text,Text}} <unspec>

{side, left | right} <unspec>
Placement on the menu bar. The
menu button created first will have
the left/right position.

{underline, Int} <unspec>
Underline character N to indicate an
keyboard accelerator.

Table 8.31: Menu Button Options

Menu
The menu contains menu items, which are displayed vertically. Its width is automatically determined by the width
of the menu items it contains.

{Option,Value} Default Description

{selectcolor, Color} <unspec>
The indicator color of radio buttons
and check buttons.

Table 8.32: Menu Options

Config-Only Description

{post_at,{X,Y}}
Displays the menu as a pop-up menu at {X,Y}
(coordinate system of the parent).

Table 8.33: Menu Config-Only Options

Menu Item
The menu item is an object of its own. It can send events when the user selects it.

{Option,Value} Default Description

{group, Atom} <unspec> For {type, radio|check}.

{itemtype, type} normal
The type of this item. Cannot be
reconfigured.

{label, {text,Text}} <unspec> The text of the item.

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 45

{underline, Int} <unspec>
Underline character N to indicate an
keyboard accelerator.

{value, Atom} <unspec>

Table 8.34: Menu Item Options

type: normal | separator | check | radio | cascade

itemtype Event

normal {gs, itemId, click, Data, [Text, Index | _]}

check {gs, itemId, click, Data, [Text, Index, Group, Bool| _]}

radio {gs, itemId, click, Data, [Text, Index, Group, Value| _]}

Table 8.35: Menu Item Events

Read-Only Return Description

index Int
Index in the menu. Starts counting
from 0.

Table 8.36: Menu Item Read-Only Options

Menu Demo

Figure 8.13: Simple Menu

The following example shows a short demo of the gs menus:

-module(ex13).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([start/0,init/0]).

1.8 Built-In Objects

46 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

start() -> spawn(ex13, init, []).

init() ->
 I=gs:start(),
 Win=gs:window(I, [{width,200},{height,100},
 {title,"menu"},{map, true}]),
 Bar = gs:create(menubar, Win, []),
 Fmb = gs:create(menubutton, Bar,
 [{label,{text,"File"}}]),
 Emb = gs:create(menubutton, Bar,
 [{label,{text,"Edit"}}]),
 Hmb = gs:create(menubutton, Bar,
 [{label,{text,"Help"}},{side,right}]),
 Fmnu = gs:create(menu, Fmb, []),
 Emnu = gs:create(menu, Emb, []),
 Hmnu = gs:create(menu, Hmb, []),
 gs:create(menuitem, load, Fmnu,
 [{label,{text, "Load"}}]),
 gs:create(menuitem, save, Fmnu,
 [{label,{text, "Save"}}]),
 Exit = gs:create(menuitem, Fmnu,
 [{label,{text, "Exit"}}]),
 Color = gs:create(menuitem, Emnu,
 [{label,{text, "Color"}},
 {itemtype, cascade}]),
 Cmnu = gs:create(menu, Color, [{disabledfg,gray}]),
 gs:create(menuitem, Cmnu, [{label, {text,"Red"}},
 {data, {new_color, red}},
 {itemtype,radio},{group,gr1}]),
 gs:create(menuitem, Cmnu, [{label, {text,"Blue"}},
 {data, {new_color, blue}},
 {itemtype,radio},{group,gr1}]),
 gs:create(menuitem,Cmnu, [{label, {text,"Black"}},
 {data, {new_color, black}},
 {itemtype,radio},{group,gr1}]),
 Y = gs:create(menuitem, Hmnu, [{label, {text,"You"}},
 {itemtype, check}]),
 M = gs:create(menuitem, me, Hmnu, [{label, {text, "Me"}},
 {itemtype, check}]),
 gs:create(menuitem, Hmnu, [{itemtype, separator}]),
 gs:create(menuitem, Hmnu, [{label, {text, "Other"}},
 {itemtype, check},
 {enable,false}]),
 gs:create(menuitem, doit, Hmnu, [{label, {text, "Doit!"}},
 {data, {doit, Y, M}}]),
 loop(Exit, Win).

loop(Exit, Win) ->
 receive
 {gs, save, click, _Data, [Txt, Index | Rest]} ->
 io:format("Save~n");
 {gs, load, click, _Data, [Txt, Index | Rest]} ->
 io:format("Load~n");
 {gs, Exit, click, _Data, [Txt, Index | Rest]} ->
 io:format("Exit~n"),
 exit(normal);
 {gs, _MnuItem, click, {new_color, Color}, Args} ->
 io:format("Change color to ~w. Args:~p~n",
 [Color, Args]),
 gs:config(Win, [{bg, Color}]);
 {gs, doit, click, {doit, YouId, MeId}, Args} ->
 HelpMe = gs:read(MeId, select),
 HelpYou = gs:read(YouId, select),
 io:format("Doit. HelpMe:~w, HelpYou:~w, Args:~p~n",

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 47

 [HelpMe, HelpYou, Args]);
 Other -> io:format("Other:~p~n",[Other])
 end,
 loop(Exit, Win).

1.8.11 Grid
The grid object is similar to the listbox object. The main difference is that the grid is a multi-column object which is
used to display tables. If needed, the grid can send click events when a user presses the mouse button in a table cell.
Although the grid has a behavior which is similar to the listbox, the programming is somewhat different. The data in
a table cell is represented as a pure gs object and can be treated as such. This object is called a grid line. It is located
at a row in the parent grid. If a grid line is clicked, it sends an event to its owner.

Grid Line

{Option,Value} Default Description

{{bg, Column},Color} <unspec> The background color of a cell.

{bg, {Column,Color}} <unspec>
Equivalent to {{bg,
Column},Color}.

{bg, Color} <unspec> The background color of all cells.

{click, Bool} true Turns click events on/off.

{doubleclick, Bool} false Turns double-click events on/off.

{{fg, Column},Color} <unspec> The foreground color of a cell.

{fg, {Column,Color}} <unspec> Equivalent to {{fg, Column},Color}

{fg,Color} <unspec> The foreground color of all cells.

{text, {Column,Text}} <unspec> The text in the cell.

{{text, Column},Text} <unspec> Equivalent to {text,{Column,Text}}.

{text,Text} <unspec> The text for all cells.

{row, {row}} <unspec>
The grid row. Must not be occupied
by another grid line.

Table 8.37: Grid Line Options

Event

{gs, GridLineId, click, Data, [Col, row, Text | _]}

{gs, GridLineId, doubleclick, Data, [Col, row, Text | _]}

Table 8.38: Gride Line Events

1.8 Built-In Objects

48 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

Grid

{Option,Value} Default Description

{font,Font} <unspec> A "global" grid font.

{hscroll, Bool|top|bottom} true Horizontal scroll bar.

{vscoll, Bool|left|right} true Vertical scroll bar.

{rows, {Minrow,Maxrow}} <unspec>
The rows which are currently
displayed.

{columnwidths,
[WidthCol1,WidthCol2, ...,
WidthColN}}

<unspec>

Defines the number of columns and
their widths in coordinates. The size
of the columns can be reconfigured,
but not the number of columns.

{fg, Color} <unspec>
The color of the grid pattern and the
text.

{bg, Color} <unspec> The background color.

Table 8.39: Grid Options

Read-Only Return Description

{obj_at_row, row} Object |undefined The grid line at row.

Table 8.40: Grid Read-Only Options

The rows and columns start counting at 1.

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 49

Grid Demo

Figure 8.14: Simple Grid

The following simple example shows how to use the grid.

-module(ex12).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([start/0,init/0]).

start() -> spawn(ex12, init, []).

init() ->
 R=[{window,[{width,200},{height,200},{title,"grid"},{map, true}],
 {grid, [{x,10},{y,10},{height,180},{width,180},{columnwidths,[80,60]},
 {rows,{1, 20}}],
 [{gridline,[{text,{1,"NAME"}},{text,{2,"PHONE"}},
 {font,{screen,bold,12}},{row,1},{click,false}]},
 {gridline,[{text,{1,"Adam"}},{text,{2,"1234"}},{row,2}]},
 {gridline,[{text,{1,"Beata"}},{text,{2,"4321"}},{row,3}]},
 {gridline,[{text,{1,"Thomas"}},{text,{2,"1432"}},{row,4}]},
 {gridline,[{text,{1,"Bond"}},{text,{2,"007"}},{row,5}]},
 {gridline,[{text,{1,"King"}},{text,{2,"112"}},{row,6}]},
 {gridline,[{text,{1,"Eva"}},{text,{2,"4123"}},{row,7}]}]}}],
 gs:create_tree(gs:start(),R),
 loop().

loop() ->
 receive
 {gs,_Win,destroy,_Data,_Args} -> bye;
 {gs,_Gridline,click,_Data,[Col,Row,Text|_]} ->
 io:format("Click at col:~p row:~p text:~p~n",[Col,Row,Text]),
 loop();
 Msg ->
 io:format("Got ~p~n",[Msg]),

1.8 Built-In Objects

50 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

 loop()
 end.

1.8.12 Editor
The editor object is a simple text editor.

{Option,Value} Default Description

{hscroll, Bool | top | bottom} false Horizontal scroll bar.

{insertpos,{row,Col}} <unspec> The position of the cursor.

{insertpos,'end'} <unspec> The position of the cursor.

{justify, left| right| center} left Text justification.

{scrollbg, Color} <unspec> Background color of scroll bar.

{scrollfg, Color} <unspec> Foreground color of scroll bar.

{selection, {FromIndex,ToIndex}} <unspec>
The text range that is currently
selected.

{vscroll, Bool | left | right} false Vertical scroll bar.

{vscrollpos, row} <unspec>
The top most visible row in the
editor.

{wrap, none|char | word} none
How to wrap text when the line is
full.

Table 8.41: Editor Options

Config-Only Description

clear Clears the editor.

{del, {FromIndex, ToIndex}}} Deletes text.

{fg, {{FromIndex,ToIndex},Color}} Sets the foreground color of a range of text.

{load, FileName} Read FileName into the editor.

{insert, {Index, Text}} Inserts new text.

{overwrite, {Index, Text}} Writes new text at index.

{save, FileName} Writes editor contents to file.

Table 8.42: Editor Config-Only Options

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 51

Read-Only Return Description

char_height Int
The height of the editor window
measured in characters.

char_width Int
The width of the editor window
measured in characters.

{fg,Index} Int
The foreground color of the text at
Index.

{get,{FromIndex, ToIndex}} Text The text between the indices.

size Int The number of rows in the editor.

Table 8.43: Editor Read-Only Options

Index: 'end'|insert|{row,Col}|{row,lineend}

Editor Demo

Figure 8.15: Simple Editor

1.8 Built-In Objects

52 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

-module(ex14).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/2 $ ').

-export([start/0,init/0]).

start() -> spawn(ex14, init, []).

init() ->
 Y = [{y,0},{height, 30},{width, 90}],
 R=[{window, [{width, 400},{height, 300}, {title,"editor"},{map, true}],
 [{editor,editor,[{x,0},{y, 35},{width,300},{height,250},
 {insert,{'end',"Edit this text!"}},{vscroll,right}]},
 {button, clear, [{label, {text, "Clear"}},{x,0} | Y]},
 {checkbutton,enable,[{label,{text,"Enable"}},{select,false},{x,100}|Y]},
 {button, time, [{label, {text, "Insert Time"}},{x,200} | Y]},
 {button, quit, [{label, {text, "Quit"}},{x,300} | Y]}]}],
 gs:create_tree(gs:start(),R),
 gs:config(editor,{enable,false}),
 loop().

loop() ->
 receive
 {gs, clear, _, _, _} ->
 io:format("clear editor~n"),
 Enable = gs:read(editor, enable),
 gs:config(editor,{enable, true}),
 gs:config(editor,clear),
 gs:config(editor,{enable, Enable});
 {gs, enable, _, _, [_Txt, _Grp, Enable|_]} ->
 io:format("Enable: ~w~n", [Enable]),
 gs:config(editor,{enable, Enable});
 {gs, time, _, _, _} ->
 TimeStr = io_lib:format("Hr:Min:Sec is now ~w:~w:~w~n",
 tuple_to_list(time())),
 io:format("Insert Time: ~s~n", [TimeStr]),
 Enable = gs:read(editor, enable),
 gs:config(editor,{enable, true}),
 gs:config(editor,{insert, {insert, TimeStr}}),
 gs:config(editor,{enable, Enable});
 {gs, quit, _, _, _} ->
 exit(normal);
 Other ->
 io:format("Other:~w~n",[Other])
 end,
 loop().

1.8.13 Scale
A scale object is used to select a value within a specified range.

{Option,Value} Default Description

{orient, vertical | horizontal} horizontal The orientation of the scale.

{pos, Int} <unspec>
The current value of the scale
objects within the range.

{range, {Min, Max}} <unspec> The value range.

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 53

{showvalue, Bool} true Turns showing of scale value on/off.

{text, String} <unspec>
If specified, a label will be attached
to the scale.

Table 8.44: Scale Object Options

Event

{gs, Scale, click, Data, [Value | _]}

Table 8.45: Scale Object Options

The following example prompts a user to specify an RGB-value for the background color of a window.

Figure 8.16: Scale Objects for Selecting RGB Values for a Window

-module(ex11).
-copyright('Copyright (c) 1991-97 Ericsson Telecom AB').
-vsn('$Revision: /main/release/3 $ ').

-export([start/0,init/0]).

start() ->
 spawn(ex11,init,[]).

init() ->
 I= gs:start(),
 W= gs:window(I,[{title,"Color Demo"},
 {width,300},{height,195}]),
 B=gs:button(W,[{label,{image,"die_icon"}},{x,271},{y,166},
 {width,30}]),

1.8 Built-In Objects

54 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

 gs:config(B,[{bg,yellow},{fg,hotpink1},{data,quit}]),
 gs:scale(W,[{text,"Red"},{y,0},{range,{0,255}},
 {orient,horizontal},
 {height,65},{data,red},{pos,42}]),
 gs:scale(W,[{text,"Blue"},{y,65},{range,{0,255}},
 {orient,horizontal},
 {height,65},{data,blue},{pos,42}]),
 gs:scale(W,[{text,"Green"},{y,130},{range,{0,255}},
 {orient,horizontal},
 {height,65},{data,green},{pos,42}]),
 gs:config(W,{map,true}),
 loop(W,0,0,0).

loop(W,R,G,B) ->
 gs:config(W,{bg,{R,G,B}}),
 receive
 {gs,_,click,red,[New_R|_]} ->
 loop(W,New_R,G,B);
 {gs,_,click,green,[New_G|_]} ->
 loop(W,R,New_G,B);
 {gs,_,click,blue,[New_B|_]} ->
 loop(W,R,G,New_B);
 {gs,_,click,quit,_} ->
 true;
 {gs,W,destroy,_,_} ->
 true
 end.

1.8 Built-In Objects

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 55

2 Reference Manual

The Graphics System application, GS, is a library of routines for writing graphical user interfaces. Programs written
using GS work on all Erlang platforms and do not depend upon the underlying windowing system.

gs

56 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

gs
Erlang module

Warning:
GS is not recommended for use in new applications. Instead we recommend WX for applications that need a
graphical user interface.

GS is deprecated and will be removed in the R16 release.

The Graphics System, GS, is easy to learn and designed to be portable to many different platforms.

In the description below, the type gsobj() denotes a reference to a graphical object created with GS. Such a reference
is either a GS object identifier or the name of the object (an atom), if such a name exists. The functions all return the
specified values or {error,Reason} if an error occurs.

Please refer to the GS User's Guide for a description of the different object types and possible options.

Exports

config(GSObj, Options) -> ok
Types:

GSOBj = gsobj()

Options = [Option] | Option

 Option = {Key,Value}

Configures a graphical object according to the specified options.

create(ObjType, Parent) -> ObjId
create(ObjType, Parent, Options) -> ObjId
create(ObjType, Name, Parent, Options) -> ObjId
Types:

ObjType = atom()

Parent = gsobj()

Name = atom()

Options = [Option] | Option

 Option = {Key,Value}

Creates a new graphical object of the specified type as a child to the specified parent object. The object is configured
according to the options and its identifier is returned. If no options are provided, default option values are used.

If a name is provided, this name can be used to reference the object instead of the object identifier. The name is local
to the process which creates the object.

The following object types exist: window | button | radiobutton | checkbutton | label |
frame | entry | listbox | canvas | arc | image | line | oval | polygon | rectangle
| text | menubar | menubutton | menu | menuitem | grid | gridline | editor | scale

gs

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 57

create_tree(Parent, Tree) -> ok
Types:

Parent = gsobj()

Tree = [Object]

 Object = {ObjType,Options} | {ObjType,Options,Tree} |
{ObjType,Name,Options,Tree}

Creates a hierarchy of graphical objects.

destroy(GSObj) -> void()
Types:

GSObj = gsobj()

Destroys a graphical object and all its children.

ObjType(Parent)
ObjType(Parent, Options)
ObjType(Name, Parent, Options)
These functions are shorthand equivalents of create/2, create/3, and create/4, respectively.

read(GSObj, Key) -> Value
Types:

GSObj = gsobj()

Key = atom()

Value = term()

Returns the value of an option key for the specified graphical object.

start() -> ObjId
Starts GS, unless it is already started, and returns its object identifier.

stop() -> void()
Stops GS and closes all windows. This function is not the opposite of start/0 as it will cause all applications to
lose their GS objects.

	Graphics System (GS)
	GS User's Guide
	GS - The Graphics System
	Introduction
	Basic Architecture of GS

	Interface Functions
	Overview
	A First Example
	Creating Objects
	Ownership
	Naming Objects

	Options
	The Option Concept
	The Option Tables
	Config-Only Options
	Read-Only Options
	Data Types

	Events
	Event Messages
	Generic Events
	The Buttonpress and Buttonrelease Events
	The Enter and Leave Events
	The Focus Event
	The Keypress Event
	The Motion Event

	Object Specific Events
	Matching Events Against Object Identifiers
	Matching Events Against Object Names
	Matching Events Against the Data Field
	Experimenting with Events

	Fonts
	The Font Model

	Default Values
	The Default Value Model

	The Packer
	The Packer

	Built-In Objects
	Overview
	Generic Options
	Generic Event Options

	Window
	Button
	Label
	Frame
	Entry
	Listbox
	Canvas
	The Canvas Arc Object
	The Canvas Image Object
	The Canvas Line Object
	The Canvas Oval Object
	The Canvas Polygon Object
	The Canvas Rectangle Object
	The Canvas Text Object

	Menu
	Menu Bar
	Menu Button
	Menu
	Menu Item
	Menu Demo

	Grid
	Grid Line
	Grid
	Grid Demo

	Editor
	Editor Demo

	Scale

	Reference Manual
	gs
	config/2
	create/2
	create/3
	create/4
	create_tree/2
	destroy/1
	ObjType/1
	ObjType/2
	ObjType/3
	read/2
	start/0
	stop/0

