
SSH
Copyright © 2005-2013 Ericsson AB. All Rights Reserved.

SSH 2.1.3
January 29 2013

Copyright © 2005-2013 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

January 29 2013

Ericsson AB. All Rights Reserved.: SSH | 1

1.1 Introduction

2 | Ericsson AB. All Rights Reserved.: SSH

1 SSH User's Guide

The SSH application implements the SSH (Secure Shell) protocol and provides an SFTP (Secret File Transfer Protocol)
client and server.

1.1 Introduction
1.1.1 Purpose
Secure Shell (SSH) is a protocol for secure remote login and other secure network services over an insecure network.
SSH provides a single, full-duplex, byte-oriented connection between client and server. The protocol also provides
privacy, integrity, server authentication and man-in-the-middle protection.

The Erlang SSH application is an implementation of the SSH protocol in Erlang which offers API functions to write
customized SSH clients and servers as well as making the Erlang shell available via SSH. Also included in the SSH
application are an SFTP (SSH File Transfer Protocol) client ssh_sftp and server ssh_sftpd.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the concepts of OTP and has a basic understanding of public keys.

1.2 Secure Shell (SSH)
1.2.1 SSH Protocol Overview
Conceptually the SSH protocol can be partitioned into four layers:

Figure 2.1: SSH Protocol Architecture

href

1.2 Secure Shell (SSH)

Ericsson AB. All Rights Reserved.: SSH | 3

Transport Protocol
The SSH Transport Protocol is a secure, low level transport. It provides strong encryption, cryptographic host
authentication and integrity protection. Currently, only a minimum of MAC- (message authentication code, a short
piece of information used to authenticate a message) and encryption algorithms are supported see ssh(3)

Authentication Protocol
The SSH authentication protocol is a general-purpose user authentication protocol run over the SSH transport protocol.
Erlang SSH supports user authentication using public key technology (RSA and DSA, X509-certificates are currently
not supported). It is also possible to use a so called keyboard interactive authentication. This method is suitable
for interactive authentication methods that do not need any special software support on the client side. Instead, all
authentication data should be entered via the keyboard. It is also possible to use a pure password based authentication
scheme, note that in this case the the plain text password will be encrypted before sent over the network. There
are several configuration options for authentication handling available in ssh:connect/[3,4] and ssh:daemon/[2,3]
It is also possible to customize the public key handling by implementing the behaviours ssh_client_key_api and
ssh_server_key_api

Connection Protocol
The SSH Connection Protocol provides application-support services over the transport pipe, such as channel
multiplexing, flow control, remote program execution, signal propagation, connection forwarding, etc. Functions for
handling the SSH Connection Protocol can be found in the module ssh_connection.

Channels
All terminal sessions, forwarded connections etc., are channels. Multiple channels are multiplexed into a single
connection, and all channels are flow-controlled. Typically an SSH client will open a channel, send data/commands,
receive data/"control information" and when it is done close the channel. The ssh_channel behaviour makes it easy to
write your own SSH client/server processes that use flow control. It handles generic parts of SSH channel management
and lets you focus on the application logic.

Channels comes in three flavors

• Subsystem - named services that can be run as part of an SSH server such as SFTP ssh_sftpd, that is built in to
the SSH daemon (server) by default but may be disabled. The Erlang SSH daemon may be configured to run
any Erlang implemented SSH subsystem.

• Shell - interactive shell. By default the Erlang daemon will run the Erlang shell. It is possible to customize the
shell by providing your own read-eval-print loop. It is also possible, but much more work, to provide your own
CLI (Command Line Interface) implementation.

• Exec - one-time remote execution of commands. See ssh_connection:exec/4

Channels are flow controlled. No data may be sent to a channel peer until a message is received to indicate that window
space is available. The 'initial window size' specifies how many bytes of channel data that can be sent to the channel
peer without adjusting the window.

For more detailed information about the SSH protocol, see the following RFCs:

• RFC 4250 - Protocol Assigned Numbers.

• RFC 4251 - Protocol Architecture.

• RFC 4252 - Authentication Protocol.

• RFC 4253 - Transport Layer Protocol.

• RFC 4254 - Connection Protocol.

• RFC 4255 - Key Fingerprints.

• RFC 4344 - Transport Layer Encryption Modes.

• RFC 4716 - Public Key File Format.

href
href
href
href
href
href
href
href

1.3 Getting started

4 | Ericsson AB. All Rights Reserved.: SSH

1.3 Getting started
1.3.1 General information
The examples in the following sections use the utility function ssh:start/0 that starts all needed applications (crypto,
public_key and ssh). All examples are run in an Erlang shell, or in a bash shell using openssh to illustrate how the
erlang ssh application can be used. The exampels are run as the user otptest on a local network where the user is
authorized to login in over ssh to the host "tarlop". If nothing else is stated it is persumed that the otptest user has an
entry in tarlop's authorized_keys file (may log in via ssh without entering a password). Also tarlop is a known host in
the user otptest's known_hosts file so that host verification can be done without user interaction.

1.3.2 Using the Erlang SSH Terminal Client
The user otptest, that has bash as default shell, uses the ssh:shell/1 client to connect to the openssh daemon running
on a host called tarlop. Note that currently this client is very simple and you should not be expected to be as fancy
as the openssh client.

 1> ssh:start().
 ok
 2> {ok, S} = ssh:shell("tarlop").
 >pwd
 /home/otptest
 >exit
 logout
 3>

1.3.3 Running an Erlang SSH Daemon
The option system_dir must be a directory containing a host key file and it defaults to /etc/ssh. For details see section
Configuration Files in ssh(6).

Note:
Normally the /etc/ssh directory is only readable by root.

The option user_dir defaults to the users ~/.ssh directory

In the following example we generate new keys and host keys as to be able to run the example without having root
privilages

 $bash> ssh-keygen -t rsa -f /tmp/ssh_daemon/ssh_host_rsa_key
 [...]
 $bash> ssh-keygen -t rsa -f /tmp/otptest_user/.ssh/id_rsa
 [...]

Create the file /tmp/otptest_user/.ssh/authrized_keys and add the content of /tmp/otptest_user/.ssh/id_rsa.pub Now we
can do

1.3 Getting started

Ericsson AB. All Rights Reserved.: SSH | 5

 1> ssh:start().
 ok
 2> {ok, Sshd} = ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"}]).
 {ok,<0.54.0>}
 3>

Use the openssh client from a shell to connect to the Erlang ssh daemon.

 $bash> ssh tarlop -p 8989 -i /tmp/otptest_user/.ssh/id_rsa\
 -o UserKnownHostsFile=/tmp/otptest_user/.ssh/known_hosts
 The authenticity of host 'tarlop' can't be established.
 RSA key fingerprint is 14:81:80:50:b1:1f:57:dd:93:a8:2d:2f:dd:90:ae:a8.
 Are you sure you want to continue connecting (yes/no)? yes
 Warning: Permanently added 'tarlop' (RSA) to the list of known hosts.
 Eshell V5.10 (abort with ^G)
 1>

There are two ways of shutting down an SSH daemon

1: Stops the listener, but leaves existing connections started by the listener up and running.

 3> ssh:stop_listener(Sshd).
 ok
 4>

2: Stops the listener and all connections started by the listener.

 3> ssh:stop_daemon(Sshd)
 ok
 4>

1.3.4 One Time Execution
In the following example the Erlang shell is the client process that receives the channel replies.

Note:
If you run this example in your environment you may get fewer or more messages back as this depends on the
OS and shell on the machine running the ssh daemon. See also ssh_connection:exec/4

 1> ssh:start().
 ok
 2> {ok, ConnectionRef} = ssh:connect("tarlop", 22, []).
 {ok,<0.57.0>}
 3>{ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
 {ok,0}

1.3 Getting started

6 | Ericsson AB. All Rights Reserved.: SSH

 4> success = ssh_connection:exec(ConnectionRef, ChannelId, "pwd", infinity).
 5> flush().
 Shell got {ssh_cm,<0.57.0>,{data,0,0,<<"/home/otptest\n">>}}
 Shell got {ssh_cm,<0.57.0>,{eof,0}}
 Shell got {ssh_cm,<0.57.0>,{exit_status,0,0}}
 Shell got {ssh_cm,<0.57.0>,{closed,0}}
 ok
 6>

Note only the channel is closed the connection is still up and can handle other channels

 6> {ok, NewChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
 {ok,1}
 ...

1.3.5 SFTP (SSH File Transport Protocol) server

 1> ssh:start().
 ok
 2> ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"},
 {subsystems, [ssh_sftpd:subsystem_spec([{cwd, "/tmp/sftp/example"}])]}]).
 {ok,<0.54.0>}
 3>

Run the openssh sftp client

 $bash> sftp -oPort=8989 -o IdentityFile=/tmp/otptest_user/.ssh/id_rsa\
 -o UserKnownHostsFile=/tmp/otptest_user/.ssh/known_hosts tarlop
 Connecting to tarlop...
 sftp> pwd
 Remote working directory: /tmp/sftp/example
 sftp>

1.3.6 SFTP (SSH File Transport Protocol) client

 1> ssh:start().
 ok
 2> {ok, ChannelPid, Connection} = ssh_sftp:start_channel("tarlop", []).
 {ok,<0.57.0>,<0.51.0>}
 3> ssh_sftp:read_file(ChannelPid, "/home/otptest/test.txt").
 {ok,<<"This is a test file\n">>}

1.3.7 Creating a subsystem
A very small SSH subsystem that echos N bytes could be implemented like this. See also ssh_channel(3)

1.3 Getting started

Ericsson AB. All Rights Reserved.: SSH | 7

-module(ssh_echo_server).
-behaviour(ssh_subsystem).
-record(state, {
 n,
 id,
 cm
 }).
-export([init/1, handle_msg/2, handle_ssh_msg/2, terminate/2]).

init([N]) ->
 {ok, #state{n = N}}.

handle_msg({ssh_channel_up, ChannelId, ConnectionManager}, State) ->
 {ok, State#state{id = ChannelId,
 cm = ConnectionManager}}.

handle_ssh_msg({ssh_cm, CM, {data, ChannelId, 0, Data}}, #state{n = N} = State) ->
 M = N - size(Data),
 case M > 0 of
 true ->
 ssh_connection:send(CM, ChannelId, Data),
 {ok, State#state{n = M}};
 false ->
 <<SendData:N/binary, _/binary>> = Data,
 ssh_connection:send(CM, ChannelId, SendData),
 ssh_connection:send_eof(CM, ChannelId),
 {stop, ChannelId, State}
 end;
handle_ssh_msg({ssh_cm, _ConnectionManager,
 {data, _ChannelId, 1, Data}}, State) ->
 error_logger:format(standard_error, " ~p~n", [binary_to_list(Data)]),
 {ok, State};

handle_ssh_msg({ssh_cm, _ConnectionManager, {eof, _ChannelId}}, State) ->
 {ok, State};

handle_ssh_msg({ssh_cm, _, {signal, _, _}}, State) ->
 %% Ignore signals according to RFC 4254 section 6.9.
 {ok, State};

handle_ssh_msg({ssh_cm, _, {exit_signal, ChannelId, _, _Error, _}},
 State) ->
 {stop, ChannelId, State};

handle_ssh_msg({ssh_cm, _, {exit_status, ChannelId, _Status}}, State) ->
 {stop, ChannelId, State}.

terminate(_Reason, _State) ->
 ok.

And run like this on the host tarlop with the keys generated in section 3.3

 1> ssh:start().
 ok
 2> ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"}
 {subsystems, [{"echo_n", {ssh_echo_server, [10]}}]}]).
 {ok,<0.54.0>}
 3>

1.3 Getting started

8 | Ericsson AB. All Rights Reserved.: SSH

 1> ssh:start().
 ok
 2>{ok, ConnectionRef} = ssh:connect("tarlop", 8989, [{user_dir, "/tmp/otptest_user/.ssh"}]).
 {ok,<0.57.0>}
 3>{ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
 4> success = ssh_connection:subsystem(ConnectionRef, ChannelId, "echo_n", infinity).
 5> ok = ssh_connection:send(ConnectionRef, ChannelId, "0123456789", infinity).
 6> flush().
 {ssh_msg, <0.57.0>, {data, 0, 1, "0123456789"}}
 {ssh_msg, <0.57.0>, {eof, 0}}
 {ssh_msg, <0.57.0>, {closed, 0}}
 7> {error, closed} = ssh_connection:send(ConnectionRef, ChannelId, "10", infinity).

1.3 Getting started

Ericsson AB. All Rights Reserved.: SSH | 9

2 Reference Manual

The SSH application is an erlang implementation of the secure shell protocol (SSH) as defined by RFC 4250 - 4254

SSH

10 | Ericsson AB. All Rights Reserved.: SSH

SSH
Application

DEPENDENCIES
The ssh application uses the Erlang applications public_key and crypto to handle public keys and encryption, hence
these applications needs to be loaded for the ssh application to work. In an embedded environment that means they
need to be started with application:start/[1,2] before the ssh application is started.

CONFIGURATION
The ssh application does not currently have an application specific configuration file as described in application(3),
however it will by default use the following configuration files from openssh: known_hosts, authorized_keys,
authorized_keys2, id_dsa and id_rsa, ssh_host_dsa_key and ssh_host_rsa_key. By default Erlang SSH will look for
id_dsa, id_rsa, known_hosts and authorized_keys in ~/.ssh, and the host key files in /etc/ssh . These locations may be
changed by the options user_dir and system_dir. Public key handling may also be customized by providing a callback
module implementing the behaviors ssh_client_key_api and ssh_server_key_api.

PUBLIC KEYS
id_dsa and id_rsa are the users private key files, note that the public key is part of the private key so the ssh application
will not use the id_<*>.pub files. These are for the users convenience when he/she needs to convey their public key.

KNOW HOSTS
The known_hosts file contains a list of approved servers and their public keys. Once a server is listed, it can be verified
without user interaction.

AUTHORIZED KEYS
The authorized key file keeps track of the user's authorized public keys. The most common use of this file is to let
users log in without entering their password which is supported by the Erlang SSH daemon.

HOST KEYS
Currently rsa and dsa host keys are supported and are expected to be found in files named ssh_host_rsa_key and
ssh_host_dsa_key.

SEE ALSO
application(3)

ssh

Ericsson AB. All Rights Reserved.: SSH | 11

ssh
Erlang module

Interface module for the SSH application.

SSH
• SSH requires the crypto and public_key applications.

• Supported SSH version is 2.0

• Supported MAC algorithms: hmac-sha1

• Supported encryption algorithms: aes128-cb and 3des-cbc

DATA TYPES
Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

boolean() = true | false

string() = [byte()]

ssh_daemon_ref() - opaque to the user returned by ssh:daemon/[1,2,3]

ssh_connection_ref() - opaque to the user returned by ssh:connect/3

ip_address() - {N1,N2,N3,N4} % IPv4 | {K1,K2,K3,K4,K5,K6,K7,K8} % IPv6

subsystem_spec() = {subsystem_name(), {channel_callback(),
channel_init_args()}}

subsystem_name() = string()

channel_callback() = atom() - Name of the erlang module implementing the
subsystem using the ssh_channel behavior see ssh_channel(3)

channel_init_args() = list()

Exports

close(ConnectionRef) -> ok
Types:

ConnectionRef = ssh_connection_ref()

Closes an SSH connection.

connect(Host, Port, Options) ->
connect(Host, Port, Options, Timeout) -> {ok, ssh_connection_ref()} | {error,
Reason}
Types:

Host = string()

Port = integer()

The default is 22, the assigned well known port number for SSH.

Options = [{Option, Value}]

ssh

12 | Ericsson AB. All Rights Reserved.: SSH

Timeout = infinity | integer(milliseconds)

Connects to an SSH server. No channel is started. This is done by calling ssh_connect:session_channel/2.

Options are:

{user_dir, string()}

Sets the user directory i.e. the directory containing ssh configuration files for the user such as known_hosts,
id_rsa, id_dsa and authorized_key. Defaults to the directory normally referred to as ~/.ssh

{dsa_pass_phrase, string()}

If the user dsa key is protected by a passphrase it can be supplied with this option.

{rsa_pass_phrase, string()}

If the user rsa key is protected by a passphrase it can be supplied with this option.

{silently_accept_hosts, boolean()}

When true hosts are added to the file known_hosts without asking the user. Defaults to false.

{user_interaction, boolean()}

If false disables the client to connect to the server if any user interaction is needed such as accepting that the
server will be added to the known_hosts file or supplying a password. Defaults to true. Even if user interaction
is allowed it can be suppressed by other options such as silently_accept_hosts and password. Do note that it may
not always be desirable to use those options from a security point of view.

{public_key_alg, 'ssh-rsa' | 'ssh-dss'}

Sets the preferred public key algorithm to use for user authentication. If the the preferred algorithm fails for some
reason, the other algorithm is tried. The default is to try ssh_rsa first.

{pref_public_key_algs, list()}

List of public key algorithms to try to use, 'ssh-rsa' and 'ssh-dss' available. Will override {public_key_alg,
'ssh-rsa' | 'ssh-dss'}

{connect_timeout, timeout()}

Sets a timeout on the transport layer connection. Defaults to infinity.

{user, string()}

Provides a user name. If this option is not given, ssh reads from the environment (LOGNAME or USER on unix,
USERNAME on Windows).

{password, string()}

Provide a password for password authentication. If this option is not given, the user will be asked for a password
if the password authentication method is attempted.

{key_cb, atom()}

Module implementing the behaviour ssh_client_key_api. Can be used to customize the handling of public keys.

{quiet_mode, atom() = boolean()}

If true, the client will not print out anything on authorization.

{fd, file_descriptor()}

Allow an existing file descriptor to be used (simply passed on to the transport protocol).

{ipv6_disabled, boolean()}

Determines if SSH shall use IPv6 or not.

ssh

Ericsson AB. All Rights Reserved.: SSH | 13

{rekey_limit, integer()}

Provide, in bytes, when rekeying should be initiated, defaults to one time each GB and one time per hour.

{idle_time, integer()}

Sets a timeout on connection when no channels are active, default is infinity

connection_info(ConnectionRef, [Option]) ->[{Option, Value}]
Types:

Option = client_version | server_version | peer

Value = term()

Retrieves information about a connection.

daemon(Port) ->
daemon(Port, Options) ->
daemon(HostAddress, Port, Options) -> {ok, ssh_daemon_ref()} | {error,
atom()}
Types:

Port = integer()

HostAddress = ip_address() | any

Options = [{Option, Value}]

Option = atom()

Value = term()

Starts a server listening for SSH connections on the given port.

Options are:

{subsystems, [subsystem_spec()]
Provides specifications for handling of subsystems. The "sftp" subsystem spec can be retrieved
by calling ssh_sftpd:subsystem_spec/1. If the subsystems option in not present the value of
[ssh_sftpd:subsystem_spec([])] will be used. It is of course possible to set the option to the empty
list if you do not want the daemon to run any subsystems at all.

{shell, {Module, Function, Args} | fun(string() = User) - > pid() |
fun(string() = User, ip_address() = PeerAddr) -> pid()}

Defines the read-eval-print loop used when a shell is requested by the client. Default is to use the erlang shell:
{shell, start, []}

{ssh_cli,{channel_callback(), channel_init_args()}}
Provides your own cli implementation, i.e. a channel callback module that implements a shell and command
execution. Note that you may customize the shell read-eval-print loop using the option shell which is much
less work than implementing your own cli channel.

{user_dir, String}

Sets the user directory i.e. the directory containing ssh configuration files for the user such as known_hosts,
id_rsa, id_dsa and authorized_key. Defaults to the directory normally referred to as ~/.ssh

{system_dir, string()}

Sets the system directory, containing the host key files that identifies the host keys for ssh. The default is /etc/
ssh, note that for security reasons this directory is normally only accessible by the root user.

ssh

14 | Ericsson AB. All Rights Reserved.: SSH

{auth_methods, string()}

Comma separated string that determines which authentication methodes that the server should support and in
what order they will be tried. Defaults to "publickey,keyboard-interactive,password"

{user_passwords, [{string() = User, string() = Password}]}

Provide passwords for password authentication.They will be used when someone tries to connect to the server
and public key user authentication fails. The option provides a list of valid user names and the corresponding
password.

{password, string()}

Provide a global password that will authenticate any user. From a security perspective this option makes the
server very vulnerable.

{pwdfun, fun(User::string(), password::string() -> boolean()}

Provide a function for password validation. This is called with user and password as strings, and should return
true if the password is valid and false otherwise.

{key_cb, atom()}

Module implementing the behaviour ssh_server_key_api. Can be used to customize the handling of public keys.

{fd, file_descriptor()}

Allow an existing file-descriptor to be used (simply passed on to the transport protocol).

{ip_v6_disabled, boolean()}

Determines if SSH shall use IPv6 or not (only used when HostAddress is set to any).

{failfun, fun()}

Provide a fun() to implement your own logging when a user fails to authenticate.

{connectfun, fun()}

Provide a fun() to implement your own logging when a user authenticates to the server.

{disconnectfun, fun()}

Provide a fun() to implement your own logging when a user disconnects from the server.

shell(Host) ->
shell(Host, Option) ->
shell(Host, Port, Option) -> _
Types:

Host = string()

Port = integer()

Options - see ssh:connect/3

Starts an interactive shell via an SSH server on the given Host. The function waits for user input, and will not return
until the remote shell is ended (i.e. exit from the shell).

start() ->
start(Type) -> ok | {error, Reason}
Types:

Type = permanent | transient | temporary

Reason = term()

ssh

Ericsson AB. All Rights Reserved.: SSH | 15

Utility function that starts crypto, public_key and the SSH application. Defult type is temporary. See also application(3)

stop() -> ok
Stops the SSH application. See also application(3)

stop_daemon(DaemonRef) ->
stop_daemon(Address, Port) -> ok
Types:

DaemonRef = ssh_daemon_ref()

Address = ip_address()

Port = integer()

Stops the listener and all connections started by the listener.

stop_listener(DaemonRef) ->
stop_listener(Address, Port) -> ok
Types:

DaemonRef = ssh_daemon_ref()

Address = ip_address()

Port = integer()

Stops the listener, but leaves existing connections started by the listener up and running.

ssh_channel

16 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel
Erlang module

SSH services (clients and servers) are implemented as channels that are multiplexed over an SSH connection and
communicates via the SSH Connection Protocol. This module provides a callback API that takes care of generic
channel aspects such as flow control and close messages and lets the callback functions take care of the service
(application) specific parts. This behavior also ensures that the channel process honors the principal of an OTP-process
so that it can be part of a supervisor tree. This is a requirement of channel processes implementing a subsystem that
will be added to the SSH applications supervisor tree.

Note:
When implementing a SSH subsystem use the -behaviour(ssh_daemon_channel). instead of
-behaviour(ssh_channel). as the only relevant callback functions for subsystems are init/1,
handle_ssh_msg/2, handle_msg/2 and terminate/2, so the ssh_daemon_channel behaviour is limited version of
the ssh_channel behaviour.

DATA TYPES
Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

boolean() = true | false

string() = list of ASCII characters

timeout() = infinity | integer() - in milliseconds.

ssh_connection_ref() - opaque to the user returned by ssh:connect/3 or sent to
an SSH channel process

ssh_channel_id() = integer()

ssh_data_type_code() = 1 ("stderr") | 0 ("normal") are currently valid values
see RFC 4254 section 5.2.

Exports

call(ChannelRef, Msg) ->
call(ChannelRef, Msg, Timeout) -> Reply | {error, Reason}
Types:

ChannelRef = pid()

As returned by start_link/4

Msg = term()

Timeout = timeout()

Reply = term()

Reason = closed | timeout

href
href

ssh_channel

Ericsson AB. All Rights Reserved.: SSH | 17

Makes a synchronous call to the channel process by sending a message and waiting until a reply arrives or a timeout
occurs. The channel will call Module:handle_call/3 to handle the message. If the channel process does not exist
{error, closed} is returned.

cast(ChannelRef, Msg) -> ok
Types:

ChannelRef = pid()

As returned by start_link/4

Msg = term()

Sends an asynchronous message to the channel process and returns ok immediately, ignoring if the destination node
or channel process does not exist. The channel will call Module:handle_cast/2 to handle the message.

enter_loop(State) -> _
Types:

State = term() - as returned by ssh_channel:init/1

Makes an existing process an ssh_channel process. Does not return, instead the calling process will enter the
ssh_channel process receive loop and become an ssh_channel process. The process must have been started
using one of the start functions in proc_lib, see proc_lib(3). The user is responsible for any initialization of the process
and needs to call ssh_channel:init/1

init(Options) -> {ok, State} | {ok, State, Timeout} | {stop, Reason}
Types:

Options = [{Option, Value}]

State = term()

Timeout = timeout()

Reason = term()

The following options must be present:

{channel_cb, atom()}
The module that implements the channel behaviour.

{init_args(), list()}
The list of arguments to the callback module's init function.

{cm, connection_ref()}
Reference to the ssh connection as returned by ssh:connect/3

{channel_id, channel_id()}
Id of the SSH channel.

Note:
This function is normally not called by the user. The user only needs to call if for some reason the
channel process needs to be started with help of proc_lib instead of calling ssh_channel:start/4 or
ssh_channel:start_link/4

reply(Client, Reply) -> _
Types:

Client - opaque to the user, see explanation below

ssh_channel

18 | Ericsson AB. All Rights Reserved.: SSH

Reply = term()

This function can be used by a channel to explicitly send a reply to a client that called call/[2,3] when the reply
cannot be defined in the return value of Module:handle_call/3.

Client must be the From argument provided to the callback function handle_call/3. Reply is an arbitrary
term, which will be given back to the client as the return value of ssh_channel:call/[2,3].>

start(SshConnection, ChannelId, ChannelCb, CbInitArgs) ->
start_link(SshConnection, ChannelId, ChannelCb, CbInitArgs) -> {ok,
ChannelRef} | {error, Reason}
Types:

SshConnection = ssh_connection_ref()

ChannelId = ssh_channel_id()

As returned by cannot be defined in the return value of ssh_connection:session_channel/[2,4]

ChannelCb = atom()

The name of the module implementing the service specific parts of the channel.

CbInitArgs = [term()]

Argument list for the init function in the callback module.

ChannelRef = pid()

Starts a processes that handles an SSH channel. It will be called internally by the SSH daemon or explicitly by the
SSH client implementations. The behavior will set the trap_exit flag to true.

CALLBACK TIMEOUTS
The timeout values that may be returned by the callback functions has the same semantics as in a gen_server If the
timeout occurs handle_msg/2 will be called as handle_msg(timeout, State).

Exports

Module:code_change(OldVsn, State, Extra) -> {ok, NewState}
Types:

OldVsn = term()

In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, OldVsn is {down,Vsn}. Vsn
is defined by the vsn attribute(s) of the old version of the callback module Module. If no such attribute is
defined, the version is the checksum of the BEAM file.

State = term()

The internal state of the channel.

Extra = term()

Passed as-is from the {advanced,Extra} part of the update instruction.

Converts process state when code is changed.

This function is called by a client side channel when it should update its internal state during a release upgrade/
downgrade, i.e. when the instruction {update,Module,Change,...} where Change={advanced,Extra}
is given in the appup file. See OTP Design Principles for more information.

ssh_channel

Ericsson AB. All Rights Reserved.: SSH | 19

Note:
Soft upgrade according to the OTP release concept is not straight forward for the server side, as subsystem channel
processes are spawned by the SSH application and hence added to its supervisor tree. It could be possible to
upgrade the subsystem channels, when upgrading the user application, if the callback functions can handle two
versions of the state, but this function can not be used in the normal way.

Module:init(Args) -> {ok, State} | {ok, State, timeout()} | {stop, Reason}
Types:

Args = term()

Last argument to ssh_channel:start_link/4.

State = term()

Reason = term()

Makes necessary initializations and returns the initial channel state if the initializations succeed.

For more detailed information on timeouts see the section CALLBACK TIMEOUTS.

Module:handle_call(Msg, From, State) -> Result
Types:

Msg = term()

From = opaque to the user should be used as argument to
ssh_channel:reply/2

State = term()

Result = {reply, Reply, NewState} | {reply, Reply, NewState, timeout()}
| {noreply, NewState} | {noreply , NewState, timeout()} | {stop, Reason,
Reply, NewState} | {stop, Reason, NewState}

Reply = term() - will be the return value of ssh_channel:call/[2,3]

NewState = term()

Reason = term()

Handles messages sent by calling ssh_channel:call/[2,3]

For more detailed information on timeouts see the section CALLBACK TIMEOUTS.

Module:handle_cast(Msg, State) -> Result
Types:

Msg = term()

State = term()

Result = {noreply, NewState} | {noreply, NewState, timeout()} | {stop,
Reason, NewState}

NewState = term()

Reason = term()

Handles messages sent by calling ssh_channel:cast/2

For more detailed information on timeouts see the section CALLBACK TIMEOUTS.

ssh_channel

20 | Ericsson AB. All Rights Reserved.: SSH

Module:handle_msg(Msg, State) -> {ok, State} | {stop, ChannelId, State}
Types:

Msg = timeout | term()

ChannelId = ssh_channel_id()

State = term()

Handle other messages than ssh connection protocol, call or cast messages sent to the channel.

Possible erlang 'EXIT'-messages should be handled by this function and all channels should handle the following
message.

{ssh_channel_up, ssh_channel_id(), ssh_connection_ref()}
This is the first messages that will be received by the channel, it is sent just before the ssh_channel:init/1
function returns successfully. This is especially useful if the server wants to send a message to the client
without first receiving a message from it. If the message is not useful for your particular scenario just ignore it
by immediately returning {ok, State}.

Module:handle_ssh_msg(Msg, State) -> {ok, State} | {stop, ChannelId, State}
Types:

Msg = ssh_connection:event()

ChannelId = ssh_channel_id()

State = term()

Handles SSH connection protocol messages that may need service specific attention.

The following message is completely taken care of by the SSH channel behavior

{closed, ssh_channel_id()}
The channel behavior will send a close message to the other side if such a message has not already been sent
and then terminate the channel with reason normal.

Module:terminate(Reason, State) -> _
Types:

Reason = term()

State = term()

This function is called by a channel process when it is about to terminate. Before this function is called
ssh_connection:close/2 will be called if it has not been called earlier. This function should do any necessary cleaning
up. When it returns, the channel process terminates with reason Reason. The return value is ignored.

ssh_connection

Ericsson AB. All Rights Reserved.: SSH | 21

ssh_connection
Erlang module

The SSH Connection Protocol is used by clients and servers (i.e. SSH channels) to communicate over the SSH
connection. The API functions in this module sends SSH Connection Protocol events that are received as messages by
the remote channel. In the case that the receiving channel is an Erlang process the message will be on the following
format {ssh_cm, ssh_connection_ref(), ssh_event_msg()}. If the ssh_channel behavior is used to
implement the channel process these will be handled by handle_ssh_msg/2 .

DATA TYPES
Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

boolean() = true | false

string() = list of ASCII characters

timeout() = infinity | integer() - in milliseconds.

ssh_connection_ref() - opaque to the user returned by ssh:connect/3 or sent to
an SSH channel processes

ssh_channel_id() = integer()

ssh_data_type_code() = 1 ("stderr") | 0 ("normal") are currently valid values
see RFC 4254 section 5.2.

ssh_request_status() = success | failure

event() = {ssh_cm, ssh_connection_ref(), ssh_event_msg()}

ssh_event_msg() = data_events() | status_events() | terminal_events()

data_events()

{data, ssh_channel_id(), ssh_data_type_code(), binary() = Data}
Data has arrived on the channel. This event is sent as result of calling ssh_connection:send/[3,4,5]

{eof, ssh_channel_id()}
Indicates that the other side will not send any more data. This event is sent as result of calling
ssh_connection:send_eof/2

status_events()

{signal, ssh_channel_id(), ssh_signal()}
A signal can be delivered to the remote process/service using the following message. Some systems
will not support signals, in which case they should ignore this message. There is currently no funtion to
generate this event as the signals refered to are on OS-level and not something generated by an Erlang
program.

{exit_signal, ssh_channel_id(), string() = ExitSignal, string() =
ErrorMsg, string() = LanguageString}

A remote execution may terminate violently due to a signal then this message may be received. For details
on valid string values see RFC 4254 section 6.10. Special case of the signals mentioned above.

{exit_status, ssh_channel_id(), integer() = ExitStatus}
When the command running at the other end terminates, the following message can be sent to return the
exit status of the command. A zero 'exit_status' usually means that the command terminated successfully.
This event is sent as result of calling ssh_connection:exit_status/3

href
href

ssh_connection

22 | Ericsson AB. All Rights Reserved.: SSH

{closed, ssh_channel_id()}
This event is sent as result of calling ssh_connection:close/2 Both the handling of this event and sending
of it will be taken care of by the ssh_channel behavior.

terminal_events()

Channels implementing a shell and command execution on the server side should handle the following messages
that may be sent by client channel processes.

Note:
Events that includes a WantReply expects the event handling process to call
ssh_connection:reply_request/4 with the boolean value of WantReply as the second argument.

{env, ssh_channel_id(), boolean() = WantReply, string() = Var, string() =
Value}

Environment variables may be passed to the shell/command to be started later. This event is sent as result
of calling ssh_connection:setenv/5

{pty, ssh_channel_id(), boolean() = WantReply, {string() = Terminal,
integer() = CharWidth, integer() = RowHeight, integer() = PixelWidth,
integer() = PixelHight, [{atom() | integer() = Opcode, integer() = Value}]
= TerminalModes}}

A pseudo-terminal has been requested for the session. Terminal is the value of the TERM environment
variable value (e.g., vt100). Zero dimension parameters must be ignored. The character/row dimensions
override the pixel dimensions (when nonzero). Pixel dimensions refer to the drawable area of the window.
The Opcode in the TerminalModes list is the mnemonic name, represented as an lowercase erlang
atom, defined in RFC 4254 section 8, or the opcode if the mnemonic name is not listed in the RFC.
Example OP code: 53, mnemonic name ECHO erlang atom: echo. There is currently no
API function to generate this event.

{shell, boolean() = WantReply}
This message will request that the user's default shell be started at the other end. This event is sent as
result of calling ssh_connection:shell/2

{window_change, ssh_channel_id(), integer() = CharWidth, integer() =
RowHeight, integer() = PixWidth, integer() = PixHeight}

When the window (terminal) size changes on the client side, it MAY send a message to the server side to
inform it of the new dimensions. There is currently no API function to generate this event.

{exec, ssh_channel_id(), boolean() = WantReply, string() = Cmd}
This message will request that the server starts execution of the given command. This event is sent as
result of calling ssh_connection:exec/4

Exports

adjust_window(ConnectionRef, ChannelId, NumOfBytes) -> ok
Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

NumOfBytes = integer()

Adjusts the SSH flowcontrol window. This shall be done by both client and server side channel processes.

href

ssh_connection

Ericsson AB. All Rights Reserved.: SSH | 23

Note:
Channels implemented with the ssh_channel behavior will normaly not need to call this function as flow control
will be handled by the behavior. The behavior will adjust the window every time the callback handle_ssh_msg/2
has returned after processing channel data

close(ConnectionRef, ChannelId) -> ok
Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

A server or client channel process can choose to close their session by sending a close event.

Note:
This function will be called by the ssh_channel behavior when the channel is terminated see ssh_channel(3) so
channels implemented with the behavior should not call this function explicitly.

exec(ConnectionRef, ChannelId, Command, TimeOut) -> ssh_request_status()
Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Command = string()

Timeout = timeout()

Should be called by a client channel process to request that the server starts execution of the given command, the
result will be several messages according to the following pattern. Note that the last message will be a channel close
message, as the exec request is a one time execution that closes the channel when it is done.

N x {ssh_cm, ssh_connection_ref(), {data, ssh_channel_id(),
ssh_data_type_code(), binary() = Data}}

The result of executing the command may be only one line or thousands of lines depending on the command.
0 or 1 x {ssh_cm, ssh_connection_ref(), {eof, ssh_channel_id()}}

Indicates that no more data will be sent.
0 or 1 x {ssh_cm, ssh_connection_ref(), {exit_signal, ssh_channel_id(),
string() = ExitSignal, string() = ErrorMsg, string() = LanguageString}}

Not all systems send signals. For details on valid string values see RFC 4254 section 6.10
0 or 1 x {ssh_cm, ssh_connection_ref(), {exit_status, ssh_channel_id(),
integer() = ExitStatus}}

It is recommended by the ssh connection protocol that this message shall be sent, but that may not
always be the case.

1 x {ssh_cm, ssh_connection_ref(), {closed, ssh_channel_id()}}
Indicates that the ssh channel started for the execution of the command has now been shutdown.

exit_status(ConnectionRef, ChannelId, Status) -> ok
Types:

ConnectionRef = ssh_connection_ref()

ssh_connection

24 | Ericsson AB. All Rights Reserved.: SSH

ChannelId = ssh_channel_id()

Status = integer()

Should be called by a server channel process to sends the exit status of a command to the client.

reply_request(ConnectionRef, WantReply, Status, ChannelId) -> ok
Types:

ConnectionRef = ssh_connection_ref()

WantReply = boolean()

Status = ssh_request_status()

ChannelId = ssh_channel_id()

Sends status replies to requests where the requester has stated that they want a status report e.i . WantReply = true,
if WantReply is false calling this function will be a "noop". Should be called while handling an ssh connection
protocol message containing a WantReply boolean value.

send(ConnectionRef, ChannelId, Data) ->
send(ConnectionRef, ChannelId, Data, Timeout) ->
send(ConnectionRef, ChannelId, Type, Data) ->
send(ConnectionRef, ChannelId, Type, Data, TimeOut) -> ok | {error, timeout}
| {error, closed}
Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Data = binary()

Type = ssh_data_type_code()

Timeout = timeout()

Should be called by client- and server channel processes to send data to each other.

send_eof(ConnectionRef, ChannelId) -> ok | {error, closed}
Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Sends eof on the channel ChannelId.

session_channel(ConnectionRef, Timeout) ->
session_channel(ConnectionRef, InitialWindowSize, MaxPacketSize, Timeout) ->
{ok, ssh_channel_id()} | {error, Reason}
Types:

ConnectionRef = ssh_connection_ref()

InitialWindowSize = integer()

MaxPacketSize = integer()

Timeout = timeout()

Reason = term()

Opens a channel for an SSH session. The channel id returned from this function is the id used as input to the other
funtions in this module.

ssh_connection

Ericsson AB. All Rights Reserved.: SSH | 25

setenv(ConnectionRef, ChannelId, Var, Value, TimeOut) -> ssh_request_status()
Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Var = string()

Value = string()

Timeout = timeout()

Environment variables may be passed before starting the shell/command. Should be called by a client channel
processes.

shell(ConnectionRef, ChannelId) -> ssh_request_status()
Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Should be called by a client channel process to request that the user's default shell (typically defined in /etc/passwd
in UNIX systems) shall be executed at the server end.

subsystem(ConnectionRef, ChannelId, Subsystem, Timeout) ->
ssh_request_status()
Types:

ConnectionRef = ssh_connection_ref()

ChannelId = ssh_channel_id()

Subsystem = string()

Timeout = timeout()

Should be called by a client channel process for requesting to execute a predefined subsystem on the server.

ssh_client_key_api

26 | Ericsson AB. All Rights Reserved.: SSH

ssh_client_key_api
Erlang module

Behavior describing the API for an SSH client's public key handling. By implementing the callbacks defined. in this
behavior it is possible to customize the SSH client's public key handling. By default the SSH application implements
this behavior with help of the standard openssh files, see ssh(6).

DATA TYPES
Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

boolean() = true | false

string() = [byte()]

public_key() = #'RSAPublicKey'{}| {integer(), #'Dss-Parms'{}}| term()

private_key() = #'RSAPublicKey'{}| {integer(), #'Dss-Parms'{}}| term()

public_key_algorithm() = 'ssh-rsa'| 'ssh-dss' | atom()

Exports

Module:add_host_key(HostNames, Key, ConnectOptions) -> ok | {error, Reason}
Types:

HostNames = string()

Description of the host that owns the PublicKey

Key = public_key()

Normally an RSA or DSA public key but handling of other public keys can be added

ConnectOptions = proplists:proplist()

Options provided to ssh:connect/[3,4]

Reason = term()

Adds a host key to the set of trusted host keys

Module:is_host_key(Key, Host, Algorithm, ConnectOptions) -> Result
Types:

Key = public_key()

Normally an RSA or DSA public key but handling of other public keys can be added

Host = string()

Description of the host

Algorithm = public_key_algorithm()

Host key algorithm. Should support 'ssh-rsa'| 'ssh-dss' but additional algorithms can be handled.

ConnectOptions = proplists:proplist()

Options provided to ssh:connect/[3,4]

Result = boolean()

Checks if a host key is trusted

ssh_client_key_api

Ericsson AB. All Rights Reserved.: SSH | 27

Module:user_key(Algorithm, ConnectOptions) -> {ok, PrivateKey} | {error,
Reason}
Types:

Algorithm = public_key_algorithm()

Host key algorithm. Should support 'ssh-rsa'| 'ssh-dss' but additional algorithms can be handled.

ConnectOptions = proplists:proplist()

Options provided to ssh:connect/[3,4]

PrivateKey = private_key()

The private key of the user matching the Algorithm

Reason = term()

Fetches the users "public key" matching the Algorithm.

Note:
The private key contains the public key

ssh_server_key_api

28 | Ericsson AB. All Rights Reserved.: SSH

ssh_server_key_api
Erlang module

Behaviour describing the API for an SSH server's public key handling.By implementing the callbacks defined in this
behavior it is possible to customize the SSH server's public key handling. By default the SSH application implements
this behavior with help of the standard openssh files, see ssh(6).

DATA TYPES
Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

boolean() = true | false

string() = [byte()]

public_key() = #'RSAPublicKey'{}| {integer(), #'Dss-Parms'{}}| term()

private_key() = #'RSAPublicKey'{}| {integer(), #'Dss-Parms'{}}| term()

public_key_algorithm() = 'ssh-rsa'| 'ssh-dss' | atom()

Exports

Module:host_key(Algorithm, DaemonOptions) -> {ok, Key} | {error, Reason}
Types:

Algorithm = public_key_algorithm()

Host key algorithm. Should support 'ssh-rsa'| 'ssh-dss' but additional algorithms can be handled.

DaemonOptions = proplists:proplist()

Options provided to ssh:daemon/[2,3]

Key = private_key()

The private key of the host matching the Algorithm

Reason = term()

Fetches the hosts private key

Module:is_auth_key(Key, User, DaemonOptions) -> Result
Types:

Key = public_key()

Normally an RSA or DSA public key but handling of other public keys can be added

User = string()

The user owning the public key

DaemonOptions = proplists:proplist()

Options provided to ssh:daemon/[2,3]

Result = boolean()

Checks if the user key is authorized

ssh_sftp

Ericsson AB. All Rights Reserved.: SSH | 29

ssh_sftp
Erlang module

This module implements an SFTP (SSH FTP) client. SFTP is a secure, encrypted file transfer service available for SSH.

DATA TYPES
Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

ssh_connection_ref() - opaque to the user returned by ssh:connect/3

timeout() = infinity | integer() - in milliseconds.

TIMEOUTS
If the request functions for the SFTP channel return {error, timeout} it does not guarantee that the request did not
reach the server and was not performed, it only means that we did not receive an answer from the server within the
time that was expected.

Exports

start_channel(ConnectionRef) ->
start_channel(ConnectionRef, Options) ->
start_channel(Host, Options) ->
start_channel(Host, Port, Options) -> {ok, Pid} | {ok, Pid, ConnectionRef} |
{error, Reason}
Types:

Host = string()

ConnectionRef = ssh_connection_ref()

Port = integer()

Options = [{Option, Value}]

Reason = term()

If no connection reference is provided, a connection is set up and the new connection is returned. An SSH channel
process is started to handle the communication with the SFTP server. The returned pid for this process should be used
as input to all other API functions in this module.

Options are:

{timeout, timeout()}

The timeout is passed to the ssh_channel start function, and defaults to infinity.

All other options are directly passed to ssh:connect/3 or ignored if a connection is already provided.

stop_channel(ChannelPid) -> ok
Types:

ChannelPid = pid()

Stops an SFTP channel. Does not close the SSH connetion. Use ssh:close/1 to close it.

ssh_sftp

30 | Ericsson AB. All Rights Reserved.: SSH

read_file(ChannelPid, File) ->
read_file(ChannelPid, File, Timeout) -> {ok, Data} | {error, Reason}
Types:

ChannelPid = pid()

File = string()

Data = binary()

Timeout = timeout()

Reason = term()

Reads a file from the server, and returns the data in a binary, like file:read_file/1.

write_file(ChannelPid, File, Iolist) ->
write_file(ChannelPid, File, Iolist, Timeout) -> ok | {error, Reason}
Types:

ChannelPid = pid()

File = string()

Iolist = iolist()

Timeout = timeout()

Reason = term()

Writes a file to the server, like file:write_file/2. The file is created if it does not exist or is owerwritten if
it does.

list_dir(ChannelPid, Path) ->
list_dir(ChannelPid, Path, Timeout) -> {ok, Filenames} | {error, Reason}
Types:

ChannelPid = pid()

Path = string()

Filenames = [Filename]

Filename = string()

Timeout = timeout()

Reason = term()

Lists the given directory on the server, returning the filenames as a list of strings.

open(ChannelPid, File, Mode) ->
open(ChannelPid, File, Mode, Timeout) -> {ok, Handle} | {error, Reason}
Types:

ChannelPid = pid()

File = string()

Mode = [Modeflag]

Modeflag = read | write | creat | trunc | append | binary

Timeout = timeout()

Handle = term()

Reason = term()

Opens a file on the server, and returns a handle that can be used for reading or writing.

ssh_sftp

Ericsson AB. All Rights Reserved.: SSH | 31

opendir(ChannelPid, Path) ->
opendir(ChannelPid, Path, Timeout) -> {ok, Handle} | {error, Reason}
Types:

ChannelPid = pid()

Path = string()

Timeout = timeout()

Reason = term()

Opens a handle to a directory on the server, the handle can be used for reading directory contents.

close(ChannelPid, Handle) ->
close(ChannelPid, Handle, Timeout) -> ok | {error, Reason}
Types:

ChannelPid = pid()

Handle = term()

Timeout = timeout()

Reason = term()

Closes a handle to an open file or directory on the server.

read(ChannelPid, Handle, Len) ->
read(ChannelPid, Handle, Len, Timeout) -> {ok, Data} | eof | {error, Error}
pread(ChannelPid, Handle, Position, Len) ->
pread(ChannelPid, Handle, Position, Len, Timeout) -> {ok, Data} | eof |
{error, Error}
Types:

ChannelPid = pid()

Handle = term()

Position = integer()

Len = integer()

Timeout = timeout()

Data = string() | binary()

Reason = term()

Reads Len bytes from the file referenced by Handle. Returns {ok, Data}, eof, or {error, Reason}. If the
file is opened with binary, Data is a binary, otherwise it is a string.

If the file is read past eof, only the remaining bytes will be read and returned. If no bytes are read, eof is returned.

The pread function reads from a specified position, combining the position and read functions.

aread(ChannelPid, Handle, Len) -> {async, N} | {error, Error}
apread(ChannelPid, Handle, Position, Len) -> {async, N} | {error, Error}
Types:

ChannelPid = pid()

Handle = term()

Position = integer()

Len = integer()

ssh_sftp

32 | Ericsson AB. All Rights Reserved.: SSH

N = term()

Reason = term()

Reads from an open file, without waiting for the result. If the handle is valid, the function returns {async, N},
where N is a term guaranteed to be unique between calls of aread. The actual data is sent as a message to the calling
process. This message has the form {async_reply, N, Result}, where Result is the result from the read,
either {ok, Data}, or eof, or {error, Error}.

The apread function reads from a specified position, combining the position and aread functions.

write(ChannelPid, Handle, Data) ->
write(ChannelPid, Handle, Data, Timeout) -> ok | {error, Error}
pwrite(ChannelPid, Handle, Position, Data) -> ok
pwrite(ChannelPid, Handle, Position, Data, Timeout) -> ok | {error, Error}
Types:

ChannelPid = pid()

Handle = term()

Position = integer()

Data = iolist()

Timeout = timeout()

Reason = term()

Writesdata to the file referenced by Handle. The file should be opened with write or append flag. Returns ok
if successful or S{error, Reason} otherwise.

Typical error reasons are:

ebadf

The file is not opened for writing.

enospc

There is a no space left on the device.

awrite(ChannelPid, Handle, Data) -> ok | {error, Reason}
apwrite(ChannelPid, Handle, Position, Data) -> ok | {error, Reason}
Types:

ChannelPid = pid()

Handle = term()

Position = integer()

Len = integer()

Data = binary()

Timeout = timeout()

Reason = term()

Writes to an open file, without waiting for the result. If the handle is valid, the function returns {async, N}, where
N is a term guaranteed to be unique between calls of awrite. The result of the write operation is sent as a message
to the calling process. This message has the form {async_reply, N, Result}, where Result is the result
from the write, either ok, or {error, Error}.

The apwrite writes on a specified position, combining the position and awrite operations.

ssh_sftp

Ericsson AB. All Rights Reserved.: SSH | 33

position(ChannelPid, Handle, Location) ->
position(ChannelPid, Handle, Location, Timeout) -> {ok, NewPosition | {error,
Error}
Types:

ChannelPid = pid()

Handle = term()

Location = Offset | {bof, Offset} | {cur, Offset} | {eof, Offset} | bof |
cur | eof

Offset = integer()

Timeout = timeout()

NewPosition = integer()

Reason = term()

Sets the file position of the file referenced by Handle. Returns {ok, NewPosition} (as an absolute offset) if
successful, otherwise {error, Reason}. Location is one of the following:

Offset

The same as {bof, Offset}.

{bof, Offset}

Absolute offset.

{cur, Offset}

Offset from the current position.

{eof, Offset}

Offset from the end of file.

bof | cur | eof

The same as above with Offset 0.

read_file_info(ChannelPid, Name) ->
read_file_info(ChannelPid, Name, Timeout) -> {ok, FileInfo} | {error, Reason}
Types:

ChannelPid = pid()

Name = string()

Handle = term()

Timeout = timeout()

FileInfo = record()

Reason = term()

Returns a file_info record from the file specified by Name or Handle, like file:read_file_info/2.

read_link_info(ChannelPid, Name) -> {ok, FileInfo} | {error, Reason}
read_link_info(ChannelPid, Name, Timeout) -> {ok, FileInfo} | {error, Reason}
Types:

ChannelPid = pid()

Name = string()

Handle = term()

ssh_sftp

34 | Ericsson AB. All Rights Reserved.: SSH

Timeout = timeout()

FileInfo = record()

Reason = term()

Returns a file_info record from the symbolic link specified by Name or Handle, like
file:read_link_info/2.

write_file_info(ChannelPid, Name, Info) ->
write_file_info(ChannelPid, Name, Info, Timeout) -> ok | {error, Reason}
Types:

ChannelPid = pid()

Name = string()

Info = record()

Timeout = timeout()

Reason = term()

Writes file information from a file_info record to the file specified by Name, like file:write_file_info.

read_link(ChannelPid, Name) ->
read_link(ChannelPid, Name, Timeout) -> {ok, Target} | {error, Reason}
Types:

ChannelPid = pid()

Name = string()

Target = string()

Reason = term()

Reads the link target from the symbolic link specified by name, like file:read_link/1.

make_symlink(ChannelPid, Name, Target) ->
make_symlink(ChannelPid, Name, Target, Timeout) -> ok | {error, Reason}
Types:

ChannelPid = pid()

Name = string()

Target = string()

Reason = term()

Creates a symbolic link pointing to Target with the name Name, like file:make_symlink/2.

rename(ChannelPid, OldName, NewName) ->
rename(ChannelPid, OldName, NewName, Timeout) -> ok | {error, Reason}
Types:

ChannelPid = pid()

OldName = string()

NewName = string()

Timeout = timeout()

Reason = term()

Renames a file named OldName, and gives it the name NewName, like file:rename/2

ssh_sftp

Ericsson AB. All Rights Reserved.: SSH | 35

delete(ChannelPid, Name) ->
delete(ChannelPid, Name, Timeout) -> ok | {error, Reason}
Types:

ChannelPid = pid()

Name = string()

Timeout = timeout()

Reason = term()

Deletes the file specified by Name, like file:delete/1

make_dir(ChannelPid, Name) ->
make_dir(ChannelPid, Name, Timeout) -> ok | {error, Reason}
Types:

ChannelPid = pid()

Name = string()

Timeout = timeout()

Reason = term()

Creates a directory specified by Name. Name should be a full path to a new directory. The directory can only be
created in an existing directory.

del_dir(ChannelPid, Name) ->
del_dir(ChannelPid, Name, Timeout) -> ok | {error, Reason}
Types:

ChannelPid = pid()

Name = string()

Timeout = timeout()

Reason = term()

Deletes a directory specified by Name. Note that the directory must be empty before it can be successfully deleted

ssh_sftpd

36 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftpd
Erlang module

Specifies a channel process to handle a sftp subsystem.

DATA TYPES
subsystem_spec() = {subsystem_name(), {channel_callback(),
channel_init_args()}}

subsystem_name() = "sftp"

channel_callback() = atom() - Name of the erlang module implementing the subsystem using the
ssh_channel behavior see ssh_channel(3)

channel_init_args() = list() - The one given as argument to function
subsystem_spec/1.

Exports

subsystem_spec(Options) -> subsystem_spec()
Types:

Options = [{Option, Value}]

Should be used together with ssh:daemon/[1,2,3]

Options are:

{cwd, String}

Sets the initial current working directory for the server.

{file_handler, CallbackModule}

Determines which module to call for accessing the file server. The default value is ssh_sftpd_file that uses
the file and filelib API:s to access the standard OTP file server. This option may be used to plug in other file
servers.

{max_files, Integer}

The default value is 0, which means that there is no upper limit. If supplied, the number of filenames returned to
the sftp client per READDIR request is limited to at most the given value.

{root, String}

Sets the sftp root directory. The user will then not be able to see any files above this root. If for instance the root is
set to /tmp the user will see this directory as / and if the user does cd /etc the user will end up in /tmp/etc.

{sftpd_vsn, integer()}

Sets the sftp version to use, defaults to 5. Version 6 is under development and limited.

	SSH
	SSH User's Guide
	Introduction
	Purpose
	Prerequisites

	Secure Shell (SSH)
	SSH Protocol Overview
	Transport Protocol
	Authentication Protocol
	Connection Protocol
	Channels

	Getting started
	 General information
	Using the Erlang SSH Terminal Client
	Running an Erlang SSH Daemon
	One Time Execution
	SFTP (SSH File Transport Protocol) server
	SFTP (SSH File Transport Protocol) client
	Creating a subsystem

	Reference Manual
	SSH
	ssh
	close/1
	connect/3
	connect/4
	connection_info/2
	daemon/1
	daemon/2
	daemon/3
	shell/1
	shell/2
	shell/3
	start/0
	start/1
	stop/0
	stop_daemon/1
	stop_daemon/2
	stop_listener/1
	stop_listener/2

	ssh_channel
	call/2
	call/3
	cast/2
	enter_loop/1
	init/1
	reply/2
	start/4
	start_link/4
	Module:code_change/3
	Module:init/1
	Module:handle_call/3
	Module:handle_cast/2
	Module:handle_msg/2
	Module:handle_ssh_msg/2
	Module:terminate/2

	ssh_connection
	adjust_window/3
	close/2
	exec/4
	exit_status/3
	reply_request/4
	send/3
	send/4
	send/4
	send/5
	send_eof/2
	session_channel/2
	session_channel/4
	setenv/5
	shell/2
	subsystem/4

	ssh_client_key_api
	Module:add_host_key/3
	Module:is_host_key/4
	Module:user_key/2

	ssh_server_key_api
	Module:host_key/2
	Module:is_auth_key/3

	ssh_sftp
	start_channel/1
	start_channel/2
	start_channel/2
	start_channel/3
	stop_channel/1
	read_file/2
	read_file/3
	write_file/3
	write_file/4
	list_dir/2
	list_dir/3
	open/3
	open/4
	opendir/2
	opendir/3
	close/2
	close/3
	read/3
	read/4
	pread/4
	pread/5
	aread/3
	apread/4
	write/3
	write/4
	pwrite/4
	pwrite/5
	awrite/3
	apwrite/4
	position/3
	position/4
	read_file_info/2
	read_file_info/3
	read_link_info/2
	read_link_info/3
	write_file_info/3
	write_file_info/4
	read_link/2
	read_link/3
	make_symlink/3
	make_symlink/4
	rename/3
	rename/4
	delete/2
	delete/3
	make_dir/2
	make_dir/3
	del_dir/2
	del_dir/3

	ssh_sftpd
	subsystem_spec/1

