| v

ERLANG

Common Test

Copyright © 2003-2013 Ericsson AB. All Rights Reserved.
Common Test 1.7.1

February 25, 2013

Copyright © 2003-2013 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

February 25, 2013

Ericsson AB. All Rights Reserved.: Common Test | 1

1.1 Common Test Basics

1 Common Test User's Guide

Common Test is a portable application for automated testing. It is suitable for black-box testing of target systems of
any type (i.e. not necessarily implemented in Erlang), aswell asfor white-box testing of Erlang/OTP programs. Black-
box testing is performed via standard O& M interfaces (such as SNMP, HTTP, Corba, Telnet, etc) and, if required, via
user specific interfaces (often called test ports). White-box testing of Erlang/OTP programsis easily accomplished by
calling the target API functions directly from the test case functions. Common Test also integrates usage of the OTP
cover tool for code coverage analysis of Erlang/OTP programs.

Common Test executes test suite programs automatically, without operator interaction. Test progress and results is
printed to logs on HTML format, easily browsed with a standard web browser. Common Test also sends notifications
about progress and results viaan OTP event manager to event handlers plugged in to the system. This way users can
integrate their own programs for e.g. logging, database storing or supervision with Common Test.

Common Test provides libraries that contain useful support functions to fill various testing needs and requirements.
There is for example support for flexible test declarations by means of so called test specifications. There is also
support for central configuration and control of multiple independent test sessions (towards different target systems)
running in parallel.

Common Test isimplemented as aframework based on the OTP Test Server application.

1.1 Common Test Basics
1.1.1 Introduction

The Common Test framework (CT) is a tool which supports implementation and automated execution of test cases
towards arbitrary types of target systems. The CT framework is based on the OTP Test Server and it's the main tool
being used in all testing- and verification activitiesthat are part of Erlang/OTP system development- and maintenance.

Test cases can be executed individually or in batches. Common Test also features a distributed testing mode with
central control and logging (a feature that makes it possible to test multiple systems independently in one common
session, useful e.g. for running automated large-scal e regression tests).

The SUT (System Under Test) may consist of one or several target nodes. CT contains a generic test server which,
together with other test utilities, is used to perform test case execution. It is possible to start the tests from a GUI or
from the OS- or Erlang shell. Test suites are files (Erlang modules) that contain the test cases (Erlang functions) to be
executed. Support modules provide functions that the test cases utilize in order to carry out the tests.

In a black-box testing scenario, CT based test programs connect to the target system(s) via standard O&M and CLI
protocols. CT providesimplementations of, and wrapper interfaces to, some of these protocols (most of which exist as
stand-al one components and applicationsin OTP). The wrappers simplify configuration and add verbosity for logging
purposes. CT will be continously extended with useful support modules. (Note however that it's a straightforward task
to use any arbitrary Erlang/OTP component for testing purposes with Common Test, without needing a CT wrapper
for it. It's as simple as calling Erlang functions). There are a number of target independent interfaces supported in
CT, such as Generic Telnet, FTP, etc, which can be specialized or used directly for controlling instruments, traffic
load generators, etc.

Common Test isalso avery useful tool for white-box testing Erlang code (e.g. module testing), since the test programs
can call exported Erlang functions directly and there's very little overhead required for implementing basic test suites
and executing simple tests. For black-box testing Erlang software, Erlang RPC as well as standard O&M interfaces
can for example be used.

2 | Ericsson AB. All Rights Reserved.: Common Test

1.1 Common Test Basics

A test case can handle several connections towards one or several target systems, instruments and traffic generators
in paralel in order to perform the necessary actions for atest. The handling of many connectionsin paralel is one of
the major strengths of Common Test (thanks to the efficient support for concurrency in the Erlang runtime system -
which CT users can take great advantage of!).

1.1.2 Test Suite Organisation

The test suites are organized in test directories and each test suite may have a separate data directory. Typically, these
files and directories are version controlled similarly to other forms of source code (possibly by means of a version
control system like GIT or Subversion). However, CT does not itself put any requirements on (or has any form of
awareness of) possible file and directory versions.

1.1.3 Support Libraries

Support libraries contain functions that are useful for all test suites, or for test suites in a specific functional area or
subsystem. In addition to the general support libraries provided by the CT framework, and the various libraries and
applications provided by Erlang/OTP, there might also be aneed for customized (user specific) support libraries.

1.1.4 Suites and Test Cases

Testing is performed by running test suites (sets of test cases) or individual test cases. A test suite isimplemented as
an Erlang module named <sui t e_nane>_SUl TE. er| which contains a number of test cases. A test case is an
Erlang function which tests one or more things. The test case is the smallest unit that the CT test server deals with.

Subsets of test cases, called test case groups, may also be defined. A test case group can have execution properties
associated with it. Execution properties specify whether the test casesin the group should be executed in random order,
in parallel, in sequence, and if the execution of the group should be repeated. Test case groups may also be nested (i.e.
agroup may, besides test cases, contain sub-groups).

Besides test cases and groups, the test suite may aso contain configuration functions. These functions are meant to
be used for setting up (and verifying) environment and state on the SUT (and/or the CT host node), required for the
tests to execute correctly. Examples of operations: Opening a connection to the SUT, initializing a database, running
an installation script, etc. Configuration may be performed per suite, per test case group and per individual test case.

The test suite module must conform to a callback interface specified by the CT test server. See the Writing Test Suites
chapter for more information.

A test case is considered successful if it returns to the caller, no matter what the returned value is. A few return
values have special meaning however (such as { ski p, Reason} which indicates that the test case is skipped,
{comrent , Conment } which printsacomment inthelog for thetest caseand { save_confi g, Confi g} which
makesthe CT test server pass Conf i g tothe next test case). A test casefailureis specified asaruntime error (acrash),
no matter what the reason for termination is. If you use Erlang pattern matching effectively, you can take advantage of
this property. The result will be concise and readable test case functions that ook much more like scripts than actual
programs. Simple example:

session(Config) ->
{started,ServerId} = my server:start(),
{clients,[]1} = my server:get clients(Serverld),
MyId = self(),
connected = my server:connect(ServerId, MyId),
{clients, [MyId]} = my server:get clients(ServerlId),
disconnected = my server:disconnect(ServerId, MyId),
{clients,[]1} = my server:get clients(Serverld),
stopped = my server:stop(ServerlId).

Ericsson AB. All Rights Reserved.: Common Test | 3

1.2 Getting Started

Asatest suiteruns, all information (including output to st dout) isrecorded in several different log files. A minimum
of information is displayed in the user console (only start and stop information, plus a note for each failed test case).

Theresult from each test caseisrecorded in adedicated HTML log file, created for the particular test run. An overview
pagedisplayseachtest case represented by row in atable showing total execution time, whether the casewas successful,
failed or skipped, plus an optional user comment. (For a failed test case, the reason for termination is also printed
in the comment field). The overview page has alink to each test case log file, providing simple navigation with any
standard HTML browser.

1.1.5 External Interfaces

The CT test server requires that the test suite defines and exports the following mandatory or optional callback
functions:

al()

Returns alist of all test cases and groups in the suite. (Mandatory)
suite()

Info function used to return properties for the suite. (Optional)
groups()

For declaring test case groups. (Optional)
init_per_suite(Config)

Suite level configuration function, executed before the first test case. (Optional)
end_per_suite(Config)

Suite level configuration function, executed after the last test case. (Optional)
group(GroupName)

Info function used to return properties for atest case group. (Optional)
init_per_group(GroupName, Config)

Configuration function for a group, executed before the first test case. (Optional)
end_per_group(GroupName, Config)

Configuration function for a group, executed after the last test case. (Optional)
init_per_testcase(TestCase, Config)

Configuration function for atestcase, executed before each test case. (Optional)
end_per_testcase(TestCase, Config)

Configuration function for a testcase, executed after each test case. (Optional)

For each test case the CT test server expects these functions:

Testcasename()

Info function that returns alist of test case properties. (Optional)
Testcasename(Config)

The actual test case function.

1.2 Getting Started

1.2.1 Are you new around here?

The purpose of this short chapter is to, with a "learning by example" approach, give the newcomer a chance to get
started quickly writing and executing some first simple tests. The chapter will introduce some of the basics, but |eave
most explanations and details for the later chaptersin this User's Guide. Hopefully though, after this chapter, you will
be inspired and unintimidated enough to go on and get into the nitty-gritty that follows in this rather heavy User's
Guide! If you're not much into "learning by example" and prefer to get into more technical detail right away, go ahead
and skip to the next chapter. Again, the basics presented here will be covered in detail in later chapters.

4 | Ericsson AB. All Rights Reserved.: Common Test

1.2 Getting Started

This chapter also triesto demonstrate how dead simpleit actually isto write avery basic (yet for many module testing
purposes, often sufficiently complex) test suite, and execute its test cases. This is not necessarily obvious when you
read the rest of the chaptersin the User's Guide.

A quick note before we start: In order to understand what's discussed and examplified here, it is recommended that
you first read through the opening Common Test Basics chapter.

1.2.2 Test case execution
Execution of test casesis handled this way:

@ @

festcase A case A case B fesf case B fails
refurns ok because of Reason
T worker CT worker
CTtworker i process crashes:
exiis normaly fEXIT’ Reason}

« Log file »
@ case A ‘ "Successful”
@ case B ‘ "Failed: Reason”

Figure .1: Successful vs unsuccessful test case execution.

For each test case that Common Test istold to execute, it spawns a dedicated process on which the test case function
in question starts running. (In parallel to the test case process, an idle waiting timer processis started which is linked
to the test case process. If the timer process runs out of waiting time, it sends an exit signal to terminate the test case
process and thisiswhat's called a timetrap).

In scenario 1, the test case process terminates normally after case A has finished executing its test code without
detecting any errors. The test case function simply returns a value and Common Test logs the test case as successful.

In scenario 2, an error is detected during test case execution which causes the test case B function to generate an
exception. This causes the test case process to exit with reason other than normal, and as a result, Common Test will
log this as an unsuccessful test case.

As you can understand from the illustration above, Common Test requires that a test case generates a runtime error
to indicate failure (e.g. by causing a bad match error or by calling exi t / 1, preferrably through thect : fail / 1, 2
help function). A succesful execution isindicated by means of a normal return from the test case function.

Ericsson AB. All Rights Reserved.: Common Test | 5

1.2 Getting Started

1.2.3 A simple test suite

Asyou've seen in the basics chapter, the test suite module implements callback functions (mandatory or optional) for
various purposes, e.g:

» Init/end configuration function for the test suite

e Init/end configuration function for atest case

« Init/end configuration function for atest case group

e Testcases

The configuration functions are optional and if you don't need them for your test, a test suite with one simple test
case could look like this:

-module(mylst SUITE).
-compile(export all).

all() ->
[mod exists].

mod exists() ->
{module,mymod} = code:load file(mymod).

In this example we check that the mynod module exists (i.e. can be successfully loaded by the code server). If the
operation fails, we will get abad match error which terminates the test case.

1.2.4 A test suite with configuration functions

If we need to perform configuration operations in order to run our test, we implement configuration functions in our
suite. The result from a configuration function is configuration data, or simply Conf i g. Thisisalist of key-value
tuples which get passed from the configuration function to the test cases (possibly through configuration functions on
"lower level"). The data flow looks like this:

6 | Ericsson AB. All Rights Reserved.: Common Test

1.2 Getting Started

init per suite(InitConfig)
Ceonfig
————— 1lhit per testcasSe(testcasel,Config)

Ceonfigt
——————————— @ testocaseli(Configl)

¥
I end per testcase (testoasel,Configl)

Ceonfig
—p 111t per testcase (testoasel, Config)

Ceonfig
— testcasel (Configlhl)

¥
end per testcase (testcaselN, Configl)

¥

end per suite (Config]

Figure .2: Config data flow in the suite.

Here's an example of atest suite which uses configuration functions to open and close alog file for the test cases (an
operation that would be unnecessary and irrelevant to perform by each test case):

-module(check log SUITE).

-export([all/@, init per suite/1, end per suite/1]).
-export([check restart result/1l, check no errors/1]).
-define(value(Key,Config), proplists:get value(Key,Config)).
all() -> [check restart result, check no errors].

init per suite(InitConfigData) ->
[{logref,open_log()} | InitConfigData].

Ericsson AB. All Rights Reserved.: Common Test | 7

1.2 Getting Started

end per suite(ConfigData) ->
close log(?value(logref, ConfigData)).

check restart result(ConfigData) ->
TestData = read log(restart, ?value(logref, ConfigData)),
{match, Line} = search for("restart successful", TestData).
check no errors(ConfigData) ->
TestData = read log(all, ?value(logref, ConfigData)),
case search for("error", TestData) of
{match,Line} -> ct:fail({error found in log,Line});

nomatch -> ok
end.

In this example we have test cases that verify, by parsing alog file, that our SUT has performed a successful restart
and that no unexpected errors have been printed.

To execute the test cases in the test suite above, we could type this on the Unix/Linux command line (assuming for
this example that the suite moduleis in the current working directory):

$ ct run -dir .

or

$ ct _run -suite check log SUITE

If we want to use the Erlang shell to run our test, we could evaluate this cal:

1> ct:run_test([{dir, "."}1).

or

1> ct:run_test([{suite, "check log SUITE"}]).

The result from running our test is printed in log filesin HTML format (stored in unique log directories on different
level). Thisillustration shows the log file structure:

8 | Ericsson AB. All Rights Reserved.: Common Test

1.2 Getting Started

.

top level log dir test run top dir test dir test case dir

TEST RUN

HISTORY

TEST
SUITE
OVERVIEW

all runs.html

index.html

index.html

Figure .3: HTML log file structure.

1.2.5 What happens next?
Well, you might already be asking yourself questions such as:

"How and where can | specify variable data for my tests that mustn't be hard-coded in the test suites (such
as host names, addresses, user login data, etc)?' The External Configuration Data chapter will give you that
information.

"Isthere away to declare a number of different tests and run them in one session without having to write my
own scripts? And can such declarations be used for regression testing?' The Test Specifications chapter answers
these questions.

"Can test cases and/or test runs be automatically repeated?' Learn more about Test Case Groups and also read
about start flags/options in the Running Tests chapter and the Reference Manual .

"Will Common Test execute my test cases in sequence or in parallel?' The Test Case Groups section in the
Running Tests chapter will give you the answer.

"What's the syntax for timetraps (mentioned above), and how do | set them?' Thisis explained in the Timetrap
Timeouts part of the Writing Test Suites chapter.

"What functions are available for logging and printing?* Check the Logging section in the Writing Test Suites
chapter.

"I need data files for my tests. Where do | store them preferrably?’ Y ou should read about Data and Private
Directories for information about this.

"May | start with atest suite example, please?' Sure!

You will probably want to get started on your own first test suites now, while at the same time digging deeper into
the Common Test User's Guide and Reference Manual. Y ou will find that there's lots more to learn about the things
that have been introduced in this chapter. Y ou will of course also be presented many more useful features, such as
the ones listed above. Have fun!

Ericsson AB. All Rights Reserved.: Common Test | 9

1.3 Installation

1.3 Installation

1.3.1 General information

The two main interfaces for running tests with Common Test are an executable program named ct_run and an erlang
modulenamed ct . Thect_run program iscompiled for the underlying operating system (e.g. Unix/Linux or Windows)
during the build of the Erlang/OTP system, and is installed automatically with other executable programs in the top
level bi n directory of Erlang/OTP. Thect interface functions can be called from the Erlang shell, or from any Erlang
function, on any supported platform.

A legacy Bourne shell script - named run_test - exists, which may be manually generated and installed. This script may
be used instead of the ct_run program mentioned above, e.g. if the user wishes to modify or customize the Common
Test start flagsin a simpler way than making changes to the ct_run C program.

The Common Test applicationisinstalled with the Erlang/OTP system and no additional installation stepisrequired to
start using Common Test by means of the ct_run executable program, and/or the interface functionsin thect module.
If you wish to use the legacy Bourne shell script version run_test, however, this script needs to be generated first,
according to the instructions below.

Note:

Before reading on, please note that since Common Test version 1.5, the run_test shell script isno longer required
for starting tests with Common Test from the OS command line. The ct_run program (descibed above) isthe new
recommended command line interface for Common Test. The shell script exists mainly for legacy reasons and
may not be updated in future rel eases of Common Test. It may even be removed.

Optional step to generate a shell script for starting Common Test:

To generate the run_test shell script, navigateto theconmon_t est - <vsn> directory, located among the other OTP
applications (under the OTP lib directory). Here executethei nst al | . sh script with argument | ocal :

$./install.sh |ocal

This generates the executable run_test script in the conmon_t est - <vsn>/ pri v/ bi n directory. The script will
include absol ute paths to the Common Test and Test Server application directories, so it's possible to copy or movethe
script to adifferent location on the file system, if desired, without having to update it. It's of course possible to leave
the script under the pr i v/ bi n directory and update the PATH variable accordingly (or create alink or aiasto it).

If you, for any reason, have copied Common Test and Test Server to a different location than the default OTP lib
directory, you can generate a run_test script with a different top level directory, simply by specifying the directory,
instead of | ocal , when runningi nst al | . sh. Example:

$ install.sh /usr/local/test_tools

Note that thecommon_t est - <vsn>andt est _ser ver - <vsn> directories must be located under the same top
directory. Note aso that the install script does not copy files or update environment variables. It only generates the
run_test script.

Whenever you install anew version of Erlang/OTP, the run_test script needs to be regenerated, or updated manually
with new directory names (new version numbers), for it to "see" the latest Common Test and Test Server versions.

1.4 Writing Test Suites
1.4.1 Support for test suite authors

Thect module provides the main interface for writing test cases. Thisincludes e.g:

10 | Ericsson AB. All Rights Reserved.: Common Test

1.4 Writing Test Suites

e Functionsfor printing and logging

* Functions for reading configuration data

e Function for terminating atest case with error reason

* Function for adding commentsto the HTML overview page

Please see the reference manual for the ct module for details about these functions.

The CT application also includes other modules named ct _<conponent > that provide various support, mainly
simplified use of communication protocols such as rpc, snmp, ftp, telnet, etc.

1.4.2 Test suites

A test suite is an ordinary Erlang module that contains test cases. It is recommended that the module has a name on
theform * _SUl TE. er | . Otherwise, the directory and auto compilation function in CT will not be able to locate it
(at least not per default).

It isaso recommended that thect . hr | header fileisincluded in all test suite modules.

Each test suite module must export the function al | / 0 which returns the list of all test case groups and test cases
to be executed in that module.

The callback functions that the test suite should implement, and which will be described in more detail below, are all
listed in the common_test reference manual page.

1.4.3 Init and end per suite

Each test suite module may contain the optiona configuration functions init_per suite/1l and
end_per _sui t e/ 1. If theinit function is defined, so must the end function be.

Ifitexists, i nit _per _suit eiscaledinitialy beforethetest cases are executed. It typically containsinitializations
that are common for all test cases in the suite, and that are only to be performed once. It is recommended to be used
for setting up and verifying state and environment on the SUT (System Under Test) and/or the CT host node, so that
the test cases in the suite will execute correctly. Examples of initial configuration operations. Opening a connection
to the SUT, initializing a database, running an installation script, etc.

end_per _sui t e iscaled as the fina stage of the test suite execution (after the last test case has finished). The
function is meant to be used for cleaning up after i ni t _per _suite.

init_per_suiteandend_per_suit e will execute on dedicated Erlang processes, just like the test cases do.
The result of these functions is however not included in the test run statistics of successful, failed and skipped cases.

The argument toi nit _per _sui te isConfi g, the same key-value list of runtime configuration data that each
test casetakes asinput argument. i ni t _per _sui t e can modify this parameter with information that the test cases
need. The possibly modified Conf i g list isthe return value of the function.

Ifinit_per_suite fails, al test cases in the test suite will be skipped automatically (so called auto skipped),
includingend_per _suite.

Notethatifi nit _per _suiteandend_per suit e donotexistinthesuite, Common Test callsdummy functions
(with the same names) instead, so that output generated by hook functions may be saved to the log files for these
dummies (see the Common Test Hooks chapter for more information).

1.4.4 Init and end per test case

Each test suite module can contain the optional configuration functions i nit_per _testcase/2 and
end_per _t est case/ 2. If theinit function is defined, so must the end function be.

Ifitexists,i nit _per _t est case iscalled beforeeachtest caseinthesuite. It typically containsinitialization which
must be done for each test case (analoguetoi ni t _per _sui t e for the suite).

Ericsson AB. All Rights Reserved.: Common Test | 11

1.4 Writing Test Suites

end_per _testcase/ 2 iscalled after each test case has finished, giving the opportunity to perform clean-up after
i nit_per_testcase.

The first argument to these functions is the name of the test case. This value can be used with pattern matching in
function clauses or conditional expressions to choose different initialization and cleanup routines for different test
cases, or perform the same routine for a number of, or all, test cases.

The second argument is the Conf i g key-value list of runtime configuration data, which has the same value as the
listreturned by i nit _per _suite.init_per_testcase/ 2 may modify this parameter or return it asis. The
returnvalueof i ni t _per _t est case/ 2 ispassed asthe Conf i g parameter to the test case itself.

The return value of end_per _t est case/ 2 isignored by the test server, with exception of the save _config and
fail tuple

It is possible in end_per _t est case to check if the test case was successful or not (which consequently may
determine how cleanup should be performed). This is done by reading the value tagged with t c_st at us from
Confi g. The value is either ok, {fai | ed, Reason} (where Reason istinmetrap_ti neout, info from
exi t/ 1, or details of arun-timeerror), or { ski pped, Reason} (where Reason is auser specific term).

The end_per _testcase/ 2 function is called even after a test case terminates due to a cal to
ct:abort_current _testcase/ 1, or after a timetrap timeout. However, end_per _t est case will then
execute on a different process than the test case function, and in this situation, end_per _t est case will not be
able to change the reason for test case termination by returning { f ai | , Reason}, nor will it be able to save data
with{save_confi g, Dat a}.

If init_per_testcase crashes, the test case itself gets skipped automatically (so called auto skipped). If
i nit_per _testcase returns a tuple { ski p, Reason}, aso then the test case gets skipped (so called user
skipped). It isalso possible, by returning atuple{f ai | , Reason} fromi nit _per _t est case, to mark thetest
case as failed without actually executing it.

Note:

If init_per_testcase crashes or retuns {skip, Reason} or {fail, Reason}, the
end_per _t est case function isnot called.

If it is determined during execution of end_per _t est case that the status of a successful test case should be
changed to failed, end_per _t est case may return thetuple: { f ai | , Reason} (where Reason describes why
the test casefails).

i nit_per_testcaseandend_per _t est case executeonthesameErlang processasthetest case and printouts
from these configuration functions can be found in the test case log file.

1.4.5 Test cases

The smallest unit that the test server is concerned with is atest case. Each test case can actually test many things, for
example make several callsto the same interface function with different parameters.

It is possible to choose to put many or few tests into each test case. What exactly each test case does is of course up
to the author, but here are some things to keep in mind:

Having many small test casestend to result in extra, and possibly duplicated code, aswell asslow test execution because
of large overhead for initializations and cleanups. Duplicated code should be avoided, e.g. by means of common help
functions, or the resulting suite will be difficult to read and understand, and expensive to maintain.

12 | Ericsson AB. All Rights Reserved.: Common Test

1.4 Writing Test Suites

Larger test cases make it harder to tell what went wrong if it fails, and large portions of test code will potentially be
skipped when errors occur. Furthermore, readability and maintainability sufferswhen test cases becometoo large and
extensive. Also, theresulting log files may not reflect very well the number of teststhat have actually been performed.

The test case function takes one argument, Conf i g, which contains configuration information such asdat a_di r
and pri v_di r. (See Data and Private Directories for more information about these). The value of Conf i g at the
time of the call, isthe same asthereturn valuefromi ni t _per _t est case, see above.

Note:

The test case function argument Conf i g should not be confused with the information that can be retrieved
from configuration files (using ct: get confi g/ 1/ 2). The Config argument should be used for runtime
configuration of the test suite and the test cases, while configuration files should typically contain datarelated to
the SUT. These two types of configuration data are handled differently!

Since the Conf i g parameter is alist of key-value tuples, i.e. a data type generally called a property list, it can be
handled by means of the pr opl i st s modulein the OTP st dl i b. A value can for example be searched for and
returned withthepr opl i st s: get _val ue/ 2 function. Also, or aternatively, you might want to look in the general
I i sts module, alsoinstdli b, for useful functions. Normally, the only operations you ever perform on Conf i g
isinsert (adding atuple to the head of the list) and lookup. Common Test provides a simple macro named ?confi g,
which returns a value of an item in Conf i g given the key (exactly like propl i st s: get _val ue). Example:
PrivDir = ?config(priv_dir, Config).

If the test case function crashes or exits purposely, it is considered failed. If it returns a value (no matter what actual
value) it is considered successful. An exception to this rule is the return value { ski p, Reason}. If this tuple is
returned, the test case is considered skipped and gets logged as such.

If the test case returns the tuple { commrent , Conment }, the caseis considered successful and Comment is printed
out in the overview log file. Thisis by the way equal to calling ct : conment (Conmrent) .

1.4.6 Test case info function

For each test case function there can be an additional function with the same name but with no arguments. Thisis the
test case info function. The test case info function is expected to return alist of tagged tuples that specifies various
properties regarding the test case.

The following tags have special meaning:
tinmetrap

Set the maximum time the test caseis allowed to execute. If the timetrap time is exceeded, the test case failswith
reasonti metrap_tineout.Notethati nit _per_testcase andend_per _testcase areincludedin
the timetrap time. Please see the Timetrap section for more details.

userdat a

Use this to specify arbitrary data related to the testcase. This data can be retrieved at any time using the
ct: userdat a/ 3 utility function.

sil ent _connecti ons
Please see the Slent Connections chapter for details.
require

Usethisto specify configuration variablesthat are required by thetest case. If therequired configuration variables
are not found in any of the test system configuration files, the test case is skipped.

Ericsson AB. All Rights Reserved.: Common Test | 13

1.4 Writing Test Suites

It is also possible to give a required variable a default value that will be used if the variable
is not found in any configuration file. To specify a default value, add a tuple on the form:
{default_config, ConfigVari abl eNane, Val ue} to thetest case info list (the position in the list is
irrelevant). Examples:

testcasel() ->
[{require, ftp},
{default config, ftp, [{ftp, "my ftp host"},
{username, "aladdin"},
{password, "sesame"}1}}1.

testcase2() ->
[{require, unix_ telnet, unix},
{require, {unix, [telnet, username, password]}},
{default config, unix, [{telnet, "my telnet host"},
{username, "aladdin"},
{password, "sesame"}1}}1].

See the Config files chapter and the ct: requi r e/ 1/ 2 function in the ct reference manual for more information
about r equi re.

Note:

Specifying a default value for a required variable can result in a test case always getting executed. This might
not be a desired behaviour!

If ti metrap and/or require is not set specifically for a particular test case, default values specified by the
sui t e/ 0 function are used.

Other tags than the ones mentioned above will simply be ignored by the test server.

Example of atest caseinfo function:

reboot node() ->
[
{timetrap, {seconds,60}},
{require,interfaces},
{userdata,
[{description, "System Upgrade: RpuAddition Normal RebootNode"},
{fts,"http://someserver.ericsson.se/test doc4711.pdf"}]1}

Il

1.4.7 Test suite info function

The sui t e/ 0 function can be used in a test suite module to e.g. set adefault t i metrap valueandtor equi re
external configuration data. If atest case-, or group info function also specifies any of the info tags, it overrides the
default values set by sui t e/ 0. Seethetest caseinfo function above, and group info function below, for more details.

Other options that may be specified with the suite info list are:
* styl esheet, see HTML Style Sheets.

14 | Ericsson AB. All Rights Reserved.: Common Test

1.4 Writing Test Suites

e userdat a, see Test case info function.

e sijl

ent _connecti ons, see Slent Connections.

Example of the suite info function:

suite() ->

[

{timetrap, {minutes,10}},
{require,global names},
{userdata, [{info,"This suite tests database transactions."}1},
{silent connections, [telnet]},
{stylesheet,"db testing.css"}
I o

1.4.8 Test case groups

A test case group is a set of test cases that share configuration functions and execution properties. Test case groups
are defined by means of the gr oups/ 0 function according to the following syntax:

groups() -> GroupDefs
Types:

GroupDefs = [GroupDef]

GroupDef = {GroupName,Properties,GroupsAndTestCases}
GroupName = atom()

GroupsAndTestCases = [GroupDef | {group,GroupName} | TestCase]
TestCase = atom()

G oupNane is the name of the group and should be unique within the test suite module. Groups may be nested,
and this is accomplished simply by including a group definition within the G oups AndTest Cases list of another
group. Proper ti es isthelist of execution properties for the group. The possible values are:

Properties = [parallel | sequence | Shuffle | {RepeatType,N}]

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

RepeatType = repeat | repeat until all ok | repeat until all fail |
repeat until any ok | repeat until any fail

N = integer() | forever

If thepar al | el property isspecified, Common Test will executeall test casesinthegroupinparallel. If sequence
is specified, the cases will be executed in a sequence, as described in the chapter Dependencies between test cases
and suites. If shuf f | e is specified, the cases in the group will be executed in random order. Ther epeat property
orders Common Test to repeat execution of the cases in the group a given number of times, or until any, or al, cases
fail or succeed.

Example:

groups() -> [{groupl, [parallel], [testla,testlb]},
{group2, [shuffle,sequencel], [test2a,test2b,test2cl}].

Ericsson AB. All Rights Reserved.: Common Test | 15

1.4 Writing Test Suites

To specify in which order groups should be executed (also with respect to test cases that are not part of any group),
tuples on theform { gr oup, G- oupNane} should be added to theal | / O list. Example:

all() -> [testcasel, {group,groupl}, testcase2, {group,group2}].

It is aso possible to specify execution properties with a group tuple in all/O:
{group, GoupNane, Properties}. These properties will override those specified in the group definition (see
gr oups/ 0 above). Thisway, it's possible to run the same set of tests, but with different properties, without having
to make copies of the group definition in question.

If a group contains sub-groups, the execution properties for these may aso be specified in the
group tuple: {group, G oupNane, Properties, SubG oups}, where SubG oups is a list of tuples,
{ G oupNane, Properties}, or { GoupNane, Properties, SubG oups}, representing the sub-groups.
Any sub-groups defined in gr oup/ 0 for agroup, that are not specified in the SubGr oups list, will simply execute
with their pre-defined properties.

Example:

groups() -> {testsl, [], [{tests2, [], [t2a,t2b]l},
{tests3, [], [t31,t3b]}]}.

To execute group 'tests]' twice with different properties for ‘tests?' each time:

all() ->
[{group, testsl, default, [{tests2, [parallel]}l},
{group, testsl, default, [{tests2, [shuffle,{repeat,10}1}1}].

Note that thisis equivalent to this specification:

all() ->
[{group, testsl, default, [{tests2, [parallell},
{tests3, default}]},
{group, testsl, default, [{tests2, [shuffle,{repeat,10}1},
{tests3, default}]}].

Thevalue def aul t statesthat the pre-defined properties should be used.
Here's an example of how to override properties in a scenario with deeply nested groups:

groups() ->
[{testsl, [], [{group, tests2}]},
{tests2, [], [{group, tests3}1},
{tests3, [{repeat,2}], [t3a,t3b,t3c]}].

all() ->
[{group, testsl, default,
[{tests2, default,
[{tests3, [parallel,{repeat,100}1}1}1}].

16 | Ericsson AB. All Rights Reserved.: Common Test

1.4 Writing Test Suites

The syntax described above may also be used in Test Specificationsin order to change properties of groups at thetime
of execution, without even having to edit the test suite (please see the Test Specifications chapter for more info).

Asillustrated above, properties may be combined. If e.g. shuf f | e,repeat _unti|l _any fail andsequence
are al specified, the test cases in the group will be executed repeatedly, and in random order, until atest case fails.
Then execution isimmediately stopped and the rest of the cases skipped.

Before execution of a group begins, the configuration functioni ni t _per _group(G oupNanme, Config) is
called. The list of tuples returned from this function is passed to the test cases in the usua manner by means of the
Confi g argument. i ni t _per _group/ 2 is meant to be used for initializations common for the test cases in the
group. After execution of the group is finished, the end_per _gr oup(Gr oupNane, Confi g functionis called.
This function is meant to be used for cleaning up afteri ni t _per _group/ 2.

Whenever agroup isexecuted, if i ni t _per _group andend_per _gr oup do not exist in the suite, Common Test
calls dummy functions (with the same names) instead. Output generated by hook functions will be saved to the log
files for these dummies (see the Common Test Hooks chapter for more information).

Note:

init_per testcase/ 2 andend per_testcase/ 2 areaways caled for each individual test case, no
matter if the case belongs to a group or not.

The properties for agroup is always printed on the top of the HTML log for i ni t _per _group/ 2. Also, the total
execution time for a group can be found at the bottom of thelog for end_per _gr oup/ 2.

Test case groups may be nested so that sets of groups can be configured with the samei ni t _per _gr oup/ 2 and
end_per _group/ 2 functions. Nested groups may be defined by including a group definition, or a group name
reference, in the test case list of another group. Example:

groups() -> [{groupl, [shuffle], [testla,
{group2, [], [test2a,test2bl},
testlbl]},
{group3, [, [{group,group4},
{group,group5}1},
{group4, [parallell], [testda,testdb]},
{group5, [sequence], [test5a,test5b,test5c]}].

In the example above, if al | /0 would return group name references in this order: [{group, groupl},
{group, group3}], the order of the configuration functions and test cases will be the following (note that

init_per_testcase/2andend_per testcase/2: areasoawayscaled, but notincluded in thisexample
for simplification):

init per _group(groupl, Config) -> Configl (*)
testla(Configl)
init per group(group2, Configl) -> Config2
test2a(Config2), test2b(Config2)
end per group(group2, Config2)

testlb(Configl)

Ericsson AB. All Rights Reserved.: Common Test | 17

1.4 Writing Test Suites

end per group(groupl, Configl)
init per group(group3, Config) -> Config3
init per group(group4, Config3) -> Config4
test4a(Config4), testdb(Config4) (**)
end per group(group4, Config4)
init per group(group5, Config3) -> Config5
test5a(Config5), test5b(Config5), test5c(Configh)
end per group(group5, Config5)

end per group(group3, Config3)

(*) The order of test case testla, testlb and group2 is not actually
defined since groupl has a shuffle property.

(**) These cases are not executed in order, but in parallel.

Properties are not inherited from top level groups to nested sub-groups. E.g, in the example above, the test casesin
gr oup?2 will not be executed in random order (which isthe property of gr oupl).

1.4.9 The parallel property and nested groups

If agroup has a parallel property, its test cases will be spawned simultaneously and get executed in parallel. A test
case is not allowed to execute in parallel with end_per _gr oup/ 2 however, which means that the time it takes to
execute a parallel group is equal to the execution time of the slowest test case in the group. A negative side effect of
running test cases in parallel is that the HTML summary pages are not updated with links to the individual test case
logs until theend_per _gr oup/ 2 function for the group has finished.

A group nested under aparallel group will start executing in parallel with previous (parallel) test cases (no matter what
propertiesthe nested group has). Since, however, test casesare never executed in parallel withi ni t _per _group/ 2
or end_per _group/ 2 of the same group, it's only after a nested group has finished that any remaining parallel
cases in the previous group get spawned.

1.4.10 Parallel test cases and 10

A paralld test case has a private 10 server asits group leader. (Please see the Erlang Run-Time System Application
documentation for a description of the group leader concept). The central 10 server process that handles the output
from regular test cases and configuration functions, does not respond to IO messages during execution of parallel
groups. Thisisimportant to understand in order to avoid certain traps, like this one:

If a process, P, is spawned during execution of e.g. i ni t _per _sui t e/ 1, it will inherit the group leader of the
i ni t_per_suite process. This group leader is the central 10 server process mentioned above. If, at alater time,
during parallel test case execution, some event triggers processPtocal i o: f or mat / 1/ 2, that call will never return
(since the group leader isin a non-responsive state) and cause P to hang.

1.4.11 Repeated groups

A test case group may be repeated a certain number of times (specified by an integer) or indefinitely (specified
by forever). The repetition may also be stopped prematurely if any or al cases fail or succeed, i.e.
if the property repeat _until _any fail, repeat_until _any_ ok, repeat_until _all _fail, or

18 | Ericsson AB. All Rights Reserved.: Common Test

1.4 Writing Test Suites

repeat _until _all ok isused. If the basic r epeat property is used, status of test cases isirrelevant for the
repeat operation.

Itispossibletoreturnthe status of asub-group (ok or failed), to affect the execution of the group onthelevel above. This
is accomplished by, in end_per _gr oup/ 2, looking up the value of t c_gr oup_properti es inthe Confi g
list and checking the result of the test cases in the group. If status f ai | ed should be returned from the group as a
result, end_per _group/ 2 should return thevalue{ret urn_group_resul t, f ai | ed}. The status of a sub-
group istaken into account by Common Test when evaluating if execution of agroup should be repeated or not (unless
thebasicr epeat property is used).

Thet c_group_properties vaueisalist of status tuples, each with the key ok, ski pped and f ai | ed. The
value of a status tuple is alist containing names of test cases that have been executed with the corresponding status
asresult.

Here's an example of how to return the status from a group:

end per group(Group, Config) ->
Status = ?config(tc group result, Config),
case proplists:get value(failed, Status) of

[1 -> % no failed cases
{return group result,ok};
_Failed -> % one or more failed
{return _group result, failed}
end.

Itisalso possible in end_per _gr oup/ 2 to check the status of a sub-group (maybe to determine what status the
current group should also return). Thisis as simple asillustrated in the example above, only the name of the group is
stored inatuple{ gr oup_r esul t , G oupNane}, which can be searched for in the status lists. Example:

end per group(groupl, Config) ->
Status = ?config(tc _group result, Config),
Failed = proplists:get value(failed, Status),
case lists:member({group result,group2}, Failed) of
true ->
{return_group_result, failed};
false ->
{return _group result, ok}
end;

Note:

When a test case group is repeated, the configuration functions, init_per_group/2 and
end_per _group/ 2, are also dways called with each repetition.

1.4.12 Shuffled test case order

The order that test casesin agroup are executed, is under normal circumstances the same as the order specified in the
test case list in the group definition. With the shuf f | e property set, however, Common Test will instead execute
the test casesin random order.

The user may provide a seed value (a tuple of three integers) with the shuffle property: { shuf f | e, Seed}. This
way, the same shuffling order can be created every time the group is executed. If no seed value is given, Common

Ericsson AB. All Rights Reserved.: Common Test | 19

1.4 Writing Test Suites

Test creates a"random” seed for the shuffling operation (using the return value of er | ang: now()). The seed value
is aways printed to thei ni t _per _group/ 2 log file so that it can be used to recreate the same execution order
in a subsequent test run.

Note:
If a shuffled test case group is repeated, the seed will not be reset in between turns.

If asub-group isspecified in agroup withashuf f | e property, the execution order of this sub-group in relation to the
test cases (and other sub-groups) in the group, is also random. The order of the test cases in the sub-group is however
not random (unless, of course, the sub-group also hasashuf f | e property).

1.4.13 Group info function

The test case group info function, gr oup(G oupNane) , serves the same purpose as the suite- and test case info
functions previously described in this chapter. The scope for the group info, however, is all test cases and sub-groups
in the group in question (Gr oupNane).

Example:

group(connection tests) ->
[{require, login data},
{timetrap,1000}].

Thegroup info properties override those set with the suite info function, and may in turn be overridden by test caseinfo
properties. Please see the test case info function above for alist of valid info properties and more general information.

1.4.14 Info functions for init- and end-configuration

It is possible to use info functions also for thei nit _per _suite,end _per_suite,init_per_group, and
end_per _group functions, and it works the same way as with info functions for test cases (see above). Thisis
useful e.g. for setting timetraps and requiring external configuration data relevant only for the configuration function
in question (without affecting properties set for groups and test casesin the suite).

Theinfofunctioni ni t / end_per _sui te() iscaledfori nit/end_per _suite(Config),andinfofunction
i nit/end_per_group(G oupNane) iscaled forinit/end_per_group(G oupNane, Confi g). Info
functions can not be used with i nit/ end_per _test case(Test Case, Config), however, since these
configuration functions execute on the test case process and will use the same properties as the test case (i.e. the
properties set by the test case info function, Test Case()). Please see the test case info function above for alist of
valid info properties and more general information.

1.4.15 Data and Private Directories

The data directory, data_di r, is the directory where the test module has its own files needed for the
testing. The name of the dat a_di r is the the name of the test suite followed by " _dat a". For example,
"some_pat h/ f oo_SUl TE. beam' has the data directory "sone_pat h/ f oo_SUl TE dat a/". Use this
directory for portability, i.e. to avoid hardcoding directory names in your suite. Since the data directory is stored in
the same directory as your test suite, you should be able to rely on its existence at runtime, even if the path to your test
suite directory has changed between test suite implementation and execution.

20 | Ericsson AB. All Rights Reserved.: Common Test

1.4 Writing Test Suites

priv_dir istheprivatedirectory for thetest cases. Thisdirectory may be used whenever atest case (or configuration
function) needs to write something to file. The name of the private directory is generated by Common Test, which
also creates the directory.

By default, Common Test creates one central private directory per test run that all test cases share. This may not
always be suitable, especialy if the same test cases are executed multiple times during atest run (e.g. if they belong
to atest case group with repeat property), and there's arisk that files in the private directory get overwritten. Under
these circumstances, it's possible to configure Common Test to create one dedicated private directory per test case
and execution instead. Thisis accomplished by means of the flag/option: cr eat e_pri v_di r (to be used with the
ct _run program, thect : run_t est/ 1 function, or astest specification term). There are three possible values for
this option:

e auto_per_run

« auto_per_tc

e manual per _tc

The first value indicates the default priv_dir behaviour, i.e. one private directory created per test run. The two latter

values tell Common Test to generate a unique test directory name per test case and execution. If the auto version is
used, all private directories will be created automatically. This can obviously become very inefficient for test runs
with many test cases and/or repetitions. Therefore, in case the manual version isinstead used, the test case must tell
Common Test to create priv_dir when it needsit. It does this by calling the functionct : make_priv_dir/O0.

Note:

Y ou should not depend on current working directory for reading and writing data files since thisis not portable.
All scratch filesareto bewritteninthepri v_di r and all datafiles should belocatedindat a_di r . Notealso
that the Common Test server sets current working directory to the test case log directory at the start of every case.

1.4.16 Execution environment

Each test case is executed by a dedicated Erlang process. The process is spawned when the test case
starts, and terminated when the test case is finished. The configuration functions i nit _per testcase and
end_per _t est case execute on the same process as the test case.

Theconfiguration functionsi ni t _per _suit eandend_per _sui t e execute, liketest cases, on dedicated Erlang
processes.

1.4.17 Timetrap timeouts

The default time limit for a test case is 30 minutes, unless ati netr ap is specified either by the suite-, group-,
or test case info function. The timetrap timeout value defined by sui t e/ 0 is the value that will be used for each
test case in the suite (as well as for the configuration functions i nit _per_suite/ 1, end_per_suite/1,
i nit_per_group/2,andend_per _group/ 2). A timetrap value defined by gr oup(G oupNane) overrides
one defined by sui t e() and will be used for each test case in group G- oupNane, and any of its sub-groups. If a
timetrap value is defined by gr oup/ 1 for a sub-group, it overrides that of its higher level groups. Timetrap values
set by individual test cases (by means of the test case info function) override both group- and suite- level timetraps.

It isalso possible to dynamically set/reset atimetrap during the excution of atest case, or configuration function. This
isdoneby calingct : ti met rap/ 1. Thisfunction cancelsthe current timetrap and starts anew one (that stays active
until timeout, or end of the current function).

Timetrap values can be extended with a multiplier value specified at startup with the mul ti ply_ti nmetraps
option. It is also possible to let the test server decide to scale up timetrap timeout values automatically, e.g. if tools

Ericsson AB. All Rights Reserved.: Common Test | 21

1.4 Writing Test Suites

such as cover or trace are running during the test. This feature is disabled by default and can be enabled with the
scal e_ti netraps start option.

If atest case needs to suspend itself for atime that also gets multipled by mul ti pl y_ti netraps (and possibly
also scaled up if scal e_tinetraps is enabled), the function ct: sl eep/ 1 may be used (instead of eg.
tinmer:sleep/l).

A function (f un/ 0 or MFA) may be specified as timetrap value in the suite-, group- and test case info function, as
well asargument tothect : ti metrap/ 1 function. Examples:

{timetrap, {my_test_utils,tinmetrap, [?MODULE, system start]}}

ct:timetrap(fun() -> nmy_timetrap(Test CaseNane, Config) end)

The user timetrap function may be used for two things:

e Toactasatimetrap - the timeout is triggered when the function returns.

e Toreturn atimetrap time value (other than a function).

Before execution of the timetrap function (which is performed on a parallel, dedicated timetrap process), Common
Test cancels any previously set timer for the test case or configuration function. When the timetrap function
returns, the timeout is triggered, unless the return value is a valid timetrap time, such as an integer, or a

{SecM nOr Hour Tag, Ti ne} tuple (seethe common_test reference manual for details). If atimevalueisreturned,
anew timetrap is started to generate a timeout after the specified time.

The user timetrap function may of course return a time value after a delay, and if so, the effective timetrap time is
the delay time plus the returned time.

1.4.18 Logging - categories and verbosity levels
Common Test provides three main functions for printing strings:

e ct:log(Category, Inportance, Format, Args)

e ct:print(Category, Inportance, Format, Args)

e ct:pal (Category, |nportance, Format, Args)

Thel og/ 1/ 2/ 3/ 4 function will print a string to the test case log file. The pri nt/ 1/ 2/ 3/ 4 function will print

the string to screen, and the pal / 1/ 2/ 3/ 4 function will print the same string both to file and screen. (The functions
are documented inthe ct reference manual).

The optional Cat egor y argument may be used to categorize the log printout, and categories can be used for two
things:

e To compare the importance of the printout to a specific verbosity level, and
» toformat the printout according to a user specific HTML Style Sheet (CSS).

Thel npor t ance argument specifiesalevel of importance which, compared to averbosity level (general and/or set
per category), determines if the printout should be visible or not. | npor t ance is an arbitrary integer in the range
0..99. Pre-defined constants exist in the ct . hr| header file. The default importance level, ?STD_| MPORTANCE
(usedif thel nport ance argument isnot provided), is50. Thisisa so theimportance used for standard 10, e.g. from
printouts made withi o: f ormat / 2,i o: put _char s/ 1, etc.

| mpor t ance is compared to a verbosity level set by means of the ver bosi ty start flag/option. The verbosity
level can be set per category and/or generally. The default verbosity level, ?STD_VERBCOSI TY, is50, i.e. al standard
1O gets printed. If alower verbosity level is set, standard 10 printouts will be ignored. Common Test performs the
following test:

Importance >= (100-VerbositylLevel)

22 | Ericsson AB. All Rights Reserved.: Common Test

1.4 Writing Test Suites

This also means that verbosity level 0 effectively turns all logging off (with the exception of printouts made by
Common Test itself).

The general verbosity level isnot associated with any particular category. Thislevel setsthe threshold for the standard
IO printouts, uncategorized ct : | og/ pri nt/ pal printouts, as well as printouts for categories with undefined
verbosity level.

Example:

Some printouts during test case execution:

io:format("l. Standard IO, importance = ~w~n", [?STD IMPORTANCE]),
ct:log("2. Uncategorized, importance = ~w", [?STD IMPORTANCE]),

ct:log(info, "3. Categorized info, importance = ~w", [?STD_ IMPORTANCE]]),
ct:log(info, ?LOW IMPORTANCE, "4. Categorized info, importance = ~w", [?LOW _IMPORTANCE]),
ct:log(error, "5. Categorized error, importance = ~w", [?HI IMPORTANCE]),
ct:log(error, ?HI IMPORTANCE, "6. Categorized error, importance = ~w", [?MAX IMPORTANCE]),

If starting the test without specifying any verbosity levels:
$ ct run ...

the following gets printed:

1. Standard I0, importance = 50
2. Uncategorized, importance = 50
3. Categorized info, importance = 50
5. Categorized error, importance = 75
6. Categorized error, importance = 99
If starting the test with:
$ ct run -verbosity 1 and info 75
the following gets printed:
3. Categorized info, importance = 50
4. Categorized info, importance = 25

6. Categorized error, importance = 99

How categories can be mapped to CSStagsis documented in the Running Tests chapter.

The For mat and Ar gs argumentsinct : | og/ pri nt/ pal areaways passed ontothei o: f or nat/ 3 function
instdlib (please seethei 0 manual page for details).

For more information about log files, please see the Running Tests chapter.

1.4.19 lllegal dependencies

Even though it is highly efficient to write test suites with the Common Test framework, there will surely be mistakes
made, mainly due to illegal dependencies. Noted below are some of the more frequent mistakes from our own
experience with running the Erlang/OTP test suites.

e Depending on current directory, and writing there:

Thisisacommon error in test suites. It isassumed that the current directory isthe same aswhat the author used as
current directory when the test case was devel oped. Many test cases even try to write scratch filesto this directory.
Instead dat a_di r andpri v_di r should be used to locate data and for writing scratch files.

* Depending on execution order:

Ericsson AB. All Rights Reserved.: Common Test | 23

1.5 Test Structure

During development of test suites, no assumption should preferrably be made about the execution order of the
test cases or suites. E.g. atest case should not assume that a server it depends on, has aready been started by a
previous test case. There are several reasonsfor this:

Firstly, the user/operator may specify the order at will, and maybe a different execution order is more relevant
or efficient on some particular occasion. Secondly, if the user specifies a whole directory of test suites for his/
her test, the order the suites are executed will depend on how the files are listed by the operating system, which
varies between systems. Thirdly, if auser wishesto run only a subset of atest suite, there is no way one test case
could successfully depend on another.

* Depending on Unix:
Running unix commands through os: cnd are likely not to work on non-unix platforms.
* Nested test cases:
Invoking a test case from another not only tests the same thing twice, but also makes it harder to follow what

exactly is being tested. Also, if the called test case fails for some reason, so will the caller. This way one error
gives cause to several error reports, which islessthan ideal.

Functionality common for many test case functions may be implemented in common help functions. If these
functions are useful for test cases across suites, put the help functions into common help modules.

* Failureto crash or exit when things go wrong:

Making requests without checking that the return value indicates success may be ok if the test case will fail a a
later stage, but it is never acceptable just to print an error message (into the log file) and return successfully. Such
test cases do harm since they create a fal se sense of security when overviewing the test results.

* Messing up for subsequent test cases:

Test cases should restore as much of the execution environment as possible, so that the subsequent test cases will
not crash because of execution order of the test cases. The functionend_per _t est case issuitable for this.

1.5 Test Structure

1.5.1 Test structure

A test is performed by running one or more test suites. A test suite consists of test cases (as well as configuration
functions and info functions). Test cases may be grouped in so called test case groups. A test suiteisan Erlang module
and test cases are implemented as Erlang functions. Test suites are stored in test directories.

1.5.2 Skipping test cases

Itispossibleto skip certain test cases, for exampleif you know beforehand that a specific test case fails. Thismight be
functionality which isn't yet implemented, a bug that is known but not yet fixed or some functionality which doesn't
work or isn't applicable on a specific platform.

There are several different ways to state that one or more test cases should be skipped:

e Usingski p_sui tes andski p_cases termsin test specifications.
* Returning { ski p, Reason} fromthei nit_per_testcase/2orinit_per_suite/1lfunctions.
e Returning{ ski p, Reason} from the execution clause of the test case.

The latter of course means that the execution clause is actually called, so the author must make sure that the test case
does not run.

When atest case is skipped, it will be noted as SKI PPED in the HTML log.

24 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Test Structure

1.5.3 Definition of terms

Auto skipped test case
When a configuration function fails (i.e. terminates unexpectedly), the test cases that depend on the
configuration function will be skipped automatically by Common Test. The status of the test casesis then "auto
skipped". Test cases are also auto skipped by Common Test if required configuration datais not available at
runtime.

Configuration function
A function in atest suite that is meant to be used for setting up, cleaning up, and/or verifying the state and
environment on the SUT (System Under Test) and/or the Common Test host node, so that atest case (or a set
of test cases) can execute correctly.

Configuration file
A filethat contains datarelated to atest and/or an SUT (System Under Test), e.g. protocol server addresses,
client login details, hardware interface addresses, etc - any data that should be handled as variable in the suite
and not be hardcoded.

Configuration variable
A name (an Erlang atom) associated with a data value read from a configuration file.

data_dir
Data directory for atest suite. This directory contains any files used by the test suite, e.g. additional Erlang
modules, binaries or datafiles.

Info function
A function in atest suite that returns alist of properties (read by the Common Test server) that describes the
conditions for executing the test casesin the suite.

Major log file

An overview and summary log file for one or more test suites.
Minor log file

A log file for one particular test case. Also called the test case log file.
priv_dir

Private directory for atest suite. This directory should be used when the test suite needs to write to files.
ct_run
The name of an executable program that may be used as an interface for specifying and running tests with
Common Test.
Test case
A singletest included in atest suite. A test caseisimplemented as a function in atest suite module.
Test case group
A set of test cases that share configuration functions and execution properties. The execution properties specify
whether the test casesin the group should be executed in random order, in parallel, in sequence, and if the
execution of the group should be repeated. Test case groups may also be nested (i.e. a group may, besides test
cases, contain sub-groups).
Test suite
An erlang module containing a collection of test cases for a specific functional area.
Test directory
A directory that contains one or more test suite modules, i.e. agroup of test suites.
The Config argument
A list of key-value tuples (i.e. a property list) containing runtime configuration data passed from the
configuration functions to the test cases.
User skipped test case
Thisisthe status of atest case that has been explicitly skipped in any of the ways described in the " Skipping
test cases" section above.

Ericsson AB. All Rights Reserved.: Common Test | 25

1.6 Examples and Templates

1.6 Examples and Templates

1.6.1 Test suite example

This example test suite shows some tests of a database server.

-module(db data type SUITE).
-include lib("common test/include/ct.hrl").
%% Test server callbacks
-export([suite/0, all/o,
init per suite/1, end per suite/1,
init per testcase/2, end per testcase/2]).

%% Test cases
-export([string/1, integer/1]).

-define (CONNECT STR, "DSN=sqlserver;UID=alladin;PWD=sesame").

%% Function: suite() -> Info
%% Info = [tuple()]
%% List of key/value pairs.
%% Description: Returns list of tuples to set default properties
%% for the suite.
suite() ->

[{timetrap,{minutes,1}}].

Function: init per suite(Config@) -> Configl

% Configd = Configl = [tuple()]
% A list of key/value pairs, holding the test case configuration.

{ok, Ref} db:connect (?CONNECT STR, []),
TableName = db lib:unique table name(),
[{con ref, Ref },{table name, TableName}| Config].

init per suite(Config) ->

%% Config = [tuple()]
%% A list of key/value pairs, holding the test case configuration.

end per suite(Config) ->
Ref = ?config(con ref, Config),
db:disconnect (Ref),
ok.

26 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Examples and Templates

TestCase = atom()
Name of the test case that is about to run.
Config0® = Configl = [tuple()]
A list of key/value pairs, holding the test case configuration.

init per testcase(Case, Config) ->

Ref = ?config(con ref, Config),

TableName = ?config(table name, Config),

ok = db:create table(Ref, TableName, table type(Case)),
Config.

TestCase = atom()
Name of the test case that is finished.
Config = [tuple()]
A list of key/value pairs, holding the test case configuration.

end per testcase(Case, Config) ->
Ref = ?config(con ref, Config),
TableName = ?config(table name, Config),
ok = db:delete table(Ref, TableName),
ok.

Function: all() -> GroupsAndTestCases

% GroupsAndTestCases = [{group,GroupName} | TestCase]
% GroupName = atom()

% Name of a test case group.

% TestCase = atom()

% Name of a test case.

Description: Returns the list of groups and test cases that
are to be executed.

all() ->

string(Config) ->
insert _and lookup(dummy key, "Dummy string", Config).

integer(Config) ->
insert and lookup(dummy key, 42, Config).

insert and lookup(Key, Value, Config) ->
Ref = ?config(con ref, Config),
TableName = ?config(table name, Config),
ok = db:insert(Ref, TableName, Key, Value),
[Value] = db:lookup(Ref, TableName, Key),
ok = db:delete(Ref, TableName, Key),

Ericsson AB. All Rights Reserved.: Common Test | 27

1.6 Examples and Templates

[1
ok.

= db:lookup(Ref, TableName, Key),

1.6.2 Test suite templates

The Erlang mode for the Emacs editor includes two Common Test test suite templates, one with extensive information
inthefunction headers, and onewith minimal information. A test suitetemplate providesaquick start for implementing
a suite from scratch and gives you a good overview of the available callback functions. Here are the templates in
question:

Large Common Test suite

%% Note: This directive should only be used in test suites.
-compile(export_all).

-include lib("common test/include/ct.hrl").

)

%% COMMON TEST CALLBACK FUNCTIONS

Function: suite() -> Info
Info = [tuple()]
List of key/value pairs.
for the suite.

Note: The suite/0 function is only meant to be used to return

% Description: Returns list of tuples to set default properties
% default data values, not perform any other operations.

suite() ->
[{timetrap, {minutes,10}}].

% Function: init per suite(Config0@) ->

% Configl | {skip,Reason} | {skip and save,Reason,Configl}
% Configd = Configl = [tuple()]

% A list of key/value pairs, holding the test case configuration.

% Reason = term()

% The reason for skipping the suite.

% Description: Initialization before the suite.

Note: This function is free to add any key/value pairs to the Config
variable, but should NOT alter/remove any existing entries.

init per suite(Config) ->

28 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Examples and Templates

Function: end per suite(Config0®) -> void() | {save config,Configl}

% Configd = Configl = [tuple()]
% A list of key/value pairs, holding the test case configuration.

Description: Cleanup after the suite.

Function: init per group(GroupName, Config@) ->
Configl | {skip,Reason} | {skip and save,Reason,Configl}

% GroupName = atom()

% Name of the test case group that is about to run.

% Configb = Configl = [tuple()]

% A list of key/value pairs, holding configuration data for the group.
% Reason = term()

% The reason for skipping all test cases and subgroups in the group.

Description: Initialization before each test case group.
Config.

% Function: end per group(GroupName, Config@) ->

% void() | {save config,Configl}

% GroupName = atom()

% Name of the test case group that is finished.

% Configb = Configl = [tuple()]

A list of key/value pairs, holding configuration data for the group.

Description: Cleanup after each test case group.
ok.

% Function: init per testcase(TestCase, Config0) ->

% Configl | {skip,Reason} | {skip and save,Reason,Configl}
% TestCase = atom()

% Name of the test case that is about to run.

% Configb = Configl = [tuple()]

% A list of key/value pairs, holding the test case configuration.

% Reason = term()

% The reason for skipping the test case.

% Description: Initialization before each test case.

% Note: This function is free to add any key/value pairs to the Config
% variable, but should NOT alter/remove any existing entries.

Config.

%% Function: end per testcase(TestCase, Config0) ->
%% void() | {save config,Configl} | {fail,Reason}

Ericsson AB. All Rights Reserved.: Common Test | 29

1.6 Examples and Templates

% TestCase = atom()

% Name of the test case that is finished.

% Configd = Configl = [tuple()]

% A list of key/value pairs, holding the test case configuration.
% Reason = term()

% The reason for failing the test case.

Description: Cleanup after each test case.

Function: groups() -> [Group]

%% Group = {GroupName,Properties,GroupsAndTestCases}

%% GroupName = atom()

%% The name of the group.

%% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
%% Group properties that may be combined.

%% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
%% TestCase = atom()

%% The name of a test case.

%% Shuffle = shuffle | {shuffle,Seed}

%% To get cases executed in random order.

%% Seed = {integer(),integer(),integer()}

%% RepeatType = repeat | repeat until all ok | repeat until all fail |
%% repeat until any ok | repeat until any fail

%% To get execution of cases repeated.

%% N = integer() | forever

Description: Returns a list of test case group definitions.

Function: all() -> GroupsAndTestCases | {skip,Reason}

% GroupsAndTestCases = [{group,GroupName} | TestCase]
% GroupName = atom()

% Name of a test case group.
% TestCase = atom()

% Name of a test case.
% Reason = term()

% The reason for skipping all groups and test cases.

Description: Returns the list of groups and test cases that
are to be executed.

all() ->
[my test case].

Function: TestCase() -> Info

% Info = [tuple()]
% List of key/value pairs.

30 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Examples and Templates

Description: Test case info function - returns list of tuples to set
properties for the test case.

Note: This function is only meant to be used to return a list of
values, not perform any other operations.

0 0 G0 & o° oP
& & & o g g

_test case() ->

3
<

Function: TestCase(Config0Q) ->
ok | exit() | {skip,Reason} | {comment,Comment} |
{save config,Configl} | {skip and save,Reason,Configl}

Config0® = Configl = [tuple()]

A list of key/value pairs, holding the test case configuration.
Reason = term()

The reason for skipping the test case.
Comment = term()

A comment about the test case that will be printed in the html log.

Description: Test case function. (The name of it must be specified in
the all/0 list or in a test case group for the test case
to be executed).

my test case(Config) ->

ok.

O ©° ©° ° ° ° 0 A° 0 A0 0 0 A0 0 O O
R R R G O I S G O I

Small Common Test suite

e R I T
%%% File : example SUITE.erl

%%% Author

%%% Description :

999

0700

%%% Created :
O g g g g g g P g
0700

-module(example SUITE).
-compile(export all).

-include lib("common test/include/ct.hrl").

%% Function: suite() -> Info
%% Info = [tuple()]

suite() ->

%% Function: init per suite(Config@) ->

%% Configl | {skip,Reason} | {skip and save,Reason,Configl}
%% Config® = Configl = [tuple()]

%% Reason = term()

Config.
%% Function: end per suite(Config0) -> void() | {save config,Configl}
%% Config® = Configl = [tuple()]

Ericsson AB. All Rights Reserved.: Common Test | 31

1.6 Examples and Templates

Function: init per group(GroupName, Config@) ->
Configl | {skip,Reason} | {skip and save,Reason,Configl}

GroupName = atom()
Config0@ = Configl = [tuple()]
Reason = term()

Config.

% Function: end per group(GroupName, Config0@) ->
% void() | {save config,Configl}

% GroupName = atom()

% Configd = Configl = [tuple()]

ok.

Function: init per testcase(TestCase, Config0@) ->
Configl | {skip,Reason} | {skip and save,Reason,Configl}

TestCase = atom()
Config@ = Configl = [tuple()]
Reason = term()

Config.

Function: end per testcase(TestCase, Config0) ->

void() | {save config,Configl} | {fail,Reason}
TestCase = atom()
Config@ = Configl = [tuple()]
Reason = term()

ok.
%% Function: groups() -> [Group]
%% Group = {GroupName,Properties,GroupsAndTestCases}
%% GroupName = atom()
%% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
%% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
%% TestCase = atom()
%% Shuffle = shuffle | {shuffle,{integer(),integer(),integer()}}
%% RepeatType = repeat | repeat until all ok | repeat until all fail |
%% repeat until any ok | repeat until any fail
%% N = integer() | forever

[1.
%% Function: all() -> GroupsAndTestCases | {skip,Reason}
%% GroupsAndTestCases = [{group,GroupName} | TestCase]
%% GroupName = atom()
%% TestCase = atom()
%% Reason = term()

32 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Running Tests

all() ->
[my test case].

% Function: TestCase() -> Info
% Info = [tuple()]

[1.

% Function: TestCase(ConfigQ) ->

% ok | exit() | {skip,Reason} | {comment,Comment} |

% {save config,Configl} | {skip and save,Reason,Configl}
% Configb = Configl = [tuple()]

% Reason = term()

% Comment = term()

my test case(Config) ->
ok.

1.7 Running Tests

1.7.1 Using the Common Test Framework

The Common Test Framework provides a high level operator interface for testing. It adds the following features to
the Erlang/OTP Test Server:

e Automatic compilation of test suites (and help modules).

* Creation of additional HTML pages for better overview.

e Single command interface for running al available tests.

» Handling of configuration files specifying data related to the System Under Test (and any other variable data).
e Maode for running multiple independent test sessions in parallel with central control and configuration.

1.7.2 Automatic compilation of test suites and help modules

When Common Test starts, it will automatically attempt to compile any suites included in the specified tests. If
particular suites have been specified, only those suites will be compiled. If a particular test object directory has been
specified (meaning al suitesin thisdirectory should be part of the test), Common Test runs make:all/1 in the directory
to compile the suites.

If compilation should fail for one or more suites, the compilation errors are printed to tty and the operator is asked if
the test run should proceed without the missing suites, or be aborted. If the operator chooses to proceed, it is noted
inthe HTML log which tests have missing suites.

Any help module (i.e. regular Erlang module with name not ending with"_SUITE") that residesin the same test object
directory asasuite which is part of the test, will also be automatically compiled. A help module will not be mistaken
for atest suite (unlessit hasa"_ SUITE" name of course). All help modules in a particular test object directory are
compiled no matter if al or only particular suitesin the directory are part of the test.

If test suites or help modulesinclude header files stored in other |ocations than the test directory, you may specify these
include directories by means of the- i ncl ude flagwithct _run, orthei ncl ude optionwithct : run_test/ 1.
Inadditiontothis, aninclude path may be specified with an OS environment variable; CT_| NCLUDE _PATH. Example
(bash):

$ export CT_I NCLUDE_PATH=~t est user/ comon_suite_fil es/incl ude: ~t est user/
common_lib files/include

Ericsson AB. All Rights Reserved.: Common Test | 33

1.7 Running Tests

Common Test will pass al include directories (specified either with the i ncl ude flag/option, or the
CT_| NCLUDE_PATH variable, or both) to the compiler.

It isalso possible to specify include directories in test specifications (see below).

If the user wants to run all test suites for atest object (or OTP application) by specifying only the top directory (e.g.
withthedi r start flag/option), Common Test will primarily ook for test suite modulesin asubdirectory namedt est .
If this subdirectory doesn't exist, the specified top directory is assumed to be the actual test directory, and test suites
will be read from there instead.

Itis possible to disable the automatic compilation feature by using the- no_aut o_conpi | e flagwithct _run, or
the{aut o_conpil e, fal se} optionwithct: run_test/ 1. With automatic compilation disabled, the user is
responsible for compiling the test suite modules (and any help modules) before the test run. If the modules can not
be loaded from the local file system during startup of Common Test, the user needs to pre-load the modules before
starting the test. Common Test will only verify that the specified test suites exist (i.e. that they are, or can be, loaded).
Thisisuseful e.g. if the test suites are transferred and loaded as binaries via RPC from a remote node.

1.7.3 Running tests from the OS command line
Thect _r un program can be used for running tests from the OS command line, e.g.

e ct_run -config <configfilenanmes> -dir <dirs>
e ct_run -config <configfilenames> -suite <suitesw thfull path>

e ct_run -userconfig <cal |l backnodul enane> <configfil enanes> -suite
<sui teswi t hful | pat h>

e ct_run -config <configfilenames> -suite <suitew thfull path> -group
<groups> -case <casenanes>

Examples:
$ ct_run -config $CFGS/ sysl. cfg $CFGS/ sys2.cfg -dir $SYS1_TEST $SYS2_TEST

$ct_run -userconfigct_config xm $CFGS/sysl. xm $CFGS/sys2.xm -dir $SYS1 _TEST
$SYS2_TEST

$ ct_run -suite $SYS1_TEST/setup_SU TE $SYS2_TEST/ confi g_SU TE
$ ct_run -suite $SYS1_TEST/setup_SU TE -case start stop
$ ct_run -suite $SYS1_TEST/setup_SUI TE -group installation -case start stop

It is also possible to combine the di r, sui t e and gr oup/ case flags. E.g,torunx_SU TEandy_SUl TE in
directorytestdir:

$ ct_run -dir ./testdir -suite x_SU TE y_SU TE

This has the same effect as calling:

$ ct_run -suite ./testdir/x_SUTE ./testdir/y_SU TE
For more details on test case group execution, please see below.

Other flags that may be used withct _r un:

e -logdir <dir>,specifieswherethe HTML log files are to be written.
e -label <name_of test_run>, associatesthe test run with a name that gets printed in the overview
HTML log files.

« -refresh_I ogs, refreshesthe top level HTML index files.

e -vts, start web based GUI (see below).

* -shel |, start interactive shell mode (see below).

e -step [step_opts], stepthrough test cases using the Erlang Debugger (see below).

34 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Running Tests

-spec <testspecs>, usetest specification asinput (see below).
-al | ow_user _t erns, allows user specific termsin atest specification (see below).

-silent _connections [conn_types],tellsCommon Test to suppress printouts for specified
connections (see below).

-styl esheet <css_fil e>, pointsout auser HTML style sheet (see below).

-cover <cover_cfg_fil e>,toperform code coverage test (see Code Coverage Analysis).

-cover _stop <bhool >, to specify if the cover tool shall be stopped after the test is completed (see Code
Coverage Analysis).

-event _handl er <event _handl er s>, toinstal event handlers.

-event _handl er _init <event handl er s>, toinstall event handlersincluding start arguments.
-ct _hooks <ct _hooks>, toinstall Common Test Hooks including start arguments.

-enabl e_builtin_hooks <bool >, to enable/disable Built-in Common Test Hooks. Default ist r ue.
- i ncl ude, specifiesinclude directories (see above).

-no_aut o_conpi | e, disables the automatic test suite compilation feature (see above).

-mul tiply_tinetraps <n>,extendstimetrap timeout values.

-scal e_tinetraps <bool >, enables automatic timetrap timeout scaling.

-repeat <n>,tellsCommon Test to repeat the tests n times (see below).

-duration <tinme>,tellsCommon Test to repeat the tests for duration of time (see below).

-until <stop_tinme>,tellsCommon Test to repeat the tests until stop_time (see below).

- for ce_st op, on timeout, the test run will be aborted when current test job is finished (see below).

- decrypt _key <key>, provides adecryption key for encrypted configuration files.

-decrypt _file <key fil e>,pointsout afilecontaining adecryption key for encrypted configuration
files.

- basi c_ht m , switches off html enhancements that might not be compatible with older browsers.
-1 ogopt s <opt s>, makesit possible to modify aspects of the logging behaviour, see Log options below.
-verbosity <l evel s>, setsverbosity levels for printouts.

Note:
Directories passed to Common Test may have either relative or absolute paths.

Note:

Arbitrary start flagsto the Erlang Runtime System may also be passed asparameterstoct _r un. Itis, for example,
useful to be ableto passdirectoriesthat should be added to the Erlang code server search path withthe- pa or - pz
flag. If you have common help- or library modulesfor test suites (separately compiled), stored in other directories
than the test suite directories, these help/lib directories are preferrably added to the code path this way. Example:

$ ct run -dir ./chat_server -logdir ./chat _server/testlogs -pa $PWY/
chat _server/ebin

Note how in this example, the absolute path of thechat _ser ver/ ebi n directory is passed to the code server.
This is essential since relative paths are stored by the code server as relative, and Common Test changes the
current working directory of the Erlang Runtime System during the test run!

Ericsson AB. All Rights Reserved.: Common Test | 35

1.7 Running Tests

Thect _r un program sets the exit status before shutting down. The following values are defined:

e O indicates asuccessful testrun, i.e. one without failed or auto-skipped test cases.
* 1 indicatesthat one or more test cases have failed, or have been auto-skipped.

« 2 indicatesthat the test execution has failed because of e.g. compilation errors, anillegal return value from an
info function, etc.

If auto-skipped test cases should not affect the exit status, you may change the default behaviour using start flag:
-exit status ignore config

For more information about the ct _r un program, see the Reference Manual and the Installation chapter.

1.7.4 Running tests from the Erlang shell or from an Erlang program

Common Test provides an Erlang API for running tests. The main (and most flexible) function for specifying and
executing testsis called ct : r un_t est/ 1. This function takes the same start parameters as the ct _r un program
described above, only the flags are instead given as options in a list of key-value tuples. E.g. a test specified with
ct_runlike

$ ct_run -suite ./nmy_SUITE -logdir ./results
iswithct: run_t est/ 1 specified as:
1> ct:run_test([{suite,"./my_SU TE"},{logdir,"./results"}]).

The function returns the test result, represented by the tuple: { Ok, Fai | ed, { User Ski pped, Aut oSki pped}},
where each element is an integer. If test execution fails, the function returns the tuple: { er r or , Reason}, where
the term Reason explainsthe failure.

Releasing the Erlang shell

During execution of tests, started with ct : run_t est/ 1, the Erlang shell process, controlling stdin, will remain
the top level process of the Common Test system of processes. The result is that the Erlang shell is not available for
interaction during the test run. If thisis not desirable, maybe because the shell is needed for debugging purposes or
for interaction with the SUT during test execution, you may set ther el ease_shel | start optiontot r ue (in the
caltoct: run_t est/ 1 or by using the corresponding test specification term, see below). Thiswill make Common
Test release the shell immediately after the test suite compilation stage. To accomplish this, a test runner process is
spawned to take control of the test execution, and the effect isthat ct : r un_t est / 1 returns the pid of this process
rather than the test result - which instead is printed to tty at the end of the test run.

Note:

Note that in order to use the ct : break/ 1/ 2 and ct : cont i nue/ 0/ 1 functions, r el ease_shel | must
besettotrue.

For detailed documentation about ct : run_t est / 1, please seethe ct manual page.

1.7.5 Test case group execution

Withthect _runflag,orct:run_t est/ 1 optiongr oup, oneor moretest case groups can be specified, optionally
in combination with specific test cases. The syntax for specifying groupsis as follows (on the command line):

36 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Running Tests

$ ct _run -group <group names or paths> [-case <cases>]

or (in the Erlang shell):

1> ct:run_test([{group,GroupsNamesOrPaths}, {case,Cases}]).

The gr oup_nanes_or _pat hs parameter specifies either one or more group names and/or one or more group
paths. At start up, Common Test will search for matching groups in the group definitions tree (i.e. the list returned
from Sui t e: gr oups/ 0, please see the Test case groups chapter for details). Given a group name, say g, Common
Test will search for al paths that lead to g. By path here we mean a sequence of nested groups, all of which have to
be followed in order to get from the top level group to g. Actually, what Common Test needsto do in order to execute
the test cases in group g, isto call thei nit _per _gr oup/ 2 function for each group in the path to g, as well as
all corresponding end_per _gr oup/ 2 functions afterwards. The obvious reason for this is that the configuration
of atest casein g (and its Conf i g input data) dependsoni nit _per _test case(Test Case, Config) and
its return value, which in turn dependsoni nit _per _group(g, Confi g) and itsreturn value, which in turn
dependsoni nit _per group/ 2 of the group above g, etc, al the way up to the top level group.

Asyou may have aready realized, this means that if there is more than one way to locate a group (and its test cases)
in a path, the result of the group search operation is a number of tests, all of which will be performed. Common Test
actually interprets a group specification that consists of a single name this way:

"Search and find al paths in the group definitions tree that lead to the specified group and, for each path, create atest
which (1) executes all configuration functionsin the path to the specified group, then (2) executesall - or all matching
- test cases in this group, aswell as (3) all - or all matching - test casesin all sub groups of the group".

Itisalso possible for the user to specify a specific group path with the gr oup_nanes_or _pat hs parameter. With
thistype of specification it's possible to avoid execution of unwanted groups (in otherwise matching paths), and/or the
execution of sub groups. The syntax of the group path isalist of group names in the path, e.g. on the command line:

$ ct_run -suite "./x_SUTE" -group [gl,g3,g94] -case tcl tch
or similarly in the Erlang shell (requires alist within the groupslist):

1> ct:run_test([{suite,"./x _SU TE"}, {group,[[91,93,94]]1}, {t est case,
[tcl,tc5]}]).

The last group in the specified path will be the terminating group in the test, i.e. no sub groups following this group
will be executed. In the example above, g4 isthe terminating group, hence Common Test will execute atest that calls
al init configuration functions in the path to g4, i.e. g1. . g3. . g4. It will then call test casest c1 andt c5ing4
and finally all end configuration functionsin order g4. . g3. . g1.

Note that the group path specification doesn't necessarily have to include all groups in the path to the terminating
group. Common Test will search for al matching pathsif given an incomplete group path.

Note also that it's possible to combine group names and group pathswiththegr oup_names_or _pat hs parameter.
Each element istreated as an individual specification in combination withthecases parameter. See examples below.

Examples:

-module(x_SUITE).

%% The group definitions:

groups() ->
[{topl,[],[tcll,tcl2,
{subll,[],[tcl2,tc13]},
{sub12,[],[tcl4,tcl5,

{sub121,[],[tcl2,tcl16]1}1}1},

Ericsson AB. All Rights Reserved.: Common Test | 37

1.7 Running Tests

{top2,[], [{group,sub21}, {group, sub22}1},
{sub21,[],[tc21,{group,sub2X2}1},

{sub22,[1, [{group,sub221},tc21,tc22,{group, sub2X2}1},
{sub221,[],[tc21,tc23]},

{sub2X2,[1,[tc21,tc24]}].

$ ct_run -suite "x_SU TE" -group all

1> ct:run_test([{suite,"x_SU TE'}, {group,all}]).

Two tests will be executed, one for all cases and all sub groups under t op1, and onefor al undert op2. (Wewould
get the same result with - gr oup t opl top2,or{group,[topl,top2]}.

$ ct_run -suite "x_SU TE" -group topl

1> ct:run_test([{suite,"x_SU TE"}, {group,[topl]}]).

Thiswill execute onetest for all cases and sub groups under t op1.

$ ct_run -suite "x_SU TE" -group topl -case tcl2

1> ct:run_test([{suite,"x SUTE"}, {group,[topl]}, {testcase,[tcl2]}]).

Thiswill run atest that executest c12 int opl1 and any sub group under t op1 whereit can be found (sub11 and
sub121).

$ ct_run -suite "x_SU TE" -group [topl] -case tcl2

1> ct:run_test([{suite,"x_SU TE'}, {group,[[topl]]}, {testcase,[tcl2]}]).
Thiswill executet c12 onlyingroupt op1l.

$ ct_run -suite "x_SU TE" -group topl -case tcl6

1> ct:run_test([{suite,"x SUTE"}, {group,[topl]}, {testcase,[tcl6]}]).

This will search t op1 and all its sub groups for t c16 and the result will be that this test case executes in group
sub121. (The specific path: - group [subl121] or {group, [[subl121]]}, would have given us the same
result in this example).

$ ct_run -suite "x_SU TE" -group subl2 [subl2]

1> ct:run_test([{suite,"x_SU TE"}, {group,[subl2,[subl2]]}]).

Thiswill execute two tests, one that includes all cases and sub groups under sub12, and one with only the test cases
insubl2.

$ ct_run -suite "x_SU TE" -group sub2X2

1> ct:run_test([{suite,"x_SU TE'}, {group,[sub2X2]}]).

In this example, Common Test will find and execute two tests, one for the path fromt op2 to sub2X2 viasub21,
and onefromt op2 tosub2X2 viasub22.

$ ct_run -suite "x_SU TE" -group [sub2l, sub2X2]

1> ct:run_test([{suite,"x_SU TE"}, {group,[[sub2l, sub2X2]]}]1).

Here, by specifying the unique path: t op2 - > sub21 -> sub2X2, only onetest isexecuted. The second possible
path fromt op2 to sub2X2 (above) will be discarded.

38 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Running Tests

$ ct_run -suite "x_SU TE" -group [sub22] -case tc22 tc21l

1> ct:run_test([{suite,"x_SU TE"}, {group, [[sub22]]}, {t est case,
[tc22,tc21]}]).

In this example only the test cases for sub22 will be executed, and in reverse order compared to the group definition.

If atest case that belongs to a group (according to the group definition), is executed without a group specification,
i.e. simply by means of (command line):

$ ct_run -suite "ny_SU TE" -case ny_tc
or (Erlang shell):
1> ct:run_test([{suite,"nmy _SU TE"}, {testcase,ny _tc}]).

then Common Test ignores the group definition and executes the test case in the scope of the test suite only (no group
configuration functions are called).

The group specification feature, exactly asit has been presented in this section, can also be used in Test Specifications
(with some extra features added). Please see below.

1.7.6 Running the interactive shell mode

Y ou can start Common Test in aninteractive shell mode where no automatic testing is performed. Instead, in thismode,
Common Test starts its utility processes, installs configuration data (if any), and waits for the user to call functions
(typically test case support functions) from the Erlang shell.

The shell mode is useful e.g. for debugging test suites, for analysing and debugging the SUT during "simulated"” test
case execution, and for trying out various operations during test suite development.

To invoke the interactive shell mode, you can start an Erlang shell manually and call ct ;i nstal | / 1 toinstall any
configuration datayou might need (use[] asargument otherwise), thencall ct: start i nteractive/ 0 tostart
Common Test. If you usethect _r un program, you may start the Erlang shell and Common Test in the same go by
using the- shel | and, optionally, the- conf i g and/or - user conf i g flag. Examples:

e ct_run -shell
e ¢t _run -shell -config cfg/db.cfg
e ct_run -shell -userconfig db_login testuser x523qZ

If no config file is given with the ct _r un command, a warning will be displayed. If Common Test has been run
from the same directory earlier, the same config file(s) will be used again. If Common Test has not been run from this
directory before, no config fileswill be available.

If any functions using "required config data" (e.g. ct_telnet or ct_ftp functions) are to be called from the erlang shell,
config data must first be required with ct: requi re/ 1/ 2. Thisisequivalent to ar equi r e statement in the Test
Suite Info Function or in the Test Case Info Function.

Example:

1> ct:require(unix_telnet, unix).

ok

2> ct _telnet:open(unix_telnet).
{ok,<0.105.0>}

4> ct _telnet:cmd(unix_telnet, "ls .").
{ok,["ls .","filel ...",...]1}

Everything that Common Test normally prints in the test case logs, will in the interactive mode be written to a log
namedct | og. ht M inthect _run. <ti mest anp> directory. A link to thisfilewill be availablein the file named

Ericsson AB. All Rights Reserved.: Common Test | 39

1.7 Running Tests

| ast _i nteractive. ht m inthedirectory from which you executed ct _r un. Currently, specifying a different
root directory for the logs than the current working directory, is not supported.

If you wish to exit the interactive mode (e.g. to start an automated test run withct : run_t est / 1), call the function
ct:stop_interactive/0. This shuts down the running ct application. Associations between configuration
names and data created with r equi r e are consequently deleted. ct : start i nteracti ve/ 0 will get you back
into interactive mode, but the previous state is not restored.

1.7.7 Step by step execution of test cases with the Erlang Debugger

By meansof ct_run -step [opts], or by passing the { st ep, Opt s} optiontoct:run_test/1,itis
possible to get the Erlang Debugger started automatically and use its graphical interface to investigate the state of the
current test case and to execute it step by step and/or set execution breakpoints.

If no extraoptions are given with the st ep flag/option, breakpointswill be set automatically on the test casesthat are
to be executed by Common Test, and those functions only. If the step option conf i g is specified, breakpoints will
also be initially set on the configuration functions in the suite, i.e. i nit _per _suite/ 1, end_per _suite/1,
i nit_per_group/2,end_per_group/2,init_per_testcase/2andend_per _testcase/2.

Common Test enables the Debugger auto attach feature, which meansthat for every new interpreted test case function
that starts to execute, a new trace window will automatically pop up. (This is because each test case executes on a
dedicated Erlang process). Whenever a new test case starts, Common Test will attempt to close the inactive trace
window of the previous test case. However, if you prefer that Common Test leaves inactive trace windows, use the
keep_i nacti ve option.

The step functionality can be used together with the sui t e and the sui t e + case/ t est case flag/option, but
not together with di r .

1.7.8 Test Specifications

General description

The most flexible way to specify what to test, isto use a so called test specification. A test specification is a sequence
of Erlang terms. The terms are normally declared in one or moretext files(seect : run_t est/ 1), but may aso be
passed to Common Test on the form of alist (seect: run_t est spec/ 1). There are two general types of terms:
configuration terms and test specification terms.

With configuration terms it is possible to e.g. label the test run (similar to ct _run -1 abel), evaluate arbitrary
expressions before starting the test, import configuration data (similar to ct _run -confi g/ -userconfi g),
specify the top level HTML log directory (similar toct _run -1 ogdi r), enable code coverage analysis (similar to
ct_run -cover), install Common Test Hooks (similar toct _run -ch_hooks), install event_handler plugins
(similar to ct _run -event _handl er), specify include directories that should be passed to the compiler for
automatic compilation (similartoct _r un -i ncl ude), disable the auto compilation feature (similartoct _run -
no_aut o_conpi | e), set verbosity levels (similartoct _run -ver bosi ty), and more.

Configurationterms can becombinedwithct _r un startflags,orct : run_t est / 1 options. Theresult will for some
flags/options and terms be that the values are merged (e.g. configuration files, include directories, verbosity levels,
silent connections), and for others that the start flags/options override the test specification terms (e.g. log directory,
label, style sheet, auto compilation).

With test specification terms it is possible to state exactly which tests should run and in which order. A test term
specifies either one or more suites, one or more test case groups (possibly nested), or one or more test casesin agroup
(or in multiple groups) or in a suite.

An arbitrary number of test terms may be declared in sequence. Common Test will by default compile the termsinto
one or more tests to be performed in one resulting test run. Note that a term that specifies a set of test cases will
"swallow" one that only specifies a subset of these cases. E.g. the result of merging one term that specifies that all
casesin suite S should be executed, with another term specifying only test case X and Y in S, isatest of al casesin S.

40 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Running Tests

However, if aterm specifying test case X and Y in Sis merged with aterm specifying case Z in S, the result is a test
of X,Y and Zin S. To disable this behaviour, i.e. to instead perform each test sequentially in a"script-like" manner,
thetermner ge_t est s canbesettof al se inthetest specification.

A test term can also specify one or more test suites, groups, or test cases to be skipped. Skipped suites, groups and
cases are not executed and show up in the HTML log files as SKIPPED.

Using multiple test specification files

When multiple test specification files are given at startup (either withct _run -spec filel file2
orct:run_test([{spec, [Filel,File2,...]1}])), Common Test will either execute one test run per
specification file, or join the files and perform all tests within one single test run. The first behaviour is the
default one. The latter requires that the start flag/option j oi n_sui t es isprovided, eg. run_t est -spec ./
my_testsl.ts ./ny_tests2.ts -join_suites.

Joining a number of specifications, or running them separately, can also be accomplished with (and may be combined
with) test specification file inclusion, described next.

Test specification file inclusion

With the specs term (see syntax below), it's possible to have a test specification include other specifications. An
included specification may either be joined with the source specification, or used to produce a separate test run (like
withthej oi n_specs start flag/option above). Example:

%% In specification file "a.spec"
{specs, join, ["b.spec", "c.spec"l}.
{specs, separate, ["d.spec", "e.spec"]}.
%% Config and test terms follow

In this example, the test terms defined in files "b.spec” and "c.spec” will be joined with the terms in the source
specification "a.spec” (if any). The inclusion of specifications "d.spec” and "e.spec” will result in two separate, and
independent, test runs (i.e. one for each included specification).

Note that the oi n option does not imply that the test terms will be merged (see ner ge_t est s above), only that
all tests are executed in one single test run.

Joined specifications share common configuration settings, such asthelist of conf i g filesor i ncl ude directories.
For configuration that can not be combined, such as settingsfor | ogdi r orver bosi ty, itisuptotheuser to ensure
there are no clashes when the test specifications are joined. Specifications included with the separ at e option, do
not share configuration settings with the source specification. This is useful e.g. if there are clashing configuration
settings in included specifications, making it impossible to join them.

If {nmerge_tests,true} is set in the source specification (which is the default setting), terms in joined
specifications will be merged with terms in the source specification (according to the description of ner ge_t est s
above).

Note that it is always the mer ge_t est s setting in the source specification that is used when joined with other
specifications. Say e.g. that a source specification A, with tests TA1 and TA2, has{ ner ge_t est s, f al se} s,
and it includes another specification, B, with tests TB1 and TB2, that has{ mer ge_t est s, t r ue} set. The result
will bethat thetest series: TAL, TA2, mer ge(TB1, TB2) , isexecuted. Theoppositener ge_t est s settingswould
result in the following the test series: mer ge(mer ge(TA1, TA2), TB1, TB2).

Thespecs term may of course be used to nest specifications, i.e. have one specification include other specifications,
which in turn include others, etc.

Ericsson AB. All Rights Reserved.: Common Test | 41

1.7 Running Tests

Test case groups

When atest case group is specified, the resulting test executesthei ni t _per _gr oup function, followed by all test
cases and sub groups (including their configuration functions), and finaly the end_per _gr oup function. Also if
particular test cases in a group are specified, i ni t _per _gr oup and end_per _gr oup for the group in question
are called. If a group which is defined (in Sui t e: gr oup/ 0) to be a sub group of another group, is specified
(or if particular test cases of a sub group are), Common Test will call the configuration functions for the top level
groups as well as for the sub group in question (making it possible to pass configuration data all the way from
i nit_per_suite down tothetest casesin the sub group).

The test specification utilizes the same mechanism for specifying test case groups by means of names and paths, as
explained in the Group Execution section above, with the addition of the G oupSpec element described next.

The Gr oupSpec element makesit possibleto specify group execution propertiesthat will override thosein the group
definition (i.e. in gr oups/ 0). Execution properties for sub-groups may be overridden as well. This feature makes it
possible to change properties of groups at the time of execution, without even having to edit the test suite. The very
same feature is available for gr oup elementsin the Sui t e: al | / O list. Therefore, more detailed documentation,
and examples, can be found in the Test case groups chapter.

Test specification syntax

Below isthe test specification syntax. Test specifications can be used to run tests both in asingle test host environment
and in adistributed Common Test environment (Large Scale Testing). The node parametersinthei ni t termareonly
relevant in the latter (see the Large Scale Testing chapter for information). For more information about the various
terms, please see the corresponding sections in the User's Guide, such as e.g. thect _r un program for an overview
of available start flags (since most flags have a corresponding configuration term), and more detailed explanation of
e.g. Logging (for thever bosi ty, st yl esheet and basi c_ht nl terms), External Configuration Data (for the
confi ganduser confi g terms), Event Handling (for theevent _handl er term), Common Test Hooks (for the
ct _hooks term), etc.

Config terms:

{merge tests, Bool}.

{define, Constant, Value}.

{specs, InclSpecsOption, TestSpecs}.
{node, NodeAlias, Node}.

{init, InitOptions}.
{init, [NodeAlias], InitOptions}.

{label, Label}.
{label, NodeRefs, Label}.

{verbosity, VerbositylLevels}.
{verbosity, NodeRefs, VerbositylLevels}.

{stylesheet, CSSFile}.
{stylesheet, NodeRefs, CSSFile}.

{silent connections, ConnTypes}.
{silent connections, NodeRefs, ConnTypes}.

{multiply timetraps, N}.
{multiply timetraps, NodeRefs, N}.

{scale timetraps, Bool}.

42 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Running Tests

{scale timetraps, NodeRefs, Bool}.

{cover, CoverSpecFile}.
{cover, NodeRefs, CoverSpecFile}.

{cover stop, Bool}.
{cover stop, NodeRefs, Bool}.

{include, IncludeDirs}.
{include, NodeRefs, IncludeDirs}.

{auto compile, Bool},
{auto compile, NodeRefs, Bool},

{config, ConfigFiles}.

{config, ConfigDir, ConfigBaseNames}.

{config, NodeRefs, ConfigFiles}.

{config, NodeRefs, ConfigDir, ConfigBaseNames}.

{userconfig, {CallbackModule, ConfigStrings}}.
{userconfig, NodeRefs, {CallbackModule, ConfigStrings}}.

{logdir, LogDir}.
{logdir, NodeRefs, LogDir}.

{logopts, LogOpts}.
{logopts, NodeRefs, LogOpts}.

{create priv dir, PrivDirOption}.
{create priv _dir, NodeRefs, PrivDirOption}.

{event handler, EventHandlers}.

{event handler, NodeRefs, EventHandlers}.

{event handler, EventHandlers, InitArgs}.

{event handler, NodeRefs, EventHandlers, InitArgs}.

{ct _hooks, CTHModules}.
{ct _hooks, NodeRefs, CTHModules}.

{enable builtin hooks, Bool}.

{basic_html, Bool}.
{basic_html, NodeRefs, Bool}.

{release shell, Bool}.

Test terms:

{suites, Dir, Suites}.
{suites, NodeRefs, Dir, Suites}.

{groups, Dir, Suite, Groups}.
{groups, NodeRefs, Dir, Suite, Groups}.

{groups, Dir, Suite, Groups, {cases,Cases}}.
{groups, NodeRefs, Dir, Suite, Groups, {cases,Cases}}.

{cases, Dir, Suite, Cases}.
{cases, NodeRefs, Dir, Suite, Cases}.

{skip_suites, Dir, Suites, Comment}.
{skip_suites, NodeRefs, Dir, Suites, Comment}.

Ericsson AB. All Rights Reserved.: Common Test | 43

1.7 Running Tests

{skip groups, Dir, Suite, GroupNames, Comment}.
{skip_groups, NodeRefs, Dir, Suite, GroupNames, Comment}.

{skip cases, Dir, Suite, Cases, Comment}.
{skip cases, NodeRefs, Dir, Suite, Cases, Comment}.

Types:
Bool = true | false
Constant = atom()
Value = term()
InclSpecsOption = join | separate
TestSpecs = string() | [string()]
NodeAlias = atom()
Node = node()
NodeRef = NodeAlias | Node | master
NodeRefs = all nodes | [NodeRef] | NodeRef
InitOptions = term()
Label = atom() | string()
VerbositylLevels = integer() | [{Category,integer()}]
Category = atom()
CSSFile = string()
ConnTypes = all | [atom()]
N = integer()
CoverSpecFile = string()
IncludeDirs = string() | [string()]
ConfigFiles = string() | [string()]
ConfigDir = string()
ConfigBaseNames = string() | [string()]
CallbackModule = atom()
ConfigStrings = string() | [string()]
LogDir = string()
LogOpts = [term()]
PrivDirOption = auto per run | auto per tc | manual per tc
EventHandlers = atom() | [atom()]
InitArgs = [term()]
CTHModules = [CTHModule |
{CTHModule, CTHInitArgs} |
{CTHModule, CTHInitArgs, CTHPriority}]

CTHModule = atom()
CTHInitArgs = term()
Dir = string()
Suites = atom() | [atom()] | all
Suite = atom()
Groups = GroupPath | [GroupPath] | GroupSpec | [GroupSpec] | all
GroupPath = [GroupName]
GroupSpec = GroupName | {GroupName,Properties} | {GroupName,Properties,GroupSpec}
GroupName = atom()
GroupNames = GroupName | [GroupName]
Cases = atom() | [atom()] | all

Comment = string() | ""

The difference between the conf i g terms above, is that with Conf i gDi r, Conf i gBaseNanes isalist of base
names, i.e. without directory paths. Conf i gFi | es must be full names, including paths. E.g, these two terms have
the same meaning:

{config, ["/home/testuser/tests/config/nodeA.cfg",

"/home/testuser/tests/config/nodeB.cfg"1}.

44 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Running Tests

{config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"l}.

Note:
Any relative paths specified in the test specification, will be relative to the directory which
contains the test specification file, if ct_run - spec Test SpecFi l e ... or

ct:run:test([{spec, Test SpecFile},...]) executesthe test. The path will be relative to the top
level log directory, if ct : run: t est spec(Test Spec) executesthe test.

Constants

Thedef i ne term introduces a constant, which is used to replace the name Const ant with Val ue, wherever it's
found in the test specification. This replacement happens during an initial iteration through the test specification.
Constants may be used anywhere in the test specification, e.g. in arbitrary lists and tuples, and even in strings and
inside the value part of other constant definitions! A constant can also be part of a node name, but that is the only
place where a constant can be part of an atom.

Note:

For the sake of readability, the name of the constant must always begin with an upper case letter, or a $, ?, or
_. Thisalso means that it must always be single quoted (obviously, since the constant name is actually an atom,
not text).

The main benefit of constants is that they can be used to reduce the size (and avoid repetition) of long strings, such
asfile paths. Compare these terms:

%% la. no constant
{config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"l}.
{suites, "/home/testuser/tests/suites", all}.

%% 1lb. with constant

{define, 'TESTDIR', "/home/testuser/tests"}.

{config, "'TESTDIR'/config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, "'TESTDIR'/suites", all}.

%% 2a. no constants
{config, [testnode@hostl, testnode@host2], "../config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, [testnode@hostl, testnode@host2], "../suites", [x SUITE, y SUITE]}.

%% 2b. with constants

{define, 'NODE', testnode}.

{define, 'NODES', ['NODE'g@hostl, 'NODE'@host2]}.

{config, 'NODES', "../config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, 'NODES', "../suites", [x SUITE, y SUITE]}.

Constants make the test specification term al i as, in previous versions of Common Test, redundant. This term has
been deprecated but will remain supported in upcoming Common Test releases. Replacingal i as termswithdef i ne
is strongly recommended though! Here's an example of such areplacement:

Ericsson AB. All Rights Reserved.: Common Test | 45

1.7 Running Tests

%% using the old alias term

{config, "/home/testuser/tests/config/nodeA.cfg"}.
{alias, suite dir, "/home/testuser/tests/suites"}.
{groups, suite dir, x SUITE, groupl}.

%% replacing with constants

{define, 'TestDir', "/home/testuser/tests"}.
{define, 'CfgDir', "'TestDir'/config"}.
{define, 'SuiteDir', "'TestDir'/suites"}.
{config, 'CfgDir', "nodeA.cfg"}.

{groups, 'SuiteDir', x SUITE, groupl}.

Actually, constants could well replace the node term too, but this still has declarative value, mainly when used in
combination with NodeRef s == al | _nodes (seetypes above).

Example

Here follows a simple test specification example:

{define, 'Top', "/home/test"}.
{define, 'T1', "'Top'/t1"}.
{define, 'T2', "'Top'/t2"}.
{define, 'T3', "'Top'/t3"}.
{define, 'CfgFile', "config.cfg"}.

{logdir, "'Top'/logs"}.
{config, ["'T1'/'CfgFile'", "'T2'/'CfgFile'", "'T3'/'CfgFile'"]}.

{suites, 'T1', all}.

{skip suites, 'T1', [t1B SUITE,t1D SUITE], "Not implemented"}.
{skip cases, 'T1', t1lA SUITE, [test3,test4], "Irrelevant"}.
{skip cases, 'T1', t1C SUITE, [testl], "Ignore"}.

{suites, 'T2', [t2B SUITE,t2C SUITE]}.
{cases, 'T2', t2A SUITE, [test4, testl,test7]}.

{skip suites, 'T3', all, "Not implemented"}.

The example specifies the following:

» The specified logdir directory will be used for storing the HTML log files (in subdirectories tagged with node
name, date and time).

» Thevariablesin the specified test system config fileswill be imported for the test.

* Thefirst test to run includes all suitesfor system t1. Excluded from the test are however the t1B and t1D suites.
Also test casestest3 and test4 in t1A aswell asthetestl case in t1C are excluded from the test.

e Secondly, thetest for system t2 should run. The included suites are t2B and t2C. Included are also test cases
test4, testl and test7 in suite t2A. Note that the test cases will be executed in the specified order.

e Lasdtly, all suitesfor systemst3 are to be completely skipped and this should be explicitly noted in the log files.

The init term

With thei ni t termit's possible to specify initialization options for nodes defined in the test specification. Currently,
there are options to start the node and/or to evaluate any function on the node. See the Automatic startup of the test
target nodes chapter for details.

46 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Running Tests

User specific terms

It ispossible for the user to provide atest specification that includes (for Common Test) unrecognizable terms. If this
isdesired, the- al | ow_user _t er ns flag should be used when starting tests with ct _r un. This forces Common
Test to ignore unrecognizable terms. Note that in this mode, Common Test is not able to check the specification for
errors as efficiently as if the scanner runs in default mode. If ct: run_t est/ 1 isused for starting the tests, the
relaxed scanner mode is enabled by means of thetuple: { al | ow_user _terns, true}

1.7.9 Running tests from the Web based GUI

The web based GUI, VTS, is started with the ct _r un program. From the GUI you can load config files, and select

directories, suites and cases to run. Y ou can also state the config files, directories, suites and cases on the command

line when starting the web based GUI.

e ct_run -vts

e ct_run -vts -config <configfil ename>

e ct_run -vts -config <configfilename> -suite <suitew thfullpath> -case
<casenane>

From the GUI you can run tests and view the result and the logs.

Notethat ct _run - vt s will try to open the Common Test start page in an existing web browser window or start the
browser if it isnot running. Which browser should be started may be specified with the browser start command option:

ct_run -vts -browser <browser_start_cnu>

Example:

$ ct_run -vts -browser 'firefox&

Note that the browser must run as a separate OS process or VTS will hang!

If no specific browser start command is specified, Firefox will be the default browser on Unix platforms and Internet
Explorer on Windows. If Common Test fails to start a browser automatically, or ' none' is specified as the value
for -browser (i.e. - br owser none), start your favourite browser manually and type in the URL that Common Test
displaysin the shell.

1.7.10 Log files

As the execution of the test suites proceed, events are logged in four different ways:

e Text to the operator's console.

e Suiterelated information is sent to the major log file.

e Caserdated information is sent to the minor log file.

« TheHTML overview log file gets updated with test results.

« Alinktoal runs executed from a certain directory iswritten in the log named "al_runs.html" and direct links
to all tests (the latest results) are written to the top level "index.html".

Typically the operator, who may run hundreds or thousands of test cases, doesn't want to fill the console with details
about, or printouts from, the specific test cases. By default, the operator will only see:

* A confirmation that the test has started and information about how many test cases will be executed totally.

* A small note about each failed test case.

e A summary of al the run test cases.

* A confirmation that the test run is complete.

Ericsson AB. All Rights Reserved.: Common Test | 47

1.7 Running Tests

e Some special information like error reports and progress reports, printouts written with erlang:display/1, or
io:format/3 specifically addressed to areceiver other than st andar d_i o (e.g. the default group leader process
'user).

If/when the operator wants to dig deeper into the general results, or the result of a specific test case, he should do so

by following the links in the HTML presentation and take alook in the major or minor log files. The "all_runs.html"

pageisapractical starting point usualy. It'slocated in| ogdi r and contains alink to each test run including a quick
overview (date and time, node name, number of tests, test names and test result totals).

An"index.html" pageiswritten for each test run (i.e. stored in the "ct_run" directory tagged with node name, date and
time). This file gives a short overview of al individua tests performed in the same test run. The test names follow
this convention:

* TopLevelDir.TestDir (al suitesin TestDir executed)

e TopLevelDir.TestDir:suites (specific suites were executed)

» TopLevelDir.TestDir.Suite (all casesin Suite executed)

e TopLevelDir.TestDir.Suite: cases (specific test cases were executed)

e TopLevelDir.TestDir.Suite.Case (only Case was executed)

Onthetest run index page thereisalink to the Common Test Framework log file in which information about imported

configuration data and general test progressiswritten. Thislog fileis useful to get snapshot information about the test
run during execution. It can also be very helpful when analyzing test results or debugging test suites.

On the test run index page it is noted if atest has missing suites (i.e. suites that Common Test has failed to compile).
Names of the missing suites can be found in the Common Test Framework log file.

The major logfile shows a detailed report of the test run. It includes test suite and test case names, execution time, the
exact reason for failures etc. The information is available in both afile with textual and with HTML representation.
The HTML file shows a summary which gives agood overview of thetest run. It also has linksto each individual test
case log file for quick viewing with an HTML browser.

The minor log files contain full details of every single test case, each one in a separate file. This way, it should be
straightforward to compare the latest results to that of previous test runs, even if the set of test cases changes. If SASL
isrunning, itslogs will also be printed to the current minor log file by the cth_log_redirect built-in hook.

The full name of the minor log file (i.e. the name of the file including the absolute directory path) can be read during
execution of thetest case. It comesasvalueinthetuple{t c_| ogfi | e, LogFi | eName} intheConf i g list (which
means it can also be read by a pre- or post Common Test hook function). Also, at the start of atest case, thisdatais
sent with an event to any installed event handler. Please see the Event Handling chapter for details.

Which information goes where is user configurable via the test server controller. Three threshold values determine
what comes out on screen, and in the major or minor log files. See the OTP Test Server manua for information. The
contents that goesto the HTML log file is fixed however and cannot be altered.

The log files are written continously during a test run and links are always created initially when atest starts. This
makes it possible to follow test progress smply by refreshing pages in the HTML browser. Statistics totals are not
presented until atest is complete however.

Log options

With the | ogopt s start flag, it's possible to specify options that modify some aspects of the logging behaviour.
Currently, the following options are available:

e no_src
e no_nl

Withno_sr ¢, thehtml version of thetest suite source code will not be generated during thetest run (and consequently
not be available in the log file system).

48 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Running Tests

With no_nl , Common Test will not add a newline character (\n) to the end of an output string that it receives from
acdltoeg.io: format/ 2, and which it prints to the test case log.

For example, if atest is started with:

$ ct _run -suite my_SUITE -1 ogopts no_src

then printouts during the test made by successive callstoi o: f or mat (" x") , will appear in the test case log as:
XXX

instead of each x printed on anew line, which is the default behaviour.

Sorting HTML table columns

By clicking the name in the column header of any table (e.g. "Ok", "Case", "Time", etc), the table rows are sorted in
whatever order makes sense for the type of value (e.g. numerical for "Ok" or "Time", and alphabetical for "Case").
The sorting is performed by means of JavaScript code, automatically inserted into the HTML log files. Common Test
usesthe jQuery library and the tablesorter plugin, with customized sorting functions, for thisimplementation.

1.7.11 HTML Style Sheets

Common Test uses an HTML Style Sheet (CSSfile) to control the look of the HTML log files generated during test
runs. If, for some reason, the log files are not displayed correctly in the browser of your choice, or you prefer amore
primitive ("pre Common Test v1.6") ook of the logs, use the start flag/option:

basic html

This disables the use of Style Sheets, as well as JavaScripts (see table sorting above).

Common Test includes an optional feature to allow user HTML style sheets for customizing printouts. The functions
inct that print to atest case HTML log file (I og/ 3 and pal / 3) accept Cat egory as first argument. With this
argument it's possibleto specify acategory that can be mapped to aselector inaCSSdefinition. Thisisuseful especialy
for coloring text differently depending on the type of (or reason for) the printout. Say you want one color for test
system configuration information, a different one for test system state information and finally one for errors detected
by the test case functions. The corresponding style sheet may ook like this:

div.sys config { background:blue; color:white }
div.sys state { background:yellow; color:black }
div.error { background:red; color:white }

To install the CSS file (Common Test inlines the definition in the HTML code), the name may be provided when
executing ct _r un. Example:

$ ct run -dir $TEST/prog -stylesheet $TEST/styles/test categories.css

Categories in a CSSfile installed with the - st yl esheet flag are on aglobal test level in the sense that they can
be used in any suite which is part of the test run.

It isalso possibleto install style sheets on a per suite and per test case basis. Example:

-module(my SUITE).

suite() -> [..., {stylesheet,"suite categories.css"}, ...].

Ericsson AB. All Rights Reserved.: Common Test | 49

href
href

1.7 Running Tests

$9itestcase(7) ->
é%glog(sysfconfig, "Test node version: ~p", [VersionInfol]),
é%glog(sysfstate, "Connections: ~p", [ConnectionInfo]),
é%gpal(error, "Error ~p detected! Info: ~p", [SomeFault,ErrorInfo]),

ct:fail(SomeFault).

If the style sheet isinstalled asin thisexample, the categories are private to the suitein question. They can be used by all
test casesin the suite, but can not be used by other suites. A suite private style sheet, if specified, will be used in favour
of aglobal style sheet (one specified with the - st yl esheet flag). A stylesheet tuple (as returned by sui t e/ 0
above) can a'so bereturned from atest caseinfo function. In this case the categories specified in the style sheet can only
be used in that particular test case. A test case private style sheet is used in favour of asuite or global level style sheet.

In a tuple {styl esheet, CSSFil e}, if CSSFil e is specified with a path, eg. "$TEST/ styl es/
cat egori es. css", thisfull name will be used to locate the file. If only the file name is specified however, e.g.
"categories.css', then the CSS file is assumed to be located in the data directory, dat a_di r, of the suite. The latter
usage is recommended since it is portable compared to hard coding path namesin the suite!

The Cat egory argument in the example above may have the value (atom) sys_confi g (white on blue),
sys_st at e (black on yellow) or er r or (white on red).

1.7.12 Repeating tests

Y ou can order Common Test to repeat the tests you specify. Y ou can choose to repeat tests a certain number of times,
repeat tests for a specific period of time, or repeat tests until aparticular stop timeisreached. If repetition is controlled
by means of time, it is also possible to specify what action Common Test should take upon timeout. Either Common
Test performsall testsin the current run before stopping, or it stops as soon asthe current test job isfinished. Repetition
can be activated by means of ct _r un start flags, or tuplesinthect : run: t est / 1 option list argument. The flags
(optionsin parenthesis) are:

e -repeat N ({repeat, N}),whereNisapositive integer.

e ~-duration DurTime ({duration, DurTi nme}),whereDur Ti ne isthe duration, see below.
e -until StopTinme ({until, StopTi ne}),whereStopTi ne isfinishtime, see below.

e -force_stop ({force_stop,true})

The duration time, DurTine, is specified as HHWEBS. Example -duration 012030 or
{duration,"012030"}, means the tests will be executed and (if time allows) repeated, until timeout occurs
after 1 h, 20 min and 30 secs. St opTi me can be specified as HHMIVSS and is then interpreted as a time today (or
possibly tomorrow). St opTi e can a so be specified as YYMo Mo DDHHWVSS. Example: - unti | 071001120000
or{until,"071001120000"}, which means the tests will be executed and (if time allows) repeated, until 12
o'clock on the 1st of Oct 2007.

When timeout occurs, Common Test will never abort the test run immediately, since this might leave the system under
test in an undefined, and possibly bad, state. Instead Common Test will finish the current test job, or the complete test
run, before stopping. The latter is the default behaviour. Thef or ce_st op flag/option tells Common Test to stop as
soon as the current test job is finished. Note that since Common Test always finishes off the current test job or test
session, the time specified withdur at i on orunti | isnever definitive!

Log filesfrom every single repeated test run is saved in normal Common Test fashion (see above). Common Test may
later support an optional feature to only store the last (and possibly the first) set of logs of repeated test runs, but for
now the user must be careful not to run out of disk space if tests are repeated during long periods of time.

Note that for each test run that is part of a repeated session, information about the particular test run is printed in the
Common Test Framework Log. There you can read the repetition number, remaining time, etc.

50 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Running Tests

Example 1:

$ ct run -dir $TEST ROOT/tol $TEST ROOT/to2 -duration 001000 -force stop

Here the suites in test directory tol, followed by the suites in to2, will be executed in one test run. A timeout event
will occur after 10 minutes. Aslong as there istime left, Common Test will repeat the test run (i.e. starting over with
the tol test). When the timeout occurs, Common Test will stop as soon as the current job is finished (because of the
f or ce_st op flag). Asaresult, the specified test run might be aborted after the tol test and before the to2 test.

Example 2:

$ date
Fri Sep 28 15:00:00 MEST 2007

$ ct run -dir $TEST ROOT/tol $TEST ROOT/to2 -until 160000
Here the same test run as in the example above will be executed (and possibly repeated). In this example, however,

the timeout will occur after 1 hour and when that happens, Common Test will finish the entire test run before stopping
(i.e. the tol and to2 test will always both be executed in the same test run).

Example 3:

$ ct run -dir $TEST ROOT/tol $TEST ROOT/to2 -repeat 5

Here the test run, including both the tol and the to2 test, will be repeated 5 times.

Note:

This feature should not be confused with ther epeat property of atest case group. The options described here
are used to repeat execution of entiretest runs, whilether epeat property of atest case group makesit possible
to repeat execution of sets of test cases within a suite. For more information about the latter, see the Writing
Test Suites chapter.

1.7.13 Silent Connections

The protocol handling processesin Common Test, implemented by ct_telnet, ct_ssh, ct_ftp etc, do verbose printing to
the test case logs. This can be switched off by means of the- si | ent _connect i ons flag:

ct_run -silent connections [conn_types]

whereconn_t ypes specifiesssh, telnet, ftp, rpc and/orsnnp.

Example:

ct run ... -silent connections ssh telnet

Ericsson AB. All Rights Reserved.: Common Test | 51

1.7 Running Tests

switches off logging for ssh and telnet connections.

ct run ... -silent connections

switches off logging for all connection types.

Fatal communication error and reconnection attempts will always be printed even if logging has been suppressed for
the connection type in question. However, operations such as sending and receiving datawill be performed silently.

It is possible to also specify si | ent _connecti ons in atest suite. This is accomplished by returning a tuple,
{sil ent _connections, ConnTypes},inthesuit e/ 0 ortest caseinfolist. If ConnTypes isalist of atoms
(ssh, telnet, ftp, rpc andlor snnp), output for any corresponding connections will be suppressed. Full
logging is per default enabled for any connection of type not specified in ConnTypes. Hence, if ConnTypes isthe
empty list, logging is enabled for all connections.

Example:

-module(my SUITE).

suite() -> [..., {silent connections, [telnet,ssh]}, ...].

my testcasel() ->
[{silent connections, [ssh]}].

my testcasel() ->

my testcase2() ->

Inthisexample, sui t e/ 0 tells Common Test to suppress printouts from telnet and ssh connections. Thisisvalid for
al test cases. However, my_t est casel/ 0 specifies that for this test case, only ssh should be silent. The result is
that my_t est casel will get telnet info (if any) printed in the log, but not ssh info. my_t est case2 will get no
info from either connection printed.

sil ent_connecti ons may aso be specified with a term in a test specification (see Test Specifications).
Connectionsprovidedwiththesi | ent _connect i ons start flag/option, will be merged with any connectionslisted
in the test specification.

Thesi | ent _connecti ons start flag/option and test specification term, overrides any settings made by the info
functionsinside the test suite.

Note:

Note that in the current Common Test version, thesi | ent _connect i ons feature only works for telnet and
ssh connections! Support for other connection types will be added in future Common Test versions.

52 | Ericsson AB. All Rights Reserved.: Common Test

1.8 External Configuration Data

1.8 External Configuration Data

1.8.1 General

To avoid hard coding data values related to the test and/or SUT (System Under Test) in the test suites, the data may
instead be specified by means of configuration files or strings that Common Test reads before the start of a test run.
External configuration data makes it possible to change test properties without having to modify the actual test suites
using the data. Examples of configuration data:

* Addressesto the test plant or other instruments

e User logininformation

* Names of files needed by the test

« Names of programs that should be executed during the test

e Any other variable needed by the test

1.8.2 Syntax

A configuration file can contain any number of elements of the type:

{CfgVarName,Value}.

where

CfgVarName = atom()
Value = term() | [{CfgVarName,Value}]

1.8.3 Requiring and reading configuration data

In atest suite, one must require that a configuration variable (Cf gVar Nane in the definition above) exists before
attempting to read the associated value in atest case or config function.

requi r e isan assert statement that can be part of the test suite info function or test case info function. If the required
variable is not available, the test is skipped (unless a default value has been specified, see the test case info function
chapter for details). Thereisalsoafunctionct : r equi r e/ 1/ 2 which can be called from atest casein order to check
if aspecific variableisavailable. The return value from this function must be checked explicitly and appropriate action
be taken depending on the result (e.g. to skip the test case if the variable in question doesn't exist).

A requi r e statement in the test suite info- or test case info-list should look like this: { r equi r e, Cf gVar Nane}

or{require, Al i asNane, Cf gVar Nane}. Thearguments Al i asNane and Cf gVar Nane are the same asthe
argumentstoct : r equi r e/ 1/ 2 which are described in the reference manual for ct. Al i asNane becomesan dias
for the configuration variable, and can be used as reference to the configuration data value. The configuration variable
may be associated with an arbitrary number of alias hames, but each hame must be unique within the same test suite.
There are two main uses for aias names:

e They may beintroduced to identify connections (see below).
e They may used to help adapt configuration data to atest suite (or test case) and improve readability.

Toread thevalue of aconfig variable, usethefunctionget _confi g/ 1/ 2/ 3 whichisalso described in thereference
manual for ct.

Example:

Ericsson AB. All Rights Reserved.: Common Test | 53

1.8 External Configuration Data

suite() ->
[{require, domain, 'CONN SPEC DNS SUFFIX'}].

testcase(Config) ->
Domain = ct:get config(domain),

1.8.4 Using configuration variables defined in multiple files

If a configuration variable is defined in multiple files and you want to access al possible values, you may use the
ct: get_confi g/ 3 function and specify al | in the options list. The values will then be returned in a list and the
order of the elements corresponds to the order that the config files were specified at startup. Please see the ct reference
manual for details.

1.8.5 Encrypted configuration files

It is possible to encrypt configuration files containing sensitive data if these files must be stored in open and shared
directories.

Call ct: encrypt _config_fil e/ 2/ 3 tohave Common Test encrypt a specified file using the DES3 function
inthe OTP cr ypt o application. The encrypted file can then be used as a regular configuration file, in combination
with other encrypted files or normal text files. The key for decrypting the configuration file must be provided when
running the test, however. This can be done by means of the decr ypt _key or decrypt _fi | e flag/option, or a
key filein a predefined location.

Common Test also provides decryption functions, ct : decrypt _confi g _fil e/ 2/ 3, for recreating the original
text files.

Please see the ct reference manual for more information.

1.8.6 Opening connections by using configuration data

Therearetwo different methods for opening a connection by means of the support functionsine.g.ct _ssh,ct _ftp,
andct _telnet:

» Using aconfiguration target name (an alias) as reference.
e Using the configuration variable as reference.

When atarget nameisused for referencing the configuration data (that specifiesthe connection to be opened), the same
name may be used as connection identity in all subsequent calls related to the connection (also for closing it). It'sonly
possible to have one open connection per target name. If attempting to open a new connection using a name already
associated with an open connection, Common Test will return the already existing handle so that the previously opened
connection will beused. Thisisapractical feature sinceit makesit possibleto call the function for opening a particular
connection whenever useful. An action like this will not necessarily open any new connections unless it's required
(which could be the case if e.g. the previous connection has been closed unexpectedly by the server). Another benefit
of using named connectionsisthat it's not necessary to pass handle references around in the suite for these connections.

When a configuration variable name is used as reference to the data specifying the connection, the handle returned
as aresult of opening the connection must be used in all subsequent calls (also for closing the connection). Repeated
calsto the open function with the same variable name as reference will result in multiple connections being opened.
This can be useful e.g. if atest case needs to open multiple connections to the same server on the target node (using
the same configuration data for each connection).

54 | Ericsson AB. All Rights Reserved.: Common Test

1.8 External Configuration Data

1.8.7 User specific configuration data formats

It is possible for the user to specify configuration data on a different format than key-value tuples in a text file, as
described so far. The datacan e.g. be read from arbitrary files, fetched from the web over http, or requested from auser
specific process. To support this, Common Test provides a callback module plugin mechanism to handle configuration
data

Default callback modules for handling configuration data

The Common Test application includes default callback modules for handling configuration data specified in standard
config files (see above) and in xml files:

« ct_config_pl ai n-forreading configuration files with key-value tuples (standard format). This handler
will be used to parse configuration filesif no user callback is specified.

e ct_config_xm -forreading configuration datafrom XML files.

Using XML configuration files

Thisis an example of an XML configuration file:

<config>
<ftp host>
<ftp>"targethost"</ftp>
<username>"tester"</username>
<password>"letmein"</password>
</ftp_host>
<lm directory>"/test/loadmodules"</lm directory>
</config>

This configuration file, once read, will produce the same configuration variables as the following text file:

{ftp_host, [{ftp,"targethost"},
{username, "tester"},
{password, "letmein"}1}.

{lm directory, "/test/loadmodules"}.

How to implement a user specific handler

The user specific handler can be written to handle specia configuration file formats. The parameter can be either file
name(s) or configuration string(s) (the empty list isvalid).

The callback module implementing the handler is responsible for checking correctness of configuration strings.
To perform validation of the configuration strings, the callback module should have the following function exported:
Cal | back: check_paraneter/1

The input argument will be passed from Common Test, as defined in the test specification or given as an option to
ct_runorct:run_test.

The return value should be any of the following values indicating if given configuration parameter isvalid:

« {ok, {file, FileNane}} - parameterisafile name and thefile exists,

« {ok, {config, ConfigString}} -parameterisaconfigstring anditis correct,

o {error, {nofile, FileNane}} -thereisnofilewiththe given namein the current directory,
e {error, {wong_config, ConfigString}} -theconfiguration stringiswrong.

Ericsson AB. All Rights Reserved.: Common Test | 55

1.8 External Configuration Data

To perform reading of configuration data - initially before the tests start, or as a result of data being reloaded during
test execution - the following function should be exported from the callback module:

Cal | back: read _config/1
Theinput argument isthe same asfor thecheck _par anet er/ 1 function.
The return value should be either:

« {ok, Config} -if theconfiguration variables are read successfully,

e {error, {Error, ErrorDetails}} -if thecalback modulefailsto proceed with the given
configuration parameters.

Conf i g isthe proper Erlang key-value list, with possible key-value sublists as values, like for the configuration file
example above:

[{ftp _host, [{ftp, "targethost"}, {username, "tester"}, {password, "letmein"}]},
{lm _directory, "/test/loadmodules"}]

1.8.8 Examples of configuration data handling

A config filefor using the FTP client to access files on aremote host could look like this:

{ftp_host, [{ftp,"targethost"},
{username, "tester"},
{password, "letmein"}]1}.

{lm directory, "/test/loadmodules"}.

The XML version shown in the chapter above can also be used, but it should be explicitly specified that the
ct _confi g_xm calback moduleisto be used by Common Test.

Example of how to assert that the configuration datais available and use it for an FTP session:

init per testcase(ftptest, Config) ->
{ok, } = ct ftp:open(ftp),
Config.

end per testcase(ftptest, Config) ->
ct ftp:close(ftp).

ftptest() ->
[{require, ftp, ftp host},
{require,lm directory}].

ftptest(Config) ->
Remote = filename:join(ct:get config(lm directory), "loadmodX"),

Local = filename:join(?config(priv_dir,Config), "loadmodule"),
ok = ct ftp:recv(ftp, Remote, Local),

An example of how the above functions could be rewritten if necessary to open multiple connectionsto the FTP server:

init per testcase(ftptest, Config) ->
{ok,Handlel} = ct ftp:open(ftp host),

56 | Ericsson AB. All Rights Reserved.: Common Test

External Configuration Data

{ok,Handle2} = ct ftp:open(ftp host),

[{ftp handles, [Handlel,Handle2]} | Config].

end per testcase(ftptest, Config) ->

lists:foreach(fun(Handle) -> ct ftp:close(Handle) end,
?config(ftp _handles,Config)).

ftptest() ->
[{require, ftp host},
{require,lm directory}].

ftptest(Config) ->

Remote = filename:join(ct:get config(lm directory), "loadmodX"),

Local = filename:join(?config(priv_dir,Config), "loadmodule"),
[Handle | MoreHandles] = ?config(ftp handles,Config),

ok = ct ftp:recv(Handle, Remote, Local),

1.8.9 Example of user specific configuration handler

A simple configuration handling driver which will ask an external server for configuration data can be implemented

thisway:

-module(config driver).
-export([read config/1, check parameter/1]).

read _config(ServerName) ->
ServerModule = list to atom(ServerName),
ServerModule:start(),
ServerModule:get config().

check parameter(ServerName) ->
ServerModule = list to atom(ServerName),
case code:is loaded(ServerModule) of

{file, }->
{ok, {config, ServerName}};
false->

case code:load file(ServerModule) of
{module, ServerModule}->
{ok, {config, ServerName}};
{error, nofile}->

{error, {wrong config, "File not found: " ++ ServerName ++ ".beam"}}

end
end.

The configuration string for this driver may be " config_server", if the config_server.erl module below iscompiled and

existsin the code path during test execution:

-module(config server).

-export([start/0, stop/0, init/1, get config/0, loop/0]).

-define (REGISTERED NAME, ct test config server).

start()->
case whereis(?REGISTERED NAME) of
undefined->

spawn(?MODULE, init, [?REGISTERED_NAME]),

wait();
_Pid->

Ericsson AB. All Rights Reserved.: Common Test | 57

1.8 External Configuration Data

ok
end,
?REGISTERED NAME.

init(Name) ->
register(Name, self()),
Lloop() .

get config()->
call(self(), get config).

stop()->
call(self(), stop).

call(Client, Request)->
case whereis(?REGISTERED NAME) of
undefined->
{error, {not started, Request}};

Pid->
Pid ! {Client, Request},
receive
Reply->
{ok, Reply}

after 4000->
{error, {timeout, Request}}

end
end.
loop() ->
receive
{Pid, stop}->
Pid ! ok;

{Pid, get config}->

{D,T} = erlang:localtime(),

Pid !
[{localtime, [{date, D}, {time, T}1},
{node, erlang:node()},
{now, erlang:now()},
{config server pid, self()},
{config server vsn, ?vsn}l],

?MODULE: Loop ()

end.

wait()->
case whereis(?REGISTERED NAME) of
undefined->
wait();
_Pid->
ok
end.

In this example, the handler also provides the ability to dynamically reload configuration variables. If
ct:reload_config(localtinme) is caled from the test case function, al variables loaded with
config_driver:read_config/ 1 will be updated with their latest values, and the new value for variable
| ocal ti ne will bereturned.

58 | Ericsson AB. All Rights Reserved.: Common Test

1.9 Code Coverage Analysis

1.9 Code Coverage Analysis

1.9.1 General

Although Common Test was created primarly for the purpose of black box testing, nothing prevents it from working
perfectly as awhite box testing tool as well. Thisis especialy true when the application to test is written in Erlang.
Then the test ports are easily realized by means of Erlang function calls.

When white box testing an Erlang application, it isuseful to be able to measure the code coverage of the test. Common
Test providessimple accessto the OTP Cover tool for this purpose. Common Test handlesall necessary communication
with the Cover tool (starting, compiling, analysing, etc). All the Common Test user needsto do isto specify the extent
of the code coverage analysis.

1.9.2 Usage

To specify what modules should be included in the code coverage test, you provide a cover specification file. Using
this file you can point out specific modules or specify directories that contain modules which should all be included
in the analysis. Y ou can aso, in the same fashion, specify modules that should be excluded from the analysis.

If you aretesting adistributed Erlang application, it islikely that code you want included in the code coverage analysis
gets executed on an Erlang node other than the one Common Test isrunning on. If thisisthe case you need to specify
these other nodes in the cover specification file or add them dynamically to the code coverage set of nodes. See the
ct _cover pagein the reference manual for details on the latter.

In the cover specification file you can also specify your required level of the code coverage analysis; detai | s
or over vi ew. In detailed mode, you get a coverage overview page, showing you per module and total coverage
percentages, aswell asone HTML file printed for each module included in the analysis that shows exactly what parts
of the code have been executed during the test. In overview mode, only the code coverage overview page gets printed.

Note: Currently, for Common Test to be able to print code coverage HTML files for the modules included in the
analysis, the source code files of these modules must be located in the same directory as the corresponding . beam
files. Thisisalimitation that will be removed later.

Y ou can choose to export and import code coverage data between tests. If you specify the name of an export filein
the cover specification file, Common Test will export collected coverage data to this file at the end of the test. You
may similarly specify that previously exported data should be imported and included in the analysisfor atest (you can
specify multiple import files). This way it is possible to analyse total code coverage without necessarily running all
tests at once. Note that even if you run separate tests in one test run, code coverage data will not be passed on from
one test to another unless you specify an export file for Common Test to use for this purpose.

To activate the code coverage support, you simply specify the name of the cover specification file asyou start Common
Test. Thisyou do either by using the - cover flagwithct _r un. Example:

$ ct_run -dir $TESTOBIS/ db -cover $TESTOBIS/ db/ confi g/ db. coverspec

You may also pass the cover specification file name in a call to ct:run_test/1, by adding a
{cover, Cover Spec} tuple to the Opt s argument. Also, you can of course enable code coverage in your test
specifications (read more in the chapter about using test specifications).

1.9.3 Stopping the cover tool when tests are completed

By default the Cover tool is automatically stopped when the tests are completed. This causes the original (non cover
compiled) modules to be loaded back in to the test node. If a process at this point is still running old code of any of
the modules that are cover compiled, meaning that it has not done any fully qualified function call after the cover
compilation, the process will now be killed. To avoid thisit is possible to set the value of the cover _st op option
tof al se. This means that the modules will stay cover compiled, and it is therefore only recommended if the erlang
node(s) under test is terminated after the test is completed or if cover can be manually stopped.

Ericsson AB. All Rights Reserved.: Common Test | 59

1.9 Code Coverage Analysis

The option can be set by using the- cover _st op flagwithct _r un, by adding { cover _st op, t rue| f al se}
tothe Optsargumenttoct : run_t est/ 1, or by addingacover _st op terminyour test specification (see chapter
about test specifications).

1.9.4 The cover specification file

These are the terms allowed in a cover specification file:

% List of Nodes on which cover will be active during test.
% Nodes = [atom()]
{nodes, Nodes}.

o° of

% Files with previously exported cover data to include in analysis.
% CoverDataFiles = [string()]
{import, CoverDataFiles}.

o° o°

%% Cover data file to export from this session.
%% CoverDataFile = string()
{export, CoverDataFile}.

% Cover analysis level.
% Level = details | overview
level, Level}.

~ P of

% Directories to include in cover.
% Dirs = [string()]
{incl dirs, Dirs}.

o° of

%% Directories, including subdirectories, to include.
{incl dirs r, Dirs}.

% Specific modules to include in cover.
% Mods = [atom()]
incl mods, Mods}.

~ P of

%% Directories to exclude in cover.
{excl dirs, Dirs}.

%% Directories, including subdirectories, to exclude.
{excl dirs r, Dirs}.

%% Specific modules to exclude in cover.
{excl mods, Mods}.

%% Cross cover compilation
%% Tag = atom(), an identifier for a test run
%% M

0

o
o
Il

[atom()], modules to compile for accumulated analysis

-~
(@]
=
)
)
—
-~
_'
Q
(=]
=
o
o
)
-
—
-

Theincl _dirs_r andexcl _dirs_r termstell Common Test to search the given directories recursively and
include or exclude any module found during the search. Thei ncl _di rs and excl _di rs termsresult in a non-
recursive search for modules (i.e. only modules found in the given directories are included or excluded).

Note: Directories containing Erlang modules that are to be included in a code coverage test must exist in the code
server path, or the cover tool will fail to recompile the modules. (It is not sufficient to specify these directoriesin the
cover specification file for Common Test).

60 | Ericsson AB. All Rights Reserved.: Common Test

1.9 Code Coverage Analysis

1.9.5 Cross cover analysis

The cross cover mechanism allows cover analysis of modules across multiple tests. It is useful if some code, eg. a
library module, is used by many different tests and the accumulated cover result is desirable.

This can of course also be achieved in a more customized way by using the export parameter in the cover
specification and analysing the result off line, but the cross cover mechanism isabuild in solution which also provides
the logging.

The mechanism is easiest explained via an example:

Let's say that there are two systems, s1 and s2, which are tested in separate test runs. System s1 contains a library
module mL which istested by the s1 test run and isincluded in s 1's cover specification:

sl.cover:
{incl mods, [m1]}.

When analysing code coverage, the result for il can be seen in the cover log in the s 1 test result.

Now, let'simagine that since il isalibrary module, it is also used quite abit by system s2. The s 2 test run does not
specifically test mi, but it might till be interesting to see which parts of nil is actually covered by the s2 tests. To
do this, mL could beincluded also in s2's cover specification:

s2.cover:
{incl mods, [m1]}.

Thiswould give an entry for il also in the cover log for the s2 test run. The problem is that this would only reflect
the coverage by s2 tests, not the accumulated result over s1 and s2. And this is where the cross cover mechanism
comes in handy.

If instead the cover specification for s2 was like this:

s2.cover:
{cross, [{s1,[m1]}1}.

then ml would be cover compiled in the s2 test run, but not shown in the coverage log. Instead, if
ct _cover:cross_cover_anal yse/ 2 iscaled after both s1 and s2 test runs are completed, the accumul ated
result for mL would be available in the cross cover log for the s 1 test run.

The call to the analyse function must be like this:

ct cover:cross cover analyse(Level, [{sl,SlLogDir},{s2,S2LogDir}]).

where S1LogDi r and S2LogDi r arethe directories named <Test Name>. | ogs for each test respectively.

Note the tags s1 and s2 which are used in the cover specification file and in the call to
ct _cover: cross_cover_anal yse/ 2. The point of these are only to map the modules specified in the cover
specification to the log directory specified in the call to the analyse function. The name of the tag has no meaning
beyond this.

Ericsson AB. All Rights Reserved.: Common Test | 61

1.10 Using Common Test for Large Scale Testing

1.9.6 Logging

To view the result of a code coverage test, follow the "Coverage log" link on the test suite results page. This takes
you to the code coverage overview page. If you have successfully performed a detailed coverage analysis, you find
links to each individual module coverage page here.

If cross cover analysis has been performed, and there are accumulated coverage results for the current test, then the -
"Coverdata collected over all tests" link will take you to these results.

1.10 Using Common Test for Large Scale Testing
1.10.1 General

Large scale automated testing requires running multiple independent test sessionsin parallel. Thisisaccomplished by
running a number of Common Test nodes on one or more hosts, testing different target systems. Configuring, starting
and controlling the test nodes independently can be a cumbersome operation. To aid thiskind of automated large scale
testing, CT offersamaster test node component, CT Master, that handles central configuration and control in a system
of distributed CT nodes.

The CT Master server runs on one dedicated Erlang node and uses distributed Erlang to communicate with any number
of CT test nodes, each hosting a regular CT server. Test specifications are used as input to specify what to test on
which test nodes, using what configuration.

The CT Master server writes progress information to HTML log files similarly to the regular CT server. The logs
contain test statistics and links to the log files written by each independent CT server.

The CT master API is exported by thect _mast er module.

1.10.2 Usage

CT Master requires all test nodes to be on the same network and share a common file system. As of this date, CT
Master can not start test nodes automatically. The nodes must have been started in advance for CT Master to be able
to start test sessions on them.

Tests are started by calling:
ct_master:run(Test Specs) orct_naster:run(Test Specs, |ncl Nodes, Excl Nodes)

Test Specs is either the name of atest specification file (string) or alist of test specifications. In case of alist, the
specifications will be handled (and the corresponding tests executed) in sequence. An element in a Test Specs list
can also belist of test specifications. The specificationsin such alist will be merged into one combined specification
prior to test execution. For example:

ct_master:run(["tsl","ts2",["ts3","ts4"]])

means first the tests specified by "ts1" will run, then the tests specified by "ts2" and finally the tests specified by both
"ts3" and "tA4".

Thel ncl Nodes argumenttor un/ 3 isalist of node names. Ther un/ 3 function runsthetestsin Test Specs just
likerun/ 1 but will also take any test in Test Specs that's not explicitly tagged with a particular node name and
execute it on the nodes listed in | ncl Nodes. By using r un/ 3 thisway it is possible to use any test specification,
with or without node information, in a large scale test environment! Excl Nodes is alist of nodes that should be
excluded from the test. |.e. tests that have been specified in the test specification to run on a particular node will not
be performed if that nodeis at runtime listed in Excl Nodes.

If CT Master fails initially to connect to any of the test nodes specified in atest specification or in the | ncl Nodes
list, the operator will be prompted with the option to either start over again (after manually checking the status of the
node(s) in question), to run without the missing nodes, or to abort the operation.

62 | Ericsson AB. All Rights Reserved.: Common Test

1.10 Using Common Test for Large Scale Testing

When tests start, CT Master prints information to console about the nodes that are involved. CT Master also reports
when tests finish, successfully or unsuccessfully. If connection is lost to a node, the test on that node is considered
finished. CT Master will not attempt to reestablish contact with the failing node. At any time to get the current status
of the test nodes, call the function:

ct _master: progress()

To stop one or more tests, use:

ct_master:abort() (stopal)orct_master: abort (Nodes)

For detailed information about the ct _mast er API, please see the manual page for this module.

1.10.3 Test Specifications

The test specifications used as input to CT Master are fully compatible with the specifications used as input to the
regular CT server. The syntax is described in the Running Test Suites chapter.

All test specificationterms can haveaNodeRef s element. Thiselement specifieswhich node or nodesaconfiguration
operation or atest isto be executed on. NodeRef s isdefined as:

NodeRefs = all _nodes | [NodeRef] | NodeRef
where
NodeRef = NodeAlias | node() | master

A NodeAl i as (at on()) is used in atest specification as a reference to a node name (so the actual node name
only needs to be declared once, which can of course also be achieved using constants). The alias is declared with a
node term:

{node, NodeAlias, NodeNane}

If NodeRef s hasthevalueal | _nodes, the operation or test will be performed on all given test nodes. (Declaring a
term without aNodeRef s element actually has the same effect). If NodeRef s hasthevalue mast er , the operation
isonly performed on the CT Master node (namely set the log directory or install an event handler).

Consider the example in the Running Test Suites chapter, now extended with node information and intended to be
executed by the CT Master:

{define, 'Top', "/home/test"}.

{define, 'T1', "'Top'/tl"}.
{define, 'T2', "'Top'/t2"}.
{define, 'T3', "'Top'/t3"}.

{define, 'CfgFile', "config.cfg"}.
{define, 'Node', ct node}.

{node, nodel, 'Node@host x'}.
{node, node2, 'Node@host y'}.

{logdir, master, "'Top'/master logs"}.
{logdir, "'Top'/logs"}.

{config, nodel, "'T1'/'CfgFile'"}.

{config, node2, "'T2'/'CfgFile'"}.

{config, "'T3'/'CfgFile'"}.

{suites, nodel, 'T1', all}.

{skip_suites, nodel, 'T1', [t1B SUITE,t1D SUITE], "Not implemented"}.
{skip_cases, nodel, 'T1l', t1A SUITE, [test3,test4], "Irrelevant"}.
{skip_cases, nodel, 'T1l', t1C SUITE, [testl], "Ignore"}.

{suites, node2, 'T2', [t2B SUITE,t2C SUITE]}.

Ericsson AB. All Rights Reserved.: Common Test | 63

1.10 Using Common Test for Large Scale Testing

{cases, node2, 'T2', t2A SUITE, [test4, testl,test7]}.

{skip suites, 'T3', all, "Not implemented"}.

This example specifies the same tests as the original example. But now if started with a cal to
ct _master:run(Test SpecNane) ,thetl test will be executed onnodect _node@ost _x (nodel), thet2 test
onct _node@ost _y (node2) and thet3 test on both nodel and node2. Thetl config filewill only be read on nodel
and the t2 config file only on node2, while the t3 config file will be read on both nodel and node2. Both test nodes
will write log files to the same directory. (The CT Master node will however use a different log directory than the
test nodes).

If the test session isinstead started with acall toct _mast er: run(Test SpecNane, [ct_node@ost _z],
[ct _node@ost _x]),theresultisthat thetl test doesnot runonct _node@ost _x (or any other node) while
thet3test runsonct _node@ost _y andct _node@ost _z.

A nicefeatureisthat atest specification that includes node information can still be used asinput to the regular Common
Test server (as described in the Running Test Suites chapter). The result isthat any test specified to run on anode with
the same name asthe Common Test nodein question (typically ct @onehost if started withthect _r un program),
will be performed. Tests without explicit node association will always be performed too of course!

1.10.4 Automatic startup of test target nodes

Isis possible to automatically start, and perform initial actions, on test target nodes by using the test specification
terminit.

Currently, two sub-terms are supported, node_st art andeval .
Example:

{node, nodel, nodel@hostl}.

{node, node2, nodel@host2}.

{node, node3, node2@host2}.

{node, node4, nodel@host3}.

{init, nodel, [{node start, [{callback module, my slave callback}1}1}.

{init, [node2, node3], {node start, [{username, "ct user"}, {password, "ct password"}]}}.
{init, node4, {eval, {module, function, []}}}.

This test specification declares that nodel@ost1l is to be stated using the user callback function
cal | back_nodul e: my_sl ave_cal | back/ 0, and nodesnodel@ost 2 and node2@ ost 2 will be started
with the default callback module ct _sl ave. The given user name and password is used to log into remote host
host 2. Also, the function nodul e: f unct i on/ 0 will be evaluated on nodel@ost 3, and the result of this call
will be printed to the log.

The default ct_slave callback module, which is part of the Common Test application, has the following features:

» Starting Erlang target nodes on local or remote hosts (ssh is used for communication).

« Ability to start an Erlang emulator with additiona flags (any flags supported by er | are supported).

e Supervision of a node being started by means of internal callback functions. Used to prevent hanging nodes.
(Configurable).

* Monitoring of the master node by the slaves. A dave node may be stopped in case the master node terminates.
(Configurable).

» Execution of user functions after a dave node is started. Functions can be given as alist of { Maodule, Function,
Arguments} tuples.

64 | Ericsson AB. All Rights Reserved.: Common Test

1.11 Event Handling

Notethat it ispossibleto specify aneval termforthenodeaswell asst art up_functi onsinthenode_start
options list. In this case first the node will be started, then the st art up_f uncti ons are executed, and finaly
functions specified with eval are called.

1.11 Event Handling
1.11.1 General

It ispossible for the operator of a Common Test system to receive event notifications continously during atest run. It
isreported e.g. when atest case starts and stops, what the current count of successful, failed and skipped casesis, etc.
Thisinformation can be used for different purposes such as logging progress and results on other format than HTML,
saving statistics to a database for report generation and test system supervision.

Common Test has a framework for event handling which is based on the OTP event manager concept and gen_event
behaviour. When the Common Test server starts, it spawns an event manager. During test execution the manager gets
anatification from the server every time something of potential interest happens. Any event handler plugged into the
event manager can match on events of interest, take action, or maybe simply pass the information on. Event handlers
are Erlang modul esimplemented by the Common Test user according to the gen_event behaviour (seethe OTP User's
Guide and Reference Manual for more information).

As aready described, a Common Test server always starts an event manager. The server also plugsin adefault event
handler which has as its only purpose to relay notifications to a globally registered CT Master event manager (if a
CT Master server isrunning in the system). The CT Master also spawns an event manager at startup. Event handlers
plugged into this manager will receive the events from all the test nodes as well as information from the CT Master
server itself.

1.11.2 Usage

Event handlers may be installed by means of an event _handl er dsart flag (ct_run) or option
(ct:run_test/ 1), wherethe argument specifies the names of one or more event handler modules. Example:

$ ct_run -suite test/nmy_SU TE -event _handl er handl ers/ ny_evhl handl ers/ ny_evh2
-pa $PWY handl ers

Usethect _run -event handl er _init optioninstead of - event _handl er to pass start arguments to the
event handler init function.

All event handler modules must have gen_event behaviour. Note al so that these modules must be precompiled, and
that their locations must be added explicitly to the Erlang code server search path (like in the example).

An event_handler tuple in the argument Opt s has the following definition (see also ct: run_test/1 in the
reference manual):

{event_handler,EventHandlers}

EventHandlers = EH | [EH]
EH = atom() | {atom(),InitArgs} | {[atom()],InitArgs}
InitArgs = [term()]

Example:

1> ct:run_test([{suite,"test/my SUITE"}, {event handler, [my evhl,{my evh2,[node()]}1}1).

Ericsson AB. All Rights Reserved.: Common Test | 65

1.11 Event Handling

Thiswill install two event handlers for the my _SUI TE test. Event handler ny_evhl1 isstarted with[] asargument
to theinit function. Event handler ny_evh2 is started with the name of the current node in the init argument list.

Event handlers can aso be plugged in by means of test specification terms:
{event _handl er, Event Handl ers},or

{event _handl er, Event Handl ers, |nitArgs},or

{event _handl er, NodeRefs, EventHandl ers},or

{event _handl er, NodeRefs, EventHandl ers, InitArgs}

Event Handl er s isalist of module names. Before a test session starts, the init function of each plugged in event
handler is called (with the InitArgs list as argument or [] if no start arguments are given).

To plug ahandler into the CT Master event manager, specify nast er asthenodein NodeRef s.

For an event handler to be able to match on events, the module must include the header filect _event . hrl . An
event isarecord with the following definition:

#event { nane, node, dat a}

nane isthe label (type) of the event. node is the name of the node the event has originated from (only relevant for
CT Master event handlers). dat a is specific for the particular event.

General events:
e #event{nane = start_|logging, data = LogDir}
LogDir = string(),toplevel log directory for the test run.

Indicates that the logging process of Common Test has started successfully and is ready to receive |O messages.
e #event{nane = stop logging, data =[]}

Indicates that the logging process of Common Test has been shut down at the end of the test run.
e #event{nane = test_start, data = {StartTinme, LogDir}}

StartTinme = {date(),tine()},testrunstart date and time.
LogDir = string(),toplevel log directory for the test run.

This event indicates that Common Test has finished initial preparations and will begin executing test cases.
« #event{nane = test_done, data = EndTi ne}

EndTi ne = {date(),time()}, dateand timethetest run finished.

Thisindicates that the last test case has been executed and Common Test is shutting down.
e #event{nane = start_info, data = {Tests, Suites, Cases}}

Tests = integer(),thenumber of tests.
Sui tes = integer (), thetotal number of suites.
Cases = integer() | unknown,thetota number of test cases.

Initial test run information that can be interpreted as: "This test run will execute Test s separate tests, in total
containing Cases number of test cases, in Sui t es number of suites'. Note that if atest case group with arepeat
property existsin any test, the total number of test cases can not be calculated (unknown).

e #event{nane = tc_start, data = {Suite, FunhcO G oup}}
Sui te = atom(), name of the test suite.
FuncOr Group = Func | {Conf, GroupNane, G oupProperti es}
Func = at om(), name of test case or configuration function.

66 | Ericsson AB. All Rights Reserved.: Common Test

1.11 Event Handling

Conf = init_per_group | end_per_group,group configuration function.
GroupNane = at on{), name of the group.
GroupProperties = list(),listof execution propertiesfor the group.

This event informs about the start of atest case, or a group configuration function. The event is sent also for
init_per_suiteandend_per_suite,butnotforinit_per _testcaseandend_per _testcase.
If agroup configuration function is starting, the group name and execution properties are also given.

#event{nanme = tc_logfile, data = {{Suite, Func}, LogFi | eNane}}
Sui te = atom(), name of the test suite.

Func = at om(), name of test case or configuration function.

LogFi | eName = string(), full name of test caselog file.

Thisevent is sent at the start of each test case (and configuration function excepti ni t / end_per _t est case)
and carriesinformation about the full name (i.e. the file name including the absolute directory path) of the current
test caselog file.

#event {name = tc_done, data = {Suite, FunhcOrGroup, Resul t}}
Sui te = atom(), name of the suite.

FuncOr G oup = Func | {Conf, GroupNane, G oupProperti es}
Func = at om(), name of test case or configuration function.

Conf

GroupNanme = unknown | aton{), name of the group (unknown if init- or end function times out).

init_per_group | end_per_group, group configuration function.

GroupProperties = list(),listof execution propertiesfor the group.
Result = ok | {skipped, Ski pReason} | {fail ed, Fail Reason}, theresult.

Ski pReason = {require_fail ed, Requirel nfo} |
{require_failed_in_suite0, Requirel nfo} | {fail ed,
{Suite,init_per_testcase, Faillnfo}} | User Ter m thereasonwhy the case has been skipped.

Fail Reason = {error, Faillnfo} | {error,{RunTi neError, StackTrace}} |
{tinmetrap_timeout,integer()} | {failed,{Suite, end_per_testcase, Faillnfo}},
reason for failure.

Requirelnfo = {not_avail abl e,aton() | tuple()},why require hasfailed.

Faillnfo = {tinmetrap_tineout,integer()} | {RunTineError, StackTrace} |
User Ter m detailed information about an error.

RunTi meError = term(),arun-timeerror, e.g. badmatch, undef, etc.
StackTrace = list(),listof function cals preceeding arun-time error.
User Term = tern(), arbitrary data specified by user, or exi t / 1 info.

This event informs about the end of atest case or a configuration function (seethet c_st art event for details
on the FuncOrGroup el ement). With this event comes the final result of the function in question. It is possible to
determine on the top level of Resul t if the function was successful, skipped (by the user), or if it failed. It is of
course possibleto dig deeper and a so perform pattern matching on the various reasons for skipped or failed. Note
that {' EXI T' , Reason} tuples have been trandated into { er r or , Reason} . Noteaso that if a{f ai | ed,
{Sui te, end_per _testcase, Fai |l | nf 0o} resultisreceived, it actually meansthetest case was successful,
but that end_per _t est case for the casefailed.

#event{name = tc_auto_skip, data = {Suite, Func, Reason}}

Ericsson AB. All Rights Reserved.: Common Test | 67

1.11 Event Handling

Sui te = atom(), the name of the suite.
Func = at om(), the name of the test case or configuration function.

Reason = {failed, Fail Reason} | {require_failed_in_suite0, Requirelnfo}, reason
for auto skipping Func.

Fai | Reason = {Suite, ConfigFunc, Faillnfo}} | {Suite, Fail edCasel nSequence},
reason for failure.

Requirel nfo = {not_avail abl e, aton() | tuple()},whyrequirehasfailed.
ConfigFunc = init_per_suite | init_per_group

Faillnfo = {timetrap_tinmeout,integer()} | {RunTinmeError, StackTrace} |
bad_return | User Ter m detailed information about an error.

Fai | edCasel nSequence = at on{), name of acasethat hasfailed in a sequence.
RunTi meError = term(),arun-timeerror, e.g. badmatch, undef, etc.
StackTrace = list(),listof function calls preceeding arun-time error.

User Term = tern(), arbitrary data specified by user, or exi t / 1 info.

This event gets sent for every test case or configuration function that Common Test has skipped automatically
because of either afailedi nit_per_suiteorinit_per_group,afaledrequireinsuite/0,ora
failed test casein asequence. Notethat thisevent isnever received asaresult of atest case getting skipped because
of i nit _per _testcase faling, since that information is carried with thet ¢c_done event.

#event {name = tc_user_skip, data = {Suite, Test Case, Comrent }}
Sui te = atom(), name of the suite.

Test Case = at on{), name of the test case.

Commrent = string(), reason for skipping the test case.

This event specifiesthat atest case has been skipped by the user. It is only ever received if the skip was declared
in atest specification. Otherwise, user skip information is received as a{ ski pped, Ski pReason} result in
thet c_done event for the test case.

#event {name = test_stats, data = {Ck, Fail ed, Ski pped}}
Ok = integer (), thecurrent number of successful test cases.

Fail ed = i nteger (), thecurrent number of failed test cases.

Ski pped = {User Ski pped, Aut oSki pped}

User Ski pped = i nt eger (), thecurrent number of user skipped test cases.
Aut oSki pped = i nteger (), thecurrent number of auto skipped test cases.

Thisis a statistics event with the current count of successful, skipped and failed test cases so far. This event gets
sent after the end of each test case, immediately following thet c_done event.

Internal events:

#event {nane = start_nmke, data = Dir}

Dir = string(),running makein thisdirectory.

Aninternal event saying that Common Test will start compiling modulesin directory Di r .
#event {nane = finished nake, data = Dir}

Dir = string(),finished running makein this directory.

Aninternal event saying that Common Test is finished compiling modulesin directory Di r .

68 | Ericsson AB. All Rights Reserved.: Common Test

1.12 Dependencies between Test Cases and Suites

e #event{nane = start_wite file, data = Full NaneFil e}
Ful | NameFile = string(), full name of the file.

Aninternal event used by the Common Test Master process to synchronize particular file operations.
e #event{nane = finished wite file, data = Full NaneFil e}

Ful | NameFile = string(), full name of the file.
Aninternal event used by the Common Test Master process to synchronize particular file operations.

The eventsare also documentedinct _event . er | . Thismodule may serve as an example of what an event handler
for the CT event manager can look like.

Note:

To ensure that printouts to standard out (or printouts madewith ct : | og/ 2/ 3 or ct : pal / 2/ 3) get written to
the test case log file, and not to the Common Test framework log, you can syncronize with the Common Test
server by matching onthetc_start andtc_done events. In the period between these events, all 10 gets
directed to the test caselog file. These events are sent synchronously to avoid potential timing problems (e.g. that
the test case log file gets closed just before an 1O message from an external process gets through). Knowing this,
you need to be careful that your handl e_event / 2 callback function doesn't stall the test execution, possibly
causing unexpected behaviour as aresult.

1.12 Dependencies between Test Cases and Suites

1.12.1 General

When creating test suites, it is strongly recommended to not create dependencies between test cases, i.e. letting test

cases depend on the result of previous test cases. There are various reasons for this, for example:

e It makesit impossibleto run test casesindividualy.

e Itmakesitimpossible to run test casesin different order.

e |t makes debugging very difficult (since afault could be the result of a problem in a different test case than the
one failing).

* Thereexists no good and explicit ways to declare dependencies, so it may be very difficult to see and
understand these in test suite code and in test logs.

« Extending, restructuring and maintaining test suites with test case dependencies is difficult.

There are often sufficient means to work around the need for test case dependencies. Generally, the problemisrelated

to the state of the system under test (SUT). The action of one test case may alter the state of the system and for some
other test case to run properly, the new state must be known.

Instead of passing data between test cases, it is recommended that the test cases read the state from the SUT and
perform assertions (i.e. let the test case run if the state is as expected, otherwise reset or fail) and/or use the state to
set variables necessary for the test case to execute properly. Common actions can often be implemented as library
functionsfor test casesto call to set the SUT in arequired state. (Such common actions may of course a so be separately
tested if necessary, to ensure they are working as expected). It is sometimes also possible, but not always desirable, to
group tests together in onetest case, i.e. let atest case perform a"scenario” test (atest that consists of subtests).

Consider for example a server application under test. The following functionality isto be tested:

e Starting the server.
* Configuring the server.

Ericsson AB. All Rights Reserved.: Common Test | 69

1.12 Dependencies between Test Cases and Suites

e Connecting aclient to the server.
» Disconnecting aclient from the server.
e Stopping the server.

There are obvious dependencies between the listed functions. We can't configure the server if it hasn't first been started,
we can't connect aclient until the server has been properly configured, etc. If we want to have one test case for each
of the functions, we might be tempted to try to always run the test cases in the stated order and carry possible data
(identities, handles, etc) between the cases and therefore introduce dependenci es between them. To avoid thiswe could
consider starting and stopping the server for every test. We would implement the start and stop action as common
functions that may be called from init_per testcase and end_per_testcase. (We would of course test the start and stop
functionality separately). The configuration could perhaps al so be implemented as acommon function, maybe grouped
with the start function. Finally the testing of connecting and disconnecting a client may be grouped into one test case.
The resulting suite would look something like this:

-module(my server SUITE).
-compile(export all).
-include lib("ct.hrl").

%%% init and end functions...
suite() -> [{require,my server cfg}].

init per testcase(start and stop, Config) ->
Config;

init per testcase(config, Config) ->
[{server pid,start server()} | Config];

init per testcase(, Config) ->
ServerPid = start server(),
configure server(),
[{server pid,ServerPid} | Config].

end per testcase(start and stop,) ->
ok;

end_per testcase(,) ->

ServerPid = ?config(server pid),
stop _server(ServerPid).

%%% test cases...
all() -> [start and stop, config, connect and disconnect].

%% test that starting and stopping works
start _and stop() ->

ServerPid = start server(),

stop _server(ServerPid).

%% configuration test

config(Config) ->
ServerPid = ?config(server pid, Config),
configure server(ServerPid).

%% test connecting and disconnecting client

connect and disconnect(Config) ->
ServerPid = ?config(server pid, Config),
{ok,SessionId} = my server:connect(ServerPid),
ok = my server:disconnect(ServerPid, SessionId).

70 | Ericsson AB. All Rights Reserved.: Common Test

1.12 Dependencies between Test Cases and Suites

%%% common functions...

start server() ->
{ok,ServerPid} = my server:start(),
ServerPid.

stop server(ServerPid) ->
ok = my server:stop(),
ok.

configure server(ServerPid) ->
ServerCfgData = ct:get config(my server cfg),
ok = my server:configure(ServerPid, ServerCfgData),
ok.

1.12.2 Saving configuration data

There might be situations where it is impossible, or infeasible at least, to implement independent test cases. Maybe
it issimply not possible to read the SUT state. Maybe resetting the SUT isimpossible and it takes much too long to
restart the system. In situations where test case dependency is necessary, CT offers a structured way to carry datafrom
one test case to the next. The same mechanism may also be used to carry data from one test suite to the next.

The mechanism for passing dataiscalledsave_confi g. Theideaisthat onetest case (or suite) may save the current
value of Config - or any list of key-value tuples - so that it can be read by the next executing test case (or test suite).
The configuration data is not saved permanently but can only be passed from one case (or suite) to the next.

To save Conf i g data, return the tuple:
{save_confi g, Confi gLi st}

fromend_per _t est case or from the main test case function. To read data saved by a previous test case, use the
confi g macrowithasaved_confi g key:

{Saver, ConfigList} = ?config(saved_config, Config)

Saver (at om()) isthe name of the previoustest case (where the datawas saved). The conf i g macro may be used
to extract particular data also from the recalled Conf i gLi st . It is strongly recommended that Saver is aways
matched to the expected name of the saving test case. This way problems due to restructuring of the test suite may be
avoided. Also it makes the dependency more explicit and the test suite easier to read and maintain.

To pass data from one test suite to another, the same mechanism is used. The data should be saved by the
end_per _suite functionandread by i ni t _per _sui t e in the suite that follows. When passing data between
suites, Saver carriesthe name of the test suite.

Example:

-module(server b SUITE).
-compile(export all).
-include lib("ct.hrl").

%%% init and end functions...

init per suite(Config) ->
%% read config saved by previous test suite
{server _a SUITE,O0ldConfig} = ?config(saved config, Config),
%% extract server identity (comes from server a SUITE)
ServerIld = ?config(server _id, 0ldConfig),
SessionId = connect to server(ServerId),
[{ids, {ServerId,SessionId}} | Config].

Ericsson AB. All Rights Reserved.: Common Test | 71

1.12 Dependencies between Test Cases and Suites

end per suite(Config) ->
%% save config for server c SUITE (session id and server id)
{save config,Config}

%%% test cases...
all() -> [allocate, deallocate].

allocate(Config) ->
{ServerlId,SessionId} = ?config(ids, Config),
{ok,Handle} = allocate resource(ServerId, SessionId),
%% save handle for deallocation test
NewConfig = [{handle,Handle}],
{save config,NewConfig}.

deallocate(Config) ->
{ServerId,SessionId} ?config(ids, Config),
{allocate,0ldConfig} ?config(saved config, Config),
Handle = ?config(handle, 0ldConfig),
ok = deallocate resource(ServerId, SessionId, Handle).

Itisalso possibleto save Conf i g datafrom atest case that isto be skipped. To accomplish this, return the following
tuple:

{ski p_and_save, Reason, Confi gLi st}

The result will be that the test case is skipped with Reason printed to the log file (as described in previous
chapters), and Confi gLi st is saved for the next test case. Confi gLi st may be read by means of ?
config(saved_config, Config), as described above. ski p_and_save may aso be returned from
i nit_per_suite,inwhichcasethesaved datacanberead by i ni t _per _sui t e inthe suite that follows.

1.12.3 Sequences

Itis possiblethat test cases depend on each other so that if one casefails, the following test(s) should not be executed.
Typicaly, if the save_confi g facility is used and a test case that is expected to save data crashes, the following
case can not run. CT offers away to declare such dependencies, called sequences.

A sequence of test casesis defined as atest case group with asequence property. Test case groups are defined by
means of the gr oups/ 0 function in the test suite (see the Test case groups chapter for details).

For example, if wewould liketo makesurethatif al | ocat e inserver _b_SUl TE (above) crashes, deal | ocat e
is skipped, we may define a sequence like this:

groups() -> [{alloc and dealloc, [sequence], [alloc,dealloc]}].

Let's also assume the suite contains the test case get _r esour ce_st at us, which isindependent of the other two
cases, thentheal | function could look like this:

all() -> [{group,alloc_and dealloc}, get resource status].

If all oc succeeds, deal | oc is aso executed. If al | oc fails however, deal | oc is not executed but
marked as SKIPPED in the html log. get resource_status will run no matter what happens to the
al l oc_and_deal | oc cases.

72 | Ericsson AB. All Rights Reserved.: Common Test

1.13 Common Test Hooks

Test cases in a sequence will be executed in order until they have all succeeded or until one case fails. If one fails,
all following cases in the sequence are skipped. The cases in the sequence that have succeeded up to that point are
reported as successful in the log. An arbitrary number of sequences may be specified. Example:

groups() -> [{scenarioA, [sequence], [testAl, testA2]},
{scenarioB, [sequence], [testBl, testB2, testB3]}].

all() -> [testl,
test2,
{group,scenarioA},
test3,
{group, scenarioB},
test4].

It is possible to have sub-groups in a sequence group. Such sub-groups can have any property, i.e. they are not
reguired to also be sequences. If you want the status of the sub-group to affect the sequence on the level above, return
{return_group_result, Status} fromend_per _group/ 2, asdescribed in the Repeated groups chapter.
A failed sub-group (St at us == fai | ed) will cause the execution of a sequence to fail in the same way a test
case does.

1.13 Common Test Hooks
1.13.1 General

The Common Test Hook (henceforth called CTH) framework allows extensions of the default behaviour of Common
Test by means of hooks before and after all test suite calls. CTHs alow advanced Common Test users to abstract out
behaviour which is common to multiple test suites without littering all test suites with library calls. Some example
usages are: logging, starting and monitoring external systems, building C files needed by the tests and much more!

In brief, Common Test Hooks allows you to:

¢ Manipulate the runtime config before each suite configuration call
» Manipulate the return of all suite configuration calls and in extension the result of the test themselves.

Thefollowing sections describe how to use CTHSs, when they are run and how to manipulate your test resultsinaCTH

Warning:

When executing within a CTH all timetraps are shutoff. So if your CTH never returns, the entire test run will
be stalled!

1.13.2 Installing a CTH

There are multiple ways to install a CTH in your test run. You can do it for all testsin arun, for specific test suites
and for specific groups within atest suite. If you want a CTH to be present in all test suites within your test run there
are three different ways to accomplish that.

 Add-ct_hooks asanargument to ct_run. To add multiple CTHs using this method append them to each
other using the keyword and, i.e.ct _run -ct_hooks cthl [{debug,true}] and cth2

e« Addthect hooks tagtoyour Test Specification

e Addthect _hooks tagtoyour call to ct:run_test/1

Ericsson AB. All Rights Reserved.: Common Test | 73

1.13 Common Test Hooks

You can also add CTHs within a test suite. This is done by returning { ct _hooks, [CTH] } in the config list
from suite/O, init_per_suite/l or init_per_group/2. CTH in this case can be either only the module name of
the CTH or a tuple with the module name and the initial arguments and optionally the hook priority of the
CTH.Eg: {ct _hooks,[ny_cth_nodul e]} or{ct_hooks, [{ny_cth_nodul e, [{debug, true}]}]}
or{ct_hooks, [{my_cth_nodul e, [{debug, true}], 500}]}

Overriding CTHs

By default each installation of a CTH will cause a new instance of it to be activated. This can cause problemsiif you
want to be able to override CTHSs in test specifications while still having them in the suite info function. The id/1
callback exists to address this problem. By returning the samei d in both places, Common Test knows that this CTH
has aready been installed and will not try to install it again.

CTH Execution order

By default each CTH installed will be executed in the order which they areinstalled for init calls, and then reversed for
end calls. Thisis not always wanted so common_test allows the user to specify a priority for each hook. The priority
can either be specified in the CTH init/2 function or when installing the hook. The priority given at installation will
override the priority returned by the CTH.

1.13.3 CTH Scope

Oncethe CTH isinstalled into a certain test run it will be there until its scopeis expired. The scope of a CTH depends
onwhenitisinstaled. Theinit/2 is called at the beginning of the scope and the terminate/1 function is called when
the scope ends.

CTH Ingtalled in CTH scope begins before CTH scope ends after
ct_run thefirst test suiteisto be run. the last test suite has been run.
ct:run_test thefirst test suiteisto be run. the last test suite has been run.
Test Specification the first test suiteisto be run. the last test suite has been run.

. - . . post_end per_suite/4 has been
suite/0 pre_init_per_suite/3 is called. called for that test suite.
- post_end per_suite/4 has been
init_per_suite/l post_init_per_suite/4 iscalled. called for that test suite.
- . : post_end_per_group/4 has been
init_per_group/2 post_init_per_group/4iscalled. called for that group.

Table 13.1: Scope of a CTH

CTH Processes and Tables

CTHsare run with the same process scoping as normal test suitesi.e. adifferent processwill executetheinit_per_suite
hooks then the init_per_group or per_testcase hooks. So if you want to spawn a process in the CTH you cannot link
with the CTH process asit will exit after the post hook ends. Also if you for some reason need an ETS table with your
CTH, you will have to spawn a process which handlesiit.

74 | Ericsson AB. All Rights Reserved.: Common Test

1.13 Common Test Hooks

External configuration data and Logging

It's possiblein the CTH to read configuration data values by calling ct : get _confi g/ 1/ 2/ 3 (asexplained in the
External configuration data chapter). The config variables in question must, as always, first have been r equi r ed
by means of a suite-, group-, or test case info function, or thect : r equi r e/ 1/ 2 function. Note that the latter can
also beused in CT hook functions.

The CT hook functions may call any of the logging functions available in the ct interface to print information to the
log files, or to add commentsin the suite overview page.

1.13.4 Manipulating tests

It isthrough CTHs possible to manipulate the results of tests and configuration functions. The main purpose of doing
thiswith CTHsisto allow common patternsto be abstracted out from test test suites and applied to multiple test suites
without duplicating any code. All of the callback functions for a CTH follow a common interface, this interface is
described below.

Common Test will aways cal al available hook functions, even pre- and post hooks for configuration
functions that are not implemented in the suite. For example, pre_init_per_suite(x_SU TE, ...) and
post _init_per_suite(x_SU TE, ...) will becaled for test suite x_SUl TE, even if it doesn't export
i nit_per_suitel/l. Thisfeature makes it possible to use hooks as configuration fallbacks, or even completely
replace all configuration functions with hook functions.

Pre Hooks

It ispossible in a CTH to hook in behaviour beforeinit_per_suite, init_per_group, init_per_testcase, end_per_group
and end_per_suite. Thisis donein the CTH functions called pre_<name of function>. All of these functions take the
samethree arguments: Narnre, Conf i g and CTHSt at e. Thereturn value of the CTH function isalwaysacombination
of an result for the suite/group/test and an updated CTHSt at e. If you want the test suite to continue on executing you
should return the config list which you want the test to use as the result. If you for some reason want to skip/fail the
test, return atuple with ski p or f ai | and areason as the result. Example:

pre init per suite(SuiteName, Config, CTHState) ->
case db:connect() of
{error, Reason} ->
{{fail, "Could not connect to DB"}, CTHState};
{ok, Handle} ->
{[{db_handle, Handle} | Config], CTHState#state{ handle = Handle }}
end.

Note:

If using multiple CTHs, thefirst part of the return tuplewill be used asinput for the next CTH. Soin the case above
the next CTH might get { f ai | , Reason} asthe second parameter. If you have many CTHs which interact, it
might be a good idea to not let each CTH return f ai | or ski p. Instead return that an action should be taken
through the Conf i g list and implement a CTH which at the end takes the correct action.

Post Hooks

ItisalsopossibleinaCTH to hook in behaviour after init_per_suite, init_per_group, end_per_testcase, end_per_group
and end_per_suite. Thisis donein the CTH functions called post_<name of function>. All of these function take the
same four arguments: Name, Conf i g, Ret ur n and CTHSt at e. Confi g inthiscaseis the same Conf i g asthe
testcase is called with. Ret ur n isthe value returned by the testcase. If the testcase failed by crashing, Ret ur n will
be{"EXIT , {{Error, Reason}, St acktrace}}.

Ericsson AB. All Rights Reserved.: Common Test | 75

1.13 Common Test Hooks

The return value of the CTH function is always a combination of an result for the suite/group/test and an updated
CTHSt at e. If you want the callback to not affect the outcome of the test you should return the Ret ur n data as it
isgiven to the CTH. You can also modify the result of the test. By returning the Conf i g list withthet c_st at us
element removed you can recover from atest failure. Asin al the pre hooks, it is also possible to fail/skip the test
case in the post hook. Example:

post end per testcase(TC, Config, {'EXIT',{ , }}, CTHState) ->
case db:check consistency() of
true ->
%% DB is good, pass the test.
{proplists:delete(tc_status, Config), CTHState};
false ->
%% DB is not good, mark as skipped instead of failing
{{skip, "DB is inconsisten!"}, CTHState}
end;
post end per testcase(TC, Config, Return, CTHState) ->
%% Do nothing if tc does not crash.
{Return, CTHState}.

Note:

Recovering from a testcase failure using CTHSs should only be done as a last resort. If used wrongly it could
become very difficult to determine which tests pass or fail in atest run

Skip and Fail hooks

After any post hook has been executed for all installed CTHs, on_tc fail or on_tc_skip might be called if the testcase
failed or was skipped respectively. Y ou cannot affect the outcome of the tests any further at this point.

1.13.5 Example CTH
The CTH below will log information about a test run into aformat parseable by file: consult/1.

%%% @doc Common Test Example Common Test Hook module.
-module(example cth).

%% Callbacks
-export([id/1]).
-export([init/2]).

-export([pre_init per suite/3]).
-export([post init per suite/4]).
-export([pre_end per suite/3]).

-export([post end per suite/4]).

-export([pre_init per group/31]).
-export([post init per group/4]).
-export([pre_end per group/3]).

-export([post _end per group/4]).

-export([pre init per testcase/3]).
-export([post end per testcase/4]).

-export([on tc fail/3]).
-export([on tc skip/3]).

-export([terminate/1]).

76 | Ericsson AB. All Rights Reserved.: Common Test

1.13 Common Test Hooks

-record(state, { file handle, total, suite total, ts, tcs, data }).

%% @doc Return a unique id for this CTH.
id(Opts) ->
proplists:get value(filename, Opts, "/tmp/file.log").

%% @doc Always called before any other callback function. Use this to initiate
%% any common state.
init(Id, Opts) ->

{ok,D} = file:open(Id,[writel),

{ok, #state{ file handle = D, total = 0, data = [] }}.

%% @doc Called before init per suite is called.
pre init per suite(Suite,Config,State) ->
{Config, State#state{ suite total = 0, tcs = [] }}.

%% @doc Called after init per suite.
post init per suite(Suite,Config,Return,State) ->
{Return, State}.

%% @doc Called before end per suite.
pre _end per suite(Suite,Config,State) ->
{Config, State}.

%% @doc Called after end per suite.
post end per suite(Suite,Config,Return,State) ->
Data = {suites, Suite, State#state.suite total, lists:reverse(State#state.tcs)},
{Return, State#state{ data = [Data | State#state.data] ,
total = State#state.total + State#state.suite total } }.

%% @doc Called before each init per group.
pre init per group(Group,Config,State) ->
{Config, State}.

%% @doc Called after each init per group.
post init per group(Group,Config,Return,State) ->
{Return, State}.

%% @doc Called after each end per group.
pre _end per group(Group,Config,State) ->
{Config, State}.

%% @doc Called after each end per group.
post end per group(Group,Config,Return,State) ->
{Return, State}.

%% @doc Called before each test case.
pre init per testcase(TC,Config,State) ->
{Config, State#state{ ts = now(), total = State#state.suite total + 1 } }.

%% @doc Called after each test case.

post end per testcase(TC,Config,Return,State) ->
TCInfo = {testcase, TC, Return, timer:now diff(now(), State#state.ts)},
{Return, State#state{ ts = undefined, tcs = [TCInfo | State#state.tcs] } }.

%% @doc Called after post init per suite, post end per suite, post init per group,
%% post end per group and post end per testcase if the suite, group or test case failed.
on_tc fail(TC, Reason, State) ->

State.

%% @doc Called when a test case is skipped by either user action
%% or due to an init function failing.
on_tc skip(TC, Reason, State) ->

State.

Ericsson AB. All Rights Reserved.: Common Test | 77

1.13 Common Test Hooks

%% @doc Called when the scope of the CTH is done
terminate(State) -

io:format(State#state.file handle, "~p.~n",
[{test run, State#state.total, State#state.data}]),

file:close(State#state.file handle),

ok.

1.13.6 Built-in CTHs

Common Test is delivered with a couple of general purpose CTHs that can be enabled by the user to provide some
generic testing functionality. Some of these are enabled by default when starting running common_test, they can be
disabled by setting enabl e_bui | ti n_hooks tof al se on the command line or in the test specification. In the
table below thereisalist of all current CTHs which are delivered with Common Test.

CTH Name

Is Built-in

Description

cth_log_redirect

yes

Captures al error_logger and SASL
logging events and prints them to the
current test case log. If an event can
not be associated with a testcase it
will be printed in the common test
framework log. Thiswill happen for
testcases which arerun in parallel
and events which occur inbetween
testcases. Y ou can configure the
level of SASL events report using the
norma SASL mechanisms.

cth_surefire

78 | Ericsson AB. All Rights Reserved.: Common Test

no

Captures all test results and outputs
them as surefire XML into afile. The
file which is created is by default
calledjunit_report.xml. Thefilename
can be changed by setting the pat h
option for this hook, e.g.

-ct_hooks cth surefire [{path,’

If the url _base option is set,
an additional attribute named ur |

will be added to each t est suite
and t est case XML element. The
value will be constructed from the
ur | _base and arelative path to the
test suite or test case log respectively,

eg.
-ct_hooks cth surefire [{url bg

will give a url attribute value similar
to

/tmp/report.xm

se,

"http://my:

"http://myserver.com/ct_run.ct@myhost.2012-12

1.14 Some thoughts about testing

x86 64-unknown-linux-gnu.my tegqt.logs/run.:

Surefire XML can for instance be
used by Jenkinsto display test results.

1.14 Some thoughts about testing
1.14.1 Goals

It's not possible to prove that a program is correct by testing. On the contrary, it has been formally proven that it is
impossible to prove programsin general by testing. Theoretical program proofs or plain examination of code may be
viable options for those that wish to certify that a program is correct. The test server, asit is based on testing, cannot
be used for certification. Its intended use is instead to (cost effectively) find bugs. A successful test suite is one that
reveals abug. If atest suite resultsin Ok, then we know very little that we didn't know before.

1.14.2 What to test?

There are many kinds of test suites. Some concentrate on calling every function or command (in the documented way)
in a certain interface. Some other do the same, but uses all kinds of illegal parameters, and verifies that the server
stays alive and rejects the requests with reasonable error codes. Some test suites simulate an application (typically
consisting of a few modules of an application), some try to do tricky requests in general, some test suites even test
internal functions with help of special load-modules on target.

Another interesting category of test suites are the ones that check that fixed bugs don't reoccur. When a bugfix is
introduced, atest case that checks for that specific bug should be written and submitted to the affected test suite(s).

Aim for finding bugs. Write whatever test that has the highest probability of finding a bug, now or in the future.
Concentrate more on the critical parts. Bugsin critical subsystems are alot more expensive than others.

Aimfor functionality testing rather than implementation details. |mplementation details change quite often, and the test
suites should be long lived. Often implementation details differ on different platforms and versions. If implementation
details have to be tested, try to factor them out into separate test cases. Later on these test cases may be rewritten,
or just skipped.

Also, aim for testing everything once, no less, no more. It's not effective having every test case fail just because one
function in the interface changed.

Ericsson AB. All Rights Reserved.: Common Test | 79

1.14 Some thoughts about testing

2 Reference Manual

Common Test is a portable application for automated testing. It is suitable for black-box testing of target systems of
any type (i.e. not necessarily implemented in Erlang), aswell asfor white-box testing of Erlang/OTP programs. Black-
box testing is performed via standard O& M interfaces (such as SNMP, HTTP, Corba, Telnet, etc) and, if required, via
user specific interfaces (often called test ports). White-box testing of Erlang/OTP programsis easily accomplished by
calling the target API functions directly from the test case functions. Common Test also integrates usage of the OTP
cover tool for code coverage analysis of Erlang/OTP programs.

Common Test executes test suite programs automatically, without operator interaction. Test progress and results is
printed to logs on HTML format, easily browsed with a standard web browser. Common Test also sends notifications
about progress and results viaan OTP event manager to event handlers plugged in to the system. This way users can
integrate their own programs for e.g. logging, database storing or supervision with Common Test.

Common Test provides libraries that contain useful support functions to fill various testing needs and requirements.
There is for example support for flexible test declarations by means of so called test specifications. There is also
support for central configuration and control of multiple independent test sessions (towards different target systems)
running in parallel.

Common Test isimplemented as aframework based on the OTP Test Server application.

80 | Ericsson AB. All Rights Reserved.: Common Test

common_test

common_test

Erlang module

The Common Test framework is an environment for implementing and performing automatic and semi-automatic
execution of test cases. Common Test usesthe OTP Test Server as engine for test case execution and logging.

In brief, Common Test supports:

* Automated execution of test suites (sets of test cases).
e Logging of the events during execution.

* HTML presentation of test suite results.

e HTML presentation of test suite code.

e Support functions for test suite authors.

« Step by step execution of test cases.

The following sections describe the mandatory and optional test suite functions Common Test will call during test
execution. For more details see Common Test User's Guide.

TEST CASE CALLBACK FUNCTIONS

The following functions define the callback interface for atest suite.

Exports

Module:all() -> Tests | {skip,Reason}

Types.
Tests = [TestCase | {group, GoupNane} | {group, G oupNane, Properties} |
{group, GroupNane, Properties, SubG oups}]
Test Case = aton()
GroupNane = aton()
Properties = [parallel | sequence | Shuffle | {RepeatType, N}] | default
SubG oups = [{G oupNane, Properties} | {GoupNane, Properties, SubG oups}]
Shuffle = shuffle | {shuffl e, Seed}
Seed = {integer(),integer(),integer()}
Repeat Type = repeat | repeat_until _all _ok | repeat_until _all _fail |
repeat _until _any ok | repeat_until _any fail
N = integer() | forever
Reason = term)

MANDATORY

This function must return the list of all test cases and test case groups in the test suite module that are to be executed.
Thislist also specifiesthe order the cases and groups will be executed by Common Test. A test case is represented by
an atom, the name of the test case function. A test case group is represented by agr oup tuple, where G- oupNane, an
atom, is the name of the group (defined in gr oups/ 0). Execution properties for groups may also be specified, both
for atop level group and for any of its sub-groups. Group execution properties specified here, will override properties
in the group definition (see gr oups/ 0). (With value def aul t , the group definition properties will be used).

If { ski p, Reason} isreturned, al test cases in the module will be skipped, and the Reason will be printed on
the HTML result page.

Ericsson AB. All Rights Reserved.: Common Test | 81

common_test

For details on groups, see Test case groupsin the User's Guide.

Module:groups() -> GroupDefs
Types.
GroupDefs = [Group]
Group = {G oupNane, Properties, G oupsAndTest Cases}
GroupNane = aton()
Properties = [parallel | sequence | Shuffle | {RepeatType, N}]
G oupsAndTest Cases = [G oup | {group, GoupNanme} | Test Case]
Test Case = aton()
Shuffle = shuffle | {shuffle, Seed}
Seed = {integer(),integer(),integer()}
Repeat Type = repeat | repeat_until _all_ok | repeat_until_all_fail |
repeat _until _any_ok | repeat_until_any_fail
N = integer() | forever
OPTIONAL

Function for defining test case groups. Please see Test case groups in the User's Guide for details.

Module:suite() -> [Info]

Types:
Info = {tinetrap, Tine} | {require, Required} | {require, Nane, Required} |
{userdat a, UserData} | {silent_connections, Conns} | {stylesheet, CSSFile} |
{ct _hooks, CTHs}

Time = TinmeVal | Ti neFunc

TimeVal = MI1liSec | {seconds,integer()} | {mnutes,integer()} |
{hours,integer()}

Ti meFunc = {Mod, Func, Args} | Fun

MIIliSec = integer()

Mod = atom()

Func = atom()

Args = list()

Fun = fun()

Required = Key | {Key, SubKeys} | {Key, SubKey} | {Key, SubKey, SubKeys}
Key = atom()

SubKeys = SubKey | [SubKey]
SubKey = aton()
Name = atom()
UserData = term()
Conns = [aton()]
CSSFile = string()
CTHs = [CTHvbdul e |
{CTHWodul e, CTHI nitArgs} |
{CTHModul e, CTHInitArgs, CTHPriority}]
CTHVbdul e = at on()

82 | Ericsson AB. All Rights Reserved.: Common Test

common_test

CTH nitArgs = tern()
OPTIONAL

Thisisthetest suiteinfo function. It is supposed to return alist of tagged tuples that specify various properties related
to the execution of thistest suite (common for all test casesin the suite).

Thet i met r ap tag setsthemaximumtime eachtest caseisallowedto execute (includingi ni t _per _t est case/ 2
and end_per _testcase/2). If the timetrap time is exceeded, the test case fals with reason
timetrap_ti meout. A Ti neFunc function can be used to set a new timetrap by returning a Ti neVal . It may
also be used to trigger atimetrap timeout by, at some point, returning a value other than aTi nmeVal . (Seethe User's
Guide for details).

Ther equi r e tag specifies configuration variables that are required by test cases (and/or configuration functions) in
the suite. If the required configuration variablesare not found in any of the configuration files, al test cases are skipped.
For more information about the 'require’ functionality, see the reference manual for thefunctionct : requi re/ 1/ 2.

With user dat a, it is possible for the user to specify arbitrary test suite related information which can be read by
cdlingct : user dat a/ 2.

Thect _hooks tag specifies which Common Test Hooks are to be run together with this suite.
Other tuples than the ones defined will simply be ignored.
For more information about the test suite info function, see Test suite info function in the User's Guide.

Module:init per suite(Config) -> NewConfig | {skip,Reason} |
{skip_and save,Reason,SaveConfig}

Types:
Config = NewConfig = SaveConfig = [{Key, Val ue}]
Key = atom()

Value = term))
Reason = term)

OPTIONAL

This configuration function is called as the first function in the suite. It typically contains initializations which are
common for all test casesin the suite, and which shall only be done once. The Conf i g parameter isthe configuration
data which can be modified here. Whatever is returned from this function is given as Conf i g to al configuration
functions and test cases in the suite. If { ski p, Reason} isreturned, al test cases in the suite will be skipped and
Reason printed in the overview log for the suite.

For informationonsave_confi g andski p_and_save, please see Dependencies between Test Cases and Suites
in the User's Guide.

Module:end per suite(Config) -> void() | {save config,SaveConfig}
Types:
Config = SaveConfig = [{Key, Val ue}]

Key = atom()
Value = term))
OPTIONAL

This function is caled as the last test case in the suite. It is meant to be used for cleaning up after
init_per_suite/ l.Forinformationonsave_conf i g, please see Dependencies between Test Casesand Suites
in the User's Guide.

Ericsson AB. All Rights Reserved.: Common Test | 83

common_test

Module:group(GroupName) -> [Info]
Types:
Info = {tinetrap, Time} | {require, Required} | {require, Name, Requi red}
{userdat a, UserData} | {silent_connections, Conns} | {styl esheet, CSSFil e}
{ct _hooks, CTHs}
Time = TinmeVal | TineFunc
TimeVal = MIliSec | {seconds,integer()} | {mnutes,integer()}
{hours, integer()}
Ti meFunc = {Mod, Func, Args} | Fun
MIIliSec = integer()

Mod = atom()

Func = atom()

Args = list()

Fun = fun()

Required = Key | {Key, SubKeys} | {Key, Subkey} | {Key, Subkey, SubKeys}
Key = atom()

SubKeys = SubKey | [SubKey]
SubKey = at on()
Name = atom()
UserData = term()
Conns = [aton()]
CSSFile = string()
CTHs = [CTHWbdul e |
{CTHWodul e, CTHI nitArgs} |
{CTHModul e, CTHInitArgs, CTHPriority}]
CTHWbdul e = at on()
CTH nitArgs = tern()
OPTIONAL
Thisisthe test case group info function. It is supposed to return alist of tagged tuples that specify various properties

related to the execution of atest case group (i.e. its test cases and sub-groups). Properties set by gr oup/ 1 override
properties with the same key that have been previously set by sui t e/ 0.

Thet i met r ap tag setsthemaximumtimeeachtest caseisallowedtoexecute (includingi nit _per _t estcase/ 2
and end_per _testcase/2). If the timetrap time is exceeded, the test case fals with reason
tinmetrap_tinmeout.A Ti neFunc function can be used to set a new timetrap by returning a Ti neVal . It may
also be used to trigger atimetrap timeout by, at some point, returning avalue other than aTi neVal . (Seethe User's
Guide for details).

Ther equi r e tag specifies configuration variables that are required by test cases (and/or configuration functions) in
the suite. If the required configuration variables are not found in any of the configuration files, all test cases in this
group are skipped. For more information about the 'require’ functionality, see the reference manual for the function
ct:requirel/ 1/ 2.

With user dat a, it is possible for the user to specify arbitrary test case group related information which can be read
by callingct : user dat a/ 2.

Thect _hooks tag specifies which Common Test Hooks are to be run together with this suite.
Other tuples than the ones defined will simply be ignored.

84 | Ericsson AB. All Rights Reserved.: Common Test

common_test

For more information about the test case group info function, see Test case group info function in the User's Guide.

Module:init per _group(GroupName, Config) -> NewConfig | {skip,Reason}
Types.

GroupNane = aton()

Config = NewConfig = [{Key, Val ue}]

Key = atom()

Value = term)

Reason = term()

OPTIONAL

This configuration function is called before execution of atest case group. It typically containsinitializationswhich are
common for all test cases and sub-groups in the group, and which shall only be performed once. G- oupNare isthe
name of the group, as specified in the group definition (seegr oups/ 0). The Conf i g parameter isthe configuration
datawhich can be modified here. The return value of thisfunctionisgiven asConf i g to all test cases and sub-groups
inthe group. If { ski p, Reason} isreturned, all test casesin the group will be skipped and Reason printed in the
overview log for the group.

For information about test case groups, please see Test case groups chapter in the User's Guide.

Module:end per _group(GroupName, Config) -> void() |
{return_group result,Status}

Types:
G oupNane = aton()
Config = [{Key, Val ue}]
Key = atom()
Value = term))
Status = ok | skipped | failed

OPTIONAL

This function is called after the execution of atest case group is finished. It is meant to be used for cleaning up after
i nit_per_group/2.Bymeansof {return_group_result, Status},itispossibleto return astatusvalue
for a nested sub-group. The status can be retrieved in end_per _gr oup/ 2 for the group on the level above. The
status will also be used by Common Test for deciding if execution of a group should proceed in case the property
sequence orrepeat _until _* isset.

For more information about test case groups, please see Test case groups chapter in the User's Guide.

Module:init per testcase(TestCase, Config) -> NewConfig | {fail,Reason} |
{skip,Reason}

Types.
Test Case = aton()
Config = NewConfig = [{Key, Val ue}]
Key = atom()
Value = term)
Reason = term()

OPTIONAL

Ericsson AB. All Rights Reserved.: Common Test | 85

common_test

This function is called before each test case. The Test Case argument is the name of the test case, and Confi g
(list of key-value tuples) is the configuration data that can be modified here. The NewConf i g list returned from
this function is given as Conf i g tothetest case. If { f ai | , Reason} isreturned, the test case is marked as failed
without being executed. If { ski p, Reason} isreturned, the test case will be skipped and Reason printed in the
overview log for the suite.

Module:end per testcase(TestCase, Config) -> void() | {fail,Reason} |
{save config,SaveConfig}

Types.
Test Case = aton()
Config = SaveConfig = [{Key, Val ue}]
Key = atom()
Value = term)
Reason = term()

OPTIONAL

Thisfunction is called after each test case, and can be used to clean up afteri ni t _per _t est case/ 2 and the test
case. Any return value (besides{ f ai | , Reason} and{save_confi g, SaveConf i g})isignored. By returning
{fail, Reason}, Test Case will be marked as failed (even though it was actually successful in the sense that it
returned a value instead of terminating). For information on save_conf i g, please see Dependencies between Test
Cases and Quites in the User's Guide

Module:Testcase() -> [Info]
Types:
Info = {tinetrap, Time} | {require, Required} | {require, Nane, Required} |
{userdat a, UserData} | {silent_connections, Conns}
Time = TinmeVal | Ti neFunc
TimeVal = MI1liSec | {seconds,integer()} | {mnutes,integer()} |
{hours,integer()}
Ti meFunc = {Mod, Func, Args} | Fun
MIIliSec = integer()

Mod = atom()
Func = atom()
Args = list()
Fun = fun()

Required = Key | {Key, SubKeys} | {Key, Subkey} | {Key, Subkey, SubKeys}
Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = at on()

Name = atom()

UserData = term()

Conns = [aton()]

OPTIONAL

Thisisthetest caseinfo function. It issupposed to return alist of tagged tuplesthat specify various propertiesrelated to
the execution of this particular test case. Propertiesset by Test case/ 0 override propertiesthat have been previously
set for the test case by gr oup/ 1 or sui t e/ 0.

86 | Ericsson AB. All Rights Reserved.: Common Test

common_test

Thet i net r ap tag sets the maximum time the test case is alowed to execute. If the timetrap time is exceeded, the
test case failswithreasonti nmetrap_tineout.init _per_testcase/ 2 andend _per_testcasel/ 2 are
included in the timetrap time. A Ti neFunc function can be used to set a new timetrap by returning a Ti neVal . It
may also be used to trigger a timetrap timeout by, at some point, returning a value other than a Ti meVal . (See the
User's Guide for details).

The require tag specifies configuration variables that are required by the test case (and/or init/

end_per _t est case/ 2). If therequired configuration variables are not found in any of the configuration files, the
test case is skipped. For more information about the ‘require’ functionality, see the reference manual for the function
ct:requirel/ 1/ 2.

If ti metrap and/orrequir e isnot set, the default values specified by sui t e/ 0 (or gr oup/ 1) will be used.

With user dat a, it is possible for the user to specify arbitrary test case related information which can be read by
calingct : user dat a/ 3.

Other tuples than the ones defined will simply be ignored.

For more information about the test case info function, see Test case info function in the User's Guide.

Module:Testcase(Config) -> void() | {skip,Reason} | {comment,Comment} |
{save config,SaveConfig} | {skip and save,Reason,SaveConfig} | exit()

Types.
Config = SaveConfig = [{Key, Val ue}]
Key = atom()
Value = term)
Reason = term()
Commrent = string()
MANDATORY

Thisisthe implementation of atest case. Here you must call the functions you want to test, and do whatever you need
to check the result. If something fails, make sure the function causes aruntime error, or call ct : fai | / 1/ 2 (which
also causes the test case process to terminate).

Elementsfromthe Conf i g list cane.g. beread withpr opl i st s: get _val ue/ 2 (or themacro ?conf i g defined
inct. hrl).

You can return { ski p, Reason} if you decide not to run the test case after all. Reason will then be printed in
‘Comment’ field on the HTML result page.

You can return { comrent , Comment } if you wish to print some information in the '‘Comment' field on the HTML
result page.

If the function returns anything else, the test case is considered successful. (The return value always gets printed in
the test case log file).

For more information about test case implementation, please see Test cases in the User's Guide.

For informationonsave_confi g andski p_and_save, please see Dependencies between Test Cases and Suites
in the User's Guide.

Ericsson AB. All Rights Reserved.: Common Test | 87

ct_run

ct_run

Command

The ct _run program is automaticaly installed with Erlang/OTP and Common Test (please see the Installation
chapter in the Common Test User's Guide for more information). The program accepts a number of different start
flags. Some flags trigger ct _r un to start the Common Test application and pass on data to it. Some flags start an
Erlang node prepared for running Common Test in a particular mode.

Thereis an interface function that corresponds to this program, called ct : run_t est/ 1, for starting Common Test
from the Erlang shell (or an Erlang program). Please seethe ct man page for details.

ct _run asoaccepts Erlang emulator flags. Theseareused whenct _run calser | to start the Erlang node (making
it possible to e.g. add directories to the code server path, change the cookie on the node, start additional applications,
etc).

With the optional flag:
-erl_args

it's possible to divide the options on the ct _r un command line into two groups, one that Common Test should
process (those preceding - er | _ar gs), and one it should completely ignore and pass on directly to the emulator
(thosefollowing - er | _ar gs). Optionspreceding - er | _ar gs that Common Test doesn't recognize, also get passed
on to the emulator untouched. By means of - er | _ar gs the user may specify flags with the same name, but with
different destinations, onthect _r un command line.

If - pa or - pz flags are specified in the Common Test group of options (preceding - er | _ar gs), relative directories
will be converted to absolute and re-inserted into the code path by Common Test (to avoid problems loading user
modules when Common Test changes working directory during test runs). Common Test will however ignore - pa
and - pz flagsfollowing - er | _ar gs on the command line. These directories are added to the code path normally
(i.e. on specified form)

Exit status is set before the program ends. Value 0 indicates a successful test result, 1 indicates one or more failed or
auto-skipped test cases, and 2 indicates test execution failure.

If ct _run iscaled with option:
-help
it prints all valid start flags to stdout.

Run tests from command line

ct run [-dir TestDirl TestDir2 .. TestDirN] |
[[-dir TestDir] -suite Suitel Suite2 .. SuiteN
[[-group Groupsl Groups2 .. GroupsN] [-case Casel Case2 .. CaseN]]]
[-step [config | keep inactive]]
[-config ConfigFilel ConfigFile2 .. ConfigFileN]
[-userconfig CallbackModulel ConfigStringl and CallbackModule?2
ConfigString2 and .. CallbackModuleN ConfigStringN]
-decrypt _key Key] | [-decrypt file KeyFile]
-label Label]
-logdir LogDir]
-logopts LogOpts]
-verbosity GenVLevel | [Categoryl VLevell and

—————

88 | Ericsson AB. All Rights Reserved.: Common Test

ct_run

Category2 VLevel2 and .. CategoryN VLevelN]]
[-silent connections [ConnTypel ConnType2 .. ConnTypeN]]
[-stylesheet CSSFile]
[-cover CoverCfgFile]
[-cover stop Bool]
[-event handler EvHandlerl EvHandler2 .. EvHandlerN] |
[-event handler init EvHandlerl InitArgl and
EvHandler2 InitArg2 and .. EvHandlerN InitArgN]
[-include InclDirl InclDPir2 .. InclDirN]
[-no_auto compile]
[-muliply timetraps Multiplier]
[-scale timetraps]
[-create priv dir auto per run | auto per tc | manual per tc]
[-repeat N [-force stopl] |
[-duration HHMMSS [-force stop]l] |
[-until [YYMoMoDD]HHMMSS [-force stop]l
[-basic _html]
[-ct hooks CTHModulel CTHOptsl and CTHModule2 CTHOpts2 and ..
CTHModuleN CTHOptsN]
[-exit status ignore config]

Run tests using test specification

ct run -spec TestSpecl TestSpec2 .. TestSpecN
[-join specs]
[-config ConfigFilel ConfigFile2 .. ConfigFileN]
[-userconfig CallbackModulel ConfigStringl and CallbackModule2
ConfigString2 and .. and CallbackModuleN ConfigStringN]
[-decrypt key Keyl | [-decrypt file KeyFile]
[-label Label]
[-logdir LogDir]
[-logopts LogOpts]
[-verbosity GenVLevel | [Categoryl VLevell and
Category2 VLevel2 and .. CategoryN VLevelN]]
[-allow user terms]
[-silent connections [ConnTypel ConnType2 .. ConnTypeN]]
[-stylesheet CSSFile]
[-cover CoverCfgFile]
[-cover stop Bool]
[-event handler EvHandlerl EvHandler2 .. EvHandlerN] |
[-event handler init EvHandlerl InitArgl and
EvHandler2 InitArg2 and .. EvHandlerN InitArgN]
[-include InclDirl InclDir2 .. InclDirN]
[-no_auto compile]
[-muliply timetraps Multiplier]
[-scale timetraps]
[-create priv _dir auto per run | auto per tc | manual per tc]
[-repeat N [-force stopl] |
[-duration HHMMSS [-force stopl] |
[-until [YYMoMoDD]HHMMSS [-force stop]l]
[-basic _html]
[-ct hooks CTHModulel CTHOptsl and CTHModule2 CTHOpts2 and ..
CTHModuleN CTHOptsN]
[-exit status ignore config]

Run tests in web based GUI

Ericsson AB. All Rights Reserved.: Common Test | 89

ct_run

ct run -vts [-browser Browser]
[-dir TestDirl TestDir2 .. TestDirN] |
[[dir TestDir] -suite Suite [[-group Group] [-case Caselll
[-config ConfigFilel ConfigFile2 .. ConfigFileN]
[-userconfig CallbackModulel ConfigStringl and CallbackModule2
ConfigString2 and .. and CallbackModuleN ConfigStringN]
[-logopts LogOpts]
[-verbosity GenVLevel | [Categoryl VLevell and
Category2 VLevel2 and .. CategoryN VLevelN]]
[-decrypt key Keyl | [-decrypt file KeyFile]
[-include InclDirl InclDir2 .. InclDirN]
[-no_auto compile]
[-muliply timetraps Multiplier]
[-scale timetraps]
[-create priv dir auto per run | auto per tc | manual per tc]
[-basic _html]

Refresh the HTML index files

ct run -refresh logs [-logdir LogDir] [-basic html]

Run CT in interactive mode

ct _run -shell

[-config ConfigFilel ConfigFile2 ... ConfigFileN]

[-userconfig CallbackModulel ConfigStringl and CallbackModule2
ConfigString2 and .. and CallbackModuleN ConfigStringN]

[-decrypt key Key]l | [-decrypt file KeyFile]

Start a Common Test Master node

ct run -ctmaster

See also

Please read the Running Test Suites chapter in the Common Test User's Guide for information about the meaning of
the different start flags.

90 | Ericsson AB. All Rights Reserved.: Common Test

ct

ct

Erlang module

Main user interface for the Common Test framework.

This module implements the command line interface for running tests and some basic functions for common test case
issues such as configuration and logging.

Test Quite Support Macros

The conf i g macro is defined in ct . hr | . This macro should be used to retrieve information from the Conf i g
variable sent to all test cases. It is used with two arguments, where the first is the name of the configuration variable
you wish to retrieve, and the second isthe Conf i g variable supplied to the test case.

Possible configuration variables include:

e data_dir -Datafiledirectory.
e priv_dir - Scrachfiledirectory.
e Whatever addedbyinit _per _suite/lorinit_per_testcase/2inthetest suite.

DATA TYPES

handl e() = handl e() (see nodule ct_gen_conn) | term)
Theidentity of a specific connection.

target _name() = var_nane()
The name of atarget.

var_nane() = atom)

A variable name which is specified when ct: requi re/ 2 is cdled, eg. ct: requi re(nynodenane,
{node, [tel net]})

Exports

abort current testcase(Reason) -> ok | {error, ErrorReason}
Types:
Reason = term()
ErrorReason = no_testcase running | parallel _group
When calling this function, the currently executing test case will be aborted. It isthe user's responsihbility to know for

sure which test caseis currently executing. The function is therefore only safe to call from afunction which has been
called (or synchronously invoked) by the test case.

Reason, thereason for aborting the test case, is printed in the test case log.

add config(Callback, Config) -> ok | {error, Reason}

Types:
Cal | back = atom()
Config = string()
Reason = term()

Ericsson AB. All Rights Reserved.: Common Test | 91

ct

Thisfunction loads configuration variabl es using the given callback module and configuration string. Callback module
should be either loaded or present in the code part. Loaded configuration variables can later be removed using
renove_confi g/ 2 function.

break(Comment) -> ok | {error, Reason}

Types:
Commrent = string()
Reason = {nmultiple_cases_running, TestCases} | 'enable break with

rel ease_shell option'

Test Cases = [atom()]
This function will cancel any active timetrap and pause the execution of the current test case until the user calls the
cont i nue/ 0 function. It gives the user the opportunity to interact with the erlang node running the tests, e.g. for

debugging purposes or for manually executing apart of thetest case. If aparallel group isexecuting, br eak/ 2 should
be called instead.

A cancelled timetrap will not be automatically reactivated after the break, but must be started exlicitly with
ct:timetrap/1

In order for the break/continue functionality to work, Common Test must release the shell process controlling stdin.
Thisisdone by settingther el ease_shel | start optiontot r ue. See the User's Guide for more information.

break(TestCase, Comment) -> ok | {error, Reason}
Types:
Test Case = aton()
Comrent = string()
Reason = 'test case not running' | 'enable break with rel ease_shell
option’
This function works the same way asbr eak/ 1, only the Test Case argument makesit possible to pause atest case
executing in aparallel group. The cont i nue/ 1 function should be used to resume execution of Test Case.

Seebr eak/ 1 for more details.

capture get() -> List0fStrings
Types:

ListOStrings = [string()]
Equivalent to capture_get([default]).

capture get(ExclCategories) -> ListOfStrings
Types:
Excl Categories = [aton()]
ListOFStrings = [string()]
Return and purge the list of text strings buffered during the latest session of capturing printouts to stdout.

With Excl Cat egori es it's possible to specify log categories that should be ignored in Li st OF St ri ngs. If
Excl Cat egori es = [], nofiltering takes place.

See also: capture_start/0, capture_stop/0, log/3.

92 | Ericsson AB. All Rights Reserved.: Common Test

ct

capture start() -> ok
Start capturing all text strings printed to stdout during execution of the test case.
See also: capture _get/1, capture_stop/O.

capture stop() -> ok
Stop capturing text strings (a session started with capt ure_st art/ 0).
See also: capture get/1, capture_start/O.

comment (Comment) -> void()
Types.
Comrent = term()
Print the given Conmrent in the comment field in the table on the test suite result page.

If called several times, only the last comment is printed. Thetest casereturnvalue{ comrent , Commrent } overwrites
the string set by this function.

comment (Format, Args) -> void()

Types.
Format = string()
Args = list()

Print the formatted string in the comment field in the table on the test suite result page.

The For mat and Ar gs argumentsareused incall toi o_| i b: f or mat / 2 in order to create the comment string.
The behaviour of coment / 2 is otherwise the same asthe comrment / 1 function (see above for details).

continue() -> ok

This function must be called in order to continue after a test case (not executing in a parallel group) has called
break/ 1.

continue(TestCase) -> ok
Types:
Test Case = aton()
This function must be called in order to continue after a test case has called br eak/ 2. If the paused test case,

Test Case, executesin aparallel group, this function - rather than cont i nue/ 0 - must be used in order to let the
test case proceed.

decrypt config file(EncryptFileName, TargetFileName) -> ok | {error, Reason}
Types:

Encrypt Fil eName = string()

Target Fil eName = string()

Reason = term()
This function decrypts Encr ypt Fi | eName, previously generated with encrypt _config file/2/3. The

original file contents is saved in the target file. The encryption key, a string, must be available in a text file named
.ct_config. crypt inthe current directory, or the home directory of the user (it is searched for in that order).

Ericsson AB. All Rights Reserved.: Common Test | 93

ct

decrypt config file(EncryptFileName, TargetFileName, KeyOrFile) -> ok |
{error, Reason}

Types:
Encrypt Fi |l eNane = string()
Target Fil eName = string()
KeyOrFile = {key, string()} | {file, string()}
Reason = term()

This function decrypts Encr ypt Fi | eName, previously generated with encrypt _config file/2/3. The
original file contentsis saved in the target file. The key must have the the same value as that used for encryption.

encrypt config file(SrcFileName, EncryptFileName) -> ok | {error, Reason}
Types.

SrcFil eNane = string()

Encrypt Fil eNane = string()

Reason = term()
This function encrypts the source config file with DES3 and saves the result in file Encr ypt Fi | eNane. The key,

astring, must be availablein atext filenamed . ct _confi g. cr ypt inthe current directory, or the home directory
of the user (it is searched for in that order).

See the Common Test User's Guide for information about using encrypted config files when running tests.
Seethecr ypt o application for details on DES3 encryption/decryption.

encrypt config file(SrcFileName, EncryptFileName, KeyOrFile) -> ok | {error,
Reason}

Types:
SrcFil eNane = string()
Encrypt Fil eName = string()
KeyOFile = {key, string()} | {file, string()}
Reason = term()

This function encrypts the source config file with DES3 and saves the result in the target file Encr ypt Fi | eNane.
Theencryptionkey touseiseither thevaluein{ key, Key} orthevaluestoredinthefilespecifiedby{fil e, Fi |l e}.

See the Common Test User's Guide for information about using encrypted config files when running tests.
Seethecr ypt o application for details on DES3 encryption/decryption.

fail(Reason) -> void()
Types:
Reason = term()

Terminate atest case with the given error Reason.

fail(Format, Args) -> void()

Types:
Format = string()
Args = list()

94 | Ericsson AB. All Rights Reserved.: Common Test

ct

Terminate a test case with an error message specified by a format string and a list of values (used as arguments to
io_lib:format/?2).

get config(Required) -> Value
Equivalent to get_config(Required, undefined, []).

get config(Required, Default) -> Value
Equivalent to get_config(Required, Default, []).

get config(Required, Default, Opts) -> ValueOrElement
Types:
Required = KeyOrNane | {KeyOrNane, SubKey} | {KeyOrName, SubKey, SubKey}
KeyOr Name = atom()
SubKey = aton()
Default = term))
Opts = [Opt] | []
Ot = elenent | all
Val ueOrEl enent = term() | Default

Read config data values.

This function returns the matching value(s) or config element(s), given a config variable key or its associated name
(if one has been specified with r equi r e/ 2 or arequire statement).

Example, given the following config file:

{unix, [{telnet, IpAddr},
{user, [{username,Username},
{password,Password}]}]1}.

ct:get_config(unix,Default) -> [{telnet,|pAddr}, {user, [{usernane, Usernane},
{passwor d, Password}]}]

ct:get_config({unix,telnet}, Default) -> |pAddr

ct:get_config({unix, user, usernane}, Default) -> Usernane
ct:get_config({unix,ftp}, Default) -> Default

ct: get_config(unknownkey, Default) -> Default

If aconfig variable key has been associated with aname (by means of r equi r e/ 2 or arequire statement), the name
may be used instead of the key to read the value:

ct:require(myuser, {unix, user}) -> ok.
ct:get_config(nyuser,Default) -> [{usernane, Usernane}, {password, Password}]

If a config variable is defined in multiple files and you want to access all possible values, use the al | option. The
valueswill bereturnedin alist and the order of the elements correspondsto the order that the config fileswere specified
at startup.

If you want config elements (key-value tuples) returned as result instead of values, use the el enent option. The
returned elements will then be on the form { Requi r ed, Val ue}

See also: get_config/l, get_config/2, require/l, require/2.

Ericsson AB. All Rights Reserved.: Common Test | 95

ct

get status() -> TestStatus | {error, Reason} | no tests running
Types:
Test Status = [Stat uskEl em

StatusEl em = {current, TestCaselnfo} | {successful, Successful} | {failed,
Fail ed} | {skipped, Skipped} | {total, Total}

Test Caselnfo = {Suite, TestCase} | [{Suite, TestCase}]
Suite = atom)
Test Case = aton()
Successful = integer()
Failed = integer()
Ski pped = {User Ski pped, Aut oSki pped}
User Ski pped = integer ()
Aut oSki pped = integer()
Total = integer()
Reason = term()
Returns status of ongoing test. The returned list contains info about which test case is currently executing (alist of

cases when a parallel test case group is executing), as well as counters for successful, failed, skipped, and total test
cases so far.

get target name(Handle) -> {ok, TargetName} | {error, Reason}
Types.

Handl e = handl e()

Target Name = target_nane()

Return the name of the target that the given connection belongs to.

get timetrap info() -> {Time, Scale}
Types:

Time = integer() | infinity

Scale = true | false

Read info about thetimetrap set for the current test case. Scal e indicatesif Common Test will attempt to automatically
compensate timetraps for runtime delays introduced by e.g. tools like cover.

install(Opts) -> ok | {error, Reason}
Types:
Opts = [Opt]
Opt = {config, ConfigFiles} | {event_handler, Mdules} | {decrypt,
KeyOr Fi | e}
ConfigFiles = [ConfigFile]
ConfigFile = string()
Modul es = [aton()]
KeyOrFile = {key, Key} | {file, KeyFile}
Key = string()
KeyFile = string()
Install config files and event handlers.

96 | Ericsson AB. All Rights Reserved.: Common Test

ct

Run this function once before first test.
Example:

install ([{config,["config node.ctc","config user.ctc"]}]).

Note that this function is automatically run by thect _r un program.

listenv(Telnet) -> [Env]
Types:
Telnet = term)
Env {Key, Val ue}
Key string()
Val ue = string()

Performs the listenv command on the given telnet connection and returns the result as alist of Key-Value pairs.

log(Format) -> ok
Equivalent to log(default, 50, Format, []).

log(X1, X2) -> ok

Types:
X1 = Category | |nportance | Format
X2 = Format | Args

Equivalent to log(Category, Importance, Format, Args).

log (X1, X2, X3) -> ok

Types.
X1 = Category | | nportance
X2 = I nportance | Format
X3 = Format | Args

Equivalent to log(Category, Importance, Format, Args).

log(Category, Importance, Format, Args) -> ok

Types:
Category = atom)
| nportance = integer()
Format = string()
Args = list()

Printout from atest caseto thelog file.

This function is meant for printing a string directly from atest case to the test case log file.
Default Cat egory isdef aul t, default| nport ance is?STD_| MPORTANCE, and default valuefor Ar gs is[] .
Please see the User's Guide for details on Cat egor y and | nport ance.

make priv dir() -> ok | {error, Reason}

Types.

Ericsson AB. All Rights Reserved.: Common Test | 97

ct

Reason = term()

If the test has been started with the create priv_dir option set to manual_per_tc, in order for the test case to use the
private directory, it must first create it by calling this function.

notify(Name, Data) -> ok
Types:

Name = atom()

Data = term)

Sends a asynchronous notification of type Name with Dat ato the common_test event manager. This can later be
caught by any installed event manager.

See also: gen_event(3).

pal(Format) -> ok
Equivalent to pal (default, 50, Format, []).

pal(X1l, X2) -> ok

Types:
X1 = Category | Inportance | Format
X2 = Format | Args

Equivalent to pal (Category, Importance, Format, Args).

pal(X1l, X2, X3) -> ok

Types.
X1 = Category | |nportance
X2 = I nportance | Format
X3 = Format | Args

Equivalent to pal (Category, Importance, Format, Args).

pal(Category, Importance, Format, Args) -> ok
Types:
Category = atom()
| mportance = integer()
Format = string()
Args = list()
Print and log from atest case.
This function is meant for printing a string from atest case, both to the test case log file and to the console.
Default Cat egor y isdef aul t , default | npor t ance is?STD_| MPORTANCE, and default valuefor Ar gs is[] .

Please see the User's Guide for details on Cat egor y and | npor t ance.

parse table(Data) -> {Heading, Table}
Types.

Data = [string()]

Headi ng = tuple()

98 | Ericsson AB. All Rights Reserved.: Common Test

Table = [tuple()]
Parse the printout from an SQL table and return alist of tuples.

The printout to parse would typically be the result of asel ect command in SQL. The returned Tabl e isalist of

tuples, where each tupleisarow in thetable.
Headi ng isatuple of strings representing the headings of each column in thetable.

print(Format) -> ok
Equivalent to print(default, 50, Format, []).

print (X1, X2) -> ok

Types:
X1 = Category | Inportance | Format
X2 = Format | Args

Equivalent to print(Category, Importance, Format, Args).

print(X1, X2, X3) -> ok
Types:
X1 Category | Inportance
X2 = Inportance | Format
X3 = Format | Args
Equivalent to print(Category, Importance, Format, Args).

print(Category, Importance, Format, Args) -> ok
Types:
Category = atom()
| mportance = integer()
Format = string()
Args = list()
Printout from atest case to the console.
Thisfunction is meant for printing a string from atest case to the console.

Default Cat egor y isdef aul t, default | nport ance is?STD_| MPORTANCE, and default valuefor Ar gs is[] .

Please see the User's Guide for details on Cat egor y and | npor t ance.

reload config(Required) -> ValueOrElement
Types:
Required = KeyOrNane | {KeyOrNanme, SubKey} | {KeyOrNane, SubKey, SubKey}
KeyOr Name = atom()
SubKey = aton()
Val ueOr El enrent = term()

Reload config file which contains specified configuration key.

This function performs updating of the configuration data from which the given configuration variable was read, and

returns the (possibly) new value of this variable.

Ericsson AB. All Rights Reserved.: Common Test | 99

ct

Note that if some variables were present in the configuration but are not loaded using this function, they will be
removed from the configuration table together with their aliases.

remove config(Callback, Config) -> ok

Types.
Cal | back = atom()
Config = string()
Reason = term()

This function removes configuration variables (together with their aliases) which were loaded with specified callback
module and configuration string.

require(Required) -> ok | {error, Reason}

Types:
Required = Key | {Key, SubKeys} | {Key, SubKey, SubKeys}
Key = atom()

SubKeys = SubKey | [SubKey]
SubKey = aton()

Check if the required configuration is available. It is possible to specify arbitrarily deep tuples as Requi r ed. Note
that it is only the last element of the tuple which can be alist of SubKeys.

Example 1: require the variable myvar :
ok = ct:require(myvar).

In this case the config file must at least contain:
{myvar,Value}.

Example 2: require the key nyvar with subkeyssubl and sub2:
ok = ct:require({myvar, [subl,sub2]}).

In this case the config file must at least contain:
{myvar, [{subl,Value}, {sub2,Value}l}.

Example 3: require the key nyvar with subkey subl with subsub1l:
ok = ct:require({myvar,subl,sub2}).

In this case the config file must at least contain:
{myvar, [{subl, [{sub2,Value}]1}1}.

See also: get_config/l, get_config/2, get_config/3, require/2.

100 | Ericsson AB. All Rights Reserved.: Common Test

ct

require(Name, Required) -> ok | {error, Reason}
Types:
Name = atom()
Required = Key | {Key, SubKey} | {Key, SubKey, SubKey}
SubKey = Key
Key = atom()

Check if the required configuration is available, and give it a name. The semantics for Requi r ed isthe same asin
requi red/ 1 except that it is not possible to specify alist of SubKeys.

If the requested data is available, the sub entry will be associated with Nane so that the value of the element can be
read withget _confi g/ 1, 2 provided Nane instead of the whole Requi r ed term.

Example: Require one node with atelnet connection and an ftp connection. Name the node a:
ok = ct:require(a, {machine,node}).

All references to this node may then use the node name. E.g. you can fetch afile over ftp like this:
ok = ct:ftp get(a,RemoteFile,LocalFile).

For this to work, the config file must at least contain:

{machine, [{node, [{telnet,IpAddr}, {ftp,IpAddr}]}]1}.

Note:

The behaviour of this function changed radically in common_test 1.6.2. In order too keep some backwards
compatability it is still possible to do:

ct:require(a,{node,[telnet,ftp]}).

Thiswill associate the name a with thetop level node entry. For thisto work, the config file must at |east contain:
{node, [{tel net, | pAddr}, {ftp, | pAddr}]}.

See also: get_config/l, get_config/2, get_config/3, require/1.

run(TestDirs) -> Result
Types:

TestDirs = TestDir | [TestDir]
Run all test casesin all suitesin the given directories.

See also: run/3.

run(TestDir, Suite) -> Result
Run all test casesin the given suite.
See also: run/3.

Ericsson AB. All Rights Reserved.: Common Test | 101

ct

run(TestDir, Suite, Cases) -> Result
Types:
TestDir = string()
Suite = atom)
Cases = aton() | [atom()]
Result = [TestResult] | {error, Reason}

Run the given test case(s).
Requiresthat ct : i nstal | / 1 hasbeenrun first.

Suites (*_SUITE.erl) files must be stored in Test Di r or Test Di r/ t est . All suites will be compiled when test
isrun.

run_test(Opts) -> Result

Types:
Opts = [Opt Tupl es]
Opt Tupl es = {dir, TestDirs} | {suite, Suites} | {group, G oups}
| {testcase, Cases} | {spec, TestSpecs} | {join_specs, Bool} |
{label , Label} | {config, CfgFiles} | {userconfig, UserConfig} |
{all ow_user _terms, Bool} | {logdir, LogDir} | {silent_connections,
Conns} | {stylesheet, CSSFile} | {cover, CoverSpecFile} | {cover_stop,
Bool} | {step, StepOpts} | {event_handl er, EventHandl ers} | {include,
InclDirs} | {auto _conpile, Bool} | {create priv_dir, CreatePrivDir}
| {nultiply tinmetraps, M | {scale_tinetraps, Bool} | {repeat, N
| {duration, DurTine} | {until, StopTine} | {force_stop, Bool} |
{decrypt, DecryptKeyOrFile} | {refresh logs, LogDir} | {logopts,
LogOpts} | {verbosity, VLevels} | {basic_htm, Bool} | {ct_hooks, CTHs} |
{enabl e_bui I ti n_hooks, Bool} | {release_shell, Bool}

TestDirs = [string()] | string()

Suites = [string()] | [atom()] | string() | atom()
Cases = [aton()] | atom()

G oups = G oupNameOrPath | [G oupNaneOr Pat h]

G oupNanmeOrPath = [atom()] | atom() | all

Test Specs = [string()] | string()

Label = string() | atom()

CfgFiles = [string()] | string()

User Config = [{Cal | backMbd, CfgStrings}] | {CallbackMd, CfgStrings}
Cal | backMod = at on()

CigStrings = [string()] | string()

Loghir = string()

Conns = all | [atom()]

CSSFile = string()

Cover SpecFile = string()

StepOpts = [StepOpt] | []

StepOpt = config | keep_inactive

Event Handl ers = EH | [EH

EH = aton() | {atom(), InitArgs} | {[atom()], InitArgs}

102 | Ericsson AB. All Rights Reserved.: Common Test

ct

I nitArgs [term()]

InclDirs [string()] | string()

CreatePrivDir = auto_per_run | auto_per_tc | manual _per _tc
M = integer()

N = i nteger()

Dur Ti ne = string(HHMVBS)

St opTi ne = string(YYMoMoDDHHWES) | stri ng(HHVIVES)

Decrypt KeyOrFile = {key, DecryptKey} | {file, DecryptFile}
Decrypt Key = string()

DecryptFile = string()

LogOpts = [LogOpt]

LogOpt = no_nl | no_src
VLevel s = VLevel | [{Category, VLevel}]
VLevel = integer()

Category = atom()

CTHs = [CTHWbdul e | {CTHModul e, CTHI nit Args}]

CTHVbdul e = at on()

CTHIinitArgs = term)

Result = {Ck, Failed, {UserSkipped, AutoSkipped}} | TestRunnerPid |
{error, Reason}

Ok = integer()

Failed = integer()

User Ski pped = integer()

Aut oSki pped = integer()

Test RunnerPid = pid()

Reason = term()
Run tests as specified by the combination of optionsin Opt s. The optionsarethe same asthose used withthect _r un
program. Notethat hereaTest Di r can be used to point out thepathtoaSui t e. Notea sothat theoptiont est case

corresponds to the - case option in the ct _r un program. Configuration files specified in Opt s will be installed
automatically at startup.

Test Runner Pi d isreturned if r el ease_shel | == true (seebr eak/ 1 for details).

Reason indicates what type of error has been encountered.

run_testspec(TestSpec) -> Result
Types:
Test Spec = [term()]
Result = {Ck, Failed, {UserSkipped, AutoSkipped}} | {error, Reason}
Ok = integer()
Failed = integer()
User Ski pped = integer()
Aut oSki pped = integer()
Reason = term)

Run test specified by Test Spec. The terms are the same as those used in test specification files.

Ericsson AB. All Rights Reserved.: Common Test | 103

ct

Reason indicates what type of error has been encountered.

sleep(Time) -> ok

Types.
Time = {hours, Hours} | {mnutes, Mns} | {seconds, Secs} | MIlisecs |
infinity
Hours = integer()
Mns = integer()
Secs = integer()
MIlisecs = integer() | float()

This function, similar to t i ner : sl eep/ 1, suspends the test case for specified time. However, this function also
multiplies Ti me with the 'multiply_timetraps value (if set) and under certain circumstances aso scales up the time
automatically if 'scale_timetraps' is set to true (default isfalse).

start _interactive() -> ok
Start CT in interactive mode.

From this mode all test case support functions can be executed directly from the erlang shell. The interactive mode
can also be started from the OS command linewithct _run -shell [-config File...].

If any functions using "required config data" (e.g. telnet or ftp functions) are to be called from the erlang shell, config
data must first be required withct : requi r e/ 2.

Example:

> ct:require(unix_telnet, unix).

ok

> ct_tel net:open(unix_telnet).

{ ok, <0. 105. 0>}

> ct_telnet:cmd(unix_telnet, "Is .").

{ok,["Is","filel ...",...]}

step(TestDir, Suite, Case) -> Result
Types:

Case = atom()
Step through atest case with the debugger.

See also: run/3.

step(TestDir, Suite, Case, Opts) -> Result

Types:
Case = atom()
Opts = [Opt] | []

Opt = config | keep_inactive

Step through atest case with the debugger. If the conf i g option has been given, breakpoints will be set also on the
configuration functionsin Sui t e.

See also: run/3.

104 | Ericsson AB. All Rights Reserved.: Common Test

ct

stop_interactive() -> ok
Exit the interactive mode.
See also: start_interactive/O.

sync_notify(Name, Data) -> ok
Types:

Name = atom()

Data = term))

Sends asynchronous notification of type Nane with Dat ato the common_test event manager. Thiscan later be caught
by any installed event manager.

See also: gen_event(3).

testcases(TestDir, Suite) -> Testcases | {error, Reason}
Types.

TestDir = string()

Suite = atom()

Testcases = list()

Reason = term()

Returns all test cases in the specified suite.

timetrap(Time) -> ok
Types:
Time = {hours, Hours} | {mnutes, Mns} | {seconds, Secs} | MIlisecs |
infinity | Func
Hours = integer()
M ns = integer()

Secs = integer()

MIllisecs = integer() | float()
Func = {M F, A} | function()
M= atom)

F = atom)

A=1list()

Usethisfunction to set anew timetrap for the running test case. If the argument isFunc, thetimetrap will betriggered
when this function returns. Func may also return a new Ti me value, which in that case will be the value for the
new timetrap.

userdata(TestDir, Suite) -> SuiteUserData | {error, Reason}
Types.

TestDir = string()

Suite = atom)

SuiteUserData = [tern()]

Reason = term()

Returns any data specified with thetag user dat a in thelist of tuples returned from Sui t e: sui t e/ 0.

Ericsson AB. All Rights Reserved.: Common Test | 105

ct

userdata(TestDir, Suite, Case::GroupOrCase) -> TCUserData | {error, Reason}
Types:

TestDir = string()

Suite = atom)

G oupOr Case = {group, G oupNane} | atonm()

G oupNane = aton()

TCUserData = [tern()]

Reason = term()

Returnsany data specified withthetaguser dat a inthelist of tuplesreturned from Sui t e: gr oup(G oupNane)
or Sui t e: Case().

106 | Ericsson AB. All Rights Reserved.: Common Test

ct_master

ct_ master

Erlang module

Distributed test execution control for Common Test.
This module exports functions for running Common Test nodes on multiple hostsin parallel.

Exports

abort() -> ok
Stops al running tests.

abort(Nodes) -> ok
Types:

Nodes = atom() | [aton()]
Stops tests on specified nodes.

basic html(Bool) -> ok
Types:
Bool = true | false
If setto true, the ct_master logswill be written on aprimitive html format, not using the Common Test CSS style sheet.

progress() -> [{Node, Status}]

Types:
Node = atom()
Status = finished_ok | ongoing | aborted | {error, Reason}
Reason = term)

Returnstest progress. If St at us isongoi ng, tests are running on the node and have not yet finished.

run(TestSpecs) -> ok
Types:

Test Specs = string() | [SeparateO Merged]
Equivalent to run(TestSpecs, false, [1, [1).

run(TestSpecs, InclNodes, ExclNodes) -> ok
Types:
Test Specs = string() | [SeparateO Merged]
SeparateOrMerged = string() | [string()]
I ncl Nodes = [aton()]
Excl Nodes = [aton()]

Equivalent to run(TestSpecs, false, IncINodes, ExclNodes).

Ericsson AB. All Rights Reserved.: Common Test | 107

ct_master

run(TestSpecs, AllowUserTerms, InclNodes, ExclNodes) -> ok
Types:
Test Specs = string() | [SeparateO Merged]
SeparateOrMerged = string() | [string()]
Al l owlser Terns = bool ()
I ncl Nodes = [aton()]
Excl Nodes = [aton()]
Testsare spawned onthenodesas specifiedin Test Specs. Each specification in TestSpec will be handled separately.
Itishowever possibleto al so specify alist of specificationsthat should be merged into one beforethetests are executed.

Any test without a particular node specification will also be executed on the nodes in | ncl Nodes. Nodes in the
Excl Nodes list will be excluded from the test.

run_on node(TestSpecs, Node) -> ok

Types:
Test Specs = string() | [SeparateO Merged]
SeparateOrMerged = string() | [string()]
Node = atom()

Equivalent to run_on_node(TestSpecs, false, Node).

run_on node(TestSpecs, AllowUserTerms, Node) -> ok
Types:
Test Specs = string() | [SeparateO Merged]
SeparateOrMerged = string() | [string()]
Al'l owlser Terns = bool ()
Node = atom()

Tests are spawned on Node according to Test Specs.

run_test(Node, Opts) -> ok

Types:
Node = atom()
Opts = [Opt Tupl es]

Opt Tupl es = {config, CigFiles} | {dir, TestDirs} | {suite, Suites}

| {testcase, Cases} | {spec, TestSpecs} | {allow user_ternms, Bool} |
{logdir, LogDir} | {event_handler, EventHandl ers} | {silent_connections,
Conns} | {cover, CoverSpecFile} | {cover_stop, Bool} | {userconfig,

User Cf gFi | es}

CfgFiles string() | [string()]

TestDirs = string() | [string()]

Suites = aton() | [atom()]

Cases = atom() | [atom()]

Test Specs = string() | [string()]

Loghir = string()

Event Handl ers = EH | [EH

EH = aton() | {atom(), InitArgs} | {[atonm()], InitArgs}

108 | Ericsson AB. All Rights Reserved.: Common Test

ct_master

InitArgs = [term()]
Conns = all | [atom()]
Tests are spawned on Node usingct : run_t est/ 1.

Ericsson AB. All Rights Reserved.: Common Test | 109

ct_cover

ct cover

Erlang module

Common Test Framework code coverage support module.

This module exports help functions for performing code coverage analysis.

Exports

add nodes(Nodes) -> {ok, StartedNodes} | {error, Reason}
Types:

Nodes = [atom()]

StartedNodes = [atom()]

Reason = cover_not_running | not_mai n_node

Add nodesto current cover test (only worksif cover support is activel). To have effect, this function should be called
from init_per_suite/1 before any actual tests are performed.

cross_cover analyse(Level, Tests) -> ok

Types:
Level = overview | details
Tests = [{Tag, Dir}]
Tag = aton()

Dir = string()
Accumulate cover results over multiple tests. See the chapter about cross cover analysisin the users's guide.

remove nodes(Nodes) -> ok | {error, Reason}
Types.

Nodes = [atom()]

Reason = cover_not_running | not_mai n_node

Remove nodes from current cover test. Call this function to stop cover test on nodes previously added with
add_nodes/1. Results on the remote node are transferred to the Common Test node.

110 | Ericsson AB. All Rights Reserved.: Common Test

ct_ftp

ct_ftp

Erlang module

FTP client module (based on the FTP support of the INETS application).

DATA TYPES

connection() = handle() | target_nane() (see nodul e ct)
handl e() = handl e() (see nodul e ct_gen_conn)

Handle for a specific ftp connection.

Exports

cd(Connection, Dir) -> ok | {error, Reason}
Types:

Connecti on = connection()

Dir = string()
Change directory on remote host.

close(Connection) -> ok | {error, Reason}
Types:

Connection = connection()
Close the FTP connection.

delete(Connection, File) -> ok | {error, Reason}
Types.

Connection = connection()

File = string()
Delete afile on remote host

get(KeyOrName, RemoteFile, LocalFile) -> ok | {error, Reason}
Types:
KeyOr Name = Key | Nane
Key = atom()
Nanme = target _nane() (see nodul e ct)
RemoteFile = string()
Local File = string()
Open aftp connection and fetch a file from the remote host.
Renot eFi | e and Local Fi | e must be absolute paths.
The config file must be as for put/3.

See also: put/3, ct:require/2.

Ericsson AB. All Rights Reserved.: Common Test | 111

ct_ftp

ls(Connection, Dir) -> {ok, Listing} | {error, Reason}
Types:

Connection = connection()

Dir = string()

Listing = string()
List the directory Dir.

open(KeyOrName) -> {ok, Handle} | {error, Reason}

Types:
KeyOr Nanme = Key | Nane
Key = atom()

Name = target_nane() (see nodul e ct)
Handl e = handl e()

Open an FTP connection to the specified node.

Y ou can open one connection for a particular Nane and use the same name as reference for all subsequent operations.
If you want the connection to be associated with Handl e instead (in case you need to open multiple connectionsto a
host for example), simply use Key, the configuration variable name, to specify the target. Note that a connection that
has no associated target name can only be closed with the handle value.

Seect : requi r e/ 2 for how to create anew Name
See also: ct:require/2.

put (KeyOrName, LocalFile, RemoteFile) -> ok | {error, Reason}

Types:
KeyOr Name = Key | Nane
Key = atom()

Name = target _nane() (see nodul e ct)
Local File = string()
RemoteFile = string()

Open aftp connection and send afile to the remote host.
Local Fi | e and Renot eFi | e must be absolute paths.
If the target host is a"specia" node, the ftp address must be specified in the config file like this:

{node, [{ftp, IpAddr}]}.

If the target host is something else, e.g. a unix host, the config file must also include the username and password
(both strings):

{unix, [{ftp, IpAddr},
{username,Username},
{password,Password}]}.

See also: ct:require/2.

112 | Ericsson AB. All Rights Reserved.: Common Test

ct_ftp

recv(Connection, RemoteFile) -> ok | {error, Reason}
Fetch afile over FTP.

Thefile will get the same name on the local host.

See also: recv/3.

recv(Connection, RemoteFile, LocalFile) -> ok | {error, Reason}
Types:

Connecti on = connection()

RemoteFile = string()

Local File = string()
Fetch afile over FTP.

Thefilewill be named Local Fi | e on thelocal host.

send(Connection, LocalFile) -> ok | {error, Reason}
Send afile over FTP.

Thefile will get the same name on the remote host.

See also: send/3.

send(Connection, LocalFile, RemoteFile) -> ok | {error, Reason}
Types:

Connection = connection()

Local File = string()

RemoteFile = string()
Send afile over FTP.

Thefilewill be named Renot eFi | e on the remote host.

type(Connection, Type) -> ok | {error, Reason}

Types:
Connecti on = connection()
Type = ascii | binary

Changefile transfer type

Ericsson AB. All Rights Reserved.: Common Test | 113

ct ssh

ct ssh

Erlang module

SSH/SFTP client module.

ct_ssh usesthe OTP ssh application and more detail ed i nformation about e.g. functions, types and options can be found
in the documentation for this application.

TheSer ver argument inthe SFTP functions should only be used for SFTP sessionsthat have been started on existing
SSH connections (i.e. when the original connection typeisssh). Whenever the connection typeissf t p, usethe SSH
connection reference only.

The following options are valid for specifying an SSH/SFTP connection (i.e. may be used as config elements):

[{ConnType, Addr},

{port, Port},

{user, UserName}

{password, Pwd}

{user dir, String}
{public_key alg, PubKeyAlg}
{connect timeout, Timeout}
{key cb, KeyCallbackMod}]

ConnType = ssh | sftp.
Please see ssh(3) for other types.
All timeout parametersin ct_ssh functions are values in milliseconds.

DATA TYPES

connection() = handle() | target_nane() (see nodule ct)
handl e() = handl e() (see nodul e ct_gen_conn)

Handle for a specific SSH/SFTP connection.
ssh_sftp_return() = term))
A return value from an ssh_sftp function.

Exports

apread(SSH, Handle, Position, Length) -> Result
Types:
SSH = connecti on()
Resul t ssh_sftp_return() | {error, Reason}
Reason term)

For info and other types, see ssh_sftp(3).

apread(SSH, Server, Handle, Position, Length) -> Result
Types:

114 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

SSH = connection()
Result = ssh _sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

apwrite(SSH, Handle, Position, Data) -> Result
Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

apwrite(SSH, Server, Handle, Position, Data) -> Result
Types:

SSH = connection()

Result = ssh _sftp return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

aread(SSH, Handle, Len) -> Result

Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

aread(SSH, Server, Handle, Len) -> Result

Types:
SSH = connection()
Result = ssh _sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

awrite(SSH, Handle, Data) -> Result

Types:
SSH = connection()
Resul t ssh_sftp_return() | {error, Reason}
Reason term))

For info and other types, see ssh_sftp(3).

awrite(SSH, Server, Handle, Data) -> Result
Types:
SSH = connection()

Ericsson AB. All Rights Reserved.: Common Test | 115

ct ssh

Resul t ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

close(SSH, Handle) -> Result

Types.
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

close(SSH, Server, Handle) -> Result

Types.
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

connect (KeyOrName) -> {ok, Handle} | {error, Reason}
Equivalent to connect(KeyOrName, host, []).

connect (KeyOrName, ConnType) -> {ok, Handle} | {error, Reason}
Equivalent to connect(KeyOrName, ConnType, []).

connect(KeyOrName, ConnType, ExtraOpts) -> {ok, Handle} | {error, Reason}
Types.

KeyOr Namre = Key | Nanme

Key = atom()

Name = target_nane() (see nodul e ct)

ConnType = ssh | sftp | host

ExtraOpts = ssh_connect _opti ons()

Handl e = handl e()

Reason = term()

Open an SSH or SFTP connection using the information associated with Key Or Narre.

If Name (an alias name for Key), is used to identify the connection, this name may be used as connection reference
for subsequent calls. It's only possible to have one open connection at atime associated with Nane. If Key isused, the
returned handle must be used for subsequent calls (multiple connections may be opened using the config data specified
by Key). Seect : requi r e/ 2 for how to create a new Name

ConnType will dwaysoverridethe type specified in the addresstuplein the configuration data (and in Ext r aOpt s).
Soitispossibleto for example open an sftp connection directly using data originally specifying an ssh connection. The
valuehost meansthe connection type specified by the host option (either in the configuration dataor in Ext r aOpt s)
will be used.

116 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

Ext raOpt s (optional) are extra SSH options to be added to the config data for KeyOr Nane. The extra options
will override any existing options with the same key in the config data. For details on valid SSH options, see the
documentation for the OTP ssh application.

See also: ct:require/2.

del dir(SSH, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

del dir(SSH, Server, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

delete(SSH, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

delete(SSH, Server, Name) -> Result

Types:
SSH = connecti on()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

disconnect(SSH) -> ok | {error, Reason}
Types:

SSH = connection()

Reason = term)

Close an SSH/SFTP connection.

exec(SSH, Command) -> {ok, Data} | {error, Reason}
Equivalent to exec(SSH, Command, DefaultTimeout).

Ericsson AB. All Rights Reserved.: Common Test | 117

ct ssh

exec(SSH, Command, Timeout) -> {ok, Data} | {error, Reason}
Types:
SSH = connection()

Command = string()
Ti reout = integer()
Data = list()

Reason = term()

Requests server to perform Command. A session channel is opened automatically for the request. Dat a is received
from the server as aresult of the command.

exec(SSH, ChannelId, Command, Timeout) -> {ok, Data} | {error, Reason}
Types:

SSH = connecti on()

Channel 1d = integer()

Command = string()
Ti meout = integer()
Data = list()

Reason = term()

Requests server to perform Command. A previously opened session channel is used for the request. Dat a isreceived
from the server as aresult of the command.

get file info(SSH, Handle) -> Result

Types:
SSH = connection()
Result = ssh _sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

get file info(SSH, Server, Handle) -> Result
Types:
SSH = connection()
Result = ssh _sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

list dir(SSH, Path) -> Result

Types:
SSH = connection()
Result = ssh _sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

118 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

list dir(SSH, Server, Path) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

make dir(SSH, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

make dir(SSH, Server, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

make symlink(SSH, Name, Target) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

make symlink(SSH, Server, Name, Target) -> Result
Types:
SSH = connection()
Resul t ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

open(SSH, File, Mode) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

Ericsson AB. All Rights Reserved.: Common Test | 119

ct ssh

open(SSH, Server, File, Mode) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

opendir(SSH, Path) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

opendir(SSH, Server, Path) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

position(SSH, Handle, Location) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

position(SSH, Server, Handle, Location) -> Result
Types:
SSH = connection()
Resul t ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

pread(SSH, Handle, Position, Length) -> Result
Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

120 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

pread(SSH, Server, Handle, Position, Length) -> Result
Types:

SSH = connection()

Result = ssh_sftp return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

pwrite(SSH, Handle, Position, Data) -> Result
Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

pwrite(SSH, Server, Handle, Position, Data) -> Result
Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

read(SSH, Handle, Len) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

read(SSH, Server, Handle, Len) -> Result

Types:
SSH = connection()
Resul t ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

read file(SSH, File) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

Ericsson AB. All Rights Reserved.: Common Test | 121

ct ssh

read file(SSH, Server, File) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

read file info(SSH, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

read file info(SSH, Server, Name) -> Result
Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

read link(SSH, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

read link(SSH, Server, Name) -> Result

Types:
SSH = connection()
Resul t ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

read link info(SSH, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

122 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

read link info(SSH, Server, Name) -> Result
Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

receive response(SSH, Channelld) -> {ok, Data} | {error, Reason}
Equivalent to receive response(SSH, Channelld, close).

receive response(SSH, Channelld, End) -> {ok, Data} | {error, Reason}
Equivalent to receive_response(SSH, Channelld, End, DefaultTimeout).

receive response(SSH, Channelld, End, Timeout) -> {ok, Data} | {timeout,
Data} | {error, Reason}

Types.
SSH = connecti on()
Channel Id = integer()
End = Fun | close | timeout
Ti reout = integer()
Data = list()
Reason = term)
Receives expected data from server on the specified session channel.

If End == cl ose, datais returned to the caller when the channel is closed by the server. If a timeout occurs
before this happens, the function returns{ t i meout , Dat a} (where Dat a isthe datareceived so far). If End ==
ti meout , atimeout is expected and { ok, Dat a} isreturned both in the case of atimeout and when the channel is
closed. If End isafun, thisfun will be called with one argument - the data value in areceived ssh_cmmessage (see
ssh_connection(3)). The fun should return t r ue to end the receiving operation (and have the so far collected data
returned), or f al se to wait for more data from the server. (Note that even if afun is supplied, the function returns
immediately if the server closes the channel).

rename(SSH, OldName, NewName) -> Result

Types.
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

rename(SSH, Server, OldName, NewName) -> Result
Types.
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

Ericsson AB. All Rights Reserved.: Common Test | 123

ct ssh

send(SSH, Channelld, Data) -> ok | {error, Reason}
Equivalent to send(SSH, Channelld, 0, Data, DefaultTimeout).

send(SSH, Channelld, Data, Timeout) -> ok | {error, Reason}
Equivalent to send(SSH, Channelld, 0, Data, Timeout).

send(SSH, Channelld, Type, Data, Timeout) -> ok | {error, Reason}
Types.

SSH = connecti on()

Channel Id = integer()

Type = integer()

Data = list()

Ti meout = integer()

Reason = term()

Send data to server on specified session channel.

send and receive(SSH, Channelld, Data) -> {ok, Data} | {error, Reason}
Equivalent to send_and _receive(SSH, Channelld, Data, close).

send and receive(SSH, Channelld, Data, End) -> {ok, Data} | {error, Reason}
Equivalent to send_and receive(SSH, Channelld, 0, Data, End, DefaultTimeout).

send and receive(SSH, Channelld, Data, End, Timeout) -> {ok, Data} | {error,
Reason}

Equivalent to send_and_receive(SSH, Channelld, O, Data, End, Timeout).

send _and receive(SSH, Channelld, Type, Data, End, Timeout) -> {ok, Data} |
{error, Reason}

Types:
SSH = connection()
Channel 1d = integer()
Type = integer()

Data = list()
End = Fun | close | timeout
Ti meout = integer()

Reason = term()
Send data to server on specified session channel and wait to receive the server response.
Seer ecei ve_response/ 4 for details on the End argument.

session close(SSH, ChannellId) -> ok | {error, Reason}
Types.

SSH = connection()

Channel Id = integer()

124 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

Reason = term()

Closes an SSH session channel.

session open(SSH) -> {ok, Channelld} | {error, Reason}
Equivalent to session_open(SSH, DefaultTimeout).

session open(SSH, Timeout) -> {ok, Channelld} | {error, Reason}
Types.

SSH = connecti on()

Ti meout = integer()

Channel Id = integer()

Reason = term()

Opens a channel for an SSH session.

sftp_connect(SSH) -> {ok, Server} | {error, Reason}
Types:

SSH = connection()

Server = pid()

Reason = term()

Starts an SFTP session on an aready existing SSH connection. Ser ver identifies the new session and must be
specified whenever SFTP requests are to be sent.

subsystem(SSH, ChannellId, Subsystem) -> Status | {error, Reason}
Equivalent to subsystem(SSH, Channelld, Subsystem, DefaultTimeout).

subsystem(SSH, Channelld, Subsystem, Timeout) -> Status | {error, Reason}
Types.

SSH = connection()

Channel Id = integer()

Subsystem = string()

Ti mreout = integer()

Status = success | failure

Reason = term)

Sends arequest to execute a predefined subsystem.

write(SSH, Handle, Data) -> Result

Types.
SSH = connecti on()
Resul t ssh_sftp return() | {error, Reason}
Reason = term)

For info and other types, see ssh_sftp(3).

Ericsson AB. All Rights Reserved.: Common Test | 125

ct ssh

write(SSH, Server, Handle, Data) -> Result
Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

write file(SSH, File, Iolist) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

write file(SSH, Server, File, Iolist) -> Result
Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

write file info(SSH, Name, Info) -> Result
Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

write file info(SSH, Server, Name, Info) -> Result
Types:
SSH = connection()
Resul t ssh_sftp return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

126 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

ct_netconfc

Erlang module

Netconf client module.

The Netconf client is compliant with RFC4741 and RFC4742.

For each server to test againgt, the following entry can be added to a configuration file:
{server_id(),options()}.

Theserver _id() oranassociatedt ar get _nane() (seect) shall then be used in callsto open/2.

If no configuration exists for a server, asession can still be opened by calling open/2 with all necessary options given
in the call. Thefirst argument to open/2 can then be any atom.

Logging
The netconf server uses the err or _| ogger for logging of netconf traffic. A special purpose error handler is
implementedinct _conn_| og_h. To usethiserror handler, add thect h_conn_| og hook in your test suite, e.g.

suite() ->
[{ct hooks, [{cth conn log, [{conn mod(),hook options()}1}1}].

The conn_nod() is the name of the common_test module implementing the connection protocol, e.g.
ct _netconfc.

The hook option | og_t ype specifies the type of logging:
raw

The sent and received netconf data is logged to a separate text file as is without any formatting. A link to the
fileis added to the test case HTML log.

pretty

The sent and received netconf datais logged to a separate text file with XML data nicely indented. A link to the
fileis added to the test case HTML log.

htm (defaul t)

The sent and received netconf traffic is pretty printed directly in the test case HTML log.
sil ent

Netconf traffic is not logged.

By default, al netconf traffic is logged in one single log file. However, it is possible to have different connections
logged in separatefiles. To do this, use the hook option host s and list the names of the servers/connections that will
be used in the suite. Note that the connections must be named for thisto work, i.e. they must be opened with open/2.

Thehost s option has no effect if | og_t ype issettoht m orsil ent.
The hook options can also be specified in a configuration file with the configuration variablect _conn_|I og:

{ct_conn_log, [{conn_mod(),hook options()}1}.
For example:

{ct _conn _log, [{ct netconfc, [{log type,pretty},

Ericsson AB. All Rights Reserved.: Common Test | 127

ct_netconfc

{hosts, [key or name()1}1}1}

Note that hook options specified in a configuration file will overwrite the hardcoded hook optionsin the test suite.
Logging example 1

The following ct _hooks statement will cause pretty printing of netconf traffic to separate logs for the connections
named nc_server 1 andnc_ser ver 2. Any other connections will be logged to default netconf log.

suite() ->
[{ct hooks, [{cth conn log, [{ct netconfc,[{log type,pretty}},
{hosts, [nc_serverl,nc server2]}1}

13131
Connections must be opened like this:

open(nc_serverl,[..
open(nc_server2,[..

1),
1)

Logging example 2
The following configuration file will cause raw logging of al netconf traffic into one single text file.

{ct_conn _log, [{ct netconfc, [{log type,raw}]1}]}.
Thect _hooks statement must look like this:

suite() ->
[{ct hooks, [{cth conn log, [1}1}].

Thesamect _hooks statement without the configuration file would cause HTML logging of all netconf connections
into the test case HTML log.

Notifications

The netconf client is also compliant with RFC5277 NETCONF Event Notifications, which defines a mechanism for
an asynchronous message notification delivery service for the netconf protocol.

Specific functions to support this are create_subscription/6 and get_event_streams/3. (The functions also exist with
other arities.)

DATA TYPES

client() = handle() | server_id() | target_nane()

conn_nod() = ct_netconfc

error_reason() = term)

event _time() = {eventTinme, xnm _attributes(), [xs_datetinme()]}
handl e() = term)

An opaqgue reference for a connection (netconf session). See ct for more information.

hook_option() = {log_type, log_type()} | {hosts, [key_or_nane()]}
hook_options() = [hook _option()]

Optionsthat can begiventoct h_conn_I| oginthect _hook statement.
host () = hostnane() (see nodule inet) | ip_address() (see nodul e inet)

128 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

key_or_nanme() = server_id() | target_nane()
log_type() =raw | pretty | htm | silent

-type error_handler() :: module().

netconf _db() = running | startup | candidate

notification() = {notification, xm _attributes(), notification_content()}
notification_content() = [event _time() | sinple_xm ()]

option() = {ssh, host()} | {port, port_nunber() (see nodul e inet)}

{user, string()} | {password, string()} | {user_dir, string()} | {tinmeout,
tinmeout ()}

options() = [option()]

Options used for setting up ssh connection to a netconf server.
server_id() = aton()
A Server | d which existsin a configuration file.

sinple_xm () = {xm _tag(), xm _attributes(), xm _content()} | {xm _tag(),
xm _content()} | xm _tag()

Thistypeisfurther described in the documentation for the Xner | application.

stream data() = {description, string()} | {replaySupport, string()} |

{repl ayLogCreationTinme, string()} | {replayLogAgedTi me, string()}
See XML Schemafor Event Notifications found in RFC5277 for further detail about the dataformat for the string
values.

stream nane() = string()
streams() = [{stream name(), [streamdata()]}]
target _name() = aton()

A name which is associated to aserver _i d() viaar equi r e statement or acall to ct:require/2 in the test
suite.

xm _attribute tag() = atom()

xm _attribute value() = string()

xm _attributes() = [{xm _attribute tag(), xm _attribute_value()}]
xm _content () = [sinmple_xm () | iolist()]

xm _tag() = atom()

xpath() = {xpath, string()}

xs_datetime() = string()

This date and time identifyer has the same format as the XML type dateTime and compliant to RFC3339. The
format is

[-]1CCYY-MM-DDThh:mm:ss[.s][Z]| (+|-)hh:mm]

Exports

action(Client, Action) -> Result
Equivalent to action(Client, Action, infinity).

action(Client, Action, Timeout) -> Result
Types.

Ericsson AB. All Rights Reserved.: Common Test | 129

ct_netconfc

Cient = client()

Action = sinple_xm ()

Ti meout = timeout ()

Result = {ok, sinple_xm ()} | {error, error_reason()}

Execute an action.

close session(Client) -> Result

Equivalent to close_session(Client, infinity).

close session(Client, Timeout) -> Result
Types:
Cient = client()
Ti meout = timeout ()
Result = ok | {error, error_reason()}
Request graceful termination of the session associated with the client.

When anetconf server receivesacl ose- sessi on request, it will gracefully closethe session. The server will release
any locks and resources associated with the session and gracefully close any associated connections. Any NETCONF
reguests received after acl ose- sessi on request will beignored.

copy config(Client, Source, Target) -> Result
Equivalent to copy_config(Client, Source, Target, infinity).

copy_config(Client, Target, Source, Timeout) -> Result

Types:
Cient = client()
Target = netconf _db()
Source = netconf_db()

Ti meout = timeout ()
Result = ok | {error, error_reason()}

Copy configuration data.

Which source and target options that can be issued depends on the capabilities supported by the server. |.e
: candi dat e and/or : st art up arerequired.

130 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

create subscription(Client) -> term()

create subscription(Client, Timeout) -> term()

create subscription(Client, Stream, Timeout) -> term()

create subscription(Client, StartTime, StopTime, Timeout) -> term()

create subscription(Client, Stream, StartTime, StopTime, Timeout) -> term()

create subscription(Client, Stream, Filter, StartTime, StopTime, Timeout) ->
Result

Types.
Cient = client()
Stream = stream nane()
Filter = sinmple_xm ()

StartTime = xs_datetine()

StopTime = xs_datetine()

Ti meout = timeout ()

Result = ok | {error, error_reason()}

Create a subscription for event notifications.

This function sets up a subscription for netconf event notifications of the given stream type, matching the given filter.
The calling process will receive notifications as messages of typenoti fi cati on().

Stream:

An optional parameter that indicates which stream of events is of interest. If not present, events in the default
NETCONF stream will be sent.

Filter:

An optional parameter that indicates which subset of all possible eventsisof interest. The format of this parameter
is the same as that of the filter parameter in the NETCONF protocol operations. If not present, all events not
precluded by other parameters will be sent. See section 3.6 for more information on filters.

StartTime:

An optional parameter used to trigger the replay feature and indicate that the replay should start at the time
specified. If St ar t Ti me isnot present, thisis not areplay subscription. It isnot valid to specify start times that
are later than the current time. If the St ar t Ti me specified is earlier than the log can support, the replay will
begin with the earliest available notification. This parameter is of type dateTime and compliant to [RFC3339].
Implementations must support time zones.

StopTime:

An optional parameter used with the optional replay feature to indicate the newest notifications of interest. If
St opTi e isnot present, the notifications will continue until the subscription is terminated. Must be used with
and be later than St ar t Ti me. Vauesof St opTi ne inthe future are valid. This parameter is of type dateTime
and compliant to [RFC3339]. Implementations must support time zones.

See RFC5277 for further details about the event notification mechanism.

Ericsson AB. All Rights Reserved.: Common Test | 131

ct_netconfc

delete config(Client, Target) -> Result
Equivalent to delete_config(Client, Target, infinity).

delete config(Client, Target, Timeout) -> Result

Types.
Cient = client()
Target = startup | candidate

Ti meout = tineout ()
Result = ok | {error, error_reason()}

Delete configuration data.
The running configuration cannot be deleted and : candi dat e or : st ar t up must be advertised by the server.

edit config(Client, Target, Config) -> Result
Equivalent to edit_config(Client, Target, Config, infinity).

edit config(Client, Target, Config, Timeout) -> Result

Types:
Cient = client()
Target = netconf_db()

Config = sinple_xnl ()
Ti meout = tinmeout ()
Result = ok | {error, error_reason()}

Edit configuration data.

Per default only the running target is available, unless the server include : candi dat e or : start up initslist of
capabilities.

format data(How, Data) -> term()

get(Client, Filter) -> Result
Equivalent to get(Client, Filter, infinity).

get(Client, Filter, Timeout) -> Result

Types:
Cient = client()
Filter = sinmple_xm () | xpath()

Ti meout = tinmeout ()
Result = {ok, sinple xm ()} | {error, error_reason()}

Get data.
This operation returns both configuration and state data from the server.
Filter type xpat h can only be used if the server supports : xpat h.

132 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

get capabilities(Client) -> Result
Equivalent to get_capabilities(Client, infinity).

get capabilities(Client, Timeout) -> Result
Types:

Cient = client()

Ti mreout = tinmeout ()

Result = [string()] | {error, error_reason()}

Returns the server side capabilities
The following capability identifiers, defined in RFC 4741, can be returned:

e "urn:ietf:parans:netconf:base:1.0"

e "urn:ietf:parans: netconf:capability:witable-running:1. 0"
e "urn:ietf:parans: netconf:capability:candi date: 1. 0"

e "urn:ietf:parans: netconf:capability:confirmed-comrt:1. 0"
e "urn:ietf:parans: netconf:capability:rollback-on-error:1.0"
e "urn:ietf:paranms:netconf:capability:startup:1.0"

e "urn:ietf:parans:netconf:capability:url:1.0"

e "urn:ietf:parans:netconf:capability:xpath:1.0"

Note, additional identifiers may exist, e.g. server side namespace.

get config(Client, Source, Filter) -> Result
Equivalent to get_config(Client, Source, Filter, infinity).

get config(Client, Source, Filter, Timeout) -> Result
Types:

dient client()

Source = netconf_db()

Filter sinple_xm () | xpath()

Ti meout = timeout ()

Result = {ok, sinple xm ()} | {error, error_reason()}

Get configuration data.

To be able to access another source than r unni ng, the server must advertise: candi dat e and/or : st ar t up.

Filter type xpat h can only be used if the server supports: xpat h.

get event streams(Client, Timeout) -> Result
Equivalent to get_event_streams(Client, [], Timeout).

get event streams(Client, Streams, Timeout) -> Result
Types:

Aient = client()

Streanms = [stream nane()]

Ti meout = tinmeout ()

Ericsson AB. All Rights Reserved.: Common Test | 133

ct_netconfc

Result = {ok, streams()} | {error, error_reason()}
Send arequest to get the given event streams.
St r eans isalist of stream names. The following filter will be sent to the netconf server inaget request:

<netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
<streams>
<stream>
<name>StreamNamel</name>
</stream>
<stream>
<name>StreamName2</name>
</stream>

</streams>
</netconf>

If St r eans isan empty list, ALL streams will be requested by sending the following filter:

<netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
<streams/>
</netconf>

If more complex filtering is needed, a use get/2 or get/3 and specify the exact filter according to XML Schema for
Event Notifications found in RFC5277.

get session id(Client) -> Result
Equivalent to get_session_id(Client, infinity).

get session id(Client, Timeout) -> Result
Types:
Cient = client()
Ti meout = timeout ()
Result = pos_integer() | {error, error_reason()}

Returns the session id associated with the given client.
handle msg(X1, State) -> term()

hello(Client) -> Result
Equivalent to hello(Client, infinity).

hello(Client, Timeout) -> Result
Types:
Aient = handl e()
Ti meout = timeout ()
Result = ok | {error, error_reason()}

Exchange hel | o messages with the server.
Sendsahel | o messageto the server and waits for the return.

134 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

kill session(Client, SessionId) -> Result
Equivalent to kill_session(Client, Sessionld, infinity).

kill session(Client, SessionId, Timeout) -> Result
Types:

Cient = client()

Sessionld = pos_integer()

Ti meout = tinmeout ()

Result = ok | {error, error_reason()}

Force termination of the session associated with the supplied session id.

The server side shall abort any operations currently in process, release any locks and resources associated with the
session, and close any associated connections.

Only if the server isin the confirmed commit phase, the configuration will be restored to its state before entering the
confirmed commit phase. Otherwise, no configuration roll back will be performed.

If the given Sessi onl d isequal to the current session id, an error will be returned.

lock(Client, Target) -> Result
Equivalent to lock(Client, Target, infinity).

lock(Client, Target, Timeout) -> Result

Types:
Cient = client()
Target = netconf_db()

Ti meout = timeout ()
Result = ok | {error, error_reason()}

Unlock configuration target.

Which target parametersthat can be used dependsonif : candi dat e and/or : st ar t up are supported by the server.
If successfull, the configuration system of the device is not available to other clients (Netconf, CORBA, SNMP etc).
Locks are intended to be short-lived.

The operations kill_session/2 or kill_session/3 can be used to force the release of alock owned by another Netconf
session. How thisis achieved by the server side isimplementation specific.

only open(Options) -> Result
Types:

Options = options()

Result = {ok, handle()} | {error, error_reason()}
Open a netconf session, but don't send hel | o.

As open/1 but does not send ahel | 0 message.

only open(KeyOrName, ExtraOptions) -> Result
Types:

KeyOr Name = key_or_nane()

ExtraOptions = options()

Ericsson AB. All Rights Reserved.: Common Test | 135

ct_netconfc

Result = {ok, handle()} | {error, error_reason()}
Open a name netconf session, but don't send hel | o.
As open/2 but does not send ahel | o message.

open(Options) -> Result
Types:

Options = options()

Result = {ok, handle()} | {error, error_reason()}
Open a netconf session and exchange hel | 0 messages.

If the server options are specified in a configuration file, or if a named client is needed for logging purposes (see
Logging) use open/2 instead.

The opague handl er () reference which is returned from this function is required as client identifier when calling
any other function in this module.

Theti nmeout option (milli seconds) is used when setting up the ssh connection and when waiting for the hello
message from the server. It is not used for any other purposes during the lifetime of the connection.

open(KeyOrName, ExtraOptions) -> Result
Types:

KeyOr Name = key_or_nane()

ExtraOptions = options()

Result = {ok, handle()} | {error, error_reason()}
Open a named netconf session and exchange hel | 0 messages.

If KeyOr Nane isaconfiguredser ver _i d() orat arget name() associated with such an ID, then the options
for this server will be fetched from the configuration file.

The Ext r aOpt i ons argument will be added to the options found in the configuration file. If the same options are
given, the values from the configuration file will overwrite Ext r aQpt i ons.

If the server is not specified in a configuration file, use open/1 instead.

Theopaguehandl e() referencewhichisreturned from thisfunction can be used asclient identifier when calling any
other function in this module. However, if KeyOr Nane isat ar get _name(), i.e. if the server is named viaa call
toct: requirel/ 2orarequire statement in thetest suite, then this name may be used instead of thehandl e() .

Theti meout option (milli seconds) is used when setting up the ssh connection and when waiting for the hello
message from the server. It is not used for any other purposes during the lifetime of the connection.

See also: ct:reguire/2.

unlock(Client, Target) -> Result
Equivalent to unlock(Client, Target, infinity).

unlock(Client, Target, Timeout) -> Result
Types.

dient client()

Target = netconf_db()

Ti meout = timeout ()

Result = ok | {error, error_reason()}

136 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

Unlock configuration target.

If the client earlier has aquired a lock, vialock/2 or lock/3, this operation release the associated lock. To be able to
access another target than r unni ng, the server must support : candi dat e and/or : st art up.

Ericsson AB. All Rights Reserved.: Common Test | 137

ct_rpc

ct_rpc

Erlang module

Common Test specific layer on Erlang/OTP rpc.

Exports

app_node(App, Candidates) -> NodeName
Types.
App = atomn()
Candi dat es = [NodeNane]
NodeName = atom()
From aset of candidate nodes determines which of them is running the application App. If none of the candidate nodes

is running the application the function will make the test case calling this function fail. This function is the same as
calingapp_node(App, Candi dates, true).

app_node(App, Candidates, FailOnBadRPC) -> NodeName
Types.

App = atomn()

Candi dat es = [NodeNane]

NodeName = atom()

Fai | OnBadRPC = true | false

Sameasapp_node/ 2 only the Fai | OnBadRPC argument will determineif the search for a candidate node should
stop or not if badr pc isreceived at some point.

app_node(App, Candidates, FailOnBadRPC, Cookie) -> NodeName
Types:
App = atomn()
Candi dat es = [NodeNane]
NodeName = atom()
Fai | OnBadRPC = true | false
Cooki e = aton()
Sameasapp_node/ 2 only the Fai | OnBadRPC argument will determine if the search for a candidate node should

stop or not if badr pc is received at some point. The cookie on the client node will be set to Cooki e for this rpc
operation (use to match the server node cookie).

call(Node, Module, Function, Args) -> term() | {badrpc, Reason}
Same as call(Node, Module, Function, Args, infinity)

call(Node, Module, Function, Args, TimeOut) -> term() | {badrpc, Reason}
Types:

Node = NodeNane | {Fun, FunArgs}

Fun = function()

138 | Ericsson AB. All Rights Reserved.: Common Test

ct_rpc

FunArgs = term))
NodeNanme = atom()

Modul e = atom()

Function = atom()

Args = [tern()]

Reason = tinmeout | term)

Evaluates apply(Module, Function, Args) on the node Node. Returns whatever Function returns or { badrpc, Reason}
if the remote procedure call fails. If Node is{ Fun, FunArgs} applying Fun to FunArgs should return a node name.

call(Node, Module, Function, Args, TimeOut, Cookie) -> term() | {badrpc,
Reason}

Types.
Node = NodeNane | {Fun, FunArgs}
Fun = function()
FunArgs = term()
NodeNanme = atom()
Modul e = atom()
Function = atom()
Args = [tern()]
Reason = tinmeout | term)
Cooki e = aton()
Evaluates apply(Module, Function, Args) on the node Node. Returns whatever Function returns or { badrpc, Reason}

if the remote procedure call fails. If Node is { Fun, FunArgs} applying Fun to FunArgs should return a node name.
The cookie on the client node will be set to Cooki e for this rpc operation (use to match the server node cookie).

cast(Node, Module, Function, Args) -> ok
Types:

Node = NodeNane | {Fun, FunArgs}

Fun = function()

FunArgs = term))

NodeName = atom()

Modul e = atom()

Function = atom()

Args = [tern()]

Reason = tinmeout | term()
Evaluates apply(Module, Function, Args) on the node Node. No response is delivered and the process which makes

the call is not suspended until the evaluation is compleated as in the case of cal/[3,4]. If Node is { Fun, FunArgs}
applying Fun to FunArgs should return a node name.

cast(Node, Module, Function, Args, Cookie) -> ok
Types:

Node = NodeNane | {Fun, FunArgs}

Fun = function()

FunArgs = term))

Ericsson AB. All Rights Reserved.: Common Test | 139

ct_rpc

NodeName = atom()

Modul e = atom()

Function = atom()

Args = [tern()]

Reason = tinmeout | term()

Cooki e = aton()
Evaluates apply(Module, Function, Args) on the node Node. No response is delivered and the process which makes
the call is not suspended until the evaluation is compleated as in the case of call/[3,4]. If Node is { Fun, FunArgs}

applying Fun to FunArgs should return a node name. The cookie on the client node will be set to Cooki e for this
rpc operation (use to match the server node cookie).

140 | Ericsson AB. All Rights Reserved.: Common Test

ct_snmp

ct_ snmp

Erlang module

Common Test user interface module for the OTP snmp application

The purpose of thismoduleisto make snmp configuration easier for thetest casewriter. Many test cases can use default
valuesfor common operations and then no snmp configuration files need to be supplied. When it is necessary to change
particular configuration parameters, a subset of the relevant snmp configuration files may be passedto ct _snnp by
means of Common Test configuration files. For more specialized configuration parameters, it is possible to place a
"simple snmp configuration file" in the test suite data directory. To simplify the test suite, Common Test keeps track
of some of the snmp manager information. Thisway the test suite doesn't have to handle as many input parameters as
it would if it had to interface the OTP snmp manager directly.

The following snmp manager and agent parameters are configurable;

{snmp,
%%% Manager config
[{start _manager, boolean()} % Optional - default is true
{users, [{user name(), [call back module(), user data()]}1}, %% Optional
{usm_users, [{usm user name(), [usm config()]}1},%% Optional - snmp v3 only
% managed agents is optional
{managed agents, [{agent name(), [user name(), agent ip(), agent port(), [agent config()]1}1},
{max_msg size, integer()}, Optional - default is 484
{mgr_port, integer()}, Optional - default is 5000
{engine id, string()}, Optional - default is "mgrEngine"

o® o° o°

%%% Agent config

{start_agent, boolean()},
{agent sysname, string()},
{agent manager ip, manager ip()
{agent _vsns, list()},

{agent trap udp, integer()},
{agent udp, integer()},

{agent notify type, atom()},
{agent sec type, sec type()},
{agent passwd, string()},
{agent engine id, string()},
{agent max msg size, string()},

Optional - default is false
Optional - default is "ct test"

, % Optional - default is localhost
Optional - default is [v2]
Optional - default is 5000
Optional - default is 4000
Optional - default is trap
Optional - default is none
Optional - default is ""

Optional - default is "agentEngine"
Optional - default is 484

0® 0° o° o° o° o° o° o° - o° o°

The following parameters represents the snmp configuration files
context.conf, standard.conf, community.conf, vacm.conf,
usm.conf, notify.conf, target addr.conf and target params.conf.
Note all values in agent.conf can be altered by the parametes
above. All these configuration files have default values set

up by the snmp application. These values can be overridden by
suppling a list of valid configuration values or a file located
in the test suites data dir that can produce a list

of valid configuration values if you apply file:consult/1l to the
file.

0 d° d° o d° A° A o o of
0® 0° ° o° o° o° o° o° o° o°

{agent contexts, [term()] | {data dir file, rel path()}}, % Optional
{agent community, [term()] | {data dir file, rel path()}},% Optional
{agent sysinfo, [term()] | {data dir file, rel path()}}, % Optional
{agent vacm, [term()] | {data dir file, rel path()}}, % Optional
{agent usm, [term()] | {data dir file, rel path()}}, % Optional

{agent notify def, [term()] | {data dir file, rel path()}},% Optional

{agent target address def, [term()] | {data dir file, rel path()}},% Optional
{agent target param def, [term()] | {data dir file, rel path()}},% Optional
1}.

Ericsson AB. All Rights Reserved.: Common Test | 141

ct_snmp

The Mgr Agent Conf Name parameter in the functions should be a name you allocate in your test suite using a
requi r e statement. Example (where Mgr Agent Conf Name = snnp_ngr _agent):

suite() -> [{require, snmp mgr agent, snmp}].
or
ct:require(snmp_mgr _agent, snmp).

Note that Usm users are needed for snmp v3 configuration and are not to be confused with users.

Snmp traps, inform and report messages are handled by the user callback module. For more information about this
see the snmp application.

Note: It isrecommended to use the .hrl-files created by the Erlang/OTP mib-compiler to define the oids. Example for
the getting the erlang node name from the erlNodeTable in the OTP-MIB:

0id = ?erlNodeEntry ++ [?erlNodeName, 1]

It isalso possible to set values for snmp application configuration parameters, such asconfi g, server,net _i f,
etc (see the "Configuring the application” chapter in the OTP snmp User's Guide for alist of valid parameters and
types). Thisis done by defining a configuration data variable on the following form:

{snmp_app, [{manager, [snmp app manager params()]},
{agent, [snmp app agent params()]}1}.

A name for the data needs to be allocated in the suite using r equi r e (see example above), and this name passed
as the SnnmpAppConf Nane argument to st art/ 3. ct _snnp specifies default values for some snmp application
configuration parameters (such as{ ver bosi ty, t race} for the conf i g parameter). This set of defaults will be
merged with the parameters specified by the user, and user values override ct _snnp defaults.

DATA TYPES

agent _config() = {Item Val ue}

agent _ip() = ip()
agent _nane() = atom()

agent _port() = integer()
call _back_nodul e() = atom()
error_index() = integer()

error_status() = noError | atom()

ip() =string() | {integer(), integer(), integer(), integer()}
manager _i p() = ip()

oid() = [byte()]

oids() = [oid()]

rel _path() = string()

sec_type() = none | mnimm]| sem

snnp_app_agent _parans() = term)

snnp_app_nanager _parans() = term)

snnpreply() = {error_status(), error_index(), varbinds()}

142 | Ericsson AB. All Rights Reserved.: Common Test

ct_snmp

user _data() term))

user _nane() atom)

usmconfig() = {Item Value}

usm user _nane() = string()

val ue_type() = o(' OBJECT IDENTIFIER) | i('"INTEGER) | u('Unsigned32') |
g(' Unsigned32') | s('CCTET STRI NG)

var_and val () = {oid(), value_type(), value()}

varbind() = term)

varbi nds() = [varbind()]

varsandval s() = [var_and_val ()]

Exports

get next values(Agent, 0ids, MgrAgentConfName) -> SnmpReply
Types:

Agent = agent _nane()

G ds = oids()

Myr Agent Conf Name = at om()

SnnpReply = snnpreply()
I ssues a synchronous snmp get next request.

get values(Agent, 0ids, MgrAgentConfName) -> SnmpReply
Types.

Agent = agent _nane()

O ds = oids()

Mgr Agent Conf Name = at om()

SnmpReply = snnprepl y()
I ssues a synchronous snmp get request.

load mibs(Mibs) -> ok | {error, Reason}
Types:

M bs = [M bNane]

M bNane = string()

Reason = term()

Load the mibs into the agent 'snmp_master_agent'.

register agents(MgrAgentConfName, ManagedAgents) -> ok | {error, Reason}
Types:

Myr Agent Conf Name = at om()

ManagedAgents = [agent ()]

Reason = term()
Explicitly instruct the manager to handle this agent. Corresponds to making an entry in agents.conf

This function will try to register the given managed agents, without checking if any of them already exist. In order to
change an already registered managed agent, the agent must first be unregistered.

Ericsson AB. All Rights Reserved.: Common Test | 143

ct_snmp

register users(MgrAgentConfName, Users) -> ok | {error, Reason}
Types:

Myr Agent Conf Name = atom()

Users = [user()]

Reason = term()

Register the manager entity (=user) responsible for specific agent(s). Corresponds to making an entry in users.conf.

This function will try to register the given users, without checking if any of them already exist. In order to change an
already registered user, the user must first be unregistered.

register usm users(MgrAgentConfName, UsmUsers) -> ok | {error, Reason}
Types:

Mgr Agent Conf Nane = aton()

UsniJsers = [usm user ()]

Reason = term()
Explicitly instruct the manager to handle this USM user. Corresponds to making an entry in usm.conf

This function will try to register the given users, without checking if any of them already exist. In order to change an
aready registered user, the user must first be unregistered.

set info(Config) -> [{Agent, 0ldVarsAndVals, NewVarsAndVals}]
Types.
Config = [{Key, Value}]
Agent = agent _nane()
A dVar sAndVal s = varsandval s()
NewVar sAndVal s = var sandval s()
Returnsalist of al successful set requests performed in thetest casein reverse order. Thelist containstheinvolved user

and agent, the value prior to the set and the new value. Thisisintended to facilitate the clean upintheend per_testcase
function i.e. the undoing of the set requests and its possible side-effects.

set values(Agent, VarsAndVals, MgrAgentConfName, Config) -> SnmpReply
Types:

Agent = agent _nane()

G ds = oids()

Mgr Agent Conf Nane = atom()

Config = [{Key, Value}]

SnnpReply = snnprepl y()
I ssues a synchronous snmp set request.

start(Config, MgrAgentConfName) -> ok
Equivalent to start(Config, MgrAgentConfName, undefined).

start(Config, MgrAgentConfName, SnmpAppConfName) -> ok

Types:
Config = [{Key, Value}]

144 | Ericsson AB. All Rights Reserved.: Common Test

ct_snmp

Key = atom()

Value = term)

Myr Agent Conf Name = at om()
SnnmpConf Nanme = at om()

Starts an snmp manager and/or agent. In the manager case, registrations of users and agents as specified by
the configuration Mgr Agent Conf Nane will be performed. When using snmp v3 aso so caled usm users
will be registered. Note that users, usm_users and managed agents may also be registered at a later time using
ct_snmp:register_users/2, ct_snmp:register_agents/2, and ct_snmp:register_usm_users/2. The agent started will be
caled snnp_nmast er _agent . Use ct_snmp:load_mibs/1 to load mibs into the agent. With SnnpAppConf Nane
it's possible to configure the snmp application with parameterssuchasconf i g, m bs,net _i f, etc. Thevalueswill
be merged with (and possibly override) default values set by ct _snnp.

stop(Config) -> ok

Types:
Config = [{Key, Value}]
Key = atom()

Value = term))
Stops the snmp manager and/or agent removes all files created.

unload mibs(Mibs) -> ok | {error, Reason}
Types.

M bs = [M bNane]

M bNane = string()

Reason = term)

Unload the mibs from the agent 'snmp_master_agent'.

unregister agents(MgrAgentConfName) -> ok
Types.

Mgr Agent Conf Name = at om()

Reason = term()

Unregister all managed agents.

unregister agents(MgrAgentConfName, ManagedAgents) -> ok
Types:

Myr Agent Conf Name = at om()

ManagedAgents = [agent _nane()]

Reason = term()

Unregister the given managed agents.

unregister users(MgrAgentConfName) -> ok
Types:

Myr Agent Conf Name = at om()

Reason = term()

Unregister all users.

Ericsson AB. All Rights Reserved.: Common Test | 145

ct_snmp

unregister users(MgrAgentConfName, Users) -> ok
Types:

Myr Agent Conf Name = atom()

Users = [user_name()]

Reason = term()

Unregister the given users.

unregister usm_users(MgrAgentConfName) -> ok
Types:

Myr Agent Conf Name = atom()

Reason = term()

Unregister all usm users.

unregister usm users(MgrAgentConfName, UsmUsers) -> ok
Types.

Myr Agent Conf Name = at om()

UsniJsers = [usm user_nane()]

Reason = term()

Unregister the given usm users.

146 | Ericsson AB. All Rights Reserved.: Common Test

ct_telnet

ct _telnet

Erlang module

Common Test specific layer on top of telnet client ct_telnet_client.erl

Use this module to set up telnet connections, send commands and perform string matching on the result. See the
uni x_t el net manual page for information about how to use ct_telnet, and configure connections, specifically for
unix hosts.

The following default values are defined in ct_telnet:

Connection timeout = 10 sec (time to wait for connection)

Command timeout = 10 sec (time to wait for a command to return)

Max no of reconnection attempts = 3

Reconnection interval = 5 sek (time to wait in between reconnection attempts)

Keep alive = true (will send NOP to the server every 10 sec if connection is idle)

These parameters can be altered by the user with the following configuration term:

{telnet settings, [{connect timeout,Millisec},
{command timeout,Millisec},
{reconnection attempts,N},
{reconnection interval,Millisec},
{keep _alive,Bool}]}.

MIllisec = integer(), N = integer()

Enter the t el net _setti ngs term in a configuration file included in the test and ct_telnet will retrieve the
information automatically. Notethat keep_al i ve may be specified per connection if required. Seeuni x_t el net
for details.

DATA TYPES

connection() = handle() | {target_name() (see nodule ct), connection_type()}
| target _name() (see nodule ct)

connection_type() =telnet | tsl | ts2

handl e() = handl e() (see nodul e ct_gen_conn)

Handle for a specific telnet connection.
pronmpt _regexp() = string()

A regular expression which matches all possible prompts for a specific type of target. The regexp must not have
any groups i.e. when matching, re:run/3 shall return alist with one single element.

Exports

close(Connection) -> ok | {error, Reason}
Types:

Connection = connection() (see nodule ct_telnet)
Close the telnet connection and stop the process managing it.

Ericsson AB. All Rights Reserved.: Common Test | 147

ct_telnet

A connection may be associated with atarget name and/or ahandle. If Connect i on has no associated target name,
it may only be closed with the handle value (see the open/ 4 function).

cmd(Connection, Cmd) -> {ok, Data} | {error, Reason}
Equivalent to cmd(Connection, Cmd, DefaultTimeout).

cmd(Connection, Cmd, Timeout) -> {ok, Data} | {error, Reason}
Types:

Connection = connection() (see nodule ct_telnet)

Crd = string()

Ti meout = integer()

Data = [string()]
Send acommand viatelnet and wait for prompt.

cmdf (Connection, CmdFormat, Args) -> {ok, Data} | {error, Reason}
Equivalent to cmdf(Connection, CmdFormat, Args, DefaultTimeout).

cmdf (Connection, CmdFormat, Args, Timeout) -> {ok, Data} | {error, Reason}
Types.

Connection = connection() (see nodule ct_telnet)

CndFormat = string()

Args = list()

Ti reout = integer()

Data = [string()]
Send atelnet command and wait for prompt (uses aformat string and list of arguments to build the command).

cont log(Str, Args) -> term()
end log() -> term()

expect(Connection, Patterns) -> term()
Equivalent to expect(Connections, Patterns, []).

expect(Connection, Patterns, Opts) -> {ok, Match} | {ok, MatchList,
HaltReason} | {error, Reason}

Types.
Connection = connection() (see nodule ct_telnet)
Patterns = Pattern | [Pattern]
Pattern = string() | {Tag, string()} | pronpt | {pronpt, Pronpt}
Prompt = string()
Tag = tern()
Opts = [Opt]
Opt = {tineout, Timeout} | repeat | {repeat, N} | sequence | {halt,
Hal t Patt erns} | ignore_pronpt

148 | Ericsson AB. All Rights Reserved.: Common Test

ct_telnet

Ti meout = integer()

N = integer()

Halt Patterns = Patterns

Mat chLi st = [Mat ch]

Mat ch = RxMatch | {Tag, RxMatch} | {pronpt, Pronpt}
RxMatch = [string()]

Hal t Reason = done | WMatch

Reason = tinmeout | {pronpt, Pronpt}

Get data from telnet and wait for the expected pattern.

Pat t er n can be a POSIX regular expression. If more than one pattern is given, the function returns when the first
match is found.

RxMat ch is alist of matched strings. It looks like this: [Ful | Mat ch, SubMat chl, SubMatch2, ...]
where Ful | Mat ch isthe string matched by the whole regular expression and SubMat chNisthe string that matched
subexpression no N. Subexpressions are denoted with '(" *)" in the regular expression

If aTag isgiven, thereturned Mat ch will also include the matched Tag. Else, only RxMat ch isreturned.
The function will always return when a prompt is found, unlessthei gnor e_pr onpt optionsis used.

Thet i meout option indicates that the function shall return if the telnet client isidle (i.e. if no datais received) for
more than Ti meout milliseconds. Default timeout is 10 seconds.

Ther epeat option indicates that the pattern(s) shall be matched multiple times. If Nis given, the pattern(s) will be
matched N times, and the function will return with Hal t Reason = done.

Thesequence option indicatesthat all patterns shall be matched in a sequence. A match will not be concluded untill
all patterns are matched.

Both r epeat and sequence can be interrupted by one or more Hal t Pat t er ns. When sequence or r epeat
isused, there will alwaysbeaMat chLi st returned, i.e. alist of Mat ch instead of only one Mat ch. There will also
beaHal t Reason returned.

Examples:

expect (Connecti on, [{abc, "ABC'}, {xyz, "XYZ"}], [sequence,{halt,[{nnn, "NNN"}]}]).
will try to match "ABC" first and then "XYZ", but if "NNN" appears the function will return {error, { nnn,
["NNN']}}.If both"ABC" and "XYZ" are matched, the function will return { ok, [AbcMat ch, XyzMat ch] }.

expect (Connection, [{abc, "ABC'}, {xyz, "XYZ"}], [{repeat, 2},{halt,
[{nnn,"NNN"}1}1).

will try to match "ABC" or "XYZ" twice. If "NNN" appears the function will return with Hal t Reason = {nnn,
["NNN']}.

Ther epeat and sequence options can be combined in order to match a sequence multiple times.

get data(Connection) -> {ok, Data} | {error, Reason}
Types.
Connection = connection() (see nodule ct_telnet)
Data = [string()]

Get all datawhich has been received by the telnet client since last command was sent.

open(Name) -> {ok, Handle} | {error, Reason}
Equivalent to open(Name, telnet).

Ericsson AB. All Rights Reserved.: Common Test | 149

ct_telnet

open(Name, ConnType) -> {ok, Handle} | {error, Reason}
Types:
Name = target_nane()
ConnType = connection_type() (see nodule ct_telnet)
Handl e = handl e() (see nodul e ct_tel net)

Open atelnet connection to the specified target host.

open(KeyOrName, ConnType, TargetMod) -> {ok, Handle} | {error, Reason}
Equivalent to open(KeyOrName, ConnType, TargetMod, []).

open(KeyOrName, ConnType, TargetMod, Extra) -> {ok, Handle} | {error, Reason}
Types:

KeyOr Name = Key | Name

Key = atom()

Name = target_nane() (see nodul e ct)

ConnType = connection_type()

Target Mod = atom()

Extra = tern()

Handl e = handl e()

Open atelnet connection to the specified target host.

The target data must exist in a configuration file. The connection may be associated with either Nane and/or the
returned Handl e. To allocate anamefor thetarget, usect : r equi r e/ 2 inatest case, or usear equi r e statement
in the suite info function (sui t e/ 0), or in atest case info function. If you want the connection to be associated with
Handl e only (in caseyou need to open multiple connectionsto ahost for example), smply use Key, the configuration
variable name, to specify the target. Note that a connection that has no associated target name can only be closed with
the handle value.

Tar get Mod is a module which exports the functions connect (I p, Port, KeepAlive, Extra) and
get _pronpt _regexp() forthegiven Tar get Type (e.g. uni x_t el net).
See also: ct:irequire/2.

send(Connection, Cmd) -> ok | {error, Reason}

Types:
Connection = connection() (see nodule ct_telnet)
Cmd = string()

Send atelnet command and return immediately.

The resulting output from the command can be read with get _dat a/ 1 or expect/ 2/ 3.

sendf(Connection, CmdFormat, Args) -> ok | {error, Reason}
Types:
Connection = connection() (see nodule ct_telnet)
CndFormat = string()
Args = list()

Send atelnet command and return immediately (uses aformat string and a list of arguments to build the command).

150 | Ericsson AB. All Rights Reserved.: Common Test

ct_telnet

See also

unix_telnet

Ericsson AB. All Rights Reserved.: Common Test | 151

unix_telnet

unix_telnet

Erlang module

Callback module for ct_telnet for talking telnet to a unix host.
It requires the following entry in the config file:

{unix, [{telnet,HostNameOrIpAddress},
{port,PortNum}, % optional
{username,UserName},

{password,Password},
{keep_alive,Bool}]}. % optional

To talk telnet to the host specified by Host NaneOr | pAddr ess, use the interface functions in ct, eg.
open(Nane), cnd(Name, Cd), -

Nane isthe name you allocated to the unix host in your r equi r e statement. E.g.
suite() -> [{require,Name, {unix, [telnet,username,password]}}].

or
ct:require(Name, {unix, [telnet,username,password]}).

The "keep alive" activity (i.e. that Common Test sends NOP to the server every 10 seconds if the connection isidle)
may be enabled or disabled for one particular connection as described here. It may be disabled for all connections
usingt el net _settings (seect_tel net).

Note that the { port, Port Nun} tuple is optional and if omitted, default telnet port 23 will be used. Also the
keep_al i ve tupleisoptional, and the value defauls to true (enabled).

See also
ct, ct_telnet

152 | Ericsson AB. All Rights Reserved.: Common Test

ct slave

ct slave

Erlang module

Common Test Framework functions for starting and stopping nodes for Large Scale Testing.

This module exports functions which are used by the Common Test Master to start and stop "dlave" nodes. It is the
default callback modulefor the{i ni t, node_start} term of the Test Specification.

Exports

start(Node) -> Result
Types:
Node = atom()

Result = {ok, NodeNane} | {error, already_started, NodeNane} | {error,
started_not _connected, NodeNane} | {error, boot timeout, NodeNane} |
{error, init_tinmeout, NodeNane} | {error, startup_timeout, NodeNane} |
{error, not_alive, NodeNane}

NodeName = atom()
Starts an Erlang node with name Node on the local host.
Seealso: start/3.

start(Host, Node) -> Result

Types:
Node = atom()
Host = atom()

Result = {ok, NodeNane} | {error, already_started, NodeNanme} | {error,
started_not _connected, NodeNane} | {error, boot_tineout, NodeNane} |
{error, init_timeout, NodeNane} | {error, startup_tinmeout, NodeNane} |
{error, not_alive, NodeNane}

NodeName = atom()
Starts an Erlang node with name Node on host Host with the default options.

See also: start/3.

start(Host, Node, Options::0pts) -> Result

Types.
Node = atom()
Host = atom()
Opts = [Opt Tupl es]

Opt Tupl es = {usernane, Usernane} | {password, Password} | {boot tinmeout,
Boot Timeout} | {init _timeout, InitTimeout} | {startup_tinmeout,
StartupTineout} | {startup functions, StartupFunctions} | {nonitor_master,
Monitor} | {kill_if_fail, KilllfFail} | {erl_flags, ErlangFlags} | {env,
[{EnvVar, Value}]}

Usernane = string()

Password = string()

Ericsson AB. All Rights Reserved.: Common Test | 153

ct slave

Boot Ti meout = i nteger()
I nitTimeout = integer()
StartupTi neout = integer()

StartupFunctions = [StartupFunctionSpec]

Start upFuncti onSpec = {Mddul e, Function, Argunents}
Modul e = atom()

Function = atom()

Arguments = [tern]

Moni tor = bool ()

KilllfFail = bool ()

Erl angFl ags = string()

EnvVar = string()

Val ue = string()

Result = {ok, NodeNane} | {error, already started, NodeNane} | {error,
started_not _connected, NodeNane} | {error, boot timeout, NodeNane} |
{error, init_tinmout, NodeNane} | {error, startup timeout, NodeNane} |
{error, not_alive, NodeNane}

NodeName = atom()

Starts an Erlang node with name Node on host Host as specified by the combination of optionsin Opt s.

Options User nane and Passwor d will be used to log in onto the remote host Host . Username, if omitted, defaults
to the current user name, and password is empty by default.

A list of functions specified in the St ar t up option will be executed after startup of the node. Note that all used
modules should be present in the code path on the Host .

The timeouts are applied as follows:

Boot Ti meout - time to start the Erlang node, in seconds. Defaults to 3 seconds. If node does not become
pingable within thistime, theresult { error, boot ti meout, NodeNane} isreturned;

I ni t Ti meout - time to wait for the node until it calls the internal callback function informing master about
successfull startup. Defaultsto one second. In case of timed out messagetheresult{ error, init _ti meout,

NodeNane} isreturned;

StartupTi neout - time to wait intil the node finishes to run the St ar t upFunct i ons. Defaults to one
second. If thistimeout occurs, theresult { error, startup_ti meout, NodeNane} isreturned.

Optionnoni t or _nast er specifies, if theslave node should be stopped in case of master node stop. Defaultsto false.

Option ki I'| _if_fail specifies, if the dave node should be killed in case of a timeout during initialization or
startup. Defaults to true. Note that node also may be still alive it the boot timeout occurred, but it will not be killed
in this case.

Optioner | ang_f | ags specifies, which flags will be added to the parameters of the er | executable.
Option env specifies alist of environment variables that will extended the environment.

Special return values are;

e {error, already_started, NodeNane} -if the nodewiththe given nameisalready started on agiven

host;

e {error, started_not_connected, NodeNane} - if nodeis started, but not connected to the master

node.

e {error, not_alive, NodeNane} -if node onwhichthect sl ave: start/ 3 iscaled, isnot dive.

Note that NodeNane isthe name of current node in this case.

154 | Ericsson AB. All Rights Reserved.: Common Test

ct slave

stop(Node)

Types:
Node

Resul t
not _connected, NodeNane} | {error, stop_tinmeout, NodeNane}

NodeNane

-> Result

atom()
= {ok, NodeNane} | {error, not_started, NodeNane} | {error,

= atom()

Stops the running Erlang node with name Node on the local host.

stop(Host, Node) -> Result

Types:
Host
Node

Resul t
not _connect ed, NodeNane} | {error, stop_tinmeout, NodeNane}

NodeNane

atom()
atom)

{ok, NodeNane} | {error, not_started, NodeNane} | {error

= atom()

Stops the running Erlang node with name Node on host Host .

Ericsson AB. All Rights Reserved.: Common Test | 155

ct_hooks

ct_hooks

Erlang module

The Common Test Hook (henceforth called CTH) framework allows extensions of the default behaviour of Common
Test by means of callbacks before and after all test suite calls. It is meant for advanced users of Common Test which
want to abstract out behaviour which is common to multiple test suites.

In brief, Common Test Hooks alows you to:

» Manipulate the runtime config before each suite configuration call
« Manipulate the return of all suite configuration calls and in extension the result of the test themselves.

The following sections describe the mandatory and optional CTH functions Common Test will call during test
execution. For more details see Common Test Hooks in the User's Guide.

For information about how to add a CTH to your suite see Installing a CTH in the User's Guide.

Note:
See the Example CTH in the User's Guide for aminimal example of a CTH.

CALLBACK FUNCTIONS

The following functions define the callback interface for a Common Test Hook.

Exports

Module:init(Id, Opts) -> {ok, State} | {ok, State, Priority}
Types.

Id = reference() | term)

Opts = term)

State = term))

Priority = integer()
MANDATORY

Always called before any other callback function. Use this to initiate any common state. It should return a state for
thisCTH.

| d isthereturn value of id/1, or ar ef er ence (created using make ref/0) if id/1 is not implemented.

Priority isthereative priority of this hook. Hooks with a lower priority will be executed first. If no priority is
given, it will be set to 0.

For details about when init is called see scope in the User's Guide.

Module:pre init per suite(SuiteName, InitData, CTHState) -> Result
Types:

Sui teNane = at on()

InitData = Config | SkipOFail

Config = NewConfig = [{Key, Val ue}]

156 | Ericsson AB. All Rights Reserved.: Common Test

ct_hooks

CTHState = NewCTHState = tern()

Result = {Return, NewCTHSt at e}

Return = NewConfig | SkipO Fail

Ski pOrFail = {fail, Reason} | {skip, Reason}
Key = atom()

Value = term))

Reason = term()

OPTIONAL

This function is called before init_per_suiteif it exists. It typically contains initialization/logging which needs to be
done before init_per_suite is called. If { ski p, Reason} or {fail, Reason} isreturned, init_per_suite and al
test cases of the suite will be skipped and Reason printed in the overview log of the suite.

Sui t eNane isthe name of the suite to be run.
I ni t Dat a istheoriginal config list of the test suite, or aSki pOr Fai | tupleif aprevious CTH has returned this.
CTHSt at e isthe current internal state of the CTH.

Ret ur n isthe result of the init_per_suite function. If it is{ ski p, Reason} or {fai | , Reason} init_per_suite
will never be called, instead the initiation is considered to be skipped/failed respectively. If a NewConfi g list is
returned, init_per_suitewill be called with that NewConf i g list. See Pre Hooksin the User's Guide for more details.

Note that this function is only called if the CTH has been added before init_per_suiteis run, see CTH Scoping in the
User's Guide for details.

Module:post init per suite(SuiteName, Config, Return, CTHState) -> Result
Types:

Sui teNane = aton()

Config = [{Key, Val ue}]

Return = NewReturn = Config | SkipOFail | term))

Ski pOrFail = {fail, Reason} | {skip, Reason} | term))

CTHState = NewCTHState = tern()

Result = {NewRet urn, NewCTHSt at e}

Key = atom()

Value = term)

Reason = term()

OPTIONAL

Thisfunctioniscalled after init_per_suiteif it exists. It typically contains extrachecksto make surethat all the correct
dependencies have been started correctly.

Ret ur n iswhat init_per_suite returned, i.e. {fail,Reason}, { skip,Reason}, a Conf i g list or aterm describing how
init_per_suite failed.

NewRet ur n isthe possibly modified return value of init_per_suite . It is here possible to recover from afailurein
init_per_suite by returning the Conf i gLi st withthet c_st at us element removed. See Post Hooksin the User's
Guide for more details.

CTHSt at e isthe current internal state of the CTH.

Note that this function is only called if the CTH has been added before or in init_per_suite, see CTH Scoping in the
User's Guide for details.

Ericsson AB. All Rights Reserved.: Common Test | 157

ct_hooks

Module:pre init per group(GroupName, InitData, CTHState) -> Result
Types:
G oupNane = aton()
InitData = Config | SkipOFail
Config = NewConfig = [{Key, Val ue}]
CTHSt ate = NewCTHState = term()
Result = {NewConfig | SkipOrFail, NewCTHSt at e}
Ski pOrFail = {fail, Reason} | {skip, Reason}
Key = atom()
Value = term))
Reason = term()

OPTIONAL

Thisfunction is called before init_per_group if it exists. It behaves the sameway as pre_init_per_suite, but for the

init_per_group instead.

Module:post init per group(GroupName, Config, Return, CTHState) -> Result
Types:
G oupNane = aton()
Config = [{Key, Val ue}]
Return = NewReturn = Config | SkipOFail | term)
Ski pOrFail = {fail, Reason} | {skip, Reason}
CTHState = NewCTHState = tern()
Result = {NewReturn, NewCTHSt at e}
Key = atom()
Val ue = term()
Reason = term()

OPTIONAL

This function is called after init_per_group if it exists. It behaves the same way as post_init_per_suite, but for the

init_per_group instead.

Module:pre init per testcase(TestcaseName, InitData, CTHState) -> Result
Types.
Test caseNanme = atom()
InitData = Config | SkipOFail
Config = NewConfig = [{Key, Val ue}]
CTHState = NewCTHState = tern()
Result = {NewConfig | SkipOrFail, NewCTHSt ate}
Ski pOrFail = {fail, Reason} | {skip, Reason}
Key = atom()
Value = term)
Reason = term()

OPTIONAL

158 | Ericsson AB. All Rights Reserved.: Common Test

ct_hooks

This function is called before init_per_testcase if it exists. It behaves the same way as pre init_per_suite, but for
the init_per_testcase function instead.

Note that it is not possible to add CTH's here right now, that feature might be added later, but it would right now
break backwards compatibility.

Module:post end per testcase(TestcaseName, Config, Return, CTHState) ->
Result

Types:
Test caseNanme = atom()
Config = [{Key, Val ue}]
Return = NewReturn = Config | SkipOFail | term)
Ski pOrFail = {fail, Reason} | {skip, Reason}
CTHState = NewCTHState = tern()
Result = {NewReturn, NewCTHSt at e}
Key = atom()
Value = term))
Reason = term()

OPTIONAL

Thisfunction iscalled after end_per_testcase if it exists. It behaves the same way as post_init_per_suite, but for the
end_per_testcase function instead.

Module:pre end per group(GroupName, EndData, CTHState) -> Result
Types.
GroupNane = aton()
EndData = Config | SkipO Fail
Config = NewConfig = [{Key, Val ue}]
CTHState = NewCTHState = tern()
Result = {NewConfig | SkipOrFail, NewCTHSt ate}
Ski pOrFail = {fail, Reason} | {skip, Reason}
Key = atom()
Value = term)
Reason = term()

OPTIONAL

Thisfunction is called before end_per_group if it exists. It behaves the same way as pre_init_per_suite, but for the
end_per_group function instead.

Module:post end per group(GroupName, Config, Return, CTHState) -> Result
Types:

G oupNane = aton()

Config = [{Key, Val ue}]

Return = NewReturn = Config | SkipOFail | term)

Ski pOrFail = {fail, Reason} | {skip, Reason}

CTHState = NewCTHState = tern()

Ericsson AB. All Rights Reserved.: Common Test | 159

ct_hooks

Result = {NewRet urn, NewCTHSt at e}
Key = atom()

Value = term))

Reason = term()

OPTIONAL

Thisfunction is called after end per_group if it exists. It behaves the same way as post_init_per_suite, but for the
end_per_group function instead.

Module:pre end per suite(SuiteName, EndData, CTHState) -> Result
Types.
Sui teNane = aton()
EndData = Config | SkipOFail
Config = NewConfig = [{Key, Val ue}]
CTHState = NewCTHState = tern()
Result = {NewConfig | SkipOrFail, NewCTHSt at e}
Ski pOrFail = {fail, Reason} | {skip, Reason}
Key = atom()
Value = term))
Reason = term()

OPTIONAL

This function is called before end per_suite if it exists. It behaves the same way as pre_init_per_suite, but for the
end_per_suite function instead.

Module:post end per suite(SuiteName, Config, Return, CTHState) -> Result
Types.
Sui teNane = aton()
Config = [{Key, Val ue}]
Return = NewReturn = Config | SkipOFail | term)
Ski pOrFail = {fail, Reason} | {skip, Reason}
CTHState = NewCTHState = tern()
Result = {NewRet urn, NewCTHSt at e}
Key = atom()
Value = term)
Reason = term()

OPTIONAL

This function is called after end_per_suite if it exists. It behaves the same way as post_init_per_suite, but for the
end_per_suite function instead.

Module:on tc fail(TestcaseName, Reason, CTHState) -> NewCTHState
Types:
TestcaseNane = init_per_suite | end_per_suite | init_per_group |
end_per _group | atom)
Reason = term()

160 | Ericsson AB. All Rights Reserved.: Common Test

ct_hooks

CTHState = NewCTHState = tern()
OPTIONAL

This function is called whenever atestcase fails. It is called after the post function has been called for the testcase
whichfailed. i.e. if init_per_suitefailsthisfunctioniscalled after post_init_per_suite, and if atestcasefailsitiscalled
after post_end per_testcase.

The data which comes with the Reason follows the same format as the FailReason in the tc_done event. See Event
Handling in the User's Guide for details.

Module:on tc skip(TestcaseName, Reason, CTHState) -> NewCTHState

Types:
TestcaseNane = end_per _suite | init_per_group | end_per_group | atom()
Reason = {tc_auto _skip | tc_user_skip, tern()}
CTHState = NewCTHState = tern()

OPTIONAL

Thisfunctionis called whenever atestcaseis skipped. It iscalled after the post function has been called for the testcase
which was skipped. i.e. if init_per_group is skipped thisfunction is called after post_init_per_group, and if atestcase
isskipped it is called after post_end_per_testcase .

The data which comes with the Reason follows the same format astc_auto_skip and tc_user_skip events. See Event
Handling in the User's Guide for details.

Module:terminate(CTHState)
Types.

CTHState = term))
OPTIONAL

Thisfunction is called at the end of a CTH's scope.

Module:id(Opts) -> Id
Types.

Opts = term)
Id = ternm()

OPTIONAL

The | d is used to uniquely identify a CTH instance, if two CTH's return the same | d the second CTH is ignored
and subseguent calls to the CTH will only be made to the first instance. For more information see Installing a CTH
in the User's Guide.

This function should NOT have any side effects as it might be called multiple times by Common Test.
If not implemented the CTH will act asif thisfunction returned acall to make_r ef / 0.

Ericsson AB. All Rights Reserved.: Common Test | 161

	Common Test
	Common Test User's Guide
	Common Test Basics
	Introduction
	Test Suite Organisation
	Support Libraries
	Suites and Test Cases
	External Interfaces

	Getting Started
	Are you new around here?
	Test case execution
	A simple test suite
	A test suite with configuration functions
	What happens next?

	Installation
	General information

	Writing Test Suites
	Support for test suite authors
	Test suites
	Init and end per suite
	Init and end per test case
	Test cases
	Test case info function
	Test suite info function
	Test case groups
	The parallel property and nested groups
	Parallel test cases and IO
	Repeated groups
	Shuffled test case order
	Group info function
	Info functions for init- and end-configuration
	Data and Private Directories
	Execution environment
	Timetrap timeouts
	Logging - categories and verbosity levels
	Illegal dependencies

	Test Structure
	Test structure
	Skipping test cases
	Definition of terms

	Examples and Templates
	Test suite example
	Test suite templates

	Running Tests
	Using the Common Test Framework
	Automatic compilation of test suites and help modules
	Running tests from the OS command line
	Running tests from the Erlang shell or from an Erlang program
	Releasing the Erlang shell

	Test case group execution
	Running the interactive shell mode
	Step by step execution of test cases with the Erlang Debugger
	Test Specifications
	General description
	Using multiple test specification files
	Test specification file inclusion
	Test case groups
	Test specification syntax
	Constants
	Example
	The init term
	User specific terms

	Running tests from the Web based GUI
	Log files
	Log options
	Sorting HTML table columns

	HTML Style Sheets
	Repeating tests
	Silent Connections

	External Configuration Data
	General
	Syntax
	Requiring and reading configuration data
	Using configuration variables defined in multiple files
	Encrypted configuration files
	Opening connections by using configuration data
	User specific configuration data formats
	Default callback modules for handling configuration data
	Using XML configuration files
	How to implement a user specific handler

	Examples of configuration data handling
	Example of user specific configuration handler

	Code Coverage Analysis
	General
	Usage
	Stopping the cover tool when tests are completed
	The cover specification file
	Cross cover analysis
	Logging

	Using Common Test for Large Scale Testing
	General
	Usage
	Test Specifications
	Automatic startup of test target nodes

	Event Handling
	General
	Usage

	Dependencies between Test Cases and Suites
	General
	Saving configuration data
	Sequences

	Common Test Hooks
	General
	Installing a CTH
	Overriding CTHs
	CTH Execution order

	CTH Scope
	CTH Processes and Tables
	External configuration data and Logging

	Manipulating tests
	Pre Hooks
	Post Hooks
	Skip and Fail hooks

	Example CTH
	Built-in CTHs

	Some thoughts about testing
	Goals
	What to test?

	Reference Manual
	common_test
	Module:all/0
	Module:groups/0
	Module:suite/0
	Module:init_per_suite/1
	Module:end_per_suite/1
	Module:group/1
	Module:init_per_group/2
	Module:end_per_group/2
	Module:init_per_testcase/2
	Module:end_per_testcase/2
	Module:Testcase/0
	Module:Testcase/1

	ct_run
	ct
	abort_current_testcase/1
	add_config/2
	break/1
	break/2
	capture_get/0
	capture_get/1
	capture_start/0
	capture_stop/0
	comment/1
	comment/2
	continue/0
	continue/1
	decrypt_config_file/2
	decrypt_config_file/3
	encrypt_config_file/2
	encrypt_config_file/3
	fail/1
	fail/2
	get_config/1
	get_config/2
	get_config/3
	get_status/0
	get_target_name/1
	get_timetrap_info/0
	install/1
	listenv/1
	log/1
	log/2
	log/3
	log/4
	make_priv_dir/0
	notify/2
	pal/1
	pal/2
	pal/3
	pal/4
	parse_table/1
	print/1
	print/2
	print/3
	print/4
	reload_config/1
	remove_config/2
	require/1
	require/2
	run/1
	run/2
	run/3
	run_test/1
	run_testspec/1
	sleep/1
	start_interactive/0
	step/3
	step/4
	stop_interactive/0
	sync_notify/2
	testcases/2
	timetrap/1
	userdata/2
	userdata/3

	ct_master
	abort/0
	abort/1
	basic_html/1
	progress/0
	run/1
	run/3
	run/4
	run_on_node/2
	run_on_node/3
	run_test/2

	ct_cover
	add_nodes/1
	cross_cover_analyse/2
	remove_nodes/1

	ct_ftp
	cd/2
	close/1
	delete/2
	get/3
	ls/2
	open/1
	put/3
	recv/2
	recv/3
	send/2
	send/3
	type/2

	ct_ssh
	apread/4
	apread/5
	apwrite/4
	apwrite/5
	aread/3
	aread/4
	awrite/3
	awrite/4
	close/2
	close/3
	connect/1
	connect/2
	connect/3
	del_dir/2
	del_dir/3
	delete/2
	delete/3
	disconnect/1
	exec/2
	exec/3
	exec/4
	get_file_info/2
	get_file_info/3
	list_dir/2
	list_dir/3
	make_dir/2
	make_dir/3
	make_symlink/3
	make_symlink/4
	open/3
	open/4
	opendir/2
	opendir/3
	position/3
	position/4
	pread/4
	pread/5
	pwrite/4
	pwrite/5
	read/3
	read/4
	read_file/2
	read_file/3
	read_file_info/2
	read_file_info/3
	read_link/2
	read_link/3
	read_link_info/2
	read_link_info/3
	receive_response/2
	receive_response/3
	receive_response/4
	rename/3
	rename/4
	send/3
	send/4
	send/5
	send_and_receive/3
	send_and_receive/4
	send_and_receive/5
	send_and_receive/6
	session_close/2
	session_open/1
	session_open/2
	sftp_connect/1
	subsystem/3
	subsystem/4
	write/3
	write/4
	write_file/3
	write_file/4
	write_file_info/3
	write_file_info/4

	ct_netconfc
	action/2
	action/3
	close_session/1
	close_session/2
	copy_config/3
	copy_config/4
	create_subscription/1
	create_subscription/2
	create_subscription/3
	create_subscription/4
	create_subscription/5
	create_subscription/6
	delete_config/2
	delete_config/3
	edit_config/3
	edit_config/4
	format_data/2
	get/2
	get/3
	get_capabilities/1
	get_capabilities/2
	get_config/3
	get_config/4
	get_event_streams/2
	get_event_streams/3
	get_session_id/1
	get_session_id/2
	handle_msg/2
	hello/1
	hello/2
	kill_session/2
	kill_session/3
	lock/2
	lock/3
	only_open/1
	only_open/2
	open/1
	open/2
	unlock/2
	unlock/3

	ct_rpc
	app_node/2
	app_node/3
	app_node/4
	call/4
	call/5
	call/6
	cast/4
	cast/5

	ct_snmp
	get_next_values/3
	get_values/3
	load_mibs/1
	register_agents/2
	register_users/2
	register_usm_users/2
	set_info/1
	set_values/4
	start/2
	start/3
	stop/1
	unload_mibs/1
	unregister_agents/1
	unregister_agents/2
	unregister_users/1
	unregister_users/2
	unregister_usm_users/1
	unregister_usm_users/2

	ct_telnet
	close/1
	cmd/2
	cmd/3
	cmdf/3
	cmdf/4
	cont_log/2
	end_log/0
	expect/2
	expect/3
	get_data/1
	open/1
	open/2
	open/3
	open/4
	send/2
	sendf/3

	unix_telnet
	ct_slave
	start/1
	start/2
	start/3
	stop/1
	stop/2

	ct_hooks
	Module:init/2
	Module:pre_init_per_suite/3
	Module:post_init_per_suite/4
	Module:pre_init_per_group/3
	Module:post_init_per_group/4
	Module:pre_init_per_testcase/3
	Module:post_end_per_testcase/4
	Module:pre_end_per_group/3
	Module:post_end_per_group/4
	Module:pre_end_per_suite/3
	Module:post_end_per_suite/4
	Module:on_tc_fail/3
	Module:on_tc_skip/3
	Module:terminate/1
	Module:id/1

