
Common Test
Copyright © 2003-2013 Ericsson AB. All Rights Reserved.

Common Test 1.7.1
February 25, 2013

Copyright © 2003-2013 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

February 25, 2013

Ericsson AB. All Rights Reserved.: Common Test | 1

1.1 Common Test Basics

2 | Ericsson AB. All Rights Reserved.: Common Test

1 Common Test User's Guide

Common Test is a portable application for automated testing. It is suitable for black-box testing of target systems of
any type (i.e. not necessarily implemented in Erlang), as well as for white-box testing of Erlang/OTP programs. Black-
box testing is performed via standard O&M interfaces (such as SNMP, HTTP, Corba, Telnet, etc) and, if required, via
user specific interfaces (often called test ports). White-box testing of Erlang/OTP programs is easily accomplished by
calling the target API functions directly from the test case functions. Common Test also integrates usage of the OTP
cover tool for code coverage analysis of Erlang/OTP programs.

Common Test executes test suite programs automatically, without operator interaction. Test progress and results is
printed to logs on HTML format, easily browsed with a standard web browser. Common Test also sends notifications
about progress and results via an OTP event manager to event handlers plugged in to the system. This way users can
integrate their own programs for e.g. logging, database storing or supervision with Common Test.

Common Test provides libraries that contain useful support functions to fill various testing needs and requirements.
There is for example support for flexible test declarations by means of so called test specifications. There is also
support for central configuration and control of multiple independent test sessions (towards different target systems)
running in parallel.

Common Test is implemented as a framework based on the OTP Test Server application.

1.1 Common Test Basics
1.1.1 Introduction
The Common Test framework (CT) is a tool which supports implementation and automated execution of test cases
towards arbitrary types of target systems. The CT framework is based on the OTP Test Server and it's the main tool
being used in all testing- and verification activities that are part of Erlang/OTP system development- and maintenance.

Test cases can be executed individually or in batches. Common Test also features a distributed testing mode with
central control and logging (a feature that makes it possible to test multiple systems independently in one common
session, useful e.g. for running automated large-scale regression tests).

The SUT (System Under Test) may consist of one or several target nodes. CT contains a generic test server which,
together with other test utilities, is used to perform test case execution. It is possible to start the tests from a GUI or
from the OS- or Erlang shell. Test suites are files (Erlang modules) that contain the test cases (Erlang functions) to be
executed. Support modules provide functions that the test cases utilize in order to carry out the tests.

In a black-box testing scenario, CT based test programs connect to the target system(s) via standard O&M and CLI
protocols. CT provides implementations of, and wrapper interfaces to, some of these protocols (most of which exist as
stand-alone components and applications in OTP). The wrappers simplify configuration and add verbosity for logging
purposes. CT will be continously extended with useful support modules. (Note however that it's a straightforward task
to use any arbitrary Erlang/OTP component for testing purposes with Common Test, without needing a CT wrapper
for it. It's as simple as calling Erlang functions). There are a number of target independent interfaces supported in
CT, such as Generic Telnet, FTP, etc, which can be specialized or used directly for controlling instruments, traffic
load generators, etc.

Common Test is also a very useful tool for white-box testing Erlang code (e.g. module testing), since the test programs
can call exported Erlang functions directly and there's very little overhead required for implementing basic test suites
and executing simple tests. For black-box testing Erlang software, Erlang RPC as well as standard O&M interfaces
can for example be used.

1.1 Common Test Basics

Ericsson AB. All Rights Reserved.: Common Test | 3

A test case can handle several connections towards one or several target systems, instruments and traffic generators
in parallel in order to perform the necessary actions for a test. The handling of many connections in parallel is one of
the major strengths of Common Test (thanks to the efficient support for concurrency in the Erlang runtime system -
which CT users can take great advantage of!).

1.1.2 Test Suite Organisation
The test suites are organized in test directories and each test suite may have a separate data directory. Typically, these
files and directories are version controlled similarly to other forms of source code (possibly by means of a version
control system like GIT or Subversion). However, CT does not itself put any requirements on (or has any form of
awareness of) possible file and directory versions.

1.1.3 Support Libraries
Support libraries contain functions that are useful for all test suites, or for test suites in a specific functional area or
subsystem. In addition to the general support libraries provided by the CT framework, and the various libraries and
applications provided by Erlang/OTP, there might also be a need for customized (user specific) support libraries.

1.1.4 Suites and Test Cases
Testing is performed by running test suites (sets of test cases) or individual test cases. A test suite is implemented as
an Erlang module named <suite_name>_SUITE.erl which contains a number of test cases. A test case is an
Erlang function which tests one or more things. The test case is the smallest unit that the CT test server deals with.

Subsets of test cases, called test case groups, may also be defined. A test case group can have execution properties
associated with it. Execution properties specify whether the test cases in the group should be executed in random order,
in parallel, in sequence, and if the execution of the group should be repeated. Test case groups may also be nested (i.e.
a group may, besides test cases, contain sub-groups).

Besides test cases and groups, the test suite may also contain configuration functions. These functions are meant to
be used for setting up (and verifying) environment and state on the SUT (and/or the CT host node), required for the
tests to execute correctly. Examples of operations: Opening a connection to the SUT, initializing a database, running
an installation script, etc. Configuration may be performed per suite, per test case group and per individual test case.

The test suite module must conform to a callback interface specified by the CT test server. See the Writing Test Suites
chapter for more information.

A test case is considered successful if it returns to the caller, no matter what the returned value is. A few return
values have special meaning however (such as {skip,Reason} which indicates that the test case is skipped,
{comment,Comment} which prints a comment in the log for the test case and {save_config,Config} which
makes the CT test server pass Config to the next test case). A test case failure is specified as a runtime error (a crash),
no matter what the reason for termination is. If you use Erlang pattern matching effectively, you can take advantage of
this property. The result will be concise and readable test case functions that look much more like scripts than actual
programs. Simple example:

 session(_Config) ->
 {started,ServerId} = my_server:start(),
 {clients,[]} = my_server:get_clients(ServerId),
 MyId = self(),
 connected = my_server:connect(ServerId, MyId),
 {clients,[MyId]} = my_server:get_clients(ServerId),
 disconnected = my_server:disconnect(ServerId, MyId),
 {clients,[]} = my_server:get_clients(ServerId),
 stopped = my_server:stop(ServerId).

1.2 Getting Started

4 | Ericsson AB. All Rights Reserved.: Common Test

As a test suite runs, all information (including output to stdout) is recorded in several different log files. A minimum
of information is displayed in the user console (only start and stop information, plus a note for each failed test case).

The result from each test case is recorded in a dedicated HTML log file, created for the particular test run. An overview
page displays each test case represented by row in a table showing total execution time, whether the case was successful,
failed or skipped, plus an optional user comment. (For a failed test case, the reason for termination is also printed
in the comment field). The overview page has a link to each test case log file, providing simple navigation with any
standard HTML browser.

1.1.5 External Interfaces
The CT test server requires that the test suite defines and exports the following mandatory or optional callback
functions:

all()
Returns a list of all test cases and groups in the suite. (Mandatory)

suite()
Info function used to return properties for the suite. (Optional)

groups()
For declaring test case groups. (Optional)

init_per_suite(Config)
Suite level configuration function, executed before the first test case. (Optional)

end_per_suite(Config)
Suite level configuration function, executed after the last test case. (Optional)

group(GroupName)
Info function used to return properties for a test case group. (Optional)

init_per_group(GroupName, Config)
Configuration function for a group, executed before the first test case. (Optional)

end_per_group(GroupName, Config)
Configuration function for a group, executed after the last test case. (Optional)

init_per_testcase(TestCase, Config)
Configuration function for a testcase, executed before each test case. (Optional)

end_per_testcase(TestCase, Config)
Configuration function for a testcase, executed after each test case. (Optional)

For each test case the CT test server expects these functions:

Testcasename()
Info function that returns a list of test case properties. (Optional)

Testcasename(Config)
The actual test case function.

1.2 Getting Started
1.2.1 Are you new around here?
The purpose of this short chapter is to, with a "learning by example" approach, give the newcomer a chance to get
started quickly writing and executing some first simple tests. The chapter will introduce some of the basics, but leave
most explanations and details for the later chapters in this User's Guide. Hopefully though, after this chapter, you will
be inspired and unintimidated enough to go on and get into the nitty-gritty that follows in this rather heavy User's
Guide! If you're not much into "learning by example" and prefer to get into more technical detail right away, go ahead
and skip to the next chapter. Again, the basics presented here will be covered in detail in later chapters.

1.2 Getting Started

Ericsson AB. All Rights Reserved.: Common Test | 5

This chapter also tries to demonstrate how dead simple it actually is to write a very basic (yet for many module testing
purposes, often sufficiently complex) test suite, and execute its test cases. This is not necessarily obvious when you
read the rest of the chapters in the User's Guide.

A quick note before we start: In order to understand what's discussed and examplified here, it is recommended that
you first read through the opening Common Test Basics chapter.

1.2.2 Test case execution
Execution of test cases is handled this way:

Figure .1: Successful vs unsuccessful test case execution.

For each test case that Common Test is told to execute, it spawns a dedicated process on which the test case function
in question starts running. (In parallel to the test case process, an idle waiting timer process is started which is linked
to the test case process. If the timer process runs out of waiting time, it sends an exit signal to terminate the test case
process and this is what's called a timetrap).

In scenario 1, the test case process terminates normally after case A has finished executing its test code without
detecting any errors. The test case function simply returns a value and Common Test logs the test case as successful.

In scenario 2, an error is detected during test case execution which causes the test case B function to generate an
exception. This causes the test case process to exit with reason other than normal, and as a result, Common Test will
log this as an unsuccessful test case.

As you can understand from the illustration above, Common Test requires that a test case generates a runtime error
to indicate failure (e.g. by causing a bad match error or by calling exit/1, preferrably through the ct:fail/1,2
help function). A succesful execution is indicated by means of a normal return from the test case function.

1.2 Getting Started

6 | Ericsson AB. All Rights Reserved.: Common Test

1.2.3 A simple test suite
As you've seen in the basics chapter, the test suite module implements callback functions (mandatory or optional) for
various purposes, e.g:

• Init/end configuration function for the test suite

• Init/end configuration function for a test case

• Init/end configuration function for a test case group

• Test cases

The configuration functions are optional and if you don't need them for your test, a test suite with one simple test
case could look like this:

 -module(my1st_SUITE).
 -compile(export_all).

 all() ->
 [mod_exists].

 mod_exists(_) ->
 {module,mymod} = code:load_file(mymod).

In this example we check that the mymod module exists (i.e. can be successfully loaded by the code server). If the
operation fails, we will get a bad match error which terminates the test case.

1.2.4 A test suite with configuration functions
If we need to perform configuration operations in order to run our test, we implement configuration functions in our
suite. The result from a configuration function is configuration data, or simply Config. This is a list of key-value
tuples which get passed from the configuration function to the test cases (possibly through configuration functions on
"lower level"). The data flow looks like this:

1.2 Getting Started

Ericsson AB. All Rights Reserved.: Common Test | 7

Figure .2: Config data flow in the suite.

Here's an example of a test suite which uses configuration functions to open and close a log file for the test cases (an
operation that would be unnecessary and irrelevant to perform by each test case):

 -module(check_log_SUITE).
 -export([all/0, init_per_suite/1, end_per_suite/1]).
 -export([check_restart_result/1, check_no_errors/1]).

 -define(value(Key,Config), proplists:get_value(Key,Config)).

 all() -> [check_restart_result, check_no_errors].

 init_per_suite(InitConfigData) ->
 [{logref,open_log()} | InitConfigData].

1.2 Getting Started

8 | Ericsson AB. All Rights Reserved.: Common Test

 end_per_suite(ConfigData) ->
 close_log(?value(logref, ConfigData)).

 check_restart_result(ConfigData) ->
 TestData = read_log(restart, ?value(logref, ConfigData)),
 {match,_Line} = search_for("restart successful", TestData).

 check_no_errors(ConfigData) ->
 TestData = read_log(all, ?value(logref, ConfigData)),
 case search_for("error", TestData) of
 {match,Line} -> ct:fail({error_found_in_log,Line});
 nomatch -> ok
 end.

In this example we have test cases that verify, by parsing a log file, that our SUT has performed a successful restart
and that no unexpected errors have been printed.

To execute the test cases in the test suite above, we could type this on the Unix/Linux command line (assuming for
this example that the suite module is in the current working directory):

 $ ct_run -dir .

or

 $ ct_run -suite check_log_SUITE

If we want to use the Erlang shell to run our test, we could evaluate this call:

 1> ct:run_test([{dir, "."}]).

or

 1> ct:run_test([{suite, "check_log_SUITE"}]).

The result from running our test is printed in log files in HTML format (stored in unique log directories on different
level). This illustration shows the log file structure:

1.2 Getting Started

Ericsson AB. All Rights Reserved.: Common Test | 9

Figure .3: HTML log file structure.

1.2.5 What happens next?
Well, you might already be asking yourself questions such as:

• "How and where can I specify variable data for my tests that mustn't be hard-coded in the test suites (such
as host names, addresses, user login data, etc)?" The External Configuration Data chapter will give you that
information.

• "Is there a way to declare a number of different tests and run them in one session without having to write my
own scripts? And can such declarations be used for regression testing?" The Test Specifications chapter answers
these questions.

• "Can test cases and/or test runs be automatically repeated?" Learn more about Test Case Groups and also read
about start flags/options in the Running Tests chapter and the Reference Manual.

• "Will Common Test execute my test cases in sequence or in parallel?" The Test Case Groups section in the
Running Tests chapter will give you the answer.

• "What's the syntax for timetraps (mentioned above), and how do I set them?" This is explained in the Timetrap
Timeouts part of the Writing Test Suites chapter.

• "What functions are available for logging and printing?" Check the Logging section in the Writing Test Suites
chapter.

• "I need data files for my tests. Where do I store them preferrably?" You should read about Data and Private
Directories for information about this.

• "May I start with a test suite example, please?" Sure!

You will probably want to get started on your own first test suites now, while at the same time digging deeper into
the Common Test User's Guide and Reference Manual. You will find that there's lots more to learn about the things
that have been introduced in this chapter. You will of course also be presented many more useful features, such as
the ones listed above. Have fun!

1.3 Installation

10 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Installation
1.3.1 General information
The two main interfaces for running tests with Common Test are an executable program named ct_run and an erlang
module named ct. The ct_run program is compiled for the underlying operating system (e.g. Unix/Linux or Windows)
during the build of the Erlang/OTP system, and is installed automatically with other executable programs in the top
level bin directory of Erlang/OTP. The ct interface functions can be called from the Erlang shell, or from any Erlang
function, on any supported platform.

A legacy Bourne shell script - named run_test - exists, which may be manually generated and installed. This script may
be used instead of the ct_run program mentioned above, e.g. if the user wishes to modify or customize the Common
Test start flags in a simpler way than making changes to the ct_run C program.

The Common Test application is installed with the Erlang/OTP system and no additional installation step is required to
start using Common Test by means of the ct_run executable program, and/or the interface functions in the ct module.
If you wish to use the legacy Bourne shell script version run_test, however, this script needs to be generated first,
according to the instructions below.

Note:
Before reading on, please note that since Common Test version 1.5, the run_test shell script is no longer required
for starting tests with Common Test from the OS command line. The ct_run program (descibed above) is the new
recommended command line interface for Common Test. The shell script exists mainly for legacy reasons and
may not be updated in future releases of Common Test. It may even be removed.

Optional step to generate a shell script for starting Common Test:

To generate the run_test shell script, navigate to the common_test-<vsn> directory, located among the other OTP
applications (under the OTP lib directory). Here execute the install.sh script with argument local:

$./install.sh local

This generates the executable run_test script in the common_test-<vsn>/priv/bin directory. The script will
include absolute paths to the Common Test and Test Server application directories, so it's possible to copy or move the
script to a different location on the file system, if desired, without having to update it. It's of course possible to leave
the script under the priv/bin directory and update the PATH variable accordingly (or create a link or alias to it).

If you, for any reason, have copied Common Test and Test Server to a different location than the default OTP lib
directory, you can generate a run_test script with a different top level directory, simply by specifying the directory,
instead of local, when running install.sh. Example:

$ install.sh /usr/local/test_tools

Note that the common_test-<vsn> and test_server-<vsn> directories must be located under the same top
directory. Note also that the install script does not copy files or update environment variables. It only generates the
run_test script.

Whenever you install a new version of Erlang/OTP, the run_test script needs to be regenerated, or updated manually
with new directory names (new version numbers), for it to "see" the latest Common Test and Test Server versions.

1.4 Writing Test Suites
1.4.1 Support for test suite authors
The ct module provides the main interface for writing test cases. This includes e.g:

1.4 Writing Test Suites

Ericsson AB. All Rights Reserved.: Common Test | 11

• Functions for printing and logging

• Functions for reading configuration data

• Function for terminating a test case with error reason

• Function for adding comments to the HTML overview page

Please see the reference manual for the ct module for details about these functions.

The CT application also includes other modules named ct_<component> that provide various support, mainly
simplified use of communication protocols such as rpc, snmp, ftp, telnet, etc.

1.4.2 Test suites
A test suite is an ordinary Erlang module that contains test cases. It is recommended that the module has a name on
the form *_SUITE.erl. Otherwise, the directory and auto compilation function in CT will not be able to locate it
(at least not per default).

It is also recommended that the ct.hrl header file is included in all test suite modules.

Each test suite module must export the function all/0 which returns the list of all test case groups and test cases
to be executed in that module.

The callback functions that the test suite should implement, and which will be described in more detail below, are all
listed in the common_test reference manual page.

1.4.3 Init and end per suite
Each test suite module may contain the optional configuration functions init_per_suite/1 and
end_per_suite/1. If the init function is defined, so must the end function be.

If it exists, init_per_suite is called initially before the test cases are executed. It typically contains initializations
that are common for all test cases in the suite, and that are only to be performed once. It is recommended to be used
for setting up and verifying state and environment on the SUT (System Under Test) and/or the CT host node, so that
the test cases in the suite will execute correctly. Examples of initial configuration operations: Opening a connection
to the SUT, initializing a database, running an installation script, etc.

end_per_suite is called as the final stage of the test suite execution (after the last test case has finished). The
function is meant to be used for cleaning up after init_per_suite.

init_per_suite and end_per_suite will execute on dedicated Erlang processes, just like the test cases do.
The result of these functions is however not included in the test run statistics of successful, failed and skipped cases.

The argument to init_per_suite is Config, the same key-value list of runtime configuration data that each
test case takes as input argument. init_per_suite can modify this parameter with information that the test cases
need. The possibly modified Config list is the return value of the function.

If init_per_suite fails, all test cases in the test suite will be skipped automatically (so called auto skipped),
including end_per_suite.

Note that if init_per_suite and end_per_suite do not exist in the suite, Common Test calls dummy functions
(with the same names) instead, so that output generated by hook functions may be saved to the log files for these
dummies (see the Common Test Hooks chapter for more information).

1.4.4 Init and end per test case
Each test suite module can contain the optional configuration functions init_per_testcase/2 and
end_per_testcase/2. If the init function is defined, so must the end function be.

If it exists, init_per_testcase is called before each test case in the suite. It typically contains initialization which
must be done for each test case (analogue to init_per_suite for the suite).

1.4 Writing Test Suites

12 | Ericsson AB. All Rights Reserved.: Common Test

end_per_testcase/2 is called after each test case has finished, giving the opportunity to perform clean-up after
init_per_testcase.

The first argument to these functions is the name of the test case. This value can be used with pattern matching in
function clauses or conditional expressions to choose different initialization and cleanup routines for different test
cases, or perform the same routine for a number of, or all, test cases.

The second argument is the Config key-value list of runtime configuration data, which has the same value as the
list returned by init_per_suite. init_per_testcase/2 may modify this parameter or return it as is. The
return value of init_per_testcase/2 is passed as the Config parameter to the test case itself.

The return value of end_per_testcase/2 is ignored by the test server, with exception of the save_config and
fail tuple.

It is possible in end_per_testcase to check if the test case was successful or not (which consequently may
determine how cleanup should be performed). This is done by reading the value tagged with tc_status from
Config. The value is either ok, {failed,Reason} (where Reason is timetrap_timeout, info from
exit/1, or details of a run-time error), or {skipped,Reason} (where Reason is a user specific term).

The end_per_testcase/2 function is called even after a test case terminates due to a call to
ct:abort_current_testcase/1, or after a timetrap timeout. However, end_per_testcase will then
execute on a different process than the test case function, and in this situation, end_per_testcase will not be
able to change the reason for test case termination by returning {fail,Reason}, nor will it be able to save data
with {save_config,Data}.

If init_per_testcase crashes, the test case itself gets skipped automatically (so called auto skipped). If
init_per_testcase returns a tuple {skip,Reason}, also then the test case gets skipped (so called user
skipped). It is also possible, by returning a tuple {fail,Reason} from init_per_testcase, to mark the test
case as failed without actually executing it.

Note:
If init_per_testcase crashes, or returns {skip,Reason} or {fail,Reason}, the
end_per_testcase function is not called.

If it is determined during execution of end_per_testcase that the status of a successful test case should be
changed to failed, end_per_testcase may return the tuple: {fail,Reason} (where Reason describes why
the test case fails).

init_per_testcase and end_per_testcase execute on the same Erlang process as the test case and printouts
from these configuration functions can be found in the test case log file.

1.4.5 Test cases
The smallest unit that the test server is concerned with is a test case. Each test case can actually test many things, for
example make several calls to the same interface function with different parameters.

It is possible to choose to put many or few tests into each test case. What exactly each test case does is of course up
to the author, but here are some things to keep in mind:

Having many small test cases tend to result in extra, and possibly duplicated code, as well as slow test execution because
of large overhead for initializations and cleanups. Duplicated code should be avoided, e.g. by means of common help
functions, or the resulting suite will be difficult to read and understand, and expensive to maintain.

1.4 Writing Test Suites

Ericsson AB. All Rights Reserved.: Common Test | 13

Larger test cases make it harder to tell what went wrong if it fails, and large portions of test code will potentially be
skipped when errors occur. Furthermore, readability and maintainability suffers when test cases become too large and
extensive. Also, the resulting log files may not reflect very well the number of tests that have actually been performed.

The test case function takes one argument, Config, which contains configuration information such as data_dir
and priv_dir. (See Data and Private Directories for more information about these). The value of Config at the
time of the call, is the same as the return value from init_per_testcase, see above.

Note:
The test case function argument Config should not be confused with the information that can be retrieved
from configuration files (using ct:get_config/1/2). The Config argument should be used for runtime
configuration of the test suite and the test cases, while configuration files should typically contain data related to
the SUT. These two types of configuration data are handled differently!

Since the Config parameter is a list of key-value tuples, i.e. a data type generally called a property list, it can be
handled by means of the proplists module in the OTP stdlib. A value can for example be searched for and
returned with the proplists:get_value/2 function. Also, or alternatively, you might want to look in the general
lists module, also in stdlib, for useful functions. Normally, the only operations you ever perform on Config
is insert (adding a tuple to the head of the list) and lookup. Common Test provides a simple macro named ?config,
which returns a value of an item in Config given the key (exactly like proplists:get_value). Example:
PrivDir = ?config(priv_dir, Config).

If the test case function crashes or exits purposely, it is considered failed. If it returns a value (no matter what actual
value) it is considered successful. An exception to this rule is the return value {skip,Reason}. If this tuple is
returned, the test case is considered skipped and gets logged as such.

If the test case returns the tuple {comment,Comment}, the case is considered successful and Comment is printed
out in the overview log file. This is by the way equal to calling ct:comment(Comment).

1.4.6 Test case info function
For each test case function there can be an additional function with the same name but with no arguments. This is the
test case info function. The test case info function is expected to return a list of tagged tuples that specifies various
properties regarding the test case.

The following tags have special meaning:

timetrap

Set the maximum time the test case is allowed to execute. If the timetrap time is exceeded, the test case fails with
reason timetrap_timeout. Note that init_per_testcase and end_per_testcase are included in
the timetrap time. Please see the Timetrap section for more details.

userdata

Use this to specify arbitrary data related to the testcase. This data can be retrieved at any time using the
ct:userdata/3 utility function.

silent_connections

Please see the Silent Connections chapter for details.

require

Use this to specify configuration variables that are required by the test case. If the required configuration variables
are not found in any of the test system configuration files, the test case is skipped.

1.4 Writing Test Suites

14 | Ericsson AB. All Rights Reserved.: Common Test

It is also possible to give a required variable a default value that will be used if the variable
is not found in any configuration file. To specify a default value, add a tuple on the form:
{default_config,ConfigVariableName,Value} to the test case info list (the position in the list is
irrelevant). Examples:

 testcase1() ->
 [{require, ftp},
 {default_config, ftp, [{ftp, "my_ftp_host"},
 {username, "aladdin"},
 {password, "sesame"}]}}].

 testcase2() ->
 [{require, unix_telnet, unix},
 {require, {unix, [telnet, username, password]}},
 {default_config, unix, [{telnet, "my_telnet_host"},
 {username, "aladdin"},
 {password, "sesame"}]}}].

See the Config files chapter and the ct:require/1/2 function in the ct reference manual for more information
about require.

Note:
Specifying a default value for a required variable can result in a test case always getting executed. This might
not be a desired behaviour!

If timetrap and/or require is not set specifically for a particular test case, default values specified by the
suite/0 function are used.

Other tags than the ones mentioned above will simply be ignored by the test server.

Example of a test case info function:

 reboot_node() ->
 [
 {timetrap,{seconds,60}},
 {require,interfaces},
 {userdata,
 [{description,"System Upgrade: RpuAddition Normal RebootNode"},
 {fts,"http://someserver.ericsson.se/test_doc4711.pdf"}]}
].

1.4.7 Test suite info function
The suite/0 function can be used in a test suite module to e.g. set a default timetrap value and to require
external configuration data. If a test case-, or group info function also specifies any of the info tags, it overrides the
default values set by suite/0. See the test case info function above, and group info function below, for more details.

Other options that may be specified with the suite info list are:

• stylesheet, see HTML Style Sheets.

1.4 Writing Test Suites

Ericsson AB. All Rights Reserved.: Common Test | 15

• userdata, see Test case info function.

• silent_connections, see Silent Connections.

Example of the suite info function:

 suite() ->
 [
 {timetrap,{minutes,10}},
 {require,global_names},
 {userdata,[{info,"This suite tests database transactions."}]},
 {silent_connections,[telnet]},
 {stylesheet,"db_testing.css"}
].

1.4.8 Test case groups
A test case group is a set of test cases that share configuration functions and execution properties. Test case groups
are defined by means of the groups/0 function according to the following syntax:

 groups() -> GroupDefs

 Types:

 GroupDefs = [GroupDef]
 GroupDef = {GroupName,Properties,GroupsAndTestCases}
 GroupName = atom()
 GroupsAndTestCases = [GroupDef | {group,GroupName} | TestCase]
 TestCase = atom()

GroupName is the name of the group and should be unique within the test suite module. Groups may be nested,
and this is accomplished simply by including a group definition within the GroupsAndTestCases list of another
group. Properties is the list of execution properties for the group. The possible values are:

 Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
 Shuffle = shuffle | {shuffle,Seed}
 Seed = {integer(),integer(),integer()}
 RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
 repeat_until_any_ok | repeat_until_any_fail
 N = integer() | forever

If the parallel property is specified, Common Test will execute all test cases in the group in parallel. If sequence
is specified, the cases will be executed in a sequence, as described in the chapter Dependencies between test cases
and suites. If shuffle is specified, the cases in the group will be executed in random order. The repeat property
orders Common Test to repeat execution of the cases in the group a given number of times, or until any, or all, cases
fail or succeed.

Example:

 groups() -> [{group1, [parallel], [test1a,test1b]},
 {group2, [shuffle,sequence], [test2a,test2b,test2c]}].

1.4 Writing Test Suites

16 | Ericsson AB. All Rights Reserved.: Common Test

To specify in which order groups should be executed (also with respect to test cases that are not part of any group),
tuples on the form {group,GroupName} should be added to the all/0 list. Example:

 all() -> [testcase1, {group,group1}, testcase2, {group,group2}].

It is also possible to specify execution properties with a group tuple in all/0:
{group,GroupName,Properties}. These properties will override those specified in the group definition (see
groups/0 above). This way, it's possible to run the same set of tests, but with different properties, without having
to make copies of the group definition in question.

If a group contains sub-groups, the execution properties for these may also be specified in the
group tuple: {group,GroupName,Properties,SubGroups}, where SubGroups is a list of tuples,
{GroupName,Properties}, or {GroupName,Properties,SubGroups}, representing the sub-groups.
Any sub-groups defined in group/0 for a group, that are not specified in the SubGroups list, will simply execute
with their pre-defined properties.

Example:

 groups() -> {tests1, [], [{tests2, [], [t2a,t2b]},
 {tests3, [], [t31,t3b]}]}.

To execute group 'tests1' twice with different properties for 'tests2' each time:

 all() ->
 [{group, tests1, default, [{tests2, [parallel]}]},
 {group, tests1, default, [{tests2, [shuffle,{repeat,10}]}]}].

Note that this is equivalent to this specification:

 all() ->
 [{group, tests1, default, [{tests2, [parallel]},
 {tests3, default}]},
 {group, tests1, default, [{tests2, [shuffle,{repeat,10}]},
 {tests3, default}]}].

The value default states that the pre-defined properties should be used.

Here's an example of how to override properties in a scenario with deeply nested groups:

 groups() ->
 [{tests1, [], [{group, tests2}]},
 {tests2, [], [{group, tests3}]},
 {tests3, [{repeat,2}], [t3a,t3b,t3c]}].

 all() ->
 [{group, tests1, default,
 [{tests2, default,
 [{tests3, [parallel,{repeat,100}]}]}]}].

1.4 Writing Test Suites

Ericsson AB. All Rights Reserved.: Common Test | 17

The syntax described above may also be used in Test Specifications in order to change properties of groups at the time
of execution, without even having to edit the test suite (please see the Test Specifications chapter for more info).

As illustrated above, properties may be combined. If e.g. shuffle, repeat_until_any_fail and sequence
are all specified, the test cases in the group will be executed repeatedly, and in random order, until a test case fails.
Then execution is immediately stopped and the rest of the cases skipped.

Before execution of a group begins, the configuration function init_per_group(GroupName, Config) is
called. The list of tuples returned from this function is passed to the test cases in the usual manner by means of the
Config argument. init_per_group/2 is meant to be used for initializations common for the test cases in the
group. After execution of the group is finished, the end_per_group(GroupName, Config function is called.
This function is meant to be used for cleaning up after init_per_group/2.

Whenever a group is executed, if init_per_group and end_per_group do not exist in the suite, Common Test
calls dummy functions (with the same names) instead. Output generated by hook functions will be saved to the log
files for these dummies (see the Common Test Hooks chapter for more information).

Note:
init_per_testcase/2 and end_per_testcase/2 are always called for each individual test case, no
matter if the case belongs to a group or not.

The properties for a group is always printed on the top of the HTML log for init_per_group/2. Also, the total
execution time for a group can be found at the bottom of the log for end_per_group/2.

Test case groups may be nested so that sets of groups can be configured with the same init_per_group/2 and
end_per_group/2 functions. Nested groups may be defined by including a group definition, or a group name
reference, in the test case list of another group. Example:

 groups() -> [{group1, [shuffle], [test1a,
 {group2, [], [test2a,test2b]},
 test1b]},
 {group3, [], [{group,group4},
 {group,group5}]},
 {group4, [parallel], [test4a,test4b]},
 {group5, [sequence], [test5a,test5b,test5c]}].

In the example above, if all/0 would return group name references in this order: [{group,group1},
{group,group3}], the order of the configuration functions and test cases will be the following (note that
init_per_testcase/2 and end_per_testcase/2: are also always called, but not included in this example
for simplification):

- init_per_group(group1, Config) -> Config1 (*)

-- test1a(Config1)

-- init_per_group(group2, Config1) -> Config2

--- test2a(Config2), test2b(Config2)

-- end_per_group(group2, Config2)

-- test1b(Config1)

1.4 Writing Test Suites

18 | Ericsson AB. All Rights Reserved.: Common Test

- end_per_group(group1, Config1)

- init_per_group(group3, Config) -> Config3

-- init_per_group(group4, Config3) -> Config4

--- test4a(Config4), test4b(Config4) (**)

-- end_per_group(group4, Config4)

-- init_per_group(group5, Config3) -> Config5

--- test5a(Config5), test5b(Config5), test5c(Config5)

-- end_per_group(group5, Config5)

- end_per_group(group3, Config3)

 (*) The order of test case test1a, test1b and group2 is not actually
 defined since group1 has a shuffle property.

 (**) These cases are not executed in order, but in parallel.

Properties are not inherited from top level groups to nested sub-groups. E.g, in the example above, the test cases in
group2 will not be executed in random order (which is the property of group1).

1.4.9 The parallel property and nested groups
If a group has a parallel property, its test cases will be spawned simultaneously and get executed in parallel. A test
case is not allowed to execute in parallel with end_per_group/2 however, which means that the time it takes to
execute a parallel group is equal to the execution time of the slowest test case in the group. A negative side effect of
running test cases in parallel is that the HTML summary pages are not updated with links to the individual test case
logs until the end_per_group/2 function for the group has finished.

A group nested under a parallel group will start executing in parallel with previous (parallel) test cases (no matter what
properties the nested group has). Since, however, test cases are never executed in parallel with init_per_group/2
or end_per_group/2 of the same group, it's only after a nested group has finished that any remaining parallel
cases in the previous group get spawned.

1.4.10 Parallel test cases and IO
A parallel test case has a private IO server as its group leader. (Please see the Erlang Run-Time System Application
documentation for a description of the group leader concept). The central IO server process that handles the output
from regular test cases and configuration functions, does not respond to IO messages during execution of parallel
groups. This is important to understand in order to avoid certain traps, like this one:

If a process, P, is spawned during execution of e.g. init_per_suite/1, it will inherit the group leader of the
init_per_suite process. This group leader is the central IO server process mentioned above. If, at a later time,
during parallel test case execution, some event triggers process P to call io:format/1/2, that call will never return
(since the group leader is in a non-responsive state) and cause P to hang.

1.4.11 Repeated groups
A test case group may be repeated a certain number of times (specified by an integer) or indefinitely (specified
by forever). The repetition may also be stopped prematurely if any or all cases fail or succeed, i.e.
if the property repeat_until_any_fail, repeat_until_any_ok, repeat_until_all_fail, or

1.4 Writing Test Suites

Ericsson AB. All Rights Reserved.: Common Test | 19

repeat_until_all_ok is used. If the basic repeat property is used, status of test cases is irrelevant for the
repeat operation.

It is possible to return the status of a sub-group (ok or failed), to affect the execution of the group on the level above. This
is accomplished by, in end_per_group/2, looking up the value of tc_group_properties in the Config
list and checking the result of the test cases in the group. If status failed should be returned from the group as a
result, end_per_group/2 should return the value {return_group_result,failed}. The status of a sub-
group is taken into account by Common Test when evaluating if execution of a group should be repeated or not (unless
the basic repeat property is used).

The tc_group_properties value is a list of status tuples, each with the key ok, skipped and failed. The
value of a status tuple is a list containing names of test cases that have been executed with the corresponding status
as result.

Here's an example of how to return the status from a group:

 end_per_group(_Group, Config) ->
 Status = ?config(tc_group_result, Config),
 case proplists:get_value(failed, Status) of
 [] -> % no failed cases
 {return_group_result,ok};
 _Failed -> % one or more failed
 {return_group_result,failed}
 end.

It is also possible in end_per_group/2 to check the status of a sub-group (maybe to determine what status the
current group should also return). This is as simple as illustrated in the example above, only the name of the group is
stored in a tuple {group_result,GroupName}, which can be searched for in the status lists. Example:

 end_per_group(group1, Config) ->
 Status = ?config(tc_group_result, Config),
 Failed = proplists:get_value(failed, Status),
 case lists:member({group_result,group2}, Failed) of
 true ->
 {return_group_result,failed};
 false ->
 {return_group_result,ok}
 end;
 ...

Note:
When a test case group is repeated, the configuration functions, init_per_group/2 and
end_per_group/2, are also always called with each repetition.

1.4.12 Shuffled test case order
The order that test cases in a group are executed, is under normal circumstances the same as the order specified in the
test case list in the group definition. With the shuffle property set, however, Common Test will instead execute
the test cases in random order.

The user may provide a seed value (a tuple of three integers) with the shuffle property: {shuffle,Seed}. This
way, the same shuffling order can be created every time the group is executed. If no seed value is given, Common

1.4 Writing Test Suites

20 | Ericsson AB. All Rights Reserved.: Common Test

Test creates a "random" seed for the shuffling operation (using the return value of erlang:now()). The seed value
is always printed to the init_per_group/2 log file so that it can be used to recreate the same execution order
in a subsequent test run.

Note:
If a shuffled test case group is repeated, the seed will not be reset in between turns.

If a sub-group is specified in a group with a shuffle property, the execution order of this sub-group in relation to the
test cases (and other sub-groups) in the group, is also random. The order of the test cases in the sub-group is however
not random (unless, of course, the sub-group also has a shuffle property).

1.4.13 Group info function
The test case group info function, group(GroupName), serves the same purpose as the suite- and test case info
functions previously described in this chapter. The scope for the group info, however, is all test cases and sub-groups
in the group in question (GroupName).

Example:

 group(connection_tests) ->
 [{require,login_data},
 {timetrap,1000}].

The group info properties override those set with the suite info function, and may in turn be overridden by test case info
properties. Please see the test case info function above for a list of valid info properties and more general information.

1.4.14 Info functions for init- and end-configuration
It is possible to use info functions also for the init_per_suite, end_per_suite, init_per_group, and
end_per_group functions, and it works the same way as with info functions for test cases (see above). This is
useful e.g. for setting timetraps and requiring external configuration data relevant only for the configuration function
in question (without affecting properties set for groups and test cases in the suite).

The info function init/end_per_suite() is called for init/end_per_suite(Config), and info function
init/end_per_group(GroupName) is called for init/end_per_group(GroupName,Config). Info
functions can not be used with init/end_per_testcase(TestCase, Config), however, since these
configuration functions execute on the test case process and will use the same properties as the test case (i.e. the
properties set by the test case info function, TestCase()). Please see the test case info function above for a list of
valid info properties and more general information.

1.4.15 Data and Private Directories
The data directory, data_dir, is the directory where the test module has its own files needed for the
testing. The name of the data_dir is the the name of the test suite followed by "_data". For example,
"some_path/foo_SUITE.beam" has the data directory "some_path/foo_SUITE_data/". Use this
directory for portability, i.e. to avoid hardcoding directory names in your suite. Since the data directory is stored in
the same directory as your test suite, you should be able to rely on its existence at runtime, even if the path to your test
suite directory has changed between test suite implementation and execution.

1.4 Writing Test Suites

Ericsson AB. All Rights Reserved.: Common Test | 21

priv_dir is the private directory for the test cases. This directory may be used whenever a test case (or configuration
function) needs to write something to file. The name of the private directory is generated by Common Test, which
also creates the directory.

By default, Common Test creates one central private directory per test run that all test cases share. This may not
always be suitable, especially if the same test cases are executed multiple times during a test run (e.g. if they belong
to a test case group with repeat property), and there's a risk that files in the private directory get overwritten. Under
these circumstances, it's possible to configure Common Test to create one dedicated private directory per test case
and execution instead. This is accomplished by means of the flag/option: create_priv_dir (to be used with the
ct_run program, the ct:run_test/1 function, or as test specification term). There are three possible values for
this option:

• auto_per_run

• auto_per_tc

• manual_per_tc

The first value indicates the default priv_dir behaviour, i.e. one private directory created per test run. The two latter
values tell Common Test to generate a unique test directory name per test case and execution. If the auto version is
used, all private directories will be created automatically. This can obviously become very inefficient for test runs
with many test cases and/or repetitions. Therefore, in case the manual version is instead used, the test case must tell
Common Test to create priv_dir when it needs it. It does this by calling the function ct:make_priv_dir/0.

Note:
You should not depend on current working directory for reading and writing data files since this is not portable.
All scratch files are to be written in the priv_dir and all data files should be located in data_dir. Note also
that the Common Test server sets current working directory to the test case log directory at the start of every case.

1.4.16 Execution environment
Each test case is executed by a dedicated Erlang process. The process is spawned when the test case
starts, and terminated when the test case is finished. The configuration functions init_per_testcase and
end_per_testcase execute on the same process as the test case.

The configuration functions init_per_suite and end_per_suite execute, like test cases, on dedicated Erlang
processes.

1.4.17 Timetrap timeouts
The default time limit for a test case is 30 minutes, unless a timetrap is specified either by the suite-, group-,
or test case info function. The timetrap timeout value defined by suite/0 is the value that will be used for each
test case in the suite (as well as for the configuration functions init_per_suite/1, end_per_suite/1,
init_per_group/2, and end_per_group/2). A timetrap value defined by group(GroupName) overrides
one defined by suite() and will be used for each test case in group GroupName, and any of its sub-groups. If a
timetrap value is defined by group/1 for a sub-group, it overrides that of its higher level groups. Timetrap values
set by individual test cases (by means of the test case info function) override both group- and suite- level timetraps.

It is also possible to dynamically set/reset a timetrap during the excution of a test case, or configuration function. This
is done by calling ct:timetrap/1. This function cancels the current timetrap and starts a new one (that stays active
until timeout, or end of the current function).

Timetrap values can be extended with a multiplier value specified at startup with the multiply_timetraps
option. It is also possible to let the test server decide to scale up timetrap timeout values automatically, e.g. if tools

1.4 Writing Test Suites

22 | Ericsson AB. All Rights Reserved.: Common Test

such as cover or trace are running during the test. This feature is disabled by default and can be enabled with the
scale_timetraps start option.

If a test case needs to suspend itself for a time that also gets multipled by multiply_timetraps (and possibly
also scaled up if scale_timetraps is enabled), the function ct:sleep/1 may be used (instead of e.g.
timer:sleep/1).

A function (fun/0 or MFA) may be specified as timetrap value in the suite-, group- and test case info function, as
well as argument to the ct:timetrap/1 function. Examples:

{timetrap,{my_test_utils,timetrap,[?MODULE,system_start]}}

ct:timetrap(fun() -> my_timetrap(TestCaseName, Config) end)

The user timetrap function may be used for two things:

• To act as a timetrap - the timeout is triggered when the function returns.

• To return a timetrap time value (other than a function).

Before execution of the timetrap function (which is performed on a parallel, dedicated timetrap process), Common
Test cancels any previously set timer for the test case or configuration function. When the timetrap function
returns, the timeout is triggered, unless the return value is a valid timetrap time, such as an integer, or a
{SecMinOrHourTag,Time} tuple (see the common_test reference manual for details). If a time value is returned,
a new timetrap is started to generate a timeout after the specified time.

The user timetrap function may of course return a time value after a delay, and if so, the effective timetrap time is
the delay time plus the returned time.

1.4.18 Logging - categories and verbosity levels
Common Test provides three main functions for printing strings:

• ct:log(Category, Importance, Format, Args)

• ct:print(Category, Importance, Format, Args)

• ct:pal(Category, Importance, Format, Args)

The log/1/2/3/4 function will print a string to the test case log file. The print/1/2/3/4 function will print
the string to screen, and the pal/1/2/3/4 function will print the same string both to file and screen. (The functions
are documented in the ct reference manual).

The optional Category argument may be used to categorize the log printout, and categories can be used for two
things:

• To compare the importance of the printout to a specific verbosity level, and

• to format the printout according to a user specific HTML Style Sheet (CSS).

The Importance argument specifies a level of importance which, compared to a verbosity level (general and/or set
per category), determines if the printout should be visible or not. Importance is an arbitrary integer in the range
0..99. Pre-defined constants exist in the ct.hrl header file. The default importance level, ?STD_IMPORTANCE
(used if the Importance argument is not provided), is 50. This is also the importance used for standard IO, e.g. from
printouts made with io:format/2, io:put_chars/1, etc.

Importance is compared to a verbosity level set by means of the verbosity start flag/option. The verbosity
level can be set per category and/or generally. The default verbosity level, ?STD_VERBOSITY, is 50, i.e. all standard
IO gets printed. If a lower verbosity level is set, standard IO printouts will be ignored. Common Test performs the
following test:

Importance >= (100-VerbosityLevel)

1.4 Writing Test Suites

Ericsson AB. All Rights Reserved.: Common Test | 23

This also means that verbosity level 0 effectively turns all logging off (with the exception of printouts made by
Common Test itself).

The general verbosity level is not associated with any particular category. This level sets the threshold for the standard
IO printouts, uncategorized ct:log/print/pal printouts, as well as printouts for categories with undefined
verbosity level.

Example:

 Some printouts during test case execution:

 io:format("1. Standard IO, importance = ~w~n", [?STD_IMPORTANCE]),
 ct:log("2. Uncategorized, importance = ~w", [?STD_IMPORTANCE]),
 ct:log(info, "3. Categorized info, importance = ~w", [?STD_IMPORTANCE]]),
 ct:log(info, ?LOW_IMPORTANCE, "4. Categorized info, importance = ~w", [?LOW_IMPORTANCE]),
 ct:log(error, "5. Categorized error, importance = ~w", [?HI_IMPORTANCE]),
 ct:log(error, ?HI_IMPORTANCE, "6. Categorized error, importance = ~w", [?MAX_IMPORTANCE]),

 If starting the test without specifying any verbosity levels:

 $ ct_run ...

 the following gets printed:

 1. Standard IO, importance = 50
 2. Uncategorized, importance = 50
 3. Categorized info, importance = 50
 5. Categorized error, importance = 75
 6. Categorized error, importance = 99

 If starting the test with:

 $ ct_run -verbosity 1 and info 75

 the following gets printed:

 3. Categorized info, importance = 50
 4. Categorized info, importance = 25
 6. Categorized error, importance = 99

How categories can be mapped to CSS tags is documented in the Running Tests chapter.

The Format and Args arguments in ct:log/print/pal are always passed on to the io:format/3 function
in stdlib (please see the io manual page for details).

For more information about log files, please see the Running Tests chapter.

1.4.19 Illegal dependencies
Even though it is highly efficient to write test suites with the Common Test framework, there will surely be mistakes
made, mainly due to illegal dependencies. Noted below are some of the more frequent mistakes from our own
experience with running the Erlang/OTP test suites.

• Depending on current directory, and writing there:

This is a common error in test suites. It is assumed that the current directory is the same as what the author used as
current directory when the test case was developed. Many test cases even try to write scratch files to this directory.
Instead data_dir and priv_dir should be used to locate data and for writing scratch files.

• Depending on execution order:

1.5 Test Structure

24 | Ericsson AB. All Rights Reserved.: Common Test

During development of test suites, no assumption should preferrably be made about the execution order of the
test cases or suites. E.g. a test case should not assume that a server it depends on, has already been started by a
previous test case. There are several reasons for this:

Firstly, the user/operator may specify the order at will, and maybe a different execution order is more relevant
or efficient on some particular occasion. Secondly, if the user specifies a whole directory of test suites for his/
her test, the order the suites are executed will depend on how the files are listed by the operating system, which
varies between systems. Thirdly, if a user wishes to run only a subset of a test suite, there is no way one test case
could successfully depend on another.

• Depending on Unix:

Running unix commands through os:cmd are likely not to work on non-unix platforms.

• Nested test cases:

Invoking a test case from another not only tests the same thing twice, but also makes it harder to follow what
exactly is being tested. Also, if the called test case fails for some reason, so will the caller. This way one error
gives cause to several error reports, which is less than ideal.

Functionality common for many test case functions may be implemented in common help functions. If these
functions are useful for test cases across suites, put the help functions into common help modules.

• Failure to crash or exit when things go wrong:

Making requests without checking that the return value indicates success may be ok if the test case will fail at a
later stage, but it is never acceptable just to print an error message (into the log file) and return successfully. Such
test cases do harm since they create a false sense of security when overviewing the test results.

• Messing up for subsequent test cases:

Test cases should restore as much of the execution environment as possible, so that the subsequent test cases will
not crash because of execution order of the test cases. The function end_per_testcase is suitable for this.

1.5 Test Structure
1.5.1 Test structure
A test is performed by running one or more test suites. A test suite consists of test cases (as well as configuration
functions and info functions). Test cases may be grouped in so called test case groups. A test suite is an Erlang module
and test cases are implemented as Erlang functions. Test suites are stored in test directories.

1.5.2 Skipping test cases
It is possible to skip certain test cases, for example if you know beforehand that a specific test case fails. This might be
functionality which isn't yet implemented, a bug that is known but not yet fixed or some functionality which doesn't
work or isn't applicable on a specific platform.

There are several different ways to state that one or more test cases should be skipped:

• Using skip_suites and skip_cases terms in test specifications.

• Returning {skip,Reason} from the init_per_testcase/2 or init_per_suite/1 functions.

• Returning {skip,Reason} from the execution clause of the test case.

The latter of course means that the execution clause is actually called, so the author must make sure that the test case
does not run.

When a test case is skipped, it will be noted as SKIPPED in the HTML log.

1.5 Test Structure

Ericsson AB. All Rights Reserved.: Common Test | 25

1.5.3 Definition of terms
Auto skipped test case

When a configuration function fails (i.e. terminates unexpectedly), the test cases that depend on the
configuration function will be skipped automatically by Common Test. The status of the test cases is then "auto
skipped". Test cases are also auto skipped by Common Test if required configuration data is not available at
runtime.

Configuration function
A function in a test suite that is meant to be used for setting up, cleaning up, and/or verifying the state and
environment on the SUT (System Under Test) and/or the Common Test host node, so that a test case (or a set
of test cases) can execute correctly.

Configuration file
A file that contains data related to a test and/or an SUT (System Under Test), e.g. protocol server addresses,
client login details, hardware interface addresses, etc - any data that should be handled as variable in the suite
and not be hardcoded.

Configuration variable
A name (an Erlang atom) associated with a data value read from a configuration file.

data_dir
Data directory for a test suite. This directory contains any files used by the test suite, e.g. additional Erlang
modules, binaries or data files.

Info function
A function in a test suite that returns a list of properties (read by the Common Test server) that describes the
conditions for executing the test cases in the suite.

Major log file
An overview and summary log file for one or more test suites.

Minor log file
A log file for one particular test case. Also called the test case log file.

priv_dir
Private directory for a test suite. This directory should be used when the test suite needs to write to files.

ct_run
The name of an executable program that may be used as an interface for specifying and running tests with
Common Test.

Test case
A single test included in a test suite. A test case is implemented as a function in a test suite module.

Test case group
A set of test cases that share configuration functions and execution properties. The execution properties specify
whether the test cases in the group should be executed in random order, in parallel, in sequence, and if the
execution of the group should be repeated. Test case groups may also be nested (i.e. a group may, besides test
cases, contain sub-groups).

Test suite
An erlang module containing a collection of test cases for a specific functional area.

Test directory
A directory that contains one or more test suite modules, i.e. a group of test suites.

The Config argument
A list of key-value tuples (i.e. a property list) containing runtime configuration data passed from the
configuration functions to the test cases.

User skipped test case
This is the status of a test case that has been explicitly skipped in any of the ways described in the "Skipping
test cases" section above.

1.6 Examples and Templates

26 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Examples and Templates
1.6.1 Test suite example
This example test suite shows some tests of a database server.

-module(db_data_type_SUITE).

-include_lib("common_test/include/ct.hrl").

%% Test server callbacks
-export([suite/0, all/0,
 init_per_suite/1, end_per_suite/1,
 init_per_testcase/2, end_per_testcase/2]).

%% Test cases
-export([string/1, integer/1]).

-define(CONNECT_STR, "DSN=sqlserver;UID=alladin;PWD=sesame").

%%--
%% COMMON TEST CALLBACK FUNCTIONS
%%--

%%--
%% Function: suite() -> Info
%%
%% Info = [tuple()]
%% List of key/value pairs.
%%
%% Description: Returns list of tuples to set default properties
%% for the suite.
%%--
suite() ->
 [{timetrap,{minutes,1}}].

%%--
%% Function: init_per_suite(Config0) -> Config1
%%
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%%
%% Description: Initialization before the suite.
%%--
init_per_suite(Config) ->
 {ok, Ref} = db:connect(?CONNECT_STR, []),
 TableName = db_lib:unique_table_name(),
 [{con_ref, Ref },{table_name, TableName}| Config].

%%--
%% Function: end_per_suite(Config) -> void()
%%
%% Config = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%%
%% Description: Cleanup after the suite.
%%--
end_per_suite(Config) ->
 Ref = ?config(con_ref, Config),
 db:disconnect(Ref),
 ok.

1.6 Examples and Templates

Ericsson AB. All Rights Reserved.: Common Test | 27

%%--
%% Function: init_per_testcase(TestCase, Config0) -> Config1
%%
%% TestCase = atom()
%% Name of the test case that is about to run.
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%%
%% Description: Initialization before each test case.
%%--
init_per_testcase(Case, Config) ->
 Ref = ?config(con_ref, Config),
 TableName = ?config(table_name, Config),
 ok = db:create_table(Ref, TableName, table_type(Case)),
 Config.

%%--
%% Function: end_per_testcase(TestCase, Config) -> void()
%%
%% TestCase = atom()
%% Name of the test case that is finished.
%% Config = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%%
%% Description: Cleanup after each test case.
%%--
end_per_testcase(_Case, Config) ->
 Ref = ?config(con_ref, Config),
 TableName = ?config(table_name, Config),
 ok = db:delete_table(Ref, TableName),
 ok.

%%--
%% Function: all() -> GroupsAndTestCases
%%
%% GroupsAndTestCases = [{group,GroupName} | TestCase]
%% GroupName = atom()
%% Name of a test case group.
%% TestCase = atom()
%% Name of a test case.
%%
%% Description: Returns the list of groups and test cases that
%% are to be executed.
%%--
all() ->
 [string, integer].

%%--
%% TEST CASES
%%--

string(Config) ->
 insert_and_lookup(dummy_key, "Dummy string", Config).

integer(Config) ->
 insert_and_lookup(dummy_key, 42, Config).

insert_and_lookup(Key, Value, Config) ->
 Ref = ?config(con_ref, Config),
 TableName = ?config(table_name, Config),
 ok = db:insert(Ref, TableName, Key, Value),
 [Value] = db:lookup(Ref, TableName, Key),
 ok = db:delete(Ref, TableName, Key),

1.6 Examples and Templates

28 | Ericsson AB. All Rights Reserved.: Common Test

 [] = db:lookup(Ref, TableName, Key),
 ok.

1.6.2 Test suite templates
The Erlang mode for the Emacs editor includes two Common Test test suite templates, one with extensive information
in the function headers, and one with minimal information. A test suite template provides a quick start for implementing
a suite from scratch and gives you a good overview of the available callback functions. Here are the templates in
question:

Large Common Test suite

%%%---
%%% File : example_SUITE.erl
%%% Author :
%%% Description :
%%%
%%% Created :
%%%---
-module(example_SUITE).

%% Note: This directive should only be used in test suites.
-compile(export_all).

-include_lib("common_test/include/ct.hrl").

%%--
%% COMMON TEST CALLBACK FUNCTIONS
%%--

%%--
%% Function: suite() -> Info
%%
%% Info = [tuple()]
%% List of key/value pairs.
%%
%% Description: Returns list of tuples to set default properties
%% for the suite.
%%
%% Note: The suite/0 function is only meant to be used to return
%% default data values, not perform any other operations.
%%--
suite() ->
 [{timetrap,{minutes,10}}].

%%--
%% Function: init_per_suite(Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%%
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%% Reason = term()
%% The reason for skipping the suite.
%%
%% Description: Initialization before the suite.
%%
%% Note: This function is free to add any key/value pairs to the Config
%% variable, but should NOT alter/remove any existing entries.
%%--
init_per_suite(Config) ->

1.6 Examples and Templates

Ericsson AB. All Rights Reserved.: Common Test | 29

 Config.

%%--
%% Function: end_per_suite(Config0) -> void() | {save_config,Config1}
%%
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%%
%% Description: Cleanup after the suite.
%%--
end_per_suite(_Config) ->
 ok.

%%--
%% Function: init_per_group(GroupName, Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%%
%% GroupName = atom()
%% Name of the test case group that is about to run.
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding configuration data for the group.
%% Reason = term()
%% The reason for skipping all test cases and subgroups in the group.
%%
%% Description: Initialization before each test case group.
%%--
init_per_group(_GroupName, Config) ->
 Config.

%%--
%% Function: end_per_group(GroupName, Config0) ->
%% void() | {save_config,Config1}
%%
%% GroupName = atom()
%% Name of the test case group that is finished.
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding configuration data for the group.
%%
%% Description: Cleanup after each test case group.
%%--
end_per_group(_GroupName, _Config) ->
 ok.

%%--
%% Function: init_per_testcase(TestCase, Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%%
%% TestCase = atom()
%% Name of the test case that is about to run.
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%% Reason = term()
%% The reason for skipping the test case.
%%
%% Description: Initialization before each test case.
%%
%% Note: This function is free to add any key/value pairs to the Config
%% variable, but should NOT alter/remove any existing entries.
%%--
init_per_testcase(_TestCase, Config) ->
 Config.

%%--
%% Function: end_per_testcase(TestCase, Config0) ->
%% void() | {save_config,Config1} | {fail,Reason}

1.6 Examples and Templates

30 | Ericsson AB. All Rights Reserved.: Common Test

%%
%% TestCase = atom()
%% Name of the test case that is finished.
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%% Reason = term()
%% The reason for failing the test case.
%%
%% Description: Cleanup after each test case.
%%--
end_per_testcase(_TestCase, _Config) ->
 ok.

%%--
%% Function: groups() -> [Group]
%%
%% Group = {GroupName,Properties,GroupsAndTestCases}
%% GroupName = atom()
%% The name of the group.
%% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
%% Group properties that may be combined.
%% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
%% TestCase = atom()
%% The name of a test case.
%% Shuffle = shuffle | {shuffle,Seed}
%% To get cases executed in random order.
%% Seed = {integer(),integer(),integer()}
%% RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
%% repeat_until_any_ok | repeat_until_any_fail
%% To get execution of cases repeated.
%% N = integer() | forever
%%
%% Description: Returns a list of test case group definitions.
%%--
groups() ->
 [].

%%--
%% Function: all() -> GroupsAndTestCases | {skip,Reason}
%%
%% GroupsAndTestCases = [{group,GroupName} | TestCase]
%% GroupName = atom()
%% Name of a test case group.
%% TestCase = atom()
%% Name of a test case.
%% Reason = term()
%% The reason for skipping all groups and test cases.
%%
%% Description: Returns the list of groups and test cases that
%% are to be executed.
%%--
all() ->
 [my_test_case].

%%--
%% TEST CASES
%%--

%%--
%% Function: TestCase() -> Info
%%
%% Info = [tuple()]
%% List of key/value pairs.
%%

1.6 Examples and Templates

Ericsson AB. All Rights Reserved.: Common Test | 31

%% Description: Test case info function - returns list of tuples to set
%% properties for the test case.
%%
%% Note: This function is only meant to be used to return a list of
%% values, not perform any other operations.
%%--
my_test_case() ->
 [].

%%--
%% Function: TestCase(Config0) ->
%% ok | exit() | {skip,Reason} | {comment,Comment} |
%% {save_config,Config1} | {skip_and_save,Reason,Config1}
%%
%% Config0 = Config1 = [tuple()]
%% A list of key/value pairs, holding the test case configuration.
%% Reason = term()
%% The reason for skipping the test case.
%% Comment = term()
%% A comment about the test case that will be printed in the html log.
%%
%% Description: Test case function. (The name of it must be specified in
%% the all/0 list or in a test case group for the test case
%% to be executed).
%%--
my_test_case(_Config) ->
 ok.

Small Common Test suite

%%%---
%%% File : example_SUITE.erl
%%% Author :
%%% Description :
%%%
%%% Created :
%%%---
-module(example_SUITE).

-compile(export_all).

-include_lib("common_test/include/ct.hrl").

%%--
%% Function: suite() -> Info
%% Info = [tuple()]
%%--
suite() ->
 [{timetrap,{seconds,30}}].

%%--
%% Function: init_per_suite(Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%% Config0 = Config1 = [tuple()]
%% Reason = term()
%%--
init_per_suite(Config) ->
 Config.

%%--
%% Function: end_per_suite(Config0) -> void() | {save_config,Config1}
%% Config0 = Config1 = [tuple()]

1.6 Examples and Templates

32 | Ericsson AB. All Rights Reserved.: Common Test

%%--
end_per_suite(_Config) ->
 ok.

%%--
%% Function: init_per_group(GroupName, Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%% GroupName = atom()
%% Config0 = Config1 = [tuple()]
%% Reason = term()
%%--
init_per_group(_GroupName, Config) ->
 Config.

%%--
%% Function: end_per_group(GroupName, Config0) ->
%% void() | {save_config,Config1}
%% GroupName = atom()
%% Config0 = Config1 = [tuple()]
%%--
end_per_group(_GroupName, _Config) ->
 ok.

%%--
%% Function: init_per_testcase(TestCase, Config0) ->
%% Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
%% TestCase = atom()
%% Config0 = Config1 = [tuple()]
%% Reason = term()
%%--
init_per_testcase(_TestCase, Config) ->
 Config.

%%--
%% Function: end_per_testcase(TestCase, Config0) ->
%% void() | {save_config,Config1} | {fail,Reason}
%% TestCase = atom()
%% Config0 = Config1 = [tuple()]
%% Reason = term()
%%--
end_per_testcase(_TestCase, _Config) ->
 ok.

%%--
%% Function: groups() -> [Group]
%% Group = {GroupName,Properties,GroupsAndTestCases}
%% GroupName = atom()
%% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
%% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
%% TestCase = atom()
%% Shuffle = shuffle | {shuffle,{integer(),integer(),integer()}}
%% RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
%% repeat_until_any_ok | repeat_until_any_fail
%% N = integer() | forever
%%--
groups() ->
 [].

%%--
%% Function: all() -> GroupsAndTestCases | {skip,Reason}
%% GroupsAndTestCases = [{group,GroupName} | TestCase]
%% GroupName = atom()
%% TestCase = atom()
%% Reason = term()
%%--

1.7 Running Tests

Ericsson AB. All Rights Reserved.: Common Test | 33

all() ->
 [my_test_case].

%%--
%% Function: TestCase() -> Info
%% Info = [tuple()]
%%--
my_test_case() ->
 [].

%%--
%% Function: TestCase(Config0) ->
%% ok | exit() | {skip,Reason} | {comment,Comment} |
%% {save_config,Config1} | {skip_and_save,Reason,Config1}
%% Config0 = Config1 = [tuple()]
%% Reason = term()
%% Comment = term()
%%--
my_test_case(_Config) ->
 ok.

1.7 Running Tests
1.7.1 Using the Common Test Framework
The Common Test Framework provides a high level operator interface for testing. It adds the following features to
the Erlang/OTP Test Server:

• Automatic compilation of test suites (and help modules).

• Creation of additional HTML pages for better overview.

• Single command interface for running all available tests.

• Handling of configuration files specifying data related to the System Under Test (and any other variable data).

• Mode for running multiple independent test sessions in parallel with central control and configuration.

1.7.2 Automatic compilation of test suites and help modules
When Common Test starts, it will automatically attempt to compile any suites included in the specified tests. If
particular suites have been specified, only those suites will be compiled. If a particular test object directory has been
specified (meaning all suites in this directory should be part of the test), Common Test runs make:all/1 in the directory
to compile the suites.

If compilation should fail for one or more suites, the compilation errors are printed to tty and the operator is asked if
the test run should proceed without the missing suites, or be aborted. If the operator chooses to proceed, it is noted
in the HTML log which tests have missing suites.

Any help module (i.e. regular Erlang module with name not ending with "_SUITE") that resides in the same test object
directory as a suite which is part of the test, will also be automatically compiled. A help module will not be mistaken
for a test suite (unless it has a "_SUITE" name of course). All help modules in a particular test object directory are
compiled no matter if all or only particular suites in the directory are part of the test.

If test suites or help modules include header files stored in other locations than the test directory, you may specify these
include directories by means of the -include flag with ct_run, or the include option with ct:run_test/1.
In addition to this, an include path may be specified with an OS environment variable; CT_INCLUDE_PATH. Example
(bash):

$ export CT_INCLUDE_PATH=~testuser/common_suite_files/include:~testuser/
common_lib_files/include

1.7 Running Tests

34 | Ericsson AB. All Rights Reserved.: Common Test

Common Test will pass all include directories (specified either with the include flag/option, or the
CT_INCLUDE_PATH variable, or both) to the compiler.

It is also possible to specify include directories in test specifications (see below).

If the user wants to run all test suites for a test object (or OTP application) by specifying only the top directory (e.g.
with the dir start flag/option), Common Test will primarily look for test suite modules in a subdirectory named test.
If this subdirectory doesn't exist, the specified top directory is assumed to be the actual test directory, and test suites
will be read from there instead.

It is possible to disable the automatic compilation feature by using the -no_auto_compile flag with ct_run, or
the {auto_compile,false} option with ct:run_test/1. With automatic compilation disabled, the user is
responsible for compiling the test suite modules (and any help modules) before the test run. If the modules can not
be loaded from the local file system during startup of Common Test, the user needs to pre-load the modules before
starting the test. Common Test will only verify that the specified test suites exist (i.e. that they are, or can be, loaded).
This is useful e.g. if the test suites are transferred and loaded as binaries via RPC from a remote node.

1.7.3 Running tests from the OS command line
The ct_run program can be used for running tests from the OS command line, e.g.

• ct_run -config <configfilenames> -dir <dirs>

• ct_run -config <configfilenames> -suite <suiteswithfullpath>

• ct_run -userconfig <callbackmodulename> <configfilenames> -suite
<suiteswithfullpath>

• ct_run -config <configfilenames> -suite <suitewithfullpath> -group
<groups> -case <casenames>

Examples:

$ ct_run -config $CFGS/sys1.cfg $CFGS/sys2.cfg -dir $SYS1_TEST $SYS2_TEST

$ ct_run -userconfig ct_config_xml $CFGS/sys1.xml $CFGS/sys2.xml -dir $SYS1_TEST
$SYS2_TEST

$ ct_run -suite $SYS1_TEST/setup_SUITE $SYS2_TEST/config_SUITE

$ ct_run -suite $SYS1_TEST/setup_SUITE -case start stop

$ ct_run -suite $SYS1_TEST/setup_SUITE -group installation -case start stop

It is also possible to combine the dir, suite and group/case flags. E.g, to run x_SUITE and y_SUITE in
directory testdir:

$ ct_run -dir ./testdir -suite x_SUITE y_SUITE

This has the same effect as calling:

$ ct_run -suite ./testdir/x_SUITE ./testdir/y_SUITE

For more details on test case group execution, please see below.

Other flags that may be used with ct_run:

• -logdir <dir>, specifies where the HTML log files are to be written.

• -label <name_of_test_run>, associates the test run with a name that gets printed in the overview
HTML log files.

• -refresh_logs, refreshes the top level HTML index files.

• -vts, start web based GUI (see below).

• -shell, start interactive shell mode (see below).

• -step [step_opts], step through test cases using the Erlang Debugger (see below).

1.7 Running Tests

Ericsson AB. All Rights Reserved.: Common Test | 35

• -spec <testspecs>, use test specification as input (see below).

• -allow_user_terms, allows user specific terms in a test specification (see below).

• -silent_connections [conn_types], tells Common Test to suppress printouts for specified
connections (see below).

• -stylesheet <css_file>, points out a user HTML style sheet (see below).

• -cover <cover_cfg_file>, to perform code coverage test (see Code Coverage Analysis).

• -cover_stop <bool>, to specify if the cover tool shall be stopped after the test is completed (see Code
Coverage Analysis).

• -event_handler <event_handlers>, to install event handlers.

• -event_handler_init <event_handlers>, to install event handlers including start arguments.

• -ct_hooks <ct_hooks>, to install Common Test Hooks including start arguments.

• -enable_builtin_hooks <bool>, to enable/disable Built-in Common Test Hooks. Default is true.

• -include, specifies include directories (see above).

• -no_auto_compile, disables the automatic test suite compilation feature (see above).

• -multiply_timetraps <n>, extends timetrap timeout values.

• -scale_timetraps <bool>, enables automatic timetrap timeout scaling.

• -repeat <n>, tells Common Test to repeat the tests n times (see below).

• -duration <time>, tells Common Test to repeat the tests for duration of time (see below).

• -until <stop_time>, tells Common Test to repeat the tests until stop_time (see below).

• -force_stop, on timeout, the test run will be aborted when current test job is finished (see below).

• -decrypt_key <key>, provides a decryption key for encrypted configuration files.

• -decrypt_file <key_file>, points out a file containing a decryption key for encrypted configuration
files.

• -basic_html, switches off html enhancements that might not be compatible with older browsers.

• -logopts <opts>, makes it possible to modify aspects of the logging behaviour, see Log options below.

• -verbosity <levels>, sets verbosity levels for printouts.

Note:
Directories passed to Common Test may have either relative or absolute paths.

Note:
Arbitrary start flags to the Erlang Runtime System may also be passed as parameters to ct_run. It is, for example,
useful to be able to pass directories that should be added to the Erlang code server search path with the -pa or -pz
flag. If you have common help- or library modules for test suites (separately compiled), stored in other directories
than the test suite directories, these help/lib directories are preferrably added to the code path this way. Example:

$ ct_run -dir ./chat_server -logdir ./chat_server/testlogs -pa $PWD/
chat_server/ebin

Note how in this example, the absolute path of the chat_server/ebin directory is passed to the code server.
This is essential since relative paths are stored by the code server as relative, and Common Test changes the
current working directory of the Erlang Runtime System during the test run!

1.7 Running Tests

36 | Ericsson AB. All Rights Reserved.: Common Test

The ct_run program sets the exit status before shutting down. The following values are defined:

• 0 indicates a successful testrun, i.e. one without failed or auto-skipped test cases.

• 1 indicates that one or more test cases have failed, or have been auto-skipped.

• 2 indicates that the test execution has failed because of e.g. compilation errors, an illegal return value from an
info function, etc.

If auto-skipped test cases should not affect the exit status, you may change the default behaviour using start flag:

-exit_status ignore_config

For more information about the ct_run program, see the Reference Manual and the Installation chapter.

1.7.4 Running tests from the Erlang shell or from an Erlang program
Common Test provides an Erlang API for running tests. The main (and most flexible) function for specifying and
executing tests is called ct:run_test/1. This function takes the same start parameters as the ct_run program
described above, only the flags are instead given as options in a list of key-value tuples. E.g. a test specified with
ct_run like:

$ ct_run -suite ./my_SUITE -logdir ./results

is with ct:run_test/1 specified as:

1> ct:run_test([{suite,"./my_SUITE"},{logdir,"./results"}]).

The function returns the test result, represented by the tuple: {Ok,Failed,{UserSkipped,AutoSkipped}},
where each element is an integer. If test execution fails, the function returns the tuple: {error,Reason}, where
the term Reason explains the failure.

Releasing the Erlang shell
During execution of tests, started with ct:run_test/1, the Erlang shell process, controlling stdin, will remain
the top level process of the Common Test system of processes. The result is that the Erlang shell is not available for
interaction during the test run. If this is not desirable, maybe because the shell is needed for debugging purposes or
for interaction with the SUT during test execution, you may set the release_shell start option to true (in the
call to ct:run_test/1 or by using the corresponding test specification term, see below). This will make Common
Test release the shell immediately after the test suite compilation stage. To accomplish this, a test runner process is
spawned to take control of the test execution, and the effect is that ct:run_test/1 returns the pid of this process
rather than the test result - which instead is printed to tty at the end of the test run.

Note:
Note that in order to use the ct:break/1/2 and ct:continue/0/1 functions, release_shell must
be set to true.

For detailed documentation about ct:run_test/1, please see the ct manual page.

1.7.5 Test case group execution
With the ct_run flag, or ct:run_test/1 option group, one or more test case groups can be specified, optionally
in combination with specific test cases. The syntax for specifying groups is as follows (on the command line):

1.7 Running Tests

Ericsson AB. All Rights Reserved.: Common Test | 37

 $ ct_run -group <group_names_or_paths> [-case <cases>]

or (in the Erlang shell):

 1> ct:run_test([{group,GroupsNamesOrPaths}, {case,Cases}]).

The group_names_or_paths parameter specifies either one or more group names and/or one or more group
paths. At start up, Common Test will search for matching groups in the group definitions tree (i.e. the list returned
from Suite:groups/0, please see the Test case groups chapter for details). Given a group name, say g, Common
Test will search for all paths that lead to g. By path here we mean a sequence of nested groups, all of which have to
be followed in order to get from the top level group to g. Actually, what Common Test needs to do in order to execute
the test cases in group g, is to call the init_per_group/2 function for each group in the path to g, as well as
all corresponding end_per_group/2 functions afterwards. The obvious reason for this is that the configuration
of a test case in g (and its Config input data) depends on init_per_testcase(TestCase, Config) and
its return value, which in turn depends on init_per_group(g, Config) and its return value, which in turn
depends on init_per_group/2 of the group above g, etc, all the way up to the top level group.

As you may have already realized, this means that if there is more than one way to locate a group (and its test cases)
in a path, the result of the group search operation is a number of tests, all of which will be performed. Common Test
actually interprets a group specification that consists of a single name this way:

"Search and find all paths in the group definitions tree that lead to the specified group and, for each path, create a test
which (1) executes all configuration functions in the path to the specified group, then (2) executes all - or all matching
- test cases in this group, as well as (3) all - or all matching - test cases in all sub groups of the group".

It is also possible for the user to specify a specific group path with the group_names_or_paths parameter. With
this type of specification it's possible to avoid execution of unwanted groups (in otherwise matching paths), and/or the
execution of sub groups. The syntax of the group path is a list of group names in the path, e.g. on the command line:

$ ct_run -suite "./x_SUITE" -group [g1,g3,g4] -case tc1 tc5

or similarly in the Erlang shell (requires a list within the groups list):

1> ct:run_test([{suite,"./x_SUITE"}, {group,[[g1,g3,g4]]}, {testcase,
[tc1,tc5]}]).

The last group in the specified path will be the terminating group in the test, i.e. no sub groups following this group
will be executed. In the example above, g4 is the terminating group, hence Common Test will execute a test that calls
all init configuration functions in the path to g4, i.e. g1..g3..g4. It will then call test cases tc1 and tc5 in g4
and finally all end configuration functions in order g4..g3..g1.

Note that the group path specification doesn't necessarily have to include all groups in the path to the terminating
group. Common Test will search for all matching paths if given an incomplete group path.

Note also that it's possible to combine group names and group paths with the group_names_or_paths parameter.
Each element is treated as an individual specification in combination with the cases parameter. See examples below.

Examples:

 -module(x_SUITE).
 ...
 %% The group definitions:
 groups() ->
 [{top1,[],[tc11,tc12,
 {sub11,[],[tc12,tc13]},
 {sub12,[],[tc14,tc15,
 {sub121,[],[tc12,tc16]}]}]},

1.7 Running Tests

38 | Ericsson AB. All Rights Reserved.: Common Test

 {top2,[],[{group,sub21},{group,sub22}]},
 {sub21,[],[tc21,{group,sub2X2}]},
 {sub22,[],[{group,sub221},tc21,tc22,{group,sub2X2}]},
 {sub221,[],[tc21,tc23]},
 {sub2X2,[],[tc21,tc24]}].

$ ct_run -suite "x_SUITE" -group all

1> ct:run_test([{suite,"x_SUITE"}, {group,all}]).

Two tests will be executed, one for all cases and all sub groups under top1, and one for all under top2. (We would
get the same result with -group top1 top2, or {group,[top1,top2]}.

$ ct_run -suite "x_SUITE" -group top1

1> ct:run_test([{suite,"x_SUITE"}, {group,[top1]}]).

This will execute one test for all cases and sub groups under top1.

$ ct_run -suite "x_SUITE" -group top1 -case tc12

1> ct:run_test([{suite,"x_SUITE"}, {group,[top1]}, {testcase,[tc12]}]).

This will run a test that executes tc12 in top1 and any sub group under top1 where it can be found (sub11 and
sub121).

$ ct_run -suite "x_SUITE" -group [top1] -case tc12

1> ct:run_test([{suite,"x_SUITE"}, {group,[[top1]]}, {testcase,[tc12]}]).

This will execute tc12 only in group top1.

$ ct_run -suite "x_SUITE" -group top1 -case tc16

1> ct:run_test([{suite,"x_SUITE"}, {group,[top1]}, {testcase,[tc16]}]).

This will search top1 and all its sub groups for tc16 and the result will be that this test case executes in group
sub121. (The specific path: -group [sub121] or {group,[[sub121]]}, would have given us the same
result in this example).

$ ct_run -suite "x_SUITE" -group sub12 [sub12]

1> ct:run_test([{suite,"x_SUITE"}, {group,[sub12,[sub12]]}]).

This will execute two tests, one that includes all cases and sub groups under sub12, and one with only the test cases
in sub12.

$ ct_run -suite "x_SUITE" -group sub2X2

1> ct:run_test([{suite,"x_SUITE"}, {group,[sub2X2]}]).

In this example, Common Test will find and execute two tests, one for the path from top2 to sub2X2 via sub21,
and one from top2 to sub2X2 via sub22.

$ ct_run -suite "x_SUITE" -group [sub21,sub2X2]

1> ct:run_test([{suite,"x_SUITE"}, {group,[[sub21,sub2X2]]}]).

Here, by specifying the unique path: top2 -> sub21 -> sub2X2, only one test is executed. The second possible
path from top2 to sub2X2 (above) will be discarded.

1.7 Running Tests

Ericsson AB. All Rights Reserved.: Common Test | 39

$ ct_run -suite "x_SUITE" -group [sub22] -case tc22 tc21

1> ct:run_test([{suite,"x_SUITE"}, {group,[[sub22]]}, {testcase,
[tc22,tc21]}]).

In this example only the test cases for sub22 will be executed, and in reverse order compared to the group definition.

If a test case that belongs to a group (according to the group definition), is executed without a group specification,
i.e. simply by means of (command line):

$ ct_run -suite "my_SUITE" -case my_tc

or (Erlang shell):

1> ct:run_test([{suite,"my_SUITE"}, {testcase,my_tc}]).

then Common Test ignores the group definition and executes the test case in the scope of the test suite only (no group
configuration functions are called).

The group specification feature, exactly as it has been presented in this section, can also be used in Test Specifications
(with some extra features added). Please see below.

1.7.6 Running the interactive shell mode
You can start Common Test in an interactive shell mode where no automatic testing is performed. Instead, in this mode,
Common Test starts its utility processes, installs configuration data (if any), and waits for the user to call functions
(typically test case support functions) from the Erlang shell.

The shell mode is useful e.g. for debugging test suites, for analysing and debugging the SUT during "simulated" test
case execution, and for trying out various operations during test suite development.

To invoke the interactive shell mode, you can start an Erlang shell manually and call ct:install/1 to install any
configuration data you might need (use [] as argument otherwise), then call ct:start_interactive/0 to start
Common Test. If you use the ct_run program, you may start the Erlang shell and Common Test in the same go by
using the -shell and, optionally, the -config and/or -userconfig flag. Examples:

• ct_run -shell

• ct_run -shell -config cfg/db.cfg

• ct_run -shell -userconfig db_login testuser x523qZ

If no config file is given with the ct_run command, a warning will be displayed. If Common Test has been run
from the same directory earlier, the same config file(s) will be used again. If Common Test has not been run from this
directory before, no config files will be available.

If any functions using "required config data" (e.g. ct_telnet or ct_ftp functions) are to be called from the erlang shell,
config data must first be required with ct:require/1/2. This is equivalent to a require statement in the Test
Suite Info Function or in the Test Case Info Function.

Example:

 1> ct:require(unix_telnet, unix).
 ok
 2> ct_telnet:open(unix_telnet).
 {ok,<0.105.0>}
 4> ct_telnet:cmd(unix_telnet, "ls .").
 {ok,["ls .","file1 ...",...]}

Everything that Common Test normally prints in the test case logs, will in the interactive mode be written to a log
named ctlog.html in the ct_run.<timestamp> directory. A link to this file will be available in the file named

1.7 Running Tests

40 | Ericsson AB. All Rights Reserved.: Common Test

last_interactive.html in the directory from which you executed ct_run. Currently, specifying a different
root directory for the logs than the current working directory, is not supported.

If you wish to exit the interactive mode (e.g. to start an automated test run with ct:run_test/1), call the function
ct:stop_interactive/0. This shuts down the running ct application. Associations between configuration
names and data created with require are consequently deleted. ct:start_interactive/0 will get you back
into interactive mode, but the previous state is not restored.

1.7.7 Step by step execution of test cases with the Erlang Debugger
By means of ct_run -step [opts], or by passing the {step,Opts} option to ct:run_test/1, it is
possible to get the Erlang Debugger started automatically and use its graphical interface to investigate the state of the
current test case and to execute it step by step and/or set execution breakpoints.

If no extra options are given with the step flag/option, breakpoints will be set automatically on the test cases that are
to be executed by Common Test, and those functions only. If the step option config is specified, breakpoints will
also be initially set on the configuration functions in the suite, i.e. init_per_suite/1, end_per_suite/1,
init_per_group/2, end_per_group/2, init_per_testcase/2 and end_per_testcase/2.

Common Test enables the Debugger auto attach feature, which means that for every new interpreted test case function
that starts to execute, a new trace window will automatically pop up. (This is because each test case executes on a
dedicated Erlang process). Whenever a new test case starts, Common Test will attempt to close the inactive trace
window of the previous test case. However, if you prefer that Common Test leaves inactive trace windows, use the
keep_inactive option.

The step functionality can be used together with the suite and the suite + case/testcase flag/option, but
not together with dir.

1.7.8 Test Specifications
General description
The most flexible way to specify what to test, is to use a so called test specification. A test specification is a sequence
of Erlang terms. The terms are normally declared in one or more text files (see ct:run_test/1), but may also be
passed to Common Test on the form of a list (see ct:run_testspec/1). There are two general types of terms:
configuration terms and test specification terms.

With configuration terms it is possible to e.g. label the test run (similar to ct_run -label), evaluate arbitrary
expressions before starting the test, import configuration data (similar to ct_run -config/-userconfig),
specify the top level HTML log directory (similar to ct_run -logdir), enable code coverage analysis (similar to
ct_run -cover), install Common Test Hooks (similar to ct_run -ch_hooks), install event_handler plugins
(similar to ct_run -event_handler), specify include directories that should be passed to the compiler for
automatic compilation (similar to ct_run -include), disable the auto compilation feature (similar to ct_run -
no_auto_compile), set verbosity levels (similar to ct_run -verbosity), and more.

Configuration terms can be combined with ct_run start flags, or ct:run_test/1 options. The result will for some
flags/options and terms be that the values are merged (e.g. configuration files, include directories, verbosity levels,
silent connections), and for others that the start flags/options override the test specification terms (e.g. log directory,
label, style sheet, auto compilation).

With test specification terms it is possible to state exactly which tests should run and in which order. A test term
specifies either one or more suites, one or more test case groups (possibly nested), or one or more test cases in a group
(or in multiple groups) or in a suite.

An arbitrary number of test terms may be declared in sequence. Common Test will by default compile the terms into
one or more tests to be performed in one resulting test run. Note that a term that specifies a set of test cases will
"swallow" one that only specifies a subset of these cases. E.g. the result of merging one term that specifies that all
cases in suite S should be executed, with another term specifying only test case X and Y in S, is a test of all cases in S.

1.7 Running Tests

Ericsson AB. All Rights Reserved.: Common Test | 41

However, if a term specifying test case X and Y in S is merged with a term specifying case Z in S, the result is a test
of X, Y and Z in S. To disable this behaviour, i.e. to instead perform each test sequentially in a "script-like" manner,
the term merge_tests can be set to false in the test specification.

A test term can also specify one or more test suites, groups, or test cases to be skipped. Skipped suites, groups and
cases are not executed and show up in the HTML log files as SKIPPED.

Using multiple test specification files
When multiple test specification files are given at startup (either with ct_run -spec file1 file2 ...
or ct:run_test([{spec, [File1,File2,...]}])), Common Test will either execute one test run per
specification file, or join the files and perform all tests within one single test run. The first behaviour is the
default one. The latter requires that the start flag/option join_suites is provided, e.g. run_test -spec ./
my_tests1.ts ./my_tests2.ts -join_suites.

Joining a number of specifications, or running them separately, can also be accomplished with (and may be combined
with) test specification file inclusion, described next.

Test specification file inclusion
With the specs term (see syntax below), it's possible to have a test specification include other specifications. An
included specification may either be joined with the source specification, or used to produce a separate test run (like
with the join_specs start flag/option above). Example:

 %% In specification file "a.spec"
 {specs, join, ["b.spec", "c.spec"]}.
 {specs, separate, ["d.spec", "e.spec"]}.
 %% Config and test terms follow
 ...

In this example, the test terms defined in files "b.spec" and "c.spec" will be joined with the terms in the source
specification "a.spec" (if any). The inclusion of specifications "d.spec" and "e.spec" will result in two separate, and
independent, test runs (i.e. one for each included specification).

Note that the join option does not imply that the test terms will be merged (see merge_tests above), only that
all tests are executed in one single test run.

Joined specifications share common configuration settings, such as the list of config files or include directories.
For configuration that can not be combined, such as settings for logdir or verbosity, it is up to the user to ensure
there are no clashes when the test specifications are joined. Specifications included with the separate option, do
not share configuration settings with the source specification. This is useful e.g. if there are clashing configuration
settings in included specifications, making it impossible to join them.

If {merge_tests,true} is set in the source specification (which is the default setting), terms in joined
specifications will be merged with terms in the source specification (according to the description of merge_tests
above).

Note that it is always the merge_tests setting in the source specification that is used when joined with other
specifications. Say e.g. that a source specification A, with tests TA1 and TA2, has {merge_tests,false} set,
and it includes another specification, B, with tests TB1 and TB2, that has {merge_tests,true} set. The result
will be that the test series: TA1,TA2,merge(TB1,TB2), is executed. The opposite merge_tests settings would
result in the following the test series: merge(merge(TA1,TA2),TB1,TB2).

The specs term may of course be used to nest specifications, i.e. have one specification include other specifications,
which in turn include others, etc.

1.7 Running Tests

42 | Ericsson AB. All Rights Reserved.: Common Test

Test case groups
When a test case group is specified, the resulting test executes the init_per_group function, followed by all test
cases and sub groups (including their configuration functions), and finally the end_per_group function. Also if
particular test cases in a group are specified, init_per_group and end_per_group for the group in question
are called. If a group which is defined (in Suite:group/0) to be a sub group of another group, is specified
(or if particular test cases of a sub group are), Common Test will call the configuration functions for the top level
groups as well as for the sub group in question (making it possible to pass configuration data all the way from
init_per_suite down to the test cases in the sub group).

The test specification utilizes the same mechanism for specifying test case groups by means of names and paths, as
explained in the Group Execution section above, with the addition of the GroupSpec element described next.

The GroupSpec element makes it possible to specify group execution properties that will override those in the group
definition (i.e. in groups/0). Execution properties for sub-groups may be overridden as well. This feature makes it
possible to change properties of groups at the time of execution, without even having to edit the test suite. The very
same feature is available for group elements in the Suite:all/0 list. Therefore, more detailed documentation,
and examples, can be found in the Test case groups chapter.

Test specification syntax
Below is the test specification syntax. Test specifications can be used to run tests both in a single test host environment
and in a distributed Common Test environment (Large Scale Testing). The node parameters in the init term are only
relevant in the latter (see the Large Scale Testing chapter for information). For more information about the various
terms, please see the corresponding sections in the User's Guide, such as e.g. the ct_run program for an overview
of available start flags (since most flags have a corresponding configuration term), and more detailed explanation of
e.g. Logging (for the verbosity, stylesheet and basic_html terms), External Configuration Data (for the
config and userconfig terms), Event Handling (for the event_handler term), Common Test Hooks (for the
ct_hooks term), etc.

Config terms:

 {merge_tests, Bool}.

 {define, Constant, Value}.

 {specs, InclSpecsOption, TestSpecs}.

 {node, NodeAlias, Node}.

 {init, InitOptions}.
 {init, [NodeAlias], InitOptions}.

 {label, Label}.
 {label, NodeRefs, Label}.

 {verbosity, VerbosityLevels}.
 {verbosity, NodeRefs, VerbosityLevels}.

 {stylesheet, CSSFile}.
 {stylesheet, NodeRefs, CSSFile}.

 {silent_connections, ConnTypes}.
 {silent_connections, NodeRefs, ConnTypes}.

 {multiply_timetraps, N}.
 {multiply_timetraps, NodeRefs, N}.

 {scale_timetraps, Bool}.

1.7 Running Tests

Ericsson AB. All Rights Reserved.: Common Test | 43

 {scale_timetraps, NodeRefs, Bool}.

 {cover, CoverSpecFile}.
 {cover, NodeRefs, CoverSpecFile}.

 {cover_stop, Bool}.
 {cover_stop, NodeRefs, Bool}.

 {include, IncludeDirs}.
 {include, NodeRefs, IncludeDirs}.

 {auto_compile, Bool},
 {auto_compile, NodeRefs, Bool},

 {config, ConfigFiles}.
 {config, ConfigDir, ConfigBaseNames}.
 {config, NodeRefs, ConfigFiles}.
 {config, NodeRefs, ConfigDir, ConfigBaseNames}.

 {userconfig, {CallbackModule, ConfigStrings}}.
 {userconfig, NodeRefs, {CallbackModule, ConfigStrings}}.

 {logdir, LogDir}.
 {logdir, NodeRefs, LogDir}.

 {logopts, LogOpts}.
 {logopts, NodeRefs, LogOpts}.

 {create_priv_dir, PrivDirOption}.
 {create_priv_dir, NodeRefs, PrivDirOption}.

 {event_handler, EventHandlers}.
 {event_handler, NodeRefs, EventHandlers}.
 {event_handler, EventHandlers, InitArgs}.
 {event_handler, NodeRefs, EventHandlers, InitArgs}.

 {ct_hooks, CTHModules}.
 {ct_hooks, NodeRefs, CTHModules}.

 {enable_builtin_hooks, Bool}.

 {basic_html, Bool}.
 {basic_html, NodeRefs, Bool}.

 {release_shell, Bool}.

Test terms:

 {suites, Dir, Suites}.
 {suites, NodeRefs, Dir, Suites}.

 {groups, Dir, Suite, Groups}.
 {groups, NodeRefs, Dir, Suite, Groups}.

 {groups, Dir, Suite, Groups, {cases,Cases}}.
 {groups, NodeRefs, Dir, Suite, Groups, {cases,Cases}}.

 {cases, Dir, Suite, Cases}.
 {cases, NodeRefs, Dir, Suite, Cases}.

 {skip_suites, Dir, Suites, Comment}.
 {skip_suites, NodeRefs, Dir, Suites, Comment}.

1.7 Running Tests

44 | Ericsson AB. All Rights Reserved.: Common Test

 {skip_groups, Dir, Suite, GroupNames, Comment}.
 {skip_groups, NodeRefs, Dir, Suite, GroupNames, Comment}.

 {skip_cases, Dir, Suite, Cases, Comment}.
 {skip_cases, NodeRefs, Dir, Suite, Cases, Comment}.

Types:

 Bool = true | false
 Constant = atom()
 Value = term()
 InclSpecsOption = join | separate
 TestSpecs = string() | [string()]
 NodeAlias = atom()
 Node = node()
 NodeRef = NodeAlias | Node | master
 NodeRefs = all_nodes | [NodeRef] | NodeRef
 InitOptions = term()
 Label = atom() | string()
 VerbosityLevels = integer() | [{Category,integer()}]
 Category = atom()
 CSSFile = string()
 ConnTypes = all | [atom()]
 N = integer()
 CoverSpecFile = string()
 IncludeDirs = string() | [string()]
 ConfigFiles = string() | [string()]
 ConfigDir = string()
 ConfigBaseNames = string() | [string()]
 CallbackModule = atom()
 ConfigStrings = string() | [string()]
 LogDir = string()
 LogOpts = [term()]
 PrivDirOption = auto_per_run | auto_per_tc | manual_per_tc
 EventHandlers = atom() | [atom()]
 InitArgs = [term()]
 CTHModules = [CTHModule |
 {CTHModule, CTHInitArgs} |
 {CTHModule, CTHInitArgs, CTHPriority}]
 CTHModule = atom()
 CTHInitArgs = term()
 Dir = string()
 Suites = atom() | [atom()] | all
 Suite = atom()
 Groups = GroupPath | [GroupPath] | GroupSpec | [GroupSpec] | all
 GroupPath = [GroupName]
 GroupSpec = GroupName | {GroupName,Properties} | {GroupName,Properties,GroupSpec}
 GroupName = atom()
 GroupNames = GroupName | [GroupName]
 Cases = atom() | [atom()] | all
 Comment = string() | ""

The difference between the config terms above, is that with ConfigDir, ConfigBaseNames is a list of base
names, i.e. without directory paths. ConfigFiles must be full names, including paths. E.g, these two terms have
the same meaning:

 {config, ["/home/testuser/tests/config/nodeA.cfg",
 "/home/testuser/tests/config/nodeB.cfg"]}.

1.7 Running Tests

Ericsson AB. All Rights Reserved.: Common Test | 45

 {config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"]}.

Note:
Any relative paths specified in the test specification, will be relative to the directory which
contains the test specification file, if ct_run -spec TestSpecFile ... or
ct:run:test([{spec,TestSpecFile},...]) executes the test. The path will be relative to the top
level log directory, if ct:run:testspec(TestSpec) executes the test.

Constants
The define term introduces a constant, which is used to replace the name Constant with Value, wherever it's
found in the test specification. This replacement happens during an initial iteration through the test specification.
Constants may be used anywhere in the test specification, e.g. in arbitrary lists and tuples, and even in strings and
inside the value part of other constant definitions! A constant can also be part of a node name, but that is the only
place where a constant can be part of an atom.

Note:
For the sake of readability, the name of the constant must always begin with an upper case letter, or a $, ?, or
_. This also means that it must always be single quoted (obviously, since the constant name is actually an atom,
not text).

The main benefit of constants is that they can be used to reduce the size (and avoid repetition) of long strings, such
as file paths. Compare these terms:

 %% 1a. no constant
 {config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"]}.
 {suites, "/home/testuser/tests/suites", all}.

 %% 1b. with constant
 {define, 'TESTDIR', "/home/testuser/tests"}.
 {config, "'TESTDIR'/config", ["nodeA.cfg","nodeB.cfg"]}.
 {suites, "'TESTDIR'/suites", all}.

 %% 2a. no constants
 {config, [testnode@host1, testnode@host2], "../config", ["nodeA.cfg","nodeB.cfg"]}.
 {suites, [testnode@host1, testnode@host2], "../suites", [x_SUITE, y_SUITE]}.

 %% 2b. with constants
 {define, 'NODE', testnode}.
 {define, 'NODES', ['NODE'@host1, 'NODE'@host2]}.
 {config, 'NODES', "../config", ["nodeA.cfg","nodeB.cfg"]}.
 {suites, 'NODES', "../suites", [x_SUITE, y_SUITE]}.

Constants make the test specification term alias, in previous versions of Common Test, redundant. This term has
been deprecated but will remain supported in upcoming Common Test releases. Replacing alias terms with define
is strongly recommended though! Here's an example of such a replacement:

1.7 Running Tests

46 | Ericsson AB. All Rights Reserved.: Common Test

 %% using the old alias term
 {config, "/home/testuser/tests/config/nodeA.cfg"}.
 {alias, suite_dir, "/home/testuser/tests/suites"}.
 {groups, suite_dir, x_SUITE, group1}.

 %% replacing with constants
 {define, 'TestDir', "/home/testuser/tests"}.
 {define, 'CfgDir', "'TestDir'/config"}.
 {define, 'SuiteDir', "'TestDir'/suites"}.
 {config, 'CfgDir', "nodeA.cfg"}.
 {groups, 'SuiteDir', x_SUITE, group1}.

Actually, constants could well replace the node term too, but this still has declarative value, mainly when used in
combination with NodeRefs == all_nodes (see types above).

Example
Here follows a simple test specification example:

 {define, 'Top', "/home/test"}.
 {define, 'T1', "'Top'/t1"}.
 {define, 'T2', "'Top'/t2"}.
 {define, 'T3', "'Top'/t3"}.
 {define, 'CfgFile', "config.cfg"}.

 {logdir, "'Top'/logs"}.

 {config, ["'T1'/'CfgFile'", "'T2'/'CfgFile'", "'T3'/'CfgFile'"]}.

 {suites, 'T1', all}.
 {skip_suites, 'T1', [t1B_SUITE,t1D_SUITE], "Not implemented"}.
 {skip_cases, 'T1', t1A_SUITE, [test3,test4], "Irrelevant"}.
 {skip_cases, 'T1', t1C_SUITE, [test1], "Ignore"}.

 {suites, 'T2', [t2B_SUITE,t2C_SUITE]}.
 {cases, 'T2', t2A_SUITE, [test4,test1,test7]}.

 {skip_suites, 'T3', all, "Not implemented"}.

The example specifies the following:

• The specified logdir directory will be used for storing the HTML log files (in subdirectories tagged with node
name, date and time).

• The variables in the specified test system config files will be imported for the test.

• The first test to run includes all suites for system t1. Excluded from the test are however the t1B and t1D suites.
Also test cases test3 and test4 in t1A as well as the test1 case in t1C are excluded from the test.

• Secondly, the test for system t2 should run. The included suites are t2B and t2C. Included are also test cases
test4, test1 and test7 in suite t2A. Note that the test cases will be executed in the specified order.

• Lastly, all suites for systems t3 are to be completely skipped and this should be explicitly noted in the log files.

The init term
With the init term it's possible to specify initialization options for nodes defined in the test specification. Currently,
there are options to start the node and/or to evaluate any function on the node. See the Automatic startup of the test
target nodes chapter for details.

1.7 Running Tests

Ericsson AB. All Rights Reserved.: Common Test | 47

User specific terms
It is possible for the user to provide a test specification that includes (for Common Test) unrecognizable terms. If this
is desired, the -allow_user_terms flag should be used when starting tests with ct_run. This forces Common
Test to ignore unrecognizable terms. Note that in this mode, Common Test is not able to check the specification for
errors as efficiently as if the scanner runs in default mode. If ct:run_test/1 is used for starting the tests, the
relaxed scanner mode is enabled by means of the tuple: {allow_user_terms,true}

1.7.9 Running tests from the Web based GUI
The web based GUI, VTS, is started with the ct_run program. From the GUI you can load config files, and select
directories, suites and cases to run. You can also state the config files, directories, suites and cases on the command
line when starting the web based GUI.

• ct_run -vts

• ct_run -vts -config <configfilename>

• ct_run -vts -config <configfilename> -suite <suitewithfullpath> -case
<casename>

From the GUI you can run tests and view the result and the logs.

Note that ct_run -vts will try to open the Common Test start page in an existing web browser window or start the
browser if it is not running. Which browser should be started may be specified with the browser start command option:

ct_run -vts -browser <browser_start_cmd>

Example:

$ ct_run -vts -browser 'firefox&'

Note that the browser must run as a separate OS process or VTS will hang!

If no specific browser start command is specified, Firefox will be the default browser on Unix platforms and Internet
Explorer on Windows. If Common Test fails to start a browser automatically, or 'none' is specified as the value
for -browser (i.e. -browser none), start your favourite browser manually and type in the URL that Common Test
displays in the shell.

1.7.10 Log files
As the execution of the test suites proceed, events are logged in four different ways:

• Text to the operator's console.

• Suite related information is sent to the major log file.

• Case related information is sent to the minor log file.

• The HTML overview log file gets updated with test results.

• A link to all runs executed from a certain directory is written in the log named "all_runs.html" and direct links
to all tests (the latest results) are written to the top level "index.html".

Typically the operator, who may run hundreds or thousands of test cases, doesn't want to fill the console with details
about, or printouts from, the specific test cases. By default, the operator will only see:

• A confirmation that the test has started and information about how many test cases will be executed totally.

• A small note about each failed test case.

• A summary of all the run test cases.

• A confirmation that the test run is complete.

1.7 Running Tests

48 | Ericsson AB. All Rights Reserved.: Common Test

• Some special information like error reports and progress reports, printouts written with erlang:display/1, or
io:format/3 specifically addressed to a receiver other than standard_io (e.g. the default group leader process
'user').

If/when the operator wants to dig deeper into the general results, or the result of a specific test case, he should do so
by following the links in the HTML presentation and take a look in the major or minor log files. The "all_runs.html"
page is a practical starting point usually. It's located in logdir and contains a link to each test run including a quick
overview (date and time, node name, number of tests, test names and test result totals).

An "index.html" page is written for each test run (i.e. stored in the "ct_run" directory tagged with node name, date and
time). This file gives a short overview of all individual tests performed in the same test run. The test names follow
this convention:

• TopLevelDir.TestDir (all suites in TestDir executed)

• TopLevelDir.TestDir:suites (specific suites were executed)

• TopLevelDir.TestDir.Suite (all cases in Suite executed)

• TopLevelDir.TestDir.Suite:cases (specific test cases were executed)

• TopLevelDir.TestDir.Suite.Case (only Case was executed)

On the test run index page there is a link to the Common Test Framework log file in which information about imported
configuration data and general test progress is written. This log file is useful to get snapshot information about the test
run during execution. It can also be very helpful when analyzing test results or debugging test suites.

On the test run index page it is noted if a test has missing suites (i.e. suites that Common Test has failed to compile).
Names of the missing suites can be found in the Common Test Framework log file.

The major logfile shows a detailed report of the test run. It includes test suite and test case names, execution time, the
exact reason for failures etc. The information is available in both a file with textual and with HTML representation.
The HTML file shows a summary which gives a good overview of the test run. It also has links to each individual test
case log file for quick viewing with an HTML browser.

The minor log files contain full details of every single test case, each one in a separate file. This way, it should be
straightforward to compare the latest results to that of previous test runs, even if the set of test cases changes. If SASL
is running, its logs will also be printed to the current minor log file by the cth_log_redirect built-in hook.

The full name of the minor log file (i.e. the name of the file including the absolute directory path) can be read during
execution of the test case. It comes as value in the tuple {tc_logfile,LogFileName} in the Config list (which
means it can also be read by a pre- or post Common Test hook function). Also, at the start of a test case, this data is
sent with an event to any installed event handler. Please see the Event Handling chapter for details.

Which information goes where is user configurable via the test server controller. Three threshold values determine
what comes out on screen, and in the major or minor log files. See the OTP Test Server manual for information. The
contents that goes to the HTML log file is fixed however and cannot be altered.

The log files are written continously during a test run and links are always created initially when a test starts. This
makes it possible to follow test progress simply by refreshing pages in the HTML browser. Statistics totals are not
presented until a test is complete however.

Log options
With the logopts start flag, it's possible to specify options that modify some aspects of the logging behaviour.
Currently, the following options are available:

• no_src

• no_nl

With no_src, the html version of the test suite source code will not be generated during the test run (and consequently
not be available in the log file system).

1.7 Running Tests

Ericsson AB. All Rights Reserved.: Common Test | 49

With no_nl, Common Test will not add a newline character (\n) to the end of an output string that it receives from
a call to e.g. io:format/2, and which it prints to the test case log.

For example, if a test is started with:

$ ct_run -suite my_SUITE -logopts no_src

then printouts during the test made by successive calls to io:format("x"), will appear in the test case log as:

xxx

instead of each x printed on a new line, which is the default behaviour.

Sorting HTML table columns
By clicking the name in the column header of any table (e.g. "Ok", "Case", "Time", etc), the table rows are sorted in
whatever order makes sense for the type of value (e.g. numerical for "Ok" or "Time", and alphabetical for "Case").
The sorting is performed by means of JavaScript code, automatically inserted into the HTML log files. Common Test
uses the jQuery library and the tablesorter plugin, with customized sorting functions, for this implementation.

1.7.11 HTML Style Sheets
Common Test uses an HTML Style Sheet (CSS file) to control the look of the HTML log files generated during test
runs. If, for some reason, the log files are not displayed correctly in the browser of your choice, or you prefer a more
primitive ("pre Common Test v1.6") look of the logs, use the start flag/option:

basic_html

This disables the use of Style Sheets, as well as JavaScripts (see table sorting above).

Common Test includes an optional feature to allow user HTML style sheets for customizing printouts. The functions
in ct that print to a test case HTML log file (log/3 and pal/3) accept Category as first argument. With this
argument it's possible to specify a category that can be mapped to a selector in a CSS definition. This is useful especially
for coloring text differently depending on the type of (or reason for) the printout. Say you want one color for test
system configuration information, a different one for test system state information and finally one for errors detected
by the test case functions. The corresponding style sheet may look like this:

 div.sys_config { background:blue; color:white }
 div.sys_state { background:yellow; color:black }
 div.error { background:red; color:white }

To install the CSS file (Common Test inlines the definition in the HTML code), the name may be provided when
executing ct_run. Example:

 $ ct_run -dir $TEST/prog -stylesheet $TEST/styles/test_categories.css

Categories in a CSS file installed with the -stylesheet flag are on a global test level in the sense that they can
be used in any suite which is part of the test run.

It is also possible to install style sheets on a per suite and per test case basis. Example:

 -module(my_SUITE).
 ...
 suite() -> [..., {stylesheet,"suite_categories.css"}, ...].

href
href

1.7 Running Tests

50 | Ericsson AB. All Rights Reserved.: Common Test

 ...
 my_testcase(_) ->
 ...
 ct:log(sys_config, "Test node version: ~p", [VersionInfo]),
 ...
 ct:log(sys_state, "Connections: ~p", [ConnectionInfo]),
 ...
 ct:pal(error, "Error ~p detected! Info: ~p", [SomeFault,ErrorInfo]),
 ct:fail(SomeFault).

If the style sheet is installed as in this example, the categories are private to the suite in question. They can be used by all
test cases in the suite, but can not be used by other suites. A suite private style sheet, if specified, will be used in favour
of a global style sheet (one specified with the -stylesheet flag). A stylesheet tuple (as returned by suite/0
above) can also be returned from a test case info function. In this case the categories specified in the style sheet can only
be used in that particular test case. A test case private style sheet is used in favour of a suite or global level style sheet.

In a tuple {stylesheet,CSSFile}, if CSSFile is specified with a path, e.g. "$TEST/styles/
categories.css", this full name will be used to locate the file. If only the file name is specified however, e.g.
"categories.css", then the CSS file is assumed to be located in the data directory, data_dir, of the suite. The latter
usage is recommended since it is portable compared to hard coding path names in the suite!

The Category argument in the example above may have the value (atom) sys_config (white on blue),
sys_state (black on yellow) or error (white on red).

1.7.12 Repeating tests
You can order Common Test to repeat the tests you specify. You can choose to repeat tests a certain number of times,
repeat tests for a specific period of time, or repeat tests until a particular stop time is reached. If repetition is controlled
by means of time, it is also possible to specify what action Common Test should take upon timeout. Either Common
Test performs all tests in the current run before stopping, or it stops as soon as the current test job is finished. Repetition
can be activated by means of ct_run start flags, or tuples in the ct:run:test/1 option list argument. The flags
(options in parenthesis) are:

• -repeat N ({repeat,N}), where N is a positive integer.

• -duration DurTime ({duration,DurTime}), where DurTime is the duration, see below.

• -until StopTime ({until,StopTime}), where StopTime is finish time, see below.

• -force_stop ({force_stop,true})

The duration time, DurTime, is specified as HHMMSS. Example: -duration 012030 or
{duration,"012030"}, means the tests will be executed and (if time allows) repeated, until timeout occurs
after 1 h, 20 min and 30 secs. StopTime can be specified as HHMMSS and is then interpreted as a time today (or
possibly tomorrow). StopTime can also be specified as YYMoMoDDHHMMSS. Example: -until 071001120000
or {until,"071001120000"}, which means the tests will be executed and (if time allows) repeated, until 12
o'clock on the 1st of Oct 2007.

When timeout occurs, Common Test will never abort the test run immediately, since this might leave the system under
test in an undefined, and possibly bad, state. Instead Common Test will finish the current test job, or the complete test
run, before stopping. The latter is the default behaviour. The force_stop flag/option tells Common Test to stop as
soon as the current test job is finished. Note that since Common Test always finishes off the current test job or test
session, the time specified with duration or until is never definitive!

Log files from every single repeated test run is saved in normal Common Test fashion (see above). Common Test may
later support an optional feature to only store the last (and possibly the first) set of logs of repeated test runs, but for
now the user must be careful not to run out of disk space if tests are repeated during long periods of time.

Note that for each test run that is part of a repeated session, information about the particular test run is printed in the
Common Test Framework Log. There you can read the repetition number, remaining time, etc.

1.7 Running Tests

Ericsson AB. All Rights Reserved.: Common Test | 51

Example 1:

 $ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -duration 001000 -force_stop

Here the suites in test directory to1, followed by the suites in to2, will be executed in one test run. A timeout event
will occur after 10 minutes. As long as there is time left, Common Test will repeat the test run (i.e. starting over with
the to1 test). When the timeout occurs, Common Test will stop as soon as the current job is finished (because of the
force_stop flag). As a result, the specified test run might be aborted after the to1 test and before the to2 test.

Example 2:

 $ date
 Fri Sep 28 15:00:00 MEST 2007

 $ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -until 160000

Here the same test run as in the example above will be executed (and possibly repeated). In this example, however,
the timeout will occur after 1 hour and when that happens, Common Test will finish the entire test run before stopping
(i.e. the to1 and to2 test will always both be executed in the same test run).

Example 3:

 $ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -repeat 5

Here the test run, including both the to1 and the to2 test, will be repeated 5 times.

Note:
This feature should not be confused with the repeat property of a test case group. The options described here
are used to repeat execution of entire test runs, while the repeat property of a test case group makes it possible
to repeat execution of sets of test cases within a suite. For more information about the latter, see the Writing
Test Suites chapter.

1.7.13 Silent Connections
The protocol handling processes in Common Test, implemented by ct_telnet, ct_ssh, ct_ftp etc, do verbose printing to
the test case logs. This can be switched off by means of the -silent_connections flag:

 ct_run -silent_connections [conn_types]

where conn_types specifies ssh, telnet, ftp, rpc and/or snmp.

Example:

 ct_run ... -silent_connections ssh telnet

1.7 Running Tests

52 | Ericsson AB. All Rights Reserved.: Common Test

switches off logging for ssh and telnet connections.

 ct_run ... -silent_connections

switches off logging for all connection types.

Fatal communication error and reconnection attempts will always be printed even if logging has been suppressed for
the connection type in question. However, operations such as sending and receiving data will be performed silently.

It is possible to also specify silent_connections in a test suite. This is accomplished by returning a tuple,
{silent_connections,ConnTypes}, in the suite/0 or test case info list. If ConnTypes is a list of atoms
(ssh, telnet, ftp, rpc and/or snmp), output for any corresponding connections will be suppressed. Full
logging is per default enabled for any connection of type not specified in ConnTypes. Hence, if ConnTypes is the
empty list, logging is enabled for all connections.

Example:

 -module(my_SUITE).

 suite() -> [..., {silent_connections,[telnet,ssh]}, ...].

 ...

 my_testcase1() ->
 [{silent_connections,[ssh]}].

 my_testcase1(_) ->
 ...

 my_testcase2(_) ->
 ...

In this example, suite/0 tells Common Test to suppress printouts from telnet and ssh connections. This is valid for
all test cases. However, my_testcase1/0 specifies that for this test case, only ssh should be silent. The result is
that my_testcase1 will get telnet info (if any) printed in the log, but not ssh info. my_testcase2 will get no
info from either connection printed.

silent_connections may also be specified with a term in a test specification (see Test Specifications).
Connections provided with the silent_connections start flag/option, will be merged with any connections listed
in the test specification.

The silent_connections start flag/option and test specification term, overrides any settings made by the info
functions inside the test suite.

Note:
Note that in the current Common Test version, the silent_connections feature only works for telnet and
ssh connections! Support for other connection types will be added in future Common Test versions.

1.8 External Configuration Data

Ericsson AB. All Rights Reserved.: Common Test | 53

1.8 External Configuration Data
1.8.1 General
To avoid hard coding data values related to the test and/or SUT (System Under Test) in the test suites, the data may
instead be specified by means of configuration files or strings that Common Test reads before the start of a test run.
External configuration data makes it possible to change test properties without having to modify the actual test suites
using the data. Examples of configuration data:

• Addresses to the test plant or other instruments

• User login information

• Names of files needed by the test

• Names of programs that should be executed during the test

• Any other variable needed by the test

1.8.2 Syntax
A configuration file can contain any number of elements of the type:

 {CfgVarName,Value}.

where

 CfgVarName = atom()
 Value = term() | [{CfgVarName,Value}]

1.8.3 Requiring and reading configuration data
In a test suite, one must require that a configuration variable (CfgVarName in the definition above) exists before
attempting to read the associated value in a test case or config function.

require is an assert statement that can be part of the test suite info function or test case info function. If the required
variable is not available, the test is skipped (unless a default value has been specified, see the test case info function
chapter for details). There is also a function ct:require/1/2 which can be called from a test case in order to check
if a specific variable is available. The return value from this function must be checked explicitly and appropriate action
be taken depending on the result (e.g. to skip the test case if the variable in question doesn't exist).

A require statement in the test suite info- or test case info-list should look like this: {require,CfgVarName}
or {require,AliasName,CfgVarName}. The arguments AliasName and CfgVarName are the same as the
arguments to ct:require/1/2 which are described in the reference manual for ct. AliasName becomes an alias
for the configuration variable, and can be used as reference to the configuration data value. The configuration variable
may be associated with an arbitrary number of alias names, but each name must be unique within the same test suite.
There are two main uses for alias names:

• They may be introduced to identify connections (see below).

• They may used to help adapt configuration data to a test suite (or test case) and improve readability.

To read the value of a config variable, use the function get_config/1/2/3 which is also described in the reference
manual for ct.

Example:

1.8 External Configuration Data

54 | Ericsson AB. All Rights Reserved.: Common Test

 suite() ->
 [{require, domain, 'CONN_SPEC_DNS_SUFFIX'}].

 ...

 testcase(Config) ->
 Domain = ct:get_config(domain),
 ...

1.8.4 Using configuration variables defined in multiple files
If a configuration variable is defined in multiple files and you want to access all possible values, you may use the
ct:get_config/3 function and specify all in the options list. The values will then be returned in a list and the
order of the elements corresponds to the order that the config files were specified at startup. Please see the ct reference
manual for details.

1.8.5 Encrypted configuration files
It is possible to encrypt configuration files containing sensitive data if these files must be stored in open and shared
directories.

Call ct:encrypt_config_file/2/3 to have Common Test encrypt a specified file using the DES3 function
in the OTP crypto application. The encrypted file can then be used as a regular configuration file, in combination
with other encrypted files or normal text files. The key for decrypting the configuration file must be provided when
running the test, however. This can be done by means of the decrypt_key or decrypt_file flag/option, or a
key file in a predefined location.

Common Test also provides decryption functions, ct:decrypt_config_file/2/3, for recreating the original
text files.

Please see the ct reference manual for more information.

1.8.6 Opening connections by using configuration data
There are two different methods for opening a connection by means of the support functions in e.g. ct_ssh, ct_ftp,
and ct_telnet:

• Using a configuration target name (an alias) as reference.

• Using the configuration variable as reference.

When a target name is used for referencing the configuration data (that specifies the connection to be opened), the same
name may be used as connection identity in all subsequent calls related to the connection (also for closing it). It's only
possible to have one open connection per target name. If attempting to open a new connection using a name already
associated with an open connection, Common Test will return the already existing handle so that the previously opened
connection will be used. This is a practical feature since it makes it possible to call the function for opening a particular
connection whenever useful. An action like this will not necessarily open any new connections unless it's required
(which could be the case if e.g. the previous connection has been closed unexpectedly by the server). Another benefit
of using named connections is that it's not necessary to pass handle references around in the suite for these connections.

When a configuration variable name is used as reference to the data specifying the connection, the handle returned
as a result of opening the connection must be used in all subsequent calls (also for closing the connection). Repeated
calls to the open function with the same variable name as reference will result in multiple connections being opened.
This can be useful e.g. if a test case needs to open multiple connections to the same server on the target node (using
the same configuration data for each connection).

1.8 External Configuration Data

Ericsson AB. All Rights Reserved.: Common Test | 55

1.8.7 User specific configuration data formats
It is possible for the user to specify configuration data on a different format than key-value tuples in a text file, as
described so far. The data can e.g. be read from arbitrary files, fetched from the web over http, or requested from a user
specific process. To support this, Common Test provides a callback module plugin mechanism to handle configuration
data.

Default callback modules for handling configuration data
The Common Test application includes default callback modules for handling configuration data specified in standard
config files (see above) and in xml files:

• ct_config_plain - for reading configuration files with key-value tuples (standard format). This handler
will be used to parse configuration files if no user callback is specified.

• ct_config_xml - for reading configuration data from XML files.

Using XML configuration files
This is an example of an XML configuration file:

<config>
 <ftp_host>
 <ftp>"targethost"</ftp>
 <username>"tester"</username>
 <password>"letmein"</password>
 </ftp_host>
 <lm_directory>"/test/loadmodules"</lm_directory>
</config>

This configuration file, once read, will produce the same configuration variables as the following text file:

{ftp_host, [{ftp,"targethost"},
 {username,"tester"},
 {password,"letmein"}]}.

{lm_directory, "/test/loadmodules"}.

How to implement a user specific handler
The user specific handler can be written to handle special configuration file formats. The parameter can be either file
name(s) or configuration string(s) (the empty list is valid).

The callback module implementing the handler is responsible for checking correctness of configuration strings.

To perform validation of the configuration strings, the callback module should have the following function exported:

Callback:check_parameter/1

The input argument will be passed from Common Test, as defined in the test specification or given as an option to
ct_run or ct:run_test.

The return value should be any of the following values indicating if given configuration parameter is valid:

• {ok, {file, FileName}} - parameter is a file name and the file exists,

• {ok, {config, ConfigString}} - parameter is a config string and it is correct,

• {error, {nofile, FileName}} - there is no file with the given name in the current directory,

• {error, {wrong_config, ConfigString}} - the configuration string is wrong.

1.8 External Configuration Data

56 | Ericsson AB. All Rights Reserved.: Common Test

To perform reading of configuration data - initially before the tests start, or as a result of data being reloaded during
test execution - the following function should be exported from the callback module:

Callback:read_config/1

The input argument is the same as for the check_parameter/1 function.

The return value should be either:

• {ok, Config} - if the configuration variables are read successfully,

• {error, {Error, ErrorDetails}} - if the callback module fails to proceed with the given
configuration parameters.

Config is the proper Erlang key-value list, with possible key-value sublists as values, like for the configuration file
example above:

 [{ftp_host, [{ftp, "targethost"}, {username, "tester"}, {password, "letmein"}]},
 {lm_directory, "/test/loadmodules"}]

1.8.8 Examples of configuration data handling
A config file for using the FTP client to access files on a remote host could look like this:

 {ftp_host, [{ftp,"targethost"},
 {username,"tester"},
 {password,"letmein"}]}.

 {lm_directory, "/test/loadmodules"}.

The XML version shown in the chapter above can also be used, but it should be explicitly specified that the
ct_config_xml callback module is to be used by Common Test.

Example of how to assert that the configuration data is available and use it for an FTP session:

 init_per_testcase(ftptest, Config) ->
 {ok,_} = ct_ftp:open(ftp),
 Config.

 end_per_testcase(ftptest, _Config) ->
 ct_ftp:close(ftp).

 ftptest() ->
 [{require,ftp,ftp_host},
 {require,lm_directory}].

 ftptest(Config) ->
 Remote = filename:join(ct:get_config(lm_directory), "loadmodX"),
 Local = filename:join(?config(priv_dir,Config), "loadmodule"),
 ok = ct_ftp:recv(ftp, Remote, Local),
 ...

An example of how the above functions could be rewritten if necessary to open multiple connections to the FTP server:

 init_per_testcase(ftptest, Config) ->
 {ok,Handle1} = ct_ftp:open(ftp_host),

1.8 External Configuration Data

Ericsson AB. All Rights Reserved.: Common Test | 57

 {ok,Handle2} = ct_ftp:open(ftp_host),
 [{ftp_handles,[Handle1,Handle2]} | Config].

 end_per_testcase(ftptest, Config) ->
 lists:foreach(fun(Handle) -> ct_ftp:close(Handle) end,
 ?config(ftp_handles,Config)).

 ftptest() ->
 [{require,ftp_host},
 {require,lm_directory}].

 ftptest(Config) ->
 Remote = filename:join(ct:get_config(lm_directory), "loadmodX"),
 Local = filename:join(?config(priv_dir,Config), "loadmodule"),
 [Handle | MoreHandles] = ?config(ftp_handles,Config),
 ok = ct_ftp:recv(Handle, Remote, Local),
 ...

1.8.9 Example of user specific configuration handler
A simple configuration handling driver which will ask an external server for configuration data can be implemented
this way:

-module(config_driver).
-export([read_config/1, check_parameter/1]).

read_config(ServerName)->
 ServerModule = list_to_atom(ServerName),
 ServerModule:start(),
 ServerModule:get_config().

check_parameter(ServerName)->
 ServerModule = list_to_atom(ServerName),
 case code:is_loaded(ServerModule) of
 {file, _}->
 {ok, {config, ServerName}};
 false->
 case code:load_file(ServerModule) of
 {module, ServerModule}->
 {ok, {config, ServerName}};
 {error, nofile}->
 {error, {wrong_config, "File not found: " ++ ServerName ++ ".beam"}}
 end
 end.

The configuration string for this driver may be "config_server", if the config_server.erl module below is compiled and
exists in the code path during test execution:

-module(config_server).
-export([start/0, stop/0, init/1, get_config/0, loop/0]).

-define(REGISTERED_NAME, ct_test_config_server).

start()->
 case whereis(?REGISTERED_NAME) of
 undefined->
 spawn(?MODULE, init, [?REGISTERED_NAME]),
 wait();
 _Pid->

1.8 External Configuration Data

58 | Ericsson AB. All Rights Reserved.: Common Test

 ok
 end,
 ?REGISTERED_NAME.

init(Name)->
 register(Name, self()),
 loop().

get_config()->
 call(self(), get_config).

stop()->
 call(self(), stop).

call(Client, Request)->
 case whereis(?REGISTERED_NAME) of
 undefined->
 {error, {not_started, Request}};
 Pid->
 Pid ! {Client, Request},
 receive
 Reply->
 {ok, Reply}
 after 4000->
 {error, {timeout, Request}}
 end
 end.

loop()->
 receive
 {Pid, stop}->
 Pid ! ok;
 {Pid, get_config}->
 {D,T} = erlang:localtime(),
 Pid !
 [{localtime, [{date, D}, {time, T}]},
 {node, erlang:node()},
 {now, erlang:now()},
 {config_server_pid, self()},
 {config_server_vsn, ?vsn}],
 ?MODULE:loop()
 end.

wait()->
 case whereis(?REGISTERED_NAME) of
 undefined->
 wait();
 _Pid->
 ok
 end.

In this example, the handler also provides the ability to dynamically reload configuration variables. If
ct:reload_config(localtime) is called from the test case function, all variables loaded with
config_driver:read_config/1 will be updated with their latest values, and the new value for variable
localtime will be returned.

1.9 Code Coverage Analysis

Ericsson AB. All Rights Reserved.: Common Test | 59

1.9 Code Coverage Analysis
1.9.1 General
Although Common Test was created primarly for the purpose of black box testing, nothing prevents it from working
perfectly as a white box testing tool as well. This is especially true when the application to test is written in Erlang.
Then the test ports are easily realized by means of Erlang function calls.

When white box testing an Erlang application, it is useful to be able to measure the code coverage of the test. Common
Test provides simple access to the OTP Cover tool for this purpose. Common Test handles all necessary communication
with the Cover tool (starting, compiling, analysing, etc). All the Common Test user needs to do is to specify the extent
of the code coverage analysis.

1.9.2 Usage
To specify what modules should be included in the code coverage test, you provide a cover specification file. Using
this file you can point out specific modules or specify directories that contain modules which should all be included
in the analysis. You can also, in the same fashion, specify modules that should be excluded from the analysis.

If you are testing a distributed Erlang application, it is likely that code you want included in the code coverage analysis
gets executed on an Erlang node other than the one Common Test is running on. If this is the case you need to specify
these other nodes in the cover specification file or add them dynamically to the code coverage set of nodes. See the
ct_cover page in the reference manual for details on the latter.

In the cover specification file you can also specify your required level of the code coverage analysis; details
or overview. In detailed mode, you get a coverage overview page, showing you per module and total coverage
percentages, as well as one HTML file printed for each module included in the analysis that shows exactly what parts
of the code have been executed during the test. In overview mode, only the code coverage overview page gets printed.

Note: Currently, for Common Test to be able to print code coverage HTML files for the modules included in the
analysis, the source code files of these modules must be located in the same directory as the corresponding .beam
files. This is a limitation that will be removed later.

You can choose to export and import code coverage data between tests. If you specify the name of an export file in
the cover specification file, Common Test will export collected coverage data to this file at the end of the test. You
may similarly specify that previously exported data should be imported and included in the analysis for a test (you can
specify multiple import files). This way it is possible to analyse total code coverage without necessarily running all
tests at once. Note that even if you run separate tests in one test run, code coverage data will not be passed on from
one test to another unless you specify an export file for Common Test to use for this purpose.

To activate the code coverage support, you simply specify the name of the cover specification file as you start Common
Test. This you do either by using the -cover flag with ct_run. Example:

$ ct_run -dir $TESTOBJS/db -cover $TESTOBJS/db/config/db.coverspec

You may also pass the cover specification file name in a call to ct:run_test/1, by adding a
{cover,CoverSpec} tuple to the Opts argument. Also, you can of course enable code coverage in your test
specifications (read more in the chapter about using test specifications).

1.9.3 Stopping the cover tool when tests are completed
By default the Cover tool is automatically stopped when the tests are completed. This causes the original (non cover
compiled) modules to be loaded back in to the test node. If a process at this point is still running old code of any of
the modules that are cover compiled, meaning that it has not done any fully qualified function call after the cover
compilation, the process will now be killed. To avoid this it is possible to set the value of the cover_stop option
to false. This means that the modules will stay cover compiled, and it is therefore only recommended if the erlang
node(s) under test is terminated after the test is completed or if cover can be manually stopped.

1.9 Code Coverage Analysis

60 | Ericsson AB. All Rights Reserved.: Common Test

The option can be set by using the -cover_stop flag with ct_run, by adding {cover_stop,true|false}
to the Opts argument to ct:run_test/1, or by adding a cover_stop term in your test specification (see chapter
about test specifications).

1.9.4 The cover specification file
These are the terms allowed in a cover specification file:

 %% List of Nodes on which cover will be active during test.
 %% Nodes = [atom()]
 {nodes, Nodes}.

 %% Files with previously exported cover data to include in analysis.
 %% CoverDataFiles = [string()]
 {import, CoverDataFiles}.

 %% Cover data file to export from this session.
 %% CoverDataFile = string()
 {export, CoverDataFile}.

 %% Cover analysis level.
 %% Level = details | overview
 {level, Level}.

 %% Directories to include in cover.
 %% Dirs = [string()]
 {incl_dirs, Dirs}.

 %% Directories, including subdirectories, to include.
 {incl_dirs_r, Dirs}.

 %% Specific modules to include in cover.
 %% Mods = [atom()]
 {incl_mods, Mods}.

 %% Directories to exclude in cover.
 {excl_dirs, Dirs}.

 %% Directories, including subdirectories, to exclude.
 {excl_dirs_r, Dirs}.

 %% Specific modules to exclude in cover.
 {excl_mods, Mods}.

 %% Cross cover compilation
 %% Tag = atom(), an identifier for a test run
 %% Mod = [atom()], modules to compile for accumulated analysis
 {cross,[{Tag,Mods}]}.

The incl_dirs_r and excl_dirs_r terms tell Common Test to search the given directories recursively and
include or exclude any module found during the search. The incl_dirs and excl_dirs terms result in a non-
recursive search for modules (i.e. only modules found in the given directories are included or excluded).

Note: Directories containing Erlang modules that are to be included in a code coverage test must exist in the code
server path, or the cover tool will fail to recompile the modules. (It is not sufficient to specify these directories in the
cover specification file for Common Test).

1.9 Code Coverage Analysis

Ericsson AB. All Rights Reserved.: Common Test | 61

1.9.5 Cross cover analysis
The cross cover mechanism allows cover analysis of modules across multiple tests. It is useful if some code, e.g. a
library module, is used by many different tests and the accumulated cover result is desirable.

This can of course also be achieved in a more customized way by using the export parameter in the cover
specification and analysing the result off line, but the cross cover mechanism is a build in solution which also provides
the logging.

The mechanism is easiest explained via an example:

Let's say that there are two systems, s1 and s2, which are tested in separate test runs. System s1 contains a library
module m1 which is tested by the s1 test run and is included in s1's cover specification:

s1.cover:
 {incl_mods,[m1]}.

When analysing code coverage, the result for m1 can be seen in the cover log in the s1 test result.

Now, let's imagine that since m1 is a library module, it is also used quite a bit by system s2. The s2 test run does not
specifically test m1, but it might still be interesting to see which parts of m1 is actually covered by the s2 tests. To
do this, m1 could be included also in s2's cover specification:

s2.cover:
 {incl_mods,[m1]}.

This would give an entry for m1 also in the cover log for the s2 test run. The problem is that this would only reflect
the coverage by s2 tests, not the accumulated result over s1 and s2. And this is where the cross cover mechanism
comes in handy.

If instead the cover specification for s2 was like this:

s2.cover:
 {cross,[{s1,[m1]}]}.

then m1 would be cover compiled in the s2 test run, but not shown in the coverage log. Instead, if
ct_cover:cross_cover_analyse/2 is called after both s1 and s2 test runs are completed, the accumulated
result for m1 would be available in the cross cover log for the s1 test run.

The call to the analyse function must be like this:

ct_cover:cross_cover_analyse(Level, [{s1,S1LogDir},{s2,S2LogDir}]).

where S1LogDir and S2LogDir are the directories named <TestName>.logs for each test respectively.

Note the tags s1 and s2 which are used in the cover specification file and in the call to
ct_cover:cross_cover_analyse/2. The point of these are only to map the modules specified in the cover
specification to the log directory specified in the call to the analyse function. The name of the tag has no meaning
beyond this.

1.10 Using Common Test for Large Scale Testing

62 | Ericsson AB. All Rights Reserved.: Common Test

1.9.6 Logging
To view the result of a code coverage test, follow the "Coverage log" link on the test suite results page. This takes
you to the code coverage overview page. If you have successfully performed a detailed coverage analysis, you find
links to each individual module coverage page here.

If cross cover analysis has been performed, and there are accumulated coverage results for the current test, then the -
"Coverdata collected over all tests" link will take you to these results.

1.10 Using Common Test for Large Scale Testing
1.10.1 General
Large scale automated testing requires running multiple independent test sessions in parallel. This is accomplished by
running a number of Common Test nodes on one or more hosts, testing different target systems. Configuring, starting
and controlling the test nodes independently can be a cumbersome operation. To aid this kind of automated large scale
testing, CT offers a master test node component, CT Master, that handles central configuration and control in a system
of distributed CT nodes.

The CT Master server runs on one dedicated Erlang node and uses distributed Erlang to communicate with any number
of CT test nodes, each hosting a regular CT server. Test specifications are used as input to specify what to test on
which test nodes, using what configuration.

The CT Master server writes progress information to HTML log files similarly to the regular CT server. The logs
contain test statistics and links to the log files written by each independent CT server.

The CT master API is exported by the ct_master module.

1.10.2 Usage
CT Master requires all test nodes to be on the same network and share a common file system. As of this date, CT
Master can not start test nodes automatically. The nodes must have been started in advance for CT Master to be able
to start test sessions on them.

Tests are started by calling:

ct_master:run(TestSpecs) or ct_master:run(TestSpecs, InclNodes, ExclNodes)

TestSpecs is either the name of a test specification file (string) or a list of test specifications. In case of a list, the
specifications will be handled (and the corresponding tests executed) in sequence. An element in a TestSpecs list
can also be list of test specifications. The specifications in such a list will be merged into one combined specification
prior to test execution. For example:

ct_master:run(["ts1","ts2",["ts3","ts4"]])

means first the tests specified by "ts1" will run, then the tests specified by "ts2" and finally the tests specified by both
"ts3" and "ts4".

The InclNodes argument to run/3 is a list of node names. The run/3 function runs the tests in TestSpecs just
like run/1 but will also take any test in TestSpecs that's not explicitly tagged with a particular node name and
execute it on the nodes listed in InclNodes. By using run/3 this way it is possible to use any test specification,
with or without node information, in a large scale test environment! ExclNodes is a list of nodes that should be
excluded from the test. I.e. tests that have been specified in the test specification to run on a particular node will not
be performed if that node is at runtime listed in ExclNodes.

If CT Master fails initially to connect to any of the test nodes specified in a test specification or in the InclNodes
list, the operator will be prompted with the option to either start over again (after manually checking the status of the
node(s) in question), to run without the missing nodes, or to abort the operation.

1.10 Using Common Test for Large Scale Testing

Ericsson AB. All Rights Reserved.: Common Test | 63

When tests start, CT Master prints information to console about the nodes that are involved. CT Master also reports
when tests finish, successfully or unsuccessfully. If connection is lost to a node, the test on that node is considered
finished. CT Master will not attempt to reestablish contact with the failing node. At any time to get the current status
of the test nodes, call the function:

ct_master:progress()

To stop one or more tests, use:

ct_master:abort() (stop all) or ct_master:abort(Nodes)

For detailed information about the ct_master API, please see the manual page for this module.

1.10.3 Test Specifications
The test specifications used as input to CT Master are fully compatible with the specifications used as input to the
regular CT server. The syntax is described in the Running Test Suites chapter.

All test specification terms can have a NodeRefs element. This element specifies which node or nodes a configuration
operation or a test is to be executed on. NodeRefs is defined as:

NodeRefs = all_nodes | [NodeRef] | NodeRef

where

NodeRef = NodeAlias | node() | master

A NodeAlias (atom()) is used in a test specification as a reference to a node name (so the actual node name
only needs to be declared once, which can of course also be achieved using constants). The alias is declared with a
node term:

{node, NodeAlias, NodeName}

If NodeRefs has the value all_nodes, the operation or test will be performed on all given test nodes. (Declaring a
term without a NodeRefs element actually has the same effect). If NodeRefs has the value master, the operation
is only performed on the CT Master node (namely set the log directory or install an event handler).

Consider the example in the Running Test Suites chapter, now extended with node information and intended to be
executed by the CT Master:

 {define, 'Top', "/home/test"}.
 {define, 'T1', "'Top'/t1"}.
 {define, 'T2', "'Top'/t2"}.
 {define, 'T3', "'Top'/t3"}.
 {define, 'CfgFile', "config.cfg"}.
 {define, 'Node', ct_node}.

 {node, node1, 'Node@host_x'}.
 {node, node2, 'Node@host_y'}.

 {logdir, master, "'Top'/master_logs"}.
 {logdir, "'Top'/logs"}.

 {config, node1, "'T1'/'CfgFile'"}.
 {config, node2, "'T2'/'CfgFile'"}.
 {config, "'T3'/'CfgFile'"}.

 {suites, node1, 'T1', all}.
 {skip_suites, node1, 'T1', [t1B_SUITE,t1D_SUITE], "Not implemented"}.
 {skip_cases, node1, 'T1', t1A_SUITE, [test3,test4], "Irrelevant"}.
 {skip_cases, node1, 'T1', t1C_SUITE, [test1], "Ignore"}.

 {suites, node2, 'T2', [t2B_SUITE,t2C_SUITE]}.

1.10 Using Common Test for Large Scale Testing

64 | Ericsson AB. All Rights Reserved.: Common Test

 {cases, node2, 'T2', t2A_SUITE, [test4,test1,test7]}.

 {skip_suites, 'T3', all, "Not implemented"}.

This example specifies the same tests as the original example. But now if started with a call to
ct_master:run(TestSpecName), the t1 test will be executed on node ct_node@host_x (node1), the t2 test
on ct_node@host_y (node2) and the t3 test on both node1 and node2. The t1 config file will only be read on node1
and the t2 config file only on node2, while the t3 config file will be read on both node1 and node2. Both test nodes
will write log files to the same directory. (The CT Master node will however use a different log directory than the
test nodes).

If the test session is instead started with a call to ct_master:run(TestSpecName, [ct_node@host_z],
[ct_node@host_x]), the result is that the t1 test does not run on ct_node@host_x (or any other node) while
the t3 test runs on ct_node@host_y and ct_node@host_z.

A nice feature is that a test specification that includes node information can still be used as input to the regular Common
Test server (as described in the Running Test Suites chapter). The result is that any test specified to run on a node with
the same name as the Common Test node in question (typically ct@somehost if started with the ct_run program),
will be performed. Tests without explicit node association will always be performed too of course!

1.10.4 Automatic startup of test target nodes
Is is possible to automatically start, and perform initial actions, on test target nodes by using the test specification
term init.

Currently, two sub-terms are supported, node_start and eval.

Example:

 {node, node1, node1@host1}.
 {node, node2, node1@host2}.
 {node, node3, node2@host2}.
 {node, node4, node1@host3}.
 {init, node1, [{node_start, [{callback_module, my_slave_callback}]}]}.
 {init, [node2, node3], {node_start, [{username, "ct_user"}, {password, "ct_password"}]}}.
 {init, node4, {eval, {module, function, []}}}.

This test specification declares that node1@host1 is to be started using the user callback function
callback_module:my_slave_callback/0, and nodes node1@host2 and node2@host2 will be started
with the default callback module ct_slave. The given user name and password is used to log into remote host
host2. Also, the function module:function/0 will be evaluated on node1@host3, and the result of this call
will be printed to the log.

The default ct_slave callback module, which is part of the Common Test application, has the following features:

• Starting Erlang target nodes on local or remote hosts (ssh is used for communication).

• Ability to start an Erlang emulator with additional flags (any flags supported by erl are supported).

• Supervision of a node being started by means of internal callback functions. Used to prevent hanging nodes.
(Configurable).

• Monitoring of the master node by the slaves. A slave node may be stopped in case the master node terminates.
(Configurable).

• Execution of user functions after a slave node is started. Functions can be given as a list of {Module, Function,
Arguments} tuples.

1.11 Event Handling

Ericsson AB. All Rights Reserved.: Common Test | 65

Note that it is possible to specify an eval term for the node as well as startup_functions in the node_start
options list. In this case first the node will be started, then the startup_functions are executed, and finally
functions specified with eval are called.

1.11 Event Handling
1.11.1 General
It is possible for the operator of a Common Test system to receive event notifications continously during a test run. It
is reported e.g. when a test case starts and stops, what the current count of successful, failed and skipped cases is, etc.
This information can be used for different purposes such as logging progress and results on other format than HTML,
saving statistics to a database for report generation and test system supervision.

Common Test has a framework for event handling which is based on the OTP event manager concept and gen_event
behaviour. When the Common Test server starts, it spawns an event manager. During test execution the manager gets
a notification from the server every time something of potential interest happens. Any event handler plugged into the
event manager can match on events of interest, take action, or maybe simply pass the information on. Event handlers
are Erlang modules implemented by the Common Test user according to the gen_event behaviour (see the OTP User's
Guide and Reference Manual for more information).

As already described, a Common Test server always starts an event manager. The server also plugs in a default event
handler which has as its only purpose to relay notifications to a globally registered CT Master event manager (if a
CT Master server is running in the system). The CT Master also spawns an event manager at startup. Event handlers
plugged into this manager will receive the events from all the test nodes as well as information from the CT Master
server itself.

1.11.2 Usage
Event handlers may be installed by means of an event_handler start flag (ct_run) or option
(ct:run_test/1), where the argument specifies the names of one or more event handler modules. Example:

$ ct_run -suite test/my_SUITE -event_handler handlers/my_evh1 handlers/my_evh2
-pa $PWD/handlers

Use the ct_run -event_handler_init option instead of -event_handler to pass start arguments to the
event handler init function.

All event handler modules must have gen_event behaviour. Note also that these modules must be precompiled, and
that their locations must be added explicitly to the Erlang code server search path (like in the example).

An event_handler tuple in the argument Opts has the following definition (see also ct:run_test/1 in the
reference manual):

 {event_handler,EventHandlers}

 EventHandlers = EH | [EH]
 EH = atom() | {atom(),InitArgs} | {[atom()],InitArgs}
 InitArgs = [term()]

Example:

 1> ct:run_test([{suite,"test/my_SUITE"},{event_handler,[my_evh1,{my_evh2,[node()]}]}]).

1.11 Event Handling

66 | Ericsson AB. All Rights Reserved.: Common Test

This will install two event handlers for the my_SUITE test. Event handler my_evh1 is started with [] as argument
to the init function. Event handler my_evh2 is started with the name of the current node in the init argument list.

Event handlers can also be plugged in by means of test specification terms:

{event_handler, EventHandlers}, or

{event_handler, EventHandlers, InitArgs}, or

{event_handler, NodeRefs, EventHandlers}, or

{event_handler, NodeRefs, EventHandlers, InitArgs}

EventHandlers is a list of module names. Before a test session starts, the init function of each plugged in event
handler is called (with the InitArgs list as argument or [] if no start arguments are given).

To plug a handler into the CT Master event manager, specify master as the node in NodeRefs.

For an event handler to be able to match on events, the module must include the header file ct_event.hrl. An
event is a record with the following definition:

#event{name, node, data}

name is the label (type) of the event. node is the name of the node the event has originated from (only relevant for
CT Master event handlers). data is specific for the particular event.

General events:

• #event{name = start_logging, data = LogDir}

LogDir = string(), top level log directory for the test run.

Indicates that the logging process of Common Test has started successfully and is ready to receive IO messages.

• #event{name = stop_logging, data = []}

Indicates that the logging process of Common Test has been shut down at the end of the test run.

• #event{name = test_start, data = {StartTime,LogDir}}

StartTime = {date(),time()}, test run start date and time.

LogDir = string(), top level log directory for the test run.

This event indicates that Common Test has finished initial preparations and will begin executing test cases.

• #event{name = test_done, data = EndTime}

EndTime = {date(),time()}, date and time the test run finished.

This indicates that the last test case has been executed and Common Test is shutting down.

• #event{name = start_info, data = {Tests,Suites,Cases}}

Tests = integer(), the number of tests.

Suites = integer(), the total number of suites.

Cases = integer() | unknown, the total number of test cases.

Initial test run information that can be interpreted as: "This test run will execute Tests separate tests, in total
containing Cases number of test cases, in Suites number of suites". Note that if a test case group with a repeat
property exists in any test, the total number of test cases can not be calculated (unknown).

• #event{name = tc_start, data = {Suite,FuncOrGroup}}

Suite = atom(), name of the test suite.

FuncOrGroup = Func | {Conf,GroupName,GroupProperties}

Func = atom(), name of test case or configuration function.

1.11 Event Handling

Ericsson AB. All Rights Reserved.: Common Test | 67

Conf = init_per_group | end_per_group, group configuration function.

GroupName = atom(), name of the group.

GroupProperties = list(), list of execution properties for the group.

This event informs about the start of a test case, or a group configuration function. The event is sent also for
init_per_suite and end_per_suite, but not for init_per_testcase and end_per_testcase.
If a group configuration function is starting, the group name and execution properties are also given.

• #event{name = tc_logfile, data = {{Suite,Func},LogFileName}}

Suite = atom(), name of the test suite.

Func = atom(), name of test case or configuration function.

LogFileName = string(), full name of test case log file.

This event is sent at the start of each test case (and configuration function except init/end_per_testcase)
and carries information about the full name (i.e. the file name including the absolute directory path) of the current
test case log file.

• #event{name = tc_done, data = {Suite,FuncOrGroup,Result}}

Suite = atom(), name of the suite.

FuncOrGroup = Func | {Conf,GroupName,GroupProperties}

Func = atom(), name of test case or configuration function.

Conf = init_per_group | end_per_group, group configuration function.

GroupName = unknown | atom(), name of the group (unknown if init- or end function times out).

GroupProperties = list(), list of execution properties for the group.

Result = ok | {skipped,SkipReason} | {failed,FailReason}, the result.

SkipReason = {require_failed,RequireInfo} |
{require_failed_in_suite0,RequireInfo} | {failed,
{Suite,init_per_testcase,FailInfo}} | UserTerm, the reason why the case has been skipped.

FailReason = {error,FailInfo} | {error,{RunTimeError,StackTrace}} |
{timetrap_timeout,integer()} | {failed,{Suite,end_per_testcase,FailInfo}},
reason for failure.

RequireInfo = {not_available,atom() | tuple()}, why require has failed.

FailInfo = {timetrap_timeout,integer()} | {RunTimeError,StackTrace} |
UserTerm, detailed information about an error.

RunTimeError = term(), a run-time error, e.g. badmatch, undef, etc.

StackTrace = list(), list of function calls preceeding a run-time error.

UserTerm = term(), arbitrary data specified by user, or exit/1 info.

This event informs about the end of a test case or a configuration function (see the tc_start event for details
on the FuncOrGroup element). With this event comes the final result of the function in question. It is possible to
determine on the top level of Result if the function was successful, skipped (by the user), or if it failed. It is of
course possible to dig deeper and also perform pattern matching on the various reasons for skipped or failed. Note
that {'EXIT',Reason} tuples have been translated into {error,Reason}. Note also that if a {failed,
{Suite,end_per_testcase,FailInfo} result is received, it actually means the test case was successful,
but that end_per_testcase for the case failed.

• #event{name = tc_auto_skip, data = {Suite,Func,Reason}}

1.11 Event Handling

68 | Ericsson AB. All Rights Reserved.: Common Test

Suite = atom(), the name of the suite.

Func = atom(), the name of the test case or configuration function.

Reason = {failed,FailReason} | {require_failed_in_suite0,RequireInfo}, reason
for auto skipping Func.

FailReason = {Suite,ConfigFunc,FailInfo}} | {Suite,FailedCaseInSequence},
reason for failure.

RequireInfo = {not_available,atom() | tuple()}, why require has failed.

ConfigFunc = init_per_suite | init_per_group

FailInfo = {timetrap_timeout,integer()} | {RunTimeError,StackTrace} |
bad_return | UserTerm, detailed information about an error.

FailedCaseInSequence = atom(), name of a case that has failed in a sequence.

RunTimeError = term(), a run-time error, e.g. badmatch, undef, etc.

StackTrace = list(), list of function calls preceeding a run-time error.

UserTerm = term(), arbitrary data specified by user, or exit/1 info.

This event gets sent for every test case or configuration function that Common Test has skipped automatically
because of either a failed init_per_suite or init_per_group, a failed require in suite/0, or a
failed test case in a sequence. Note that this event is never received as a result of a test case getting skipped because
of init_per_testcase failing, since that information is carried with the tc_done event.

• #event{name = tc_user_skip, data = {Suite,TestCase,Comment}}

Suite = atom(), name of the suite.

TestCase = atom(), name of the test case.

Comment = string(), reason for skipping the test case.

This event specifies that a test case has been skipped by the user. It is only ever received if the skip was declared
in a test specification. Otherwise, user skip information is received as a {skipped,SkipReason} result in
the tc_done event for the test case.

• #event{name = test_stats, data = {Ok,Failed,Skipped}}

Ok = integer(), the current number of successful test cases.

Failed = integer(), the current number of failed test cases.

Skipped = {UserSkipped,AutoSkipped}

UserSkipped = integer(), the current number of user skipped test cases.

AutoSkipped = integer(), the current number of auto skipped test cases.

This is a statistics event with the current count of successful, skipped and failed test cases so far. This event gets
sent after the end of each test case, immediately following the tc_done event.

Internal events:

• #event{name = start_make, data = Dir}

Dir = string(), running make in this directory.

An internal event saying that Common Test will start compiling modules in directory Dir.

• #event{name = finished_make, data = Dir}

Dir = string(), finished running make in this directory.

An internal event saying that Common Test is finished compiling modules in directory Dir.

1.12 Dependencies between Test Cases and Suites

Ericsson AB. All Rights Reserved.: Common Test | 69

• #event{name = start_write_file, data = FullNameFile}

FullNameFile = string(), full name of the file.

An internal event used by the Common Test Master process to synchronize particular file operations.

• #event{name = finished_write_file, data = FullNameFile}

FullNameFile = string(), full name of the file.

An internal event used by the Common Test Master process to synchronize particular file operations.

The events are also documented in ct_event.erl. This module may serve as an example of what an event handler
for the CT event manager can look like.

Note:
To ensure that printouts to standard out (or printouts made with ct:log/2/3 or ct:pal/2/3) get written to
the test case log file, and not to the Common Test framework log, you can syncronize with the Common Test
server by matching on the tc_start and tc_done events. In the period between these events, all IO gets
directed to the test case log file. These events are sent synchronously to avoid potential timing problems (e.g. that
the test case log file gets closed just before an IO message from an external process gets through). Knowing this,
you need to be careful that your handle_event/2 callback function doesn't stall the test execution, possibly
causing unexpected behaviour as a result.

1.12 Dependencies between Test Cases and Suites
1.12.1 General
When creating test suites, it is strongly recommended to not create dependencies between test cases, i.e. letting test
cases depend on the result of previous test cases. There are various reasons for this, for example:

• It makes it impossible to run test cases individually.

• It makes it impossible to run test cases in different order.

• It makes debugging very difficult (since a fault could be the result of a problem in a different test case than the
one failing).

• There exists no good and explicit ways to declare dependencies, so it may be very difficult to see and
understand these in test suite code and in test logs.

• Extending, restructuring and maintaining test suites with test case dependencies is difficult.

There are often sufficient means to work around the need for test case dependencies. Generally, the problem is related
to the state of the system under test (SUT). The action of one test case may alter the state of the system and for some
other test case to run properly, the new state must be known.

Instead of passing data between test cases, it is recommended that the test cases read the state from the SUT and
perform assertions (i.e. let the test case run if the state is as expected, otherwise reset or fail) and/or use the state to
set variables necessary for the test case to execute properly. Common actions can often be implemented as library
functions for test cases to call to set the SUT in a required state. (Such common actions may of course also be separately
tested if necessary, to ensure they are working as expected). It is sometimes also possible, but not always desirable, to
group tests together in one test case, i.e. let a test case perform a "scenario" test (a test that consists of subtests).

Consider for example a server application under test. The following functionality is to be tested:

• Starting the server.

• Configuring the server.

1.12 Dependencies between Test Cases and Suites

70 | Ericsson AB. All Rights Reserved.: Common Test

• Connecting a client to the server.

• Disconnecting a client from the server.

• Stopping the server.

There are obvious dependencies between the listed functions. We can't configure the server if it hasn't first been started,
we can't connect a client until the server has been properly configured, etc. If we want to have one test case for each
of the functions, we might be tempted to try to always run the test cases in the stated order and carry possible data
(identities, handles, etc) between the cases and therefore introduce dependencies between them. To avoid this we could
consider starting and stopping the server for every test. We would implement the start and stop action as common
functions that may be called from init_per_testcase and end_per_testcase. (We would of course test the start and stop
functionality separately). The configuration could perhaps also be implemented as a common function, maybe grouped
with the start function. Finally the testing of connecting and disconnecting a client may be grouped into one test case.
The resulting suite would look something like this:

 -module(my_server_SUITE).
 -compile(export_all).
 -include_lib("ct.hrl").

 %%% init and end functions...

 suite() -> [{require,my_server_cfg}].

 init_per_testcase(start_and_stop, Config) ->
 Config;

 init_per_testcase(config, Config) ->
 [{server_pid,start_server()} | Config];

 init_per_testcase(_, Config) ->
 ServerPid = start_server(),
 configure_server(),
 [{server_pid,ServerPid} | Config].

 end_per_testcase(start_and_stop, _) ->
 ok;

 end_per_testcase(_, _) ->
 ServerPid = ?config(server_pid),
 stop_server(ServerPid).

 %%% test cases...

 all() -> [start_and_stop, config, connect_and_disconnect].

 %% test that starting and stopping works
 start_and_stop(_) ->
 ServerPid = start_server(),
 stop_server(ServerPid).

 %% configuration test
 config(Config) ->
 ServerPid = ?config(server_pid, Config),
 configure_server(ServerPid).

 %% test connecting and disconnecting client
 connect_and_disconnect(Config) ->
 ServerPid = ?config(server_pid, Config),
 {ok,SessionId} = my_server:connect(ServerPid),
 ok = my_server:disconnect(ServerPid, SessionId).

1.12 Dependencies between Test Cases and Suites

Ericsson AB. All Rights Reserved.: Common Test | 71

 %%% common functions...

 start_server() ->
 {ok,ServerPid} = my_server:start(),
 ServerPid.

 stop_server(ServerPid) ->
 ok = my_server:stop(),
 ok.

 configure_server(ServerPid) ->
 ServerCfgData = ct:get_config(my_server_cfg),
 ok = my_server:configure(ServerPid, ServerCfgData),
 ok.

1.12.2 Saving configuration data
There might be situations where it is impossible, or infeasible at least, to implement independent test cases. Maybe
it is simply not possible to read the SUT state. Maybe resetting the SUT is impossible and it takes much too long to
restart the system. In situations where test case dependency is necessary, CT offers a structured way to carry data from
one test case to the next. The same mechanism may also be used to carry data from one test suite to the next.

The mechanism for passing data is called save_config. The idea is that one test case (or suite) may save the current
value of Config - or any list of key-value tuples - so that it can be read by the next executing test case (or test suite).
The configuration data is not saved permanently but can only be passed from one case (or suite) to the next.

To save Config data, return the tuple:

{save_config,ConfigList}

from end_per_testcase or from the main test case function. To read data saved by a previous test case, use the
config macro with a saved_config key:

{Saver,ConfigList} = ?config(saved_config, Config)

Saver (atom()) is the name of the previous test case (where the data was saved). The config macro may be used
to extract particular data also from the recalled ConfigList. It is strongly recommended that Saver is always
matched to the expected name of the saving test case. This way problems due to restructuring of the test suite may be
avoided. Also it makes the dependency more explicit and the test suite easier to read and maintain.

To pass data from one test suite to another, the same mechanism is used. The data should be saved by the
end_per_suite function and read by init_per_suite in the suite that follows. When passing data between
suites, Saver carries the name of the test suite.

Example:

 -module(server_b_SUITE).
 -compile(export_all).
 -include_lib("ct.hrl").

 %%% init and end functions...

 init_per_suite(Config) ->
 %% read config saved by previous test suite
 {server_a_SUITE,OldConfig} = ?config(saved_config, Config),
 %% extract server identity (comes from server_a_SUITE)
 ServerId = ?config(server_id, OldConfig),
 SessionId = connect_to_server(ServerId),
 [{ids,{ServerId,SessionId}} | Config].

1.12 Dependencies between Test Cases and Suites

72 | Ericsson AB. All Rights Reserved.: Common Test

 end_per_suite(Config) ->
 %% save config for server_c_SUITE (session_id and server_id)
 {save_config,Config}

 %%% test cases...

 all() -> [allocate, deallocate].

 allocate(Config) ->
 {ServerId,SessionId} = ?config(ids, Config),
 {ok,Handle} = allocate_resource(ServerId, SessionId),
 %% save handle for deallocation test
 NewConfig = [{handle,Handle}],
 {save_config,NewConfig}.

 deallocate(Config) ->
 {ServerId,SessionId} = ?config(ids, Config),
 {allocate,OldConfig} = ?config(saved_config, Config),
 Handle = ?config(handle, OldConfig),
 ok = deallocate_resource(ServerId, SessionId, Handle).

It is also possible to save Config data from a test case that is to be skipped. To accomplish this, return the following
tuple:

{skip_and_save,Reason,ConfigList}

The result will be that the test case is skipped with Reason printed to the log file (as described in previous
chapters), and ConfigList is saved for the next test case. ConfigList may be read by means of ?
config(saved_config, Config), as described above. skip_and_save may also be returned from
init_per_suite, in which case the saved data can be read by init_per_suite in the suite that follows.

1.12.3 Sequences
It is possible that test cases depend on each other so that if one case fails, the following test(s) should not be executed.
Typically, if the save_config facility is used and a test case that is expected to save data crashes, the following
case can not run. CT offers a way to declare such dependencies, called sequences.

A sequence of test cases is defined as a test case group with a sequence property. Test case groups are defined by
means of the groups/0 function in the test suite (see the Test case groups chapter for details).

For example, if we would like to make sure that if allocate in server_b_SUITE (above) crashes, deallocate
is skipped, we may define a sequence like this:

 groups() -> [{alloc_and_dealloc, [sequence], [alloc,dealloc]}].

Let's also assume the suite contains the test case get_resource_status, which is independent of the other two
cases, then the all function could look like this:

 all() -> [{group,alloc_and_dealloc}, get_resource_status].

If alloc succeeds, dealloc is also executed. If alloc fails however, dealloc is not executed but
marked as SKIPPED in the html log. get_resource_status will run no matter what happens to the
alloc_and_dealloc cases.

1.13 Common Test Hooks

Ericsson AB. All Rights Reserved.: Common Test | 73

Test cases in a sequence will be executed in order until they have all succeeded or until one case fails. If one fails,
all following cases in the sequence are skipped. The cases in the sequence that have succeeded up to that point are
reported as successful in the log. An arbitrary number of sequences may be specified. Example:

 groups() -> [{scenarioA, [sequence], [testA1, testA2]},
 {scenarioB, [sequence], [testB1, testB2, testB3]}].

 all() -> [test1,
 test2,
 {group,scenarioA},
 test3,
 {group,scenarioB},
 test4].

It is possible to have sub-groups in a sequence group. Such sub-groups can have any property, i.e. they are not
required to also be sequences. If you want the status of the sub-group to affect the sequence on the level above, return
{return_group_result,Status} from end_per_group/2, as described in the Repeated groups chapter.
A failed sub-group (Status == failed) will cause the execution of a sequence to fail in the same way a test
case does.

1.13 Common Test Hooks
1.13.1 General
The Common Test Hook (henceforth called CTH) framework allows extensions of the default behaviour of Common
Test by means of hooks before and after all test suite calls. CTHs allow advanced Common Test users to abstract out
behaviour which is common to multiple test suites without littering all test suites with library calls. Some example
usages are: logging, starting and monitoring external systems, building C files needed by the tests and much more!

In brief, Common Test Hooks allows you to:

• Manipulate the runtime config before each suite configuration call

• Manipulate the return of all suite configuration calls and in extension the result of the test themselves.

The following sections describe how to use CTHs, when they are run and how to manipulate your test results in a CTH

Warning:
When executing within a CTH all timetraps are shutoff. So if your CTH never returns, the entire test run will
be stalled!

1.13.2 Installing a CTH
There are multiple ways to install a CTH in your test run. You can do it for all tests in a run, for specific test suites
and for specific groups within a test suite. If you want a CTH to be present in all test suites within your test run there
are three different ways to accomplish that.

• Add -ct_hooks as an argument to ct_run. To add multiple CTHs using this method append them to each
other using the keyword and, i.e. ct_run -ct_hooks cth1 [{debug,true}] and cth2

• Add the ct_hooks tag to your Test Specification

• Add the ct_hooks tag to your call to ct:run_test/1

1.13 Common Test Hooks

74 | Ericsson AB. All Rights Reserved.: Common Test

You can also add CTHs within a test suite. This is done by returning {ct_hooks,[CTH]} in the config list
from suite/0, init_per_suite/1 or init_per_group/2. CTH in this case can be either only the module name of
the CTH or a tuple with the module name and the initial arguments and optionally the hook priority of the
CTH. Eg: {ct_hooks,[my_cth_module]} or {ct_hooks,[{my_cth_module,[{debug,true}]}]}
or {ct_hooks,[{my_cth_module,[{debug,true}],500}]}

Overriding CTHs
By default each installation of a CTH will cause a new instance of it to be activated. This can cause problems if you
want to be able to override CTHs in test specifications while still having them in the suite info function. The id/1
callback exists to address this problem. By returning the same id in both places, Common Test knows that this CTH
has already been installed and will not try to install it again.

CTH Execution order
By default each CTH installed will be executed in the order which they are installed for init calls, and then reversed for
end calls. This is not always wanted so common_test allows the user to specify a priority for each hook. The priority
can either be specified in the CTH init/2 function or when installing the hook. The priority given at installation will
override the priority returned by the CTH.

1.13.3 CTH Scope
Once the CTH is installed into a certain test run it will be there until its scope is expired. The scope of a CTH depends
on when it is installed. The init/2 is called at the beginning of the scope and the terminate/1 function is called when
the scope ends.

CTH Installed in CTH scope begins before CTH scope ends after

ct_run the first test suite is to be run. the last test suite has been run.

ct:run_test the first test suite is to be run. the last test suite has been run.

Test Specification the first test suite is to be run. the last test suite has been run.

suite/0 pre_init_per_suite/3 is called.
post_end_per_suite/4 has been
called for that test suite.

init_per_suite/1 post_init_per_suite/4 is called.
post_end_per_suite/4 has been
called for that test suite.

init_per_group/2 post_init_per_group/4 is called.
post_end_per_group/4 has been
called for that group.

Table 13.1: Scope of a CTH

CTH Processes and Tables
CTHs are run with the same process scoping as normal test suites i.e. a different process will execute the init_per_suite
hooks then the init_per_group or per_testcase hooks. So if you want to spawn a process in the CTH you cannot link
with the CTH process as it will exit after the post hook ends. Also if you for some reason need an ETS table with your
CTH, you will have to spawn a process which handles it.

1.13 Common Test Hooks

Ericsson AB. All Rights Reserved.: Common Test | 75

External configuration data and Logging
It's possible in the CTH to read configuration data values by calling ct:get_config/1/2/3 (as explained in the
External configuration data chapter). The config variables in question must, as always, first have been required
by means of a suite-, group-, or test case info function, or the ct:require/1/2 function. Note that the latter can
also be used in CT hook functions.

The CT hook functions may call any of the logging functions available in the ct interface to print information to the
log files, or to add comments in the suite overview page.

1.13.4 Manipulating tests
It is through CTHs possible to manipulate the results of tests and configuration functions. The main purpose of doing
this with CTHs is to allow common patterns to be abstracted out from test test suites and applied to multiple test suites
without duplicating any code. All of the callback functions for a CTH follow a common interface, this interface is
described below.

Common Test will always call all available hook functions, even pre- and post hooks for configuration
functions that are not implemented in the suite. For example, pre_init_per_suite(x_SUITE, ...) and
post_init_per_suite(x_SUITE, ...) will be called for test suite x_SUITE, even if it doesn't export
init_per_suite/1. This feature makes it possible to use hooks as configuration fallbacks, or even completely
replace all configuration functions with hook functions.

Pre Hooks
It is possible in a CTH to hook in behaviour before init_per_suite, init_per_group, init_per_testcase, end_per_group
and end_per_suite. This is done in the CTH functions called pre_<name of function>. All of these functions take the
same three arguments: Name, Config and CTHState. The return value of the CTH function is always a combination
of an result for the suite/group/test and an updated CTHState. If you want the test suite to continue on executing you
should return the config list which you want the test to use as the result. If you for some reason want to skip/fail the
test, return a tuple with skip or fail and a reason as the result. Example:

pre_init_per_suite(SuiteName, Config, CTHState) ->
 case db:connect() of
 {error,_Reason} ->
 {{fail, "Could not connect to DB"}, CTHState};
 {ok, Handle} ->
 {[{db_handle, Handle} | Config], CTHState#state{ handle = Handle }}
 end.

Note:
If using multiple CTHs, the first part of the return tuple will be used as input for the next CTH. So in the case above
the next CTH might get {fail,Reason} as the second parameter. If you have many CTHs which interact, it
might be a good idea to not let each CTH return fail or skip. Instead return that an action should be taken
through the Config list and implement a CTH which at the end takes the correct action.

Post Hooks
It is also possible in a CTH to hook in behaviour after init_per_suite, init_per_group, end_per_testcase, end_per_group
and end_per_suite. This is done in the CTH functions called post_<name of function>. All of these function take the
same four arguments: Name, Config, Return and CTHState. Config in this case is the same Config as the
testcase is called with. Return is the value returned by the testcase. If the testcase failed by crashing, Return will
be {'EXIT',{{Error,Reason},Stacktrace}}.

1.13 Common Test Hooks

76 | Ericsson AB. All Rights Reserved.: Common Test

The return value of the CTH function is always a combination of an result for the suite/group/test and an updated
CTHState. If you want the callback to not affect the outcome of the test you should return the Return data as it
is given to the CTH. You can also modify the result of the test. By returning the Config list with the tc_status
element removed you can recover from a test failure. As in all the pre hooks, it is also possible to fail/skip the test
case in the post hook. Example:

post_end_per_testcase(_TC, Config, {'EXIT',{_,_}}, CTHState) ->
 case db:check_consistency() of
 true ->
 %% DB is good, pass the test.
 {proplists:delete(tc_status, Config), CTHState};
 false ->
 %% DB is not good, mark as skipped instead of failing
 {{skip, "DB is inconsisten!"}, CTHState}
 end;
post_end_per_testcase(_TC, Config, Return, CTHState) ->
 %% Do nothing if tc does not crash.
 {Return, CTHState}.

Note:
Recovering from a testcase failure using CTHs should only be done as a last resort. If used wrongly it could
become very difficult to determine which tests pass or fail in a test run

Skip and Fail hooks
After any post hook has been executed for all installed CTHs, on_tc_fail or on_tc_skip might be called if the testcase
failed or was skipped respectively. You cannot affect the outcome of the tests any further at this point.

1.13.5 Example CTH
The CTH below will log information about a test run into a format parseable by file:consult/1.

%%% @doc Common Test Example Common Test Hook module.
-module(example_cth).

%% Callbacks
-export([id/1]).
-export([init/2]).

-export([pre_init_per_suite/3]).
-export([post_init_per_suite/4]).
-export([pre_end_per_suite/3]).
-export([post_end_per_suite/4]).

-export([pre_init_per_group/3]).
-export([post_init_per_group/4]).
-export([pre_end_per_group/3]).
-export([post_end_per_group/4]).

-export([pre_init_per_testcase/3]).
-export([post_end_per_testcase/4]).

-export([on_tc_fail/3]).
-export([on_tc_skip/3]).

-export([terminate/1]).

1.13 Common Test Hooks

Ericsson AB. All Rights Reserved.: Common Test | 77

-record(state, { file_handle, total, suite_total, ts, tcs, data }).

%% @doc Return a unique id for this CTH.
id(Opts) ->
 proplists:get_value(filename, Opts, "/tmp/file.log").

%% @doc Always called before any other callback function. Use this to initiate
%% any common state.
init(Id, Opts) ->
 {ok,D} = file:open(Id,[write]),
 {ok, #state{ file_handle = D, total = 0, data = [] }}.

%% @doc Called before init_per_suite is called.
pre_init_per_suite(Suite,Config,State) ->
 {Config, State#state{ suite_total = 0, tcs = [] }}.

%% @doc Called after init_per_suite.
post_init_per_suite(Suite,Config,Return,State) ->
 {Return, State}.

%% @doc Called before end_per_suite.
pre_end_per_suite(Suite,Config,State) ->
 {Config, State}.

%% @doc Called after end_per_suite.
post_end_per_suite(Suite,Config,Return,State) ->
 Data = {suites, Suite, State#state.suite_total, lists:reverse(State#state.tcs)},
 {Return, State#state{ data = [Data | State#state.data] ,
 total = State#state.total + State#state.suite_total } }.

%% @doc Called before each init_per_group.
pre_init_per_group(Group,Config,State) ->
 {Config, State}.

%% @doc Called after each init_per_group.
post_init_per_group(Group,Config,Return,State) ->
 {Return, State}.

%% @doc Called after each end_per_group.
pre_end_per_group(Group,Config,State) ->
 {Config, State}.

%% @doc Called after each end_per_group.
post_end_per_group(Group,Config,Return,State) ->
 {Return, State}.

%% @doc Called before each test case.
pre_init_per_testcase(TC,Config,State) ->
 {Config, State#state{ ts = now(), total = State#state.suite_total + 1 } }.

%% @doc Called after each test case.
post_end_per_testcase(TC,Config,Return,State) ->
 TCInfo = {testcase, TC, Return, timer:now_diff(now(), State#state.ts)},
 {Return, State#state{ ts = undefined, tcs = [TCInfo | State#state.tcs] } }.

%% @doc Called after post_init_per_suite, post_end_per_suite, post_init_per_group,
%% post_end_per_group and post_end_per_testcase if the suite, group or test case failed.
on_tc_fail(TC, Reason, State) ->
 State.

%% @doc Called when a test case is skipped by either user action
%% or due to an init function failing.
on_tc_skip(TC, Reason, State) ->
 State.

1.13 Common Test Hooks

78 | Ericsson AB. All Rights Reserved.: Common Test

%% @doc Called when the scope of the CTH is done
terminate(State) ->
 io:format(State#state.file_handle, "~p.~n",
 [{test_run, State#state.total, State#state.data}]),
 file:close(State#state.file_handle),
 ok.

1.13.6 Built-in CTHs
Common Test is delivered with a couple of general purpose CTHs that can be enabled by the user to provide some
generic testing functionality. Some of these are enabled by default when starting running common_test, they can be
disabled by setting enable_builtin_hooks to false on the command line or in the test specification. In the
table below there is a list of all current CTHs which are delivered with Common Test.

CTH Name Is Built-in Description

cth_log_redirect yes

Captures all error_logger and SASL
logging events and prints them to the
current test case log. If an event can
not be associated with a testcase it
will be printed in the common test
framework log. This will happen for
testcases which are run in parallel
and events which occur inbetween
testcases. You can configure the
level of SASL events report using the
normal SASL mechanisms.

cth_surefire no

Captures all test results and outputs
them as surefire XML into a file. The
file which is created is by default
called junit_report.xml. The file name
can be changed by setting the path
option for this hook, e.g.

-ct_hooks cth_surefire [{path,"/tmp/report.xml"}]

If the url_base option is set,
an additional attribute named url
will be added to each testsuite
and testcase XML element. The
value will be constructed from the
url_base and a relative path to the
test suite or test case log respectively,
e.g.

-ct_hooks cth_surefire [{url_base, "http://myserver.com/"}]

will give a url attribute value similar
to

"http://myserver.com/ct_run.ct@myhost.2012-12-12_11.19.39/

1.14 Some thoughts about testing

Ericsson AB. All Rights Reserved.: Common Test | 79

x86_64-unknown-linux-gnu.my_test.logs/run.2012-12-12_11.19.39/suite.log.html"

Surefire XML can for instance be
used by Jenkins to display test results.

1.14 Some thoughts about testing
1.14.1 Goals
It's not possible to prove that a program is correct by testing. On the contrary, it has been formally proven that it is
impossible to prove programs in general by testing. Theoretical program proofs or plain examination of code may be
viable options for those that wish to certify that a program is correct. The test server, as it is based on testing, cannot
be used for certification. Its intended use is instead to (cost effectively) find bugs. A successful test suite is one that
reveals a bug. If a test suite results in Ok, then we know very little that we didn't know before.

1.14.2 What to test?
There are many kinds of test suites. Some concentrate on calling every function or command (in the documented way)
in a certain interface. Some other do the same, but uses all kinds of illegal parameters, and verifies that the server
stays alive and rejects the requests with reasonable error codes. Some test suites simulate an application (typically
consisting of a few modules of an application), some try to do tricky requests in general, some test suites even test
internal functions with help of special load-modules on target.

Another interesting category of test suites are the ones that check that fixed bugs don't reoccur. When a bugfix is
introduced, a test case that checks for that specific bug should be written and submitted to the affected test suite(s).

Aim for finding bugs. Write whatever test that has the highest probability of finding a bug, now or in the future.
Concentrate more on the critical parts. Bugs in critical subsystems are a lot more expensive than others.

Aim for functionality testing rather than implementation details. Implementation details change quite often, and the test
suites should be long lived. Often implementation details differ on different platforms and versions. If implementation
details have to be tested, try to factor them out into separate test cases. Later on these test cases may be rewritten,
or just skipped.

Also, aim for testing everything once, no less, no more. It's not effective having every test case fail just because one
function in the interface changed.

1.14 Some thoughts about testing

80 | Ericsson AB. All Rights Reserved.: Common Test

2 Reference Manual

Common Test is a portable application for automated testing. It is suitable for black-box testing of target systems of
any type (i.e. not necessarily implemented in Erlang), as well as for white-box testing of Erlang/OTP programs. Black-
box testing is performed via standard O&M interfaces (such as SNMP, HTTP, Corba, Telnet, etc) and, if required, via
user specific interfaces (often called test ports). White-box testing of Erlang/OTP programs is easily accomplished by
calling the target API functions directly from the test case functions. Common Test also integrates usage of the OTP
cover tool for code coverage analysis of Erlang/OTP programs.

Common Test executes test suite programs automatically, without operator interaction. Test progress and results is
printed to logs on HTML format, easily browsed with a standard web browser. Common Test also sends notifications
about progress and results via an OTP event manager to event handlers plugged in to the system. This way users can
integrate their own programs for e.g. logging, database storing or supervision with Common Test.

Common Test provides libraries that contain useful support functions to fill various testing needs and requirements.
There is for example support for flexible test declarations by means of so called test specifications. There is also
support for central configuration and control of multiple independent test sessions (towards different target systems)
running in parallel.

Common Test is implemented as a framework based on the OTP Test Server application.

common_test

Ericsson AB. All Rights Reserved.: Common Test | 81

common_test
Erlang module

The Common Test framework is an environment for implementing and performing automatic and semi-automatic
execution of test cases. Common Test uses the OTP Test Server as engine for test case execution and logging.

In brief, Common Test supports:

• Automated execution of test suites (sets of test cases).

• Logging of the events during execution.

• HTML presentation of test suite results.

• HTML presentation of test suite code.

• Support functions for test suite authors.

• Step by step execution of test cases.

The following sections describe the mandatory and optional test suite functions Common Test will call during test
execution. For more details see Common Test User's Guide.

TEST CASE CALLBACK FUNCTIONS
The following functions define the callback interface for a test suite.

Exports

Module:all() -> Tests | {skip,Reason}
Types:

Tests = [TestCase | {group,GroupName} | {group,GroupName,Properties} |
{group,GroupName,Properties,SubGroups}]

TestCase = atom()

GroupName = atom()

Properties = [parallel | sequence | Shuffle | {RepeatType,N}] | default

SubGroups = [{GroupName,Properties} | {GroupName,Properties,SubGroups}]

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
repeat_until_any_ok | repeat_until_any_fail

N = integer() | forever

Reason = term()

MANDATORY

This function must return the list of all test cases and test case groups in the test suite module that are to be executed.
This list also specifies the order the cases and groups will be executed by Common Test. A test case is represented by
an atom, the name of the test case function. A test case group is represented by a group tuple, where GroupName, an
atom, is the name of the group (defined in groups/0). Execution properties for groups may also be specified, both
for a top level group and for any of its sub-groups. Group execution properties specified here, will override properties
in the group definition (see groups/0). (With value default, the group definition properties will be used).

If {skip,Reason} is returned, all test cases in the module will be skipped, and the Reason will be printed on
the HTML result page.

common_test

82 | Ericsson AB. All Rights Reserved.: Common Test

For details on groups, see Test case groups in the User's Guide.

Module:groups() -> GroupDefs
Types:

GroupDefs = [Group]

Group = {GroupName,Properties,GroupsAndTestCases}

GroupName = atom()

Properties = [parallel | sequence | Shuffle | {RepeatType,N}]

GroupsAndTestCases = [Group | {group,GroupName} | TestCase]

TestCase = atom()

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
repeat_until_any_ok | repeat_until_any_fail

N = integer() | forever

OPTIONAL

Function for defining test case groups. Please see Test case groups in the User's Guide for details.

Module:suite() -> [Info]
Types:

Info = {timetrap,Time} | {require,Required} | {require,Name,Required} |
{userdata,UserData} | {silent_connections,Conns} | {stylesheet,CSSFile} |
{ct_hooks, CTHs}

Time = TimeVal | TimeFunc

TimeVal = MilliSec | {seconds,integer()} | {minutes,integer()} |
{hours,integer()}

TimeFunc = {Mod,Func,Args} | Fun

MilliSec = integer()

Mod = atom()

Func = atom()

Args = list()

Fun = fun()

Required = Key | {Key,SubKeys} | {Key,SubKey} | {Key,SubKey,SubKeys}

Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = atom()

Name = atom()

UserData = term()

Conns = [atom()]

CSSFile = string()

CTHs = [CTHModule |

 {CTHModule, CTHInitArgs} |

 {CTHModule, CTHInitArgs, CTHPriority}]

CTHModule = atom()

common_test

Ericsson AB. All Rights Reserved.: Common Test | 83

CTHInitArgs = term()

OPTIONAL

This is the test suite info function. It is supposed to return a list of tagged tuples that specify various properties related
to the execution of this test suite (common for all test cases in the suite).

The timetrap tag sets the maximum time each test case is allowed to execute (including init_per_testcase/2
and end_per_testcase/2). If the timetrap time is exceeded, the test case fails with reason
timetrap_timeout. A TimeFunc function can be used to set a new timetrap by returning a TimeVal. It may
also be used to trigger a timetrap timeout by, at some point, returning a value other than a TimeVal. (See the User's
Guide for details).

The require tag specifies configuration variables that are required by test cases (and/or configuration functions) in
the suite. If the required configuration variables are not found in any of the configuration files, all test cases are skipped.
For more information about the 'require' functionality, see the reference manual for the function ct:require/1/2.

With userdata, it is possible for the user to specify arbitrary test suite related information which can be read by
calling ct:userdata/2.

The ct_hooks tag specifies which Common Test Hooks are to be run together with this suite.

Other tuples than the ones defined will simply be ignored.

For more information about the test suite info function, see Test suite info function in the User's Guide.

Module:init_per_suite(Config) -> NewConfig | {skip,Reason} |
{skip_and_save,Reason,SaveConfig}
Types:

Config = NewConfig = SaveConfig = [{Key,Value}]

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This configuration function is called as the first function in the suite. It typically contains initializations which are
common for all test cases in the suite, and which shall only be done once. The Config parameter is the configuration
data which can be modified here. Whatever is returned from this function is given as Config to all configuration
functions and test cases in the suite. If {skip,Reason} is returned, all test cases in the suite will be skipped and
Reason printed in the overview log for the suite.

For information on save_config and skip_and_save, please see Dependencies between Test Cases and Suites
in the User's Guide.

Module:end_per_suite(Config) -> void() | {save_config,SaveConfig}
Types:

Config = SaveConfig = [{Key,Value}]

Key = atom()

Value = term()

OPTIONAL

This function is called as the last test case in the suite. It is meant to be used for cleaning up after
init_per_suite/1. For information on save_config, please see Dependencies between Test Cases and Suites
in the User's Guide.

common_test

84 | Ericsson AB. All Rights Reserved.: Common Test

Module:group(GroupName) -> [Info]
Types:

Info = {timetrap,Time} | {require,Required} | {require,Name,Required} |
{userdata,UserData} | {silent_connections,Conns} | {stylesheet,CSSFile} |
{ct_hooks, CTHs}

Time = TimeVal | TimeFunc

TimeVal = MilliSec | {seconds,integer()} | {minutes,integer()} |
{hours,integer()}

TimeFunc = {Mod,Func,Args} | Fun

MilliSec = integer()

Mod = atom()

Func = atom()

Args = list()

Fun = fun()

Required = Key | {Key,SubKeys} | {Key,Subkey} | {Key,Subkey,SubKeys}

Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = atom()

Name = atom()

UserData = term()

Conns = [atom()]

CSSFile = string()

CTHs = [CTHModule |

 {CTHModule, CTHInitArgs} |

 {CTHModule, CTHInitArgs, CTHPriority}]

CTHModule = atom()

CTHInitArgs = term()

OPTIONAL

This is the test case group info function. It is supposed to return a list of tagged tuples that specify various properties
related to the execution of a test case group (i.e. its test cases and sub-groups). Properties set by group/1 override
properties with the same key that have been previously set by suite/0.

The timetrap tag sets the maximum time each test case is allowed to execute (including init_per_testcase/2
and end_per_testcase/2). If the timetrap time is exceeded, the test case fails with reason
timetrap_timeout. A TimeFunc function can be used to set a new timetrap by returning a TimeVal. It may
also be used to trigger a timetrap timeout by, at some point, returning a value other than a TimeVal. (See the User's
Guide for details).

The require tag specifies configuration variables that are required by test cases (and/or configuration functions) in
the suite. If the required configuration variables are not found in any of the configuration files, all test cases in this
group are skipped. For more information about the 'require' functionality, see the reference manual for the function
ct:require/1/2.

With userdata, it is possible for the user to specify arbitrary test case group related information which can be read
by calling ct:userdata/2.

The ct_hooks tag specifies which Common Test Hooks are to be run together with this suite.

Other tuples than the ones defined will simply be ignored.

common_test

Ericsson AB. All Rights Reserved.: Common Test | 85

For more information about the test case group info function, see Test case group info function in the User's Guide.

Module:init_per_group(GroupName, Config) -> NewConfig | {skip,Reason}
Types:

GroupName = atom()

Config = NewConfig = [{Key,Value}]

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This configuration function is called before execution of a test case group. It typically contains initializations which are
common for all test cases and sub-groups in the group, and which shall only be performed once. GroupName is the
name of the group, as specified in the group definition (see groups/0). The Config parameter is the configuration
data which can be modified here. The return value of this function is given as Config to all test cases and sub-groups
in the group. If {skip,Reason} is returned, all test cases in the group will be skipped and Reason printed in the
overview log for the group.

For information about test case groups, please see Test case groups chapter in the User's Guide.

Module:end_per_group(GroupName, Config) -> void() |
{return_group_result,Status}
Types:

GroupName = atom()

Config = [{Key,Value}]

Key = atom()

Value = term()

Status = ok | skipped | failed

OPTIONAL

This function is called after the execution of a test case group is finished. It is meant to be used for cleaning up after
init_per_group/2. By means of {return_group_result,Status}, it is possible to return a status value
for a nested sub-group. The status can be retrieved in end_per_group/2 for the group on the level above. The
status will also be used by Common Test for deciding if execution of a group should proceed in case the property
sequence or repeat_until_* is set.

For more information about test case groups, please see Test case groups chapter in the User's Guide.

Module:init_per_testcase(TestCase, Config) -> NewConfig | {fail,Reason} |
{skip,Reason}
Types:

TestCase = atom()

Config = NewConfig = [{Key,Value}]

Key = atom()

Value = term()

Reason = term()

OPTIONAL

common_test

86 | Ericsson AB. All Rights Reserved.: Common Test

This function is called before each test case. The TestCase argument is the name of the test case, and Config
(list of key-value tuples) is the configuration data that can be modified here. The NewConfig list returned from
this function is given as Config to the test case. If {fail,Reason} is returned, the test case is marked as failed
without being executed. If {skip,Reason} is returned, the test case will be skipped and Reason printed in the
overview log for the suite.

Module:end_per_testcase(TestCase, Config) -> void() | {fail,Reason} |
{save_config,SaveConfig}
Types:

TestCase = atom()

Config = SaveConfig = [{Key,Value}]

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after each test case, and can be used to clean up after init_per_testcase/2 and the test
case. Any return value (besides {fail,Reason} and {save_config,SaveConfig}) is ignored. By returning
{fail,Reason}, TestCase will be marked as failed (even though it was actually successful in the sense that it
returned a value instead of terminating). For information on save_config, please see Dependencies between Test
Cases and Suites in the User's Guide

Module:Testcase() -> [Info]
Types:

Info = {timetrap,Time} | {require,Required} | {require,Name,Required} |
{userdata,UserData} | {silent_connections,Conns}

Time = TimeVal | TimeFunc

TimeVal = MilliSec | {seconds,integer()} | {minutes,integer()} |
{hours,integer()}

TimeFunc = {Mod,Func,Args} | Fun

MilliSec = integer()

Mod = atom()

Func = atom()

Args = list()

Fun = fun()

Required = Key | {Key,SubKeys} | {Key,Subkey} | {Key,Subkey,SubKeys}

Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = atom()

Name = atom()

UserData = term()

Conns = [atom()]

OPTIONAL

This is the test case info function. It is supposed to return a list of tagged tuples that specify various properties related to
the execution of this particular test case. Properties set by Testcase/0 override properties that have been previously
set for the test case by group/1 or suite/0.

common_test

Ericsson AB. All Rights Reserved.: Common Test | 87

The timetrap tag sets the maximum time the test case is allowed to execute. If the timetrap time is exceeded, the
test case fails with reason timetrap_timeout. init_per_testcase/2 and end_per_testcase/2 are
included in the timetrap time. A TimeFunc function can be used to set a new timetrap by returning a TimeVal. It
may also be used to trigger a timetrap timeout by, at some point, returning a value other than a TimeVal. (See the
User's Guide for details).

The require tag specifies configuration variables that are required by the test case (and/or init/
end_per_testcase/2). If the required configuration variables are not found in any of the configuration files, the
test case is skipped. For more information about the 'require' functionality, see the reference manual for the function
ct:require/1/2.

If timetrap and/or require is not set, the default values specified by suite/0 (or group/1) will be used.

With userdata, it is possible for the user to specify arbitrary test case related information which can be read by
calling ct:userdata/3.

Other tuples than the ones defined will simply be ignored.

For more information about the test case info function, see Test case info function in the User's Guide.

Module:Testcase(Config) -> void() | {skip,Reason} | {comment,Comment} |
{save_config,SaveConfig} | {skip_and_save,Reason,SaveConfig} | exit()
Types:

Config = SaveConfig = [{Key,Value}]

Key = atom()

Value = term()

Reason = term()

Comment = string()

MANDATORY

This is the implementation of a test case. Here you must call the functions you want to test, and do whatever you need
to check the result. If something fails, make sure the function causes a runtime error, or call ct:fail/1/2 (which
also causes the test case process to terminate).

Elements from the Config list can e.g. be read with proplists:get_value/2 (or the macro ?config defined
in ct.hrl).

You can return {skip,Reason} if you decide not to run the test case after all. Reason will then be printed in
'Comment' field on the HTML result page.

You can return {comment,Comment} if you wish to print some information in the 'Comment' field on the HTML
result page.

If the function returns anything else, the test case is considered successful. (The return value always gets printed in
the test case log file).

For more information about test case implementation, please see Test cases in the User's Guide.

For information on save_config and skip_and_save, please see Dependencies between Test Cases and Suites
in the User's Guide.

ct_run

88 | Ericsson AB. All Rights Reserved.: Common Test

ct_run
Command

The ct_run program is automatically installed with Erlang/OTP and Common Test (please see the Installation
chapter in the Common Test User's Guide for more information). The program accepts a number of different start
flags. Some flags trigger ct_run to start the Common Test application and pass on data to it. Some flags start an
Erlang node prepared for running Common Test in a particular mode.

There is an interface function that corresponds to this program, called ct:run_test/1, for starting Common Test
from the Erlang shell (or an Erlang program). Please see the ct man page for details.

ct_run also accepts Erlang emulator flags. These are used when ct_run calls erl to start the Erlang node (making
it possible to e.g. add directories to the code server path, change the cookie on the node, start additional applications,
etc).

With the optional flag:

-erl_args

it's possible to divide the options on the ct_run command line into two groups, one that Common Test should
process (those preceding -erl_args), and one it should completely ignore and pass on directly to the emulator
(those following -erl_args). Options preceding -erl_args that Common Test doesn't recognize, also get passed
on to the emulator untouched. By means of -erl_args the user may specify flags with the same name, but with
different destinations, on the ct_run command line.

If -pa or -pz flags are specified in the Common Test group of options (preceding -erl_args), relative directories
will be converted to absolute and re-inserted into the code path by Common Test (to avoid problems loading user
modules when Common Test changes working directory during test runs). Common Test will however ignore -pa
and -pz flags following -erl_args on the command line. These directories are added to the code path normally
(i.e. on specified form)

Exit status is set before the program ends. Value 0 indicates a successful test result, 1 indicates one or more failed or
auto-skipped test cases, and 2 indicates test execution failure.

If ct_run is called with option:

-help

it prints all valid start flags to stdout.

Run tests from command line

 ct_run [-dir TestDir1 TestDir2 .. TestDirN] |
 [[-dir TestDir] -suite Suite1 Suite2 .. SuiteN
 [[-group Groups1 Groups2 .. GroupsN] [-case Case1 Case2 .. CaseN]]]
 [-step [config | keep_inactive]]
 [-config ConfigFile1 ConfigFile2 .. ConfigFileN]
 [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
 ConfigString2 and .. CallbackModuleN ConfigStringN]
 [-decrypt_key Key] | [-decrypt_file KeyFile]
 [-label Label]
 [-logdir LogDir]
 [-logopts LogOpts]
 [-verbosity GenVLevel | [Category1 VLevel1 and

ct_run

Ericsson AB. All Rights Reserved.: Common Test | 89

 Category2 VLevel2 and .. CategoryN VLevelN]]
 [-silent_connections [ConnType1 ConnType2 .. ConnTypeN]]
 [-stylesheet CSSFile]
 [-cover CoverCfgFile]
 [-cover_stop Bool]
 [-event_handler EvHandler1 EvHandler2 .. EvHandlerN] |
 [-event_handler_init EvHandler1 InitArg1 and
 EvHandler2 InitArg2 and .. EvHandlerN InitArgN]
 [-include InclDir1 InclDir2 .. InclDirN]
 [-no_auto_compile]
 [-muliply_timetraps Multiplier]
 [-scale_timetraps]
 [-create_priv_dir auto_per_run | auto_per_tc | manual_per_tc]
 [-repeat N [-force_stop]] |
 [-duration HHMMSS [-force_stop]] |
 [-until [YYMoMoDD]HHMMSS [-force_stop]]
 [-basic_html]
 [-ct_hooks CTHModule1 CTHOpts1 and CTHModule2 CTHOpts2 and ..
 CTHModuleN CTHOptsN]
 [-exit_status ignore_config]

Run tests using test specification

 ct_run -spec TestSpec1 TestSpec2 .. TestSpecN
 [-join_specs]
 [-config ConfigFile1 ConfigFile2 .. ConfigFileN]
 [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
 ConfigString2 and .. and CallbackModuleN ConfigStringN]
 [-decrypt_key Key] | [-decrypt_file KeyFile]
 [-label Label]
 [-logdir LogDir]
 [-logopts LogOpts]
 [-verbosity GenVLevel | [Category1 VLevel1 and
 Category2 VLevel2 and .. CategoryN VLevelN]]
 [-allow_user_terms]
 [-silent_connections [ConnType1 ConnType2 .. ConnTypeN]]
 [-stylesheet CSSFile]
 [-cover CoverCfgFile]
 [-cover_stop Bool]
 [-event_handler EvHandler1 EvHandler2 .. EvHandlerN] |
 [-event_handler_init EvHandler1 InitArg1 and
 EvHandler2 InitArg2 and .. EvHandlerN InitArgN]
 [-include InclDir1 InclDir2 .. InclDirN]
 [-no_auto_compile]
 [-muliply_timetraps Multiplier]
 [-scale_timetraps]
 [-create_priv_dir auto_per_run | auto_per_tc | manual_per_tc]
 [-repeat N [-force_stop]] |
 [-duration HHMMSS [-force_stop]] |
 [-until [YYMoMoDD]HHMMSS [-force_stop]]
 [-basic_html]
 [-ct_hooks CTHModule1 CTHOpts1 and CTHModule2 CTHOpts2 and ..
 CTHModuleN CTHOptsN]
 [-exit_status ignore_config]

Run tests in web based GUI

ct_run

90 | Ericsson AB. All Rights Reserved.: Common Test

 ct_run -vts [-browser Browser]
 [-dir TestDir1 TestDir2 .. TestDirN] |
 [[dir TestDir] -suite Suite [[-group Group] [-case Case]]]
 [-config ConfigFile1 ConfigFile2 .. ConfigFileN]
 [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
 ConfigString2 and .. and CallbackModuleN ConfigStringN]
 [-logopts LogOpts]
 [-verbosity GenVLevel | [Category1 VLevel1 and
 Category2 VLevel2 and .. CategoryN VLevelN]]
 [-decrypt_key Key] | [-decrypt_file KeyFile]
 [-include InclDir1 InclDir2 .. InclDirN]
 [-no_auto_compile]
 [-muliply_timetraps Multiplier]
 [-scale_timetraps]
 [-create_priv_dir auto_per_run | auto_per_tc | manual_per_tc]
 [-basic_html]

Refresh the HTML index files

 ct_run -refresh_logs [-logdir LogDir] [-basic_html]

Run CT in interactive mode

 ct_run -shell
 [-config ConfigFile1 ConfigFile2 ... ConfigFileN]
 [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
 ConfigString2 and .. and CallbackModuleN ConfigStringN]
 [-decrypt_key Key] | [-decrypt_file KeyFile]

Start a Common Test Master node

 ct_run -ctmaster

See also
Please read the Running Test Suites chapter in the Common Test User's Guide for information about the meaning of
the different start flags.

ct

Ericsson AB. All Rights Reserved.: Common Test | 91

ct
Erlang module

Main user interface for the Common Test framework.

This module implements the command line interface for running tests and some basic functions for common test case
issues such as configuration and logging.

Test Suite Support Macros

The config macro is defined in ct.hrl. This macro should be used to retrieve information from the Config
variable sent to all test cases. It is used with two arguments, where the first is the name of the configuration variable
you wish to retrieve, and the second is the Config variable supplied to the test case.

Possible configuration variables include:

• data_dir - Data file directory.

• priv_dir - Scratch file directory.

• Whatever added by init_per_suite/1 or init_per_testcase/2 in the test suite.

DATA TYPES
handle() = handle() (see module ct_gen_conn) | term()

The identity of a specific connection.

target_name() = var_name()

The name of a target.

var_name() = atom()

A variable name which is specified when ct:require/2 is called, e.g. ct:require(mynodename,
{node,[telnet]})

Exports

abort_current_testcase(Reason) -> ok | {error, ErrorReason}
Types:

Reason = term()

ErrorReason = no_testcase_running | parallel_group

When calling this function, the currently executing test case will be aborted. It is the user's responsibility to know for
sure which test case is currently executing. The function is therefore only safe to call from a function which has been
called (or synchronously invoked) by the test case.

Reason, the reason for aborting the test case, is printed in the test case log.

add_config(Callback, Config) -> ok | {error, Reason}
Types:

Callback = atom()

Config = string()

Reason = term()

ct

92 | Ericsson AB. All Rights Reserved.: Common Test

This function loads configuration variables using the given callback module and configuration string. Callback module
should be either loaded or present in the code part. Loaded configuration variables can later be removed using
remove_config/2 function.

break(Comment) -> ok | {error, Reason}
Types:

Comment = string()

Reason = {multiple_cases_running, TestCases} | 'enable break with
release_shell option'

TestCases = [atom()]

This function will cancel any active timetrap and pause the execution of the current test case until the user calls the
continue/0 function. It gives the user the opportunity to interact with the erlang node running the tests, e.g. for
debugging purposes or for manually executing a part of the test case. If a parallel group is executing, break/2 should
be called instead.

A cancelled timetrap will not be automatically reactivated after the break, but must be started exlicitly with
ct:timetrap/1

In order for the break/continue functionality to work, Common Test must release the shell process controlling stdin.
This is done by setting the release_shell start option to true. See the User's Guide for more information.

break(TestCase, Comment) -> ok | {error, Reason}
Types:

TestCase = atom()

Comment = string()

Reason = 'test case not running' | 'enable break with release_shell
option'

This function works the same way as break/1, only the TestCase argument makes it possible to pause a test case
executing in a parallel group. The continue/1 function should be used to resume execution of TestCase.

See break/1 for more details.

capture_get() -> ListOfStrings
Types:

ListOfStrings = [string()]

Equivalent to capture_get([default]).

capture_get(ExclCategories) -> ListOfStrings
Types:

ExclCategories = [atom()]

ListOfStrings = [string()]

Return and purge the list of text strings buffered during the latest session of capturing printouts to stdout.
With ExclCategories it's possible to specify log categories that should be ignored in ListOfStrings. If
ExclCategories = [], no filtering takes place.

See also: capture_start/0, capture_stop/0, log/3.

ct

Ericsson AB. All Rights Reserved.: Common Test | 93

capture_start() -> ok
Start capturing all text strings printed to stdout during execution of the test case.

See also: capture_get/1, capture_stop/0.

capture_stop() -> ok
Stop capturing text strings (a session started with capture_start/0).

See also: capture_get/1, capture_start/0.

comment(Comment) -> void()
Types:

Comment = term()

Print the given Comment in the comment field in the table on the test suite result page.

If called several times, only the last comment is printed. The test case return value {comment,Comment} overwrites
the string set by this function.

comment(Format, Args) -> void()
Types:

Format = string()

Args = list()

Print the formatted string in the comment field in the table on the test suite result page.

The Format and Args arguments are used in call to io_lib:format/2 in order to create the comment string.
The behaviour of comment/2 is otherwise the same as the comment/1 function (see above for details).

continue() -> ok
This function must be called in order to continue after a test case (not executing in a parallel group) has called
break/1.

continue(TestCase) -> ok
Types:

TestCase = atom()

This function must be called in order to continue after a test case has called break/2. If the paused test case,
TestCase, executes in a parallel group, this function - rather than continue/0 - must be used in order to let the
test case proceed.

decrypt_config_file(EncryptFileName, TargetFileName) -> ok | {error, Reason}
Types:

EncryptFileName = string()

TargetFileName = string()

Reason = term()

This function decrypts EncryptFileName, previously generated with encrypt_config_file/2/3. The
original file contents is saved in the target file. The encryption key, a string, must be available in a text file named
.ct_config.crypt in the current directory, or the home directory of the user (it is searched for in that order).

ct

94 | Ericsson AB. All Rights Reserved.: Common Test

decrypt_config_file(EncryptFileName, TargetFileName, KeyOrFile) -> ok |
{error, Reason}
Types:

EncryptFileName = string()

TargetFileName = string()

KeyOrFile = {key, string()} | {file, string()}

Reason = term()

This function decrypts EncryptFileName, previously generated with encrypt_config_file/2/3. The
original file contents is saved in the target file. The key must have the the same value as that used for encryption.

encrypt_config_file(SrcFileName, EncryptFileName) -> ok | {error, Reason}
Types:

SrcFileName = string()

EncryptFileName = string()

Reason = term()

This function encrypts the source config file with DES3 and saves the result in file EncryptFileName. The key,
a string, must be available in a text file named .ct_config.crypt in the current directory, or the home directory
of the user (it is searched for in that order).

See the Common Test User's Guide for information about using encrypted config files when running tests.

See the crypto application for details on DES3 encryption/decryption.

encrypt_config_file(SrcFileName, EncryptFileName, KeyOrFile) -> ok | {error,
Reason}
Types:

SrcFileName = string()

EncryptFileName = string()

KeyOrFile = {key, string()} | {file, string()}

Reason = term()

This function encrypts the source config file with DES3 and saves the result in the target file EncryptFileName.
The encryption key to use is either the value in {key,Key} or the value stored in the file specified by {file,File}.

See the Common Test User's Guide for information about using encrypted config files when running tests.

See the crypto application for details on DES3 encryption/decryption.

fail(Reason) -> void()
Types:

Reason = term()

Terminate a test case with the given error Reason.

fail(Format, Args) -> void()
Types:

Format = string()

Args = list()

ct

Ericsson AB. All Rights Reserved.: Common Test | 95

Terminate a test case with an error message specified by a format string and a list of values (used as arguments to
io_lib:format/2).

get_config(Required) -> Value
Equivalent to get_config(Required, undefined, []).

get_config(Required, Default) -> Value
Equivalent to get_config(Required, Default, []).

get_config(Required, Default, Opts) -> ValueOrElement
Types:

Required = KeyOrName | {KeyOrName, SubKey} | {KeyOrName, SubKey, SubKey}

KeyOrName = atom()

SubKey = atom()

Default = term()

Opts = [Opt] | []

Opt = element | all

ValueOrElement = term() | Default

Read config data values.

This function returns the matching value(s) or config element(s), given a config variable key or its associated name
(if one has been specified with require/2 or a require statement).

Example, given the following config file:

 {unix,[{telnet,IpAddr},
 {user,[{username,Username},
 {password,Password}]}]}.

ct:get_config(unix,Default) -> [{telnet,IpAddr}, {user, [{username,Username},
{password,Password}]}]
ct:get_config({unix,telnet},Default) -> IpAddr
ct:get_config({unix,user,username},Default) -> Username
ct:get_config({unix,ftp},Default) -> Default
ct:get_config(unknownkey,Default) -> Default

If a config variable key has been associated with a name (by means of require/2 or a require statement), the name
may be used instead of the key to read the value:

ct:require(myuser,{unix,user}) -> ok.
ct:get_config(myuser,Default) -> [{username,Username}, {password,Password}]

If a config variable is defined in multiple files and you want to access all possible values, use the all option. The
values will be returned in a list and the order of the elements corresponds to the order that the config files were specified
at startup.

If you want config elements (key-value tuples) returned as result instead of values, use the element option. The
returned elements will then be on the form {Required,Value}

See also: get_config/1, get_config/2, require/1, require/2.

ct

96 | Ericsson AB. All Rights Reserved.: Common Test

get_status() -> TestStatus | {error, Reason} | no_tests_running
Types:

TestStatus = [StatusElem]

StatusElem = {current, TestCaseInfo} | {successful, Successful} | {failed,
Failed} | {skipped, Skipped} | {total, Total}

TestCaseInfo = {Suite, TestCase} | [{Suite, TestCase}]

Suite = atom()

TestCase = atom()

Successful = integer()

Failed = integer()

Skipped = {UserSkipped, AutoSkipped}

UserSkipped = integer()

AutoSkipped = integer()

Total = integer()

Reason = term()

Returns status of ongoing test. The returned list contains info about which test case is currently executing (a list of
cases when a parallel test case group is executing), as well as counters for successful, failed, skipped, and total test
cases so far.

get_target_name(Handle) -> {ok, TargetName} | {error, Reason}
Types:

Handle = handle()

TargetName = target_name()

Return the name of the target that the given connection belongs to.

get_timetrap_info() -> {Time, Scale}
Types:

Time = integer() | infinity

Scale = true | false

Read info about the timetrap set for the current test case. Scale indicates if Common Test will attempt to automatically
compensate timetraps for runtime delays introduced by e.g. tools like cover.

install(Opts) -> ok | {error, Reason}
Types:

Opts = [Opt]

Opt = {config, ConfigFiles} | {event_handler, Modules} | {decrypt,
KeyOrFile}

ConfigFiles = [ConfigFile]

ConfigFile = string()

Modules = [atom()]

KeyOrFile = {key, Key} | {file, KeyFile}

Key = string()

KeyFile = string()

Install config files and event handlers.

ct

Ericsson AB. All Rights Reserved.: Common Test | 97

Run this function once before first test.

Example:
install([{config,["config_node.ctc","config_user.ctc"]}]).

Note that this function is automatically run by the ct_run program.

listenv(Telnet) -> [Env]
Types:

Telnet = term()

Env = {Key, Value}

Key = string()

Value = string()

Performs the listenv command on the given telnet connection and returns the result as a list of Key-Value pairs.

log(Format) -> ok
Equivalent to log(default, 50, Format, []).

log(X1, X2) -> ok
Types:

X1 = Category | Importance | Format

X2 = Format | Args

Equivalent to log(Category, Importance, Format, Args).

log(X1, X2, X3) -> ok
Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | Args

Equivalent to log(Category, Importance, Format, Args).

log(Category, Importance, Format, Args) -> ok
Types:

Category = atom()

Importance = integer()

Format = string()

Args = list()

Printout from a test case to the log file.

This function is meant for printing a string directly from a test case to the test case log file.

Default Category is default, default Importance is ?STD_IMPORTANCE, and default value for Args is [].

Please see the User's Guide for details on Category and Importance.

make_priv_dir() -> ok | {error, Reason}
Types:

ct

98 | Ericsson AB. All Rights Reserved.: Common Test

Reason = term()

If the test has been started with the create_priv_dir option set to manual_per_tc, in order for the test case to use the
private directory, it must first create it by calling this function.

notify(Name, Data) -> ok
Types:

Name = atom()

Data = term()

Sends a asynchronous notification of type Name with Datato the common_test event manager. This can later be
caught by any installed event manager.

See also: gen_event(3).

pal(Format) -> ok
Equivalent to pal(default, 50, Format, []).

pal(X1, X2) -> ok
Types:

X1 = Category | Importance | Format

X2 = Format | Args

Equivalent to pal(Category, Importance, Format, Args).

pal(X1, X2, X3) -> ok
Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | Args

Equivalent to pal(Category, Importance, Format, Args).

pal(Category, Importance, Format, Args) -> ok
Types:

Category = atom()

Importance = integer()

Format = string()

Args = list()

Print and log from a test case.

This function is meant for printing a string from a test case, both to the test case log file and to the console.

Default Category is default, default Importance is ?STD_IMPORTANCE, and default value for Args is [].

Please see the User's Guide for details on Category and Importance.

parse_table(Data) -> {Heading, Table}
Types:

Data = [string()]

Heading = tuple()

ct

Ericsson AB. All Rights Reserved.: Common Test | 99

Table = [tuple()]

Parse the printout from an SQL table and return a list of tuples.

The printout to parse would typically be the result of a select command in SQL. The returned Table is a list of
tuples, where each tuple is a row in the table.

Heading is a tuple of strings representing the headings of each column in the table.

print(Format) -> ok
Equivalent to print(default, 50, Format, []).

print(X1, X2) -> ok
Types:

X1 = Category | Importance | Format

X2 = Format | Args

Equivalent to print(Category, Importance, Format, Args).

print(X1, X2, X3) -> ok
Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | Args

Equivalent to print(Category, Importance, Format, Args).

print(Category, Importance, Format, Args) -> ok
Types:

Category = atom()

Importance = integer()

Format = string()

Args = list()

Printout from a test case to the console.

This function is meant for printing a string from a test case to the console.

Default Category is default, default Importance is ?STD_IMPORTANCE, and default value for Args is [].

Please see the User's Guide for details on Category and Importance.

reload_config(Required) -> ValueOrElement
Types:

Required = KeyOrName | {KeyOrName, SubKey} | {KeyOrName, SubKey, SubKey}

KeyOrName = atom()

SubKey = atom()

ValueOrElement = term()

Reload config file which contains specified configuration key.

This function performs updating of the configuration data from which the given configuration variable was read, and
returns the (possibly) new value of this variable.

ct

100 | Ericsson AB. All Rights Reserved.: Common Test

Note that if some variables were present in the configuration but are not loaded using this function, they will be
removed from the configuration table together with their aliases.

remove_config(Callback, Config) -> ok
Types:

Callback = atom()

Config = string()

Reason = term()

This function removes configuration variables (together with their aliases) which were loaded with specified callback
module and configuration string.

require(Required) -> ok | {error, Reason}
Types:

Required = Key | {Key, SubKeys} | {Key, SubKey, SubKeys}

Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = atom()

Check if the required configuration is available. It is possible to specify arbitrarily deep tuples as Required. Note
that it is only the last element of the tuple which can be a list of SubKeys.

Example 1: require the variable myvar:

ok = ct:require(myvar).

In this case the config file must at least contain:

{myvar,Value}.

Example 2: require the key myvar with subkeys sub1 and sub2:

ok = ct:require({myvar,[sub1,sub2]}).

In this case the config file must at least contain:

{myvar,[{sub1,Value},{sub2,Value}]}.

Example 3: require the key myvar with subkey sub1 with subsub1:

ok = ct:require({myvar,sub1,sub2}).

In this case the config file must at least contain:

{myvar,[{sub1,[{sub2,Value}]}]}.

See also: get_config/1, get_config/2, get_config/3, require/2.

ct

Ericsson AB. All Rights Reserved.: Common Test | 101

require(Name, Required) -> ok | {error, Reason}
Types:

Name = atom()

Required = Key | {Key, SubKey} | {Key, SubKey, SubKey}

SubKey = Key

Key = atom()

Check if the required configuration is available, and give it a name. The semantics for Required is the same as in
required/1 except that it is not possible to specify a list of SubKeys.

If the requested data is available, the sub entry will be associated with Name so that the value of the element can be
read with get_config/1,2 provided Name instead of the whole Required term.

Example: Require one node with a telnet connection and an ftp connection. Name the node a:

ok = ct:require(a,{machine,node}).

All references to this node may then use the node name. E.g. you can fetch a file over ftp like this:

ok = ct:ftp_get(a,RemoteFile,LocalFile).

For this to work, the config file must at least contain:

{machine,[{node,[{telnet,IpAddr},{ftp,IpAddr}]}]}.

Note:
The behaviour of this function changed radically in common_test 1.6.2. In order too keep some backwards
compatability it is still possible to do:
ct:require(a,{node,[telnet,ftp]}).
This will associate the name a with the top level node entry. For this to work, the config file must at least contain:
{node,[{telnet,IpAddr},{ftp,IpAddr}]}.

See also: get_config/1, get_config/2, get_config/3, require/1.

run(TestDirs) -> Result
Types:

TestDirs = TestDir | [TestDir]

Run all test cases in all suites in the given directories.

See also: run/3.

run(TestDir, Suite) -> Result
Run all test cases in the given suite.

See also: run/3.

ct

102 | Ericsson AB. All Rights Reserved.: Common Test

run(TestDir, Suite, Cases) -> Result
Types:

TestDir = string()

Suite = atom()

Cases = atom() | [atom()]

Result = [TestResult] | {error, Reason}

Run the given test case(s).

Requires that ct:install/1 has been run first.

Suites (*_SUITE.erl) files must be stored in TestDir or TestDir/test. All suites will be compiled when test
is run.

run_test(Opts) -> Result
Types:

Opts = [OptTuples]

OptTuples = {dir, TestDirs} | {suite, Suites} | {group, Groups}
| {testcase, Cases} | {spec, TestSpecs} | {join_specs, Bool} |
{label, Label} | {config, CfgFiles} | {userconfig, UserConfig} |
{allow_user_terms, Bool} | {logdir, LogDir} | {silent_connections,
Conns} | {stylesheet, CSSFile} | {cover, CoverSpecFile} | {cover_stop,
Bool} | {step, StepOpts} | {event_handler, EventHandlers} | {include,
InclDirs} | {auto_compile, Bool} | {create_priv_dir, CreatePrivDir}
| {multiply_timetraps, M} | {scale_timetraps, Bool} | {repeat, N}
| {duration, DurTime} | {until, StopTime} | {force_stop, Bool} |
{decrypt, DecryptKeyOrFile} | {refresh_logs, LogDir} | {logopts,
LogOpts} | {verbosity, VLevels} | {basic_html, Bool} | {ct_hooks, CTHs} |
{enable_builtin_hooks, Bool} | {release_shell, Bool}

TestDirs = [string()] | string()

Suites = [string()] | [atom()] | string() | atom()

Cases = [atom()] | atom()

Groups = GroupNameOrPath | [GroupNameOrPath]

GroupNameOrPath = [atom()] | atom() | all

TestSpecs = [string()] | string()

Label = string() | atom()

CfgFiles = [string()] | string()

UserConfig = [{CallbackMod, CfgStrings}] | {CallbackMod, CfgStrings}

CallbackMod = atom()

CfgStrings = [string()] | string()

LogDir = string()

Conns = all | [atom()]

CSSFile = string()

CoverSpecFile = string()

StepOpts = [StepOpt] | []

StepOpt = config | keep_inactive

EventHandlers = EH | [EH]

EH = atom() | {atom(), InitArgs} | {[atom()], InitArgs}

ct

Ericsson AB. All Rights Reserved.: Common Test | 103

InitArgs = [term()]

InclDirs = [string()] | string()

CreatePrivDir = auto_per_run | auto_per_tc | manual_per_tc

M = integer()

N = integer()

DurTime = string(HHMMSS)

StopTime = string(YYMoMoDDHHMMSS) | string(HHMMSS)

DecryptKeyOrFile = {key, DecryptKey} | {file, DecryptFile}

DecryptKey = string()

DecryptFile = string()

LogOpts = [LogOpt]

LogOpt = no_nl | no_src

VLevels = VLevel | [{Category, VLevel}]

VLevel = integer()

Category = atom()

CTHs = [CTHModule | {CTHModule, CTHInitArgs}]

CTHModule = atom()

CTHInitArgs = term()

Result = {Ok, Failed, {UserSkipped, AutoSkipped}} | TestRunnerPid |
{error, Reason}

Ok = integer()

Failed = integer()

UserSkipped = integer()

AutoSkipped = integer()

TestRunnerPid = pid()

Reason = term()

Run tests as specified by the combination of options in Opts. The options are the same as those used with the ct_run
program. Note that here a TestDir can be used to point out the path to a Suite. Note also that the option testcase
corresponds to the -case option in the ct_run program. Configuration files specified in Opts will be installed
automatically at startup.

TestRunnerPid is returned if release_shell == true (see break/1 for details).

Reason indicates what type of error has been encountered.

run_testspec(TestSpec) -> Result
Types:

TestSpec = [term()]

Result = {Ok, Failed, {UserSkipped, AutoSkipped}} | {error, Reason}

Ok = integer()

Failed = integer()

UserSkipped = integer()

AutoSkipped = integer()

Reason = term()

Run test specified by TestSpec. The terms are the same as those used in test specification files.

ct

104 | Ericsson AB. All Rights Reserved.: Common Test

Reason indicates what type of error has been encountered.

sleep(Time) -> ok
Types:

Time = {hours, Hours} | {minutes, Mins} | {seconds, Secs} | Millisecs |
infinity

Hours = integer()

Mins = integer()

Secs = integer()

Millisecs = integer() | float()

This function, similar to timer:sleep/1, suspends the test case for specified time. However, this function also
multiplies Time with the 'multiply_timetraps' value (if set) and under certain circumstances also scales up the time
automatically if 'scale_timetraps' is set to true (default is false).

start_interactive() -> ok
Start CT in interactive mode.

From this mode all test case support functions can be executed directly from the erlang shell. The interactive mode
can also be started from the OS command line with ct_run -shell [-config File...].

If any functions using "required config data" (e.g. telnet or ftp functions) are to be called from the erlang shell, config
data must first be required with ct:require/2.

Example:
> ct:require(unix_telnet, unix).
ok
> ct_telnet:open(unix_telnet).
{ok,<0.105.0>}
> ct_telnet:cmd(unix_telnet, "ls .").
{ok,["ls","file1 ...",...]}

step(TestDir, Suite, Case) -> Result
Types:

Case = atom()

Step through a test case with the debugger.

See also: run/3.

step(TestDir, Suite, Case, Opts) -> Result
Types:

Case = atom()

Opts = [Opt] | []

Opt = config | keep_inactive

Step through a test case with the debugger. If the config option has been given, breakpoints will be set also on the
configuration functions in Suite.

See also: run/3.

ct

Ericsson AB. All Rights Reserved.: Common Test | 105

stop_interactive() -> ok
Exit the interactive mode.

See also: start_interactive/0.

sync_notify(Name, Data) -> ok
Types:

Name = atom()

Data = term()

Sends a synchronous notification of type Name with Datato the common_test event manager. This can later be caught
by any installed event manager.

See also: gen_event(3).

testcases(TestDir, Suite) -> Testcases | {error, Reason}
Types:

TestDir = string()

Suite = atom()

Testcases = list()

Reason = term()

Returns all test cases in the specified suite.

timetrap(Time) -> ok
Types:

Time = {hours, Hours} | {minutes, Mins} | {seconds, Secs} | Millisecs |
infinity | Func

Hours = integer()

Mins = integer()

Secs = integer()

Millisecs = integer() | float()

Func = {M, F, A} | function()

M = atom()

F = atom()

A = list()

Use this function to set a new timetrap for the running test case. If the argument is Func, the timetrap will be triggered
when this function returns. Func may also return a new Time value, which in that case will be the value for the
new timetrap.

userdata(TestDir, Suite) -> SuiteUserData | {error, Reason}
Types:

TestDir = string()

Suite = atom()

SuiteUserData = [term()]

Reason = term()

Returns any data specified with the tag userdata in the list of tuples returned from Suite:suite/0.

ct

106 | Ericsson AB. All Rights Reserved.: Common Test

userdata(TestDir, Suite, Case::GroupOrCase) -> TCUserData | {error, Reason}
Types:

TestDir = string()

Suite = atom()

GroupOrCase = {group, GroupName} | atom()

GroupName = atom()

TCUserData = [term()]

Reason = term()

Returns any data specified with the tag userdata in the list of tuples returned from Suite:group(GroupName)
or Suite:Case().

ct_master

Ericsson AB. All Rights Reserved.: Common Test | 107

ct_master
Erlang module

Distributed test execution control for Common Test.

This module exports functions for running Common Test nodes on multiple hosts in parallel.

Exports

abort() -> ok
Stops all running tests.

abort(Nodes) -> ok
Types:

Nodes = atom() | [atom()]

Stops tests on specified nodes.

basic_html(Bool) -> ok
Types:

Bool = true | false

If set to true, the ct_master logs will be written on a primitive html format, not using the Common Test CSS style sheet.

progress() -> [{Node, Status}]
Types:

Node = atom()

Status = finished_ok | ongoing | aborted | {error, Reason}

Reason = term()

Returns test progress. If Status is ongoing, tests are running on the node and have not yet finished.

run(TestSpecs) -> ok
Types:

TestSpecs = string() | [SeparateOrMerged]

Equivalent to run(TestSpecs, false, [], []).

run(TestSpecs, InclNodes, ExclNodes) -> ok
Types:

TestSpecs = string() | [SeparateOrMerged]

SeparateOrMerged = string() | [string()]

InclNodes = [atom()]

ExclNodes = [atom()]

Equivalent to run(TestSpecs, false, InclNodes, ExclNodes).

ct_master

108 | Ericsson AB. All Rights Reserved.: Common Test

run(TestSpecs, AllowUserTerms, InclNodes, ExclNodes) -> ok
Types:

TestSpecs = string() | [SeparateOrMerged]

SeparateOrMerged = string() | [string()]

AllowUserTerms = bool()

InclNodes = [atom()]

ExclNodes = [atom()]

Tests are spawned on the nodes as specified in TestSpecs. Each specification in TestSpec will be handled separately.
It is however possible to also specify a list of specifications that should be merged into one before the tests are executed.
Any test without a particular node specification will also be executed on the nodes in InclNodes. Nodes in the
ExclNodes list will be excluded from the test.

run_on_node(TestSpecs, Node) -> ok
Types:

TestSpecs = string() | [SeparateOrMerged]

SeparateOrMerged = string() | [string()]

Node = atom()

Equivalent to run_on_node(TestSpecs, false, Node).

run_on_node(TestSpecs, AllowUserTerms, Node) -> ok
Types:

TestSpecs = string() | [SeparateOrMerged]

SeparateOrMerged = string() | [string()]

AllowUserTerms = bool()

Node = atom()

Tests are spawned on Node according to TestSpecs.

run_test(Node, Opts) -> ok
Types:

Node = atom()

Opts = [OptTuples]

OptTuples = {config, CfgFiles} | {dir, TestDirs} | {suite, Suites}
| {testcase, Cases} | {spec, TestSpecs} | {allow_user_terms, Bool} |
{logdir, LogDir} | {event_handler, EventHandlers} | {silent_connections,
Conns} | {cover, CoverSpecFile} | {cover_stop, Bool} | {userconfig,
UserCfgFiles}

CfgFiles = string() | [string()]

TestDirs = string() | [string()]

Suites = atom() | [atom()]

Cases = atom() | [atom()]

TestSpecs = string() | [string()]

LogDir = string()

EventHandlers = EH | [EH]

EH = atom() | {atom(), InitArgs} | {[atom()], InitArgs}

ct_master

Ericsson AB. All Rights Reserved.: Common Test | 109

InitArgs = [term()]

Conns = all | [atom()]

Tests are spawned on Node using ct:run_test/1.

ct_cover

110 | Ericsson AB. All Rights Reserved.: Common Test

ct_cover
Erlang module

Common Test Framework code coverage support module.

This module exports help functions for performing code coverage analysis.

Exports

add_nodes(Nodes) -> {ok, StartedNodes} | {error, Reason}
Types:

Nodes = [atom()]

StartedNodes = [atom()]

Reason = cover_not_running | not_main_node

Add nodes to current cover test (only works if cover support is active!). To have effect, this function should be called
from init_per_suite/1 before any actual tests are performed.

cross_cover_analyse(Level, Tests) -> ok
Types:

Level = overview | details

Tests = [{Tag, Dir}]

Tag = atom()

Dir = string()

Accumulate cover results over multiple tests. See the chapter about cross cover analysis in the users's guide.

remove_nodes(Nodes) -> ok | {error, Reason}
Types:

Nodes = [atom()]

Reason = cover_not_running | not_main_node

Remove nodes from current cover test. Call this function to stop cover test on nodes previously added with
add_nodes/1. Results on the remote node are transferred to the Common Test node.

ct_ftp

Ericsson AB. All Rights Reserved.: Common Test | 111

ct_ftp
Erlang module

FTP client module (based on the FTP support of the INETS application).

DATA TYPES
connection() = handle() | target_name() (see module ct)
handle() = handle() (see module ct_gen_conn)

Handle for a specific ftp connection.

Exports

cd(Connection, Dir) -> ok | {error, Reason}
Types:

Connection = connection()

Dir = string()

Change directory on remote host.

close(Connection) -> ok | {error, Reason}
Types:

Connection = connection()

Close the FTP connection.

delete(Connection, File) -> ok | {error, Reason}
Types:

Connection = connection()

File = string()

Delete a file on remote host

get(KeyOrName, RemoteFile, LocalFile) -> ok | {error, Reason}
Types:

KeyOrName = Key | Name

Key = atom()

Name = target_name() (see module ct)

RemoteFile = string()

LocalFile = string()

Open a ftp connection and fetch a file from the remote host.

RemoteFile and LocalFile must be absolute paths.

The config file must be as for put/3.

See also: put/3, ct:require/2.

ct_ftp

112 | Ericsson AB. All Rights Reserved.: Common Test

ls(Connection, Dir) -> {ok, Listing} | {error, Reason}
Types:

Connection = connection()

Dir = string()

Listing = string()

List the directory Dir.

open(KeyOrName) -> {ok, Handle} | {error, Reason}
Types:

KeyOrName = Key | Name

Key = atom()

Name = target_name() (see module ct)

Handle = handle()

Open an FTP connection to the specified node.

You can open one connection for a particular Name and use the same name as reference for all subsequent operations.
If you want the connection to be associated with Handle instead (in case you need to open multiple connections to a
host for example), simply use Key, the configuration variable name, to specify the target. Note that a connection that
has no associated target name can only be closed with the handle value.

See ct:require/2 for how to create a new Name

See also: ct:require/2.

put(KeyOrName, LocalFile, RemoteFile) -> ok | {error, Reason}
Types:

KeyOrName = Key | Name

Key = atom()

Name = target_name() (see module ct)

LocalFile = string()

RemoteFile = string()

Open a ftp connection and send a file to the remote host.

LocalFile and RemoteFile must be absolute paths.

If the target host is a "special" node, the ftp address must be specified in the config file like this:

 {node,[{ftp,IpAddr}]}.

If the target host is something else, e.g. a unix host, the config file must also include the username and password
(both strings):

 {unix,[{ftp,IpAddr},
 {username,Username},
 {password,Password}]}.

See also: ct:require/2.

ct_ftp

Ericsson AB. All Rights Reserved.: Common Test | 113

recv(Connection, RemoteFile) -> ok | {error, Reason}
Fetch a file over FTP.

The file will get the same name on the local host.

See also: recv/3.

recv(Connection, RemoteFile, LocalFile) -> ok | {error, Reason}
Types:

Connection = connection()

RemoteFile = string()

LocalFile = string()

Fetch a file over FTP.

The file will be named LocalFile on the local host.

send(Connection, LocalFile) -> ok | {error, Reason}
Send a file over FTP.

The file will get the same name on the remote host.

See also: send/3.

send(Connection, LocalFile, RemoteFile) -> ok | {error, Reason}
Types:

Connection = connection()

LocalFile = string()

RemoteFile = string()

Send a file over FTP.

The file will be named RemoteFile on the remote host.

type(Connection, Type) -> ok | {error, Reason}
Types:

Connection = connection()

Type = ascii | binary

Change file transfer type

ct_ssh

114 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh
Erlang module

SSH/SFTP client module.

ct_ssh uses the OTP ssh application and more detailed information about e.g. functions, types and options can be found
in the documentation for this application.

The Server argument in the SFTP functions should only be used for SFTP sessions that have been started on existing
SSH connections (i.e. when the original connection type is ssh). Whenever the connection type is sftp, use the SSH
connection reference only.

The following options are valid for specifying an SSH/SFTP connection (i.e. may be used as config elements):

 [{ConnType, Addr},
 {port, Port},
 {user, UserName}
 {password, Pwd}
 {user_dir, String}
 {public_key_alg, PubKeyAlg}
 {connect_timeout, Timeout}
 {key_cb, KeyCallbackMod}]

ConnType = ssh | sftp.

Please see ssh(3) for other types.

All timeout parameters in ct_ssh functions are values in milliseconds.

DATA TYPES
connection() = handle() | target_name() (see module ct)
handle() = handle() (see module ct_gen_conn)

Handle for a specific SSH/SFTP connection.

ssh_sftp_return() = term()

A return value from an ssh_sftp function.

Exports

apread(SSH, Handle, Position, Length) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

apread(SSH, Server, Handle, Position, Length) -> Result
Types:

ct_ssh

Ericsson AB. All Rights Reserved.: Common Test | 115

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

apwrite(SSH, Handle, Position, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

apwrite(SSH, Server, Handle, Position, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

aread(SSH, Handle, Len) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

aread(SSH, Server, Handle, Len) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

awrite(SSH, Handle, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

awrite(SSH, Server, Handle, Data) -> Result
Types:

SSH = connection()

ct_ssh

116 | Ericsson AB. All Rights Reserved.: Common Test

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

close(SSH, Handle) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

close(SSH, Server, Handle) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

connect(KeyOrName) -> {ok, Handle} | {error, Reason}
Equivalent to connect(KeyOrName, host, []).

connect(KeyOrName, ConnType) -> {ok, Handle} | {error, Reason}
Equivalent to connect(KeyOrName, ConnType, []).

connect(KeyOrName, ConnType, ExtraOpts) -> {ok, Handle} | {error, Reason}
Types:

KeyOrName = Key | Name

Key = atom()

Name = target_name() (see module ct)

ConnType = ssh | sftp | host

ExtraOpts = ssh_connect_options()

Handle = handle()

Reason = term()

Open an SSH or SFTP connection using the information associated with KeyOrName.

If Name (an alias name for Key), is used to identify the connection, this name may be used as connection reference
for subsequent calls. It's only possible to have one open connection at a time associated with Name. If Key is used, the
returned handle must be used for subsequent calls (multiple connections may be opened using the config data specified
by Key). See ct:require/2 for how to create a new Name

ConnType will always override the type specified in the address tuple in the configuration data (and in ExtraOpts).
So it is possible to for example open an sftp connection directly using data originally specifying an ssh connection. The
value host means the connection type specified by the host option (either in the configuration data or in ExtraOpts)
will be used.

ct_ssh

Ericsson AB. All Rights Reserved.: Common Test | 117

ExtraOpts (optional) are extra SSH options to be added to the config data for KeyOrName. The extra options
will override any existing options with the same key in the config data. For details on valid SSH options, see the
documentation for the OTP ssh application.

See also: ct:require/2.

del_dir(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

del_dir(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

delete(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

delete(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

disconnect(SSH) -> ok | {error, Reason}
Types:

SSH = connection()

Reason = term()

Close an SSH/SFTP connection.

exec(SSH, Command) -> {ok, Data} | {error, Reason}
Equivalent to exec(SSH, Command, DefaultTimeout).

ct_ssh

118 | Ericsson AB. All Rights Reserved.: Common Test

exec(SSH, Command, Timeout) -> {ok, Data} | {error, Reason}
Types:

SSH = connection()

Command = string()

Timeout = integer()

Data = list()

Reason = term()

Requests server to perform Command. A session channel is opened automatically for the request. Data is received
from the server as a result of the command.

exec(SSH, ChannelId, Command, Timeout) -> {ok, Data} | {error, Reason}
Types:

SSH = connection()

ChannelId = integer()

Command = string()

Timeout = integer()

Data = list()

Reason = term()

Requests server to perform Command. A previously opened session channel is used for the request. Data is received
from the server as a result of the command.

get_file_info(SSH, Handle) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

get_file_info(SSH, Server, Handle) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

list_dir(SSH, Path) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

ct_ssh

Ericsson AB. All Rights Reserved.: Common Test | 119

list_dir(SSH, Server, Path) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

make_dir(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

make_dir(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

make_symlink(SSH, Name, Target) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

make_symlink(SSH, Server, Name, Target) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

open(SSH, File, Mode) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

ct_ssh

120 | Ericsson AB. All Rights Reserved.: Common Test

open(SSH, Server, File, Mode) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

opendir(SSH, Path) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

opendir(SSH, Server, Path) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

position(SSH, Handle, Location) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

position(SSH, Server, Handle, Location) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

pread(SSH, Handle, Position, Length) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

ct_ssh

Ericsson AB. All Rights Reserved.: Common Test | 121

pread(SSH, Server, Handle, Position, Length) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

pwrite(SSH, Handle, Position, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

pwrite(SSH, Server, Handle, Position, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

read(SSH, Handle, Len) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

read(SSH, Server, Handle, Len) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

read_file(SSH, File) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

ct_ssh

122 | Ericsson AB. All Rights Reserved.: Common Test

read_file(SSH, Server, File) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

read_file_info(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

read_file_info(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

read_link(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

read_link(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

read_link_info(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

ct_ssh

Ericsson AB. All Rights Reserved.: Common Test | 123

read_link_info(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

receive_response(SSH, ChannelId) -> {ok, Data} | {error, Reason}
Equivalent to receive_response(SSH, ChannelId, close).

receive_response(SSH, ChannelId, End) -> {ok, Data} | {error, Reason}
Equivalent to receive_response(SSH, ChannelId, End, DefaultTimeout).

receive_response(SSH, ChannelId, End, Timeout) -> {ok, Data} | {timeout,
Data} | {error, Reason}
Types:

SSH = connection()

ChannelId = integer()

End = Fun | close | timeout

Timeout = integer()

Data = list()

Reason = term()

Receives expected data from server on the specified session channel.

If End == close, data is returned to the caller when the channel is closed by the server. If a timeout occurs
before this happens, the function returns {timeout,Data} (where Data is the data received so far). If End ==
timeout, a timeout is expected and {ok,Data} is returned both in the case of a timeout and when the channel is
closed. If End is a fun, this fun will be called with one argument - the data value in a received ssh_cm message (see
ssh_connection(3)). The fun should return true to end the receiving operation (and have the so far collected data
returned), or false to wait for more data from the server. (Note that even if a fun is supplied, the function returns
immediately if the server closes the channel).

rename(SSH, OldName, NewName) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

rename(SSH, Server, OldName, NewName) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

ct_ssh

124 | Ericsson AB. All Rights Reserved.: Common Test

send(SSH, ChannelId, Data) -> ok | {error, Reason}
Equivalent to send(SSH, ChannelId, 0, Data, DefaultTimeout).

send(SSH, ChannelId, Data, Timeout) -> ok | {error, Reason}
Equivalent to send(SSH, ChannelId, 0, Data, Timeout).

send(SSH, ChannelId, Type, Data, Timeout) -> ok | {error, Reason}
Types:

SSH = connection()

ChannelId = integer()

Type = integer()

Data = list()

Timeout = integer()

Reason = term()

Send data to server on specified session channel.

send_and_receive(SSH, ChannelId, Data) -> {ok, Data} | {error, Reason}
Equivalent to send_and_receive(SSH, ChannelId, Data, close).

send_and_receive(SSH, ChannelId, Data, End) -> {ok, Data} | {error, Reason}
Equivalent to send_and_receive(SSH, ChannelId, 0, Data, End, DefaultTimeout).

send_and_receive(SSH, ChannelId, Data, End, Timeout) -> {ok, Data} | {error,
Reason}
Equivalent to send_and_receive(SSH, ChannelId, 0, Data, End, Timeout).

send_and_receive(SSH, ChannelId, Type, Data, End, Timeout) -> {ok, Data} |
{error, Reason}
Types:

SSH = connection()

ChannelId = integer()

Type = integer()

Data = list()

End = Fun | close | timeout

Timeout = integer()

Reason = term()

Send data to server on specified session channel and wait to receive the server response.

See receive_response/4 for details on the End argument.

session_close(SSH, ChannelId) -> ok | {error, Reason}
Types:

SSH = connection()

ChannelId = integer()

ct_ssh

Ericsson AB. All Rights Reserved.: Common Test | 125

Reason = term()

Closes an SSH session channel.

session_open(SSH) -> {ok, ChannelId} | {error, Reason}
Equivalent to session_open(SSH, DefaultTimeout).

session_open(SSH, Timeout) -> {ok, ChannelId} | {error, Reason}
Types:

SSH = connection()

Timeout = integer()

ChannelId = integer()

Reason = term()

Opens a channel for an SSH session.

sftp_connect(SSH) -> {ok, Server} | {error, Reason}
Types:

SSH = connection()

Server = pid()

Reason = term()

Starts an SFTP session on an already existing SSH connection. Server identifies the new session and must be
specified whenever SFTP requests are to be sent.

subsystem(SSH, ChannelId, Subsystem) -> Status | {error, Reason}
Equivalent to subsystem(SSH, ChannelId, Subsystem, DefaultTimeout).

subsystem(SSH, ChannelId, Subsystem, Timeout) -> Status | {error, Reason}
Types:

SSH = connection()

ChannelId = integer()

Subsystem = string()

Timeout = integer()

Status = success | failure

Reason = term()

Sends a request to execute a predefined subsystem.

write(SSH, Handle, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

ct_ssh

126 | Ericsson AB. All Rights Reserved.: Common Test

write(SSH, Server, Handle, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

write_file(SSH, File, Iolist) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

write_file(SSH, Server, File, Iolist) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

write_file_info(SSH, Name, Info) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

write_file_info(SSH, Server, Name, Info) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

ct_netconfc

Ericsson AB. All Rights Reserved.: Common Test | 127

ct_netconfc
Erlang module

Netconf client module.

The Netconf client is compliant with RFC4741 and RFC4742.

For each server to test against, the following entry can be added to a configuration file:

{server_id(),options()}.

The server_id() or an associated target_name() (see ct) shall then be used in calls to open/2.

If no configuration exists for a server, a session can still be opened by calling open/2 with all necessary options given
in the call. The first argument to open/2 can then be any atom.

Logging

The netconf server uses the error_logger for logging of netconf traffic. A special purpose error handler is
implemented in ct_conn_log_h. To use this error handler, add the cth_conn_log hook in your test suite, e.g.

 suite() ->
 [{ct_hooks, [{cth_conn_log, [{conn_mod(),hook_options()}]}]}].

The conn_mod() is the name of the common_test module implementing the connection protocol, e.g.
ct_netconfc.

The hook option log_type specifies the type of logging:

raw

The sent and received netconf data is logged to a separate text file as is without any formatting. A link to the
file is added to the test case HTML log.

pretty

The sent and received netconf data is logged to a separate text file with XML data nicely indented. A link to the
file is added to the test case HTML log.

html (default)

The sent and received netconf traffic is pretty printed directly in the test case HTML log.

silent

Netconf traffic is not logged.

By default, all netconf traffic is logged in one single log file. However, it is possible to have different connections
logged in separate files. To do this, use the hook option hosts and list the names of the servers/connections that will
be used in the suite. Note that the connections must be named for this to work, i.e. they must be opened with open/2.

The hosts option has no effect if log_type is set to html or silent.

The hook options can also be specified in a configuration file with the configuration variable ct_conn_log:

 {ct_conn_log,[{conn_mod(),hook_options()}]}.

For example:

 {ct_conn_log,[{ct_netconfc,[{log_type,pretty},

ct_netconfc

128 | Ericsson AB. All Rights Reserved.: Common Test

 {hosts,[key_or_name()]}]}]}

Note that hook options specified in a configuration file will overwrite the hardcoded hook options in the test suite.

Logging example 1

The following ct_hooks statement will cause pretty printing of netconf traffic to separate logs for the connections
named nc_server1 and nc_server2. Any other connections will be logged to default netconf log.

 suite() ->
 [{ct_hooks, [{cth_conn_log, [{ct_netconfc,[{log_type,pretty}},
 {hosts,[nc_server1,nc_server2]}]}
]}]}].

Connections must be opened like this:

 open(nc_server1,[...]),
 open(nc_server2,[...]).

Logging example 2

The following configuration file will cause raw logging of all netconf traffic into one single text file.

 {ct_conn_log,[{ct_netconfc,[{log_type,raw}]}]}.

The ct_hooks statement must look like this:

 suite() ->
 [{ct_hooks, [{cth_conn_log, []}]}].

The same ct_hooks statement without the configuration file would cause HTML logging of all netconf connections
into the test case HTML log.

Notifications

The netconf client is also compliant with RFC5277 NETCONF Event Notifications, which defines a mechanism for
an asynchronous message notification delivery service for the netconf protocol.

Specific functions to support this are create_subscription/6 and get_event_streams/3. (The functions also exist with
other arities.)

DATA TYPES
client() = handle() | server_id() | target_name()
conn_mod() = ct_netconfc
error_reason() = term()
event_time() = {eventTime, xml_attributes(), [xs_datetime()]}
handle() = term()

An opaque reference for a connection (netconf session). See ct for more information.

hook_option() = {log_type, log_type()} | {hosts, [key_or_name()]}
hook_options() = [hook_option()]

Options that can be given to cth_conn_log in the ct_hook statement.

host() = hostname() (see module inet) | ip_address() (see module inet)

ct_netconfc

Ericsson AB. All Rights Reserved.: Common Test | 129

key_or_name() = server_id() | target_name()
log_type() = raw | pretty | html | silent

-type error_handler() :: module().

netconf_db() = running | startup | candidate
notification() = {notification, xml_attributes(), notification_content()}
notification_content() = [event_time() | simple_xml()]
option() = {ssh, host()} | {port, port_number() (see module inet)} |
{user, string()} | {password, string()} | {user_dir, string()} | {timeout,
timeout()}
options() = [option()]

Options used for setting up ssh connection to a netconf server.

server_id() = atom()

A ServerId which exists in a configuration file.

simple_xml() = {xml_tag(), xml_attributes(), xml_content()} | {xml_tag(),
xml_content()} | xml_tag()

This type is further described in the documentation for the Xmerl application.

stream_data() = {description, string()} | {replaySupport, string()} |
{replayLogCreationTime, string()} | {replayLogAgedTime, string()}

See XML Schema for Event Notifications found in RFC5277 for further detail about the data format for the string
values.

stream_name() = string()
streams() = [{stream_name(), [stream_data()]}]
target_name() = atom()

A name which is associated to a server_id() via a require statement or a call to ct:require/2 in the test
suite.

xml_attribute_tag() = atom()
xml_attribute_value() = string()
xml_attributes() = [{xml_attribute_tag(), xml_attribute_value()}]
xml_content() = [simple_xml() | iolist()]
xml_tag() = atom()
xpath() = {xpath, string()}
xs_datetime() = string()

This date and time identifyer has the same format as the XML type dateTime and compliant to RFC3339. The
format is

 [-]CCYY-MM-DDThh:mm:ss[.s][Z|(+|-)hh:mm]

Exports

action(Client, Action) -> Result
Equivalent to action(Client, Action, infinity).

action(Client, Action, Timeout) -> Result
Types:

ct_netconfc

130 | Ericsson AB. All Rights Reserved.: Common Test

Client = client()

Action = simple_xml()

Timeout = timeout()

Result = {ok, simple_xml()} | {error, error_reason()}

Execute an action.

close_session(Client) -> Result
Equivalent to close_session(Client, infinity).

close_session(Client, Timeout) -> Result
Types:

Client = client()

Timeout = timeout()

Result = ok | {error, error_reason()}

Request graceful termination of the session associated with the client.

When a netconf server receives a close-session request, it will gracefully close the session. The server will release
any locks and resources associated with the session and gracefully close any associated connections. Any NETCONF
requests received after a close-session request will be ignored.

copy_config(Client, Source, Target) -> Result
Equivalent to copy_config(Client, Source, Target, infinity).

copy_config(Client, Target, Source, Timeout) -> Result
Types:

Client = client()

Target = netconf_db()

Source = netconf_db()

Timeout = timeout()

Result = ok | {error, error_reason()}

Copy configuration data.

Which source and target options that can be issued depends on the capabilities supported by the server. I.e.
:candidate and/or :startup are required.

ct_netconfc

Ericsson AB. All Rights Reserved.: Common Test | 131

create_subscription(Client) -> term()

create_subscription(Client, Timeout) -> term()

create_subscription(Client, Stream, Timeout) -> term()

create_subscription(Client, StartTime, StopTime, Timeout) -> term()

create_subscription(Client, Stream, StartTime, StopTime, Timeout) -> term()

create_subscription(Client, Stream, Filter, StartTime, StopTime, Timeout) ->
Result
Types:

Client = client()

Stream = stream_name()

Filter = simple_xml()

StartTime = xs_datetime()

StopTime = xs_datetime()

Timeout = timeout()

Result = ok | {error, error_reason()}

Create a subscription for event notifications.

This function sets up a subscription for netconf event notifications of the given stream type, matching the given filter.
The calling process will receive notifications as messages of type notification().

Stream:

An optional parameter that indicates which stream of events is of interest. If not present, events in the default
NETCONF stream will be sent.

Filter:

An optional parameter that indicates which subset of all possible events is of interest. The format of this parameter
is the same as that of the filter parameter in the NETCONF protocol operations. If not present, all events not
precluded by other parameters will be sent. See section 3.6 for more information on filters.

StartTime:

An optional parameter used to trigger the replay feature and indicate that the replay should start at the time
specified. If StartTime is not present, this is not a replay subscription. It is not valid to specify start times that
are later than the current time. If the StartTime specified is earlier than the log can support, the replay will
begin with the earliest available notification. This parameter is of type dateTime and compliant to [RFC3339].
Implementations must support time zones.

StopTime:

An optional parameter used with the optional replay feature to indicate the newest notifications of interest. If
StopTime is not present, the notifications will continue until the subscription is terminated. Must be used with
and be later than StartTime. Values of StopTime in the future are valid. This parameter is of type dateTime
and compliant to [RFC3339]. Implementations must support time zones.

See RFC5277 for further details about the event notification mechanism.

ct_netconfc

132 | Ericsson AB. All Rights Reserved.: Common Test

delete_config(Client, Target) -> Result
Equivalent to delete_config(Client, Target, infinity).

delete_config(Client, Target, Timeout) -> Result
Types:

Client = client()

Target = startup | candidate

Timeout = timeout()

Result = ok | {error, error_reason()}

Delete configuration data.

The running configuration cannot be deleted and :candidate or :startup must be advertised by the server.

edit_config(Client, Target, Config) -> Result
Equivalent to edit_config(Client, Target, Config, infinity).

edit_config(Client, Target, Config, Timeout) -> Result
Types:

Client = client()

Target = netconf_db()

Config = simple_xml()

Timeout = timeout()

Result = ok | {error, error_reason()}

Edit configuration data.

Per default only the running target is available, unless the server include :candidate or :startup in its list of
capabilities.

format_data(How, Data) -> term()

get(Client, Filter) -> Result
Equivalent to get(Client, Filter, infinity).

get(Client, Filter, Timeout) -> Result
Types:

Client = client()

Filter = simple_xml() | xpath()

Timeout = timeout()

Result = {ok, simple_xml()} | {error, error_reason()}

Get data.

This operation returns both configuration and state data from the server.

Filter type xpath can only be used if the server supports :xpath.

ct_netconfc

Ericsson AB. All Rights Reserved.: Common Test | 133

get_capabilities(Client) -> Result
Equivalent to get_capabilities(Client, infinity).

get_capabilities(Client, Timeout) -> Result
Types:

Client = client()

Timeout = timeout()

Result = [string()] | {error, error_reason()}

Returns the server side capabilities

The following capability identifiers, defined in RFC 4741, can be returned:

• "urn:ietf:params:netconf:base:1.0"

• "urn:ietf:params:netconf:capability:writable-running:1.0"

• "urn:ietf:params:netconf:capability:candidate:1.0"

• "urn:ietf:params:netconf:capability:confirmed-commit:1.0"

• "urn:ietf:params:netconf:capability:rollback-on-error:1.0"

• "urn:ietf:params:netconf:capability:startup:1.0"

• "urn:ietf:params:netconf:capability:url:1.0"

• "urn:ietf:params:netconf:capability:xpath:1.0"

Note, additional identifiers may exist, e.g. server side namespace.

get_config(Client, Source, Filter) -> Result
Equivalent to get_config(Client, Source, Filter, infinity).

get_config(Client, Source, Filter, Timeout) -> Result
Types:

Client = client()

Source = netconf_db()

Filter = simple_xml() | xpath()

Timeout = timeout()

Result = {ok, simple_xml()} | {error, error_reason()}

Get configuration data.

To be able to access another source than running, the server must advertise :candidate and/or :startup.

Filter type xpath can only be used if the server supports :xpath.

get_event_streams(Client, Timeout) -> Result
Equivalent to get_event_streams(Client, [], Timeout).

get_event_streams(Client, Streams, Timeout) -> Result
Types:

Client = client()

Streams = [stream_name()]

Timeout = timeout()

ct_netconfc

134 | Ericsson AB. All Rights Reserved.: Common Test

Result = {ok, streams()} | {error, error_reason()}

Send a request to get the given event streams.

Streams is a list of stream names. The following filter will be sent to the netconf server in a get request:

 <netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
 <streams>
 <stream>
 <name>StreamName1</name>
 </stream>
 <stream>
 <name>StreamName2</name>
 </stream>
 ...
 </streams>
 </netconf>

If Streams is an empty list, ALL streams will be requested by sending the following filter:

 <netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
 <streams/>
 </netconf>

If more complex filtering is needed, a use get/2 or get/3 and specify the exact filter according to XML Schema for
Event Notifications found in RFC5277.

get_session_id(Client) -> Result
Equivalent to get_session_id(Client, infinity).

get_session_id(Client, Timeout) -> Result
Types:

Client = client()

Timeout = timeout()

Result = pos_integer() | {error, error_reason()}

Returns the session id associated with the given client.

handle_msg(X1, State) -> term()

hello(Client) -> Result
Equivalent to hello(Client, infinity).

hello(Client, Timeout) -> Result
Types:

Client = handle()

Timeout = timeout()

Result = ok | {error, error_reason()}

Exchange hello messages with the server.

Sends a hello message to the server and waits for the return.

ct_netconfc

Ericsson AB. All Rights Reserved.: Common Test | 135

kill_session(Client, SessionId) -> Result
Equivalent to kill_session(Client, SessionId, infinity).

kill_session(Client, SessionId, Timeout) -> Result
Types:

Client = client()

SessionId = pos_integer()

Timeout = timeout()

Result = ok | {error, error_reason()}

Force termination of the session associated with the supplied session id.

The server side shall abort any operations currently in process, release any locks and resources associated with the
session, and close any associated connections.

Only if the server is in the confirmed commit phase, the configuration will be restored to its state before entering the
confirmed commit phase. Otherwise, no configuration roll back will be performed.

If the given SessionId is equal to the current session id, an error will be returned.

lock(Client, Target) -> Result
Equivalent to lock(Client, Target, infinity).

lock(Client, Target, Timeout) -> Result
Types:

Client = client()

Target = netconf_db()

Timeout = timeout()

Result = ok | {error, error_reason()}

Unlock configuration target.

Which target parameters that can be used depends on if :candidate and/or :startup are supported by the server.
If successfull, the configuration system of the device is not available to other clients (Netconf, CORBA, SNMP etc).
Locks are intended to be short-lived.

The operations kill_session/2 or kill_session/3 can be used to force the release of a lock owned by another Netconf
session. How this is achieved by the server side is implementation specific.

only_open(Options) -> Result
Types:

Options = options()

Result = {ok, handle()} | {error, error_reason()}

Open a netconf session, but don't send hello.

As open/1 but does not send a hello message.

only_open(KeyOrName, ExtraOptions) -> Result
Types:

KeyOrName = key_or_name()

ExtraOptions = options()

ct_netconfc

136 | Ericsson AB. All Rights Reserved.: Common Test

Result = {ok, handle()} | {error, error_reason()}

Open a name netconf session, but don't send hello.

As open/2 but does not send a hello message.

open(Options) -> Result
Types:

Options = options()

Result = {ok, handle()} | {error, error_reason()}

Open a netconf session and exchange hello messages.

If the server options are specified in a configuration file, or if a named client is needed for logging purposes (see
Logging) use open/2 instead.

The opaque handler() reference which is returned from this function is required as client identifier when calling
any other function in this module.

The timeout option (milli seconds) is used when setting up the ssh connection and when waiting for the hello
message from the server. It is not used for any other purposes during the lifetime of the connection.

open(KeyOrName, ExtraOptions) -> Result
Types:

KeyOrName = key_or_name()

ExtraOptions = options()

Result = {ok, handle()} | {error, error_reason()}

Open a named netconf session and exchange hello messages.

If KeyOrName is a configured server_id() or a target_name() associated with such an ID, then the options
for this server will be fetched from the configuration file.

The ExtraOptions argument will be added to the options found in the configuration file. If the same options are
given, the values from the configuration file will overwrite ExtraOptions.

If the server is not specified in a configuration file, use open/1 instead.

The opaque handle() reference which is returned from this function can be used as client identifier when calling any
other function in this module. However, if KeyOrName is a target_name(), i.e. if the server is named via a call
to ct:require/2 or a require statement in the test suite, then this name may be used instead of the handle().

The timeout option (milli seconds) is used when setting up the ssh connection and when waiting for the hello
message from the server. It is not used for any other purposes during the lifetime of the connection.

See also: ct:require/2.

unlock(Client, Target) -> Result
Equivalent to unlock(Client, Target, infinity).

unlock(Client, Target, Timeout) -> Result
Types:

Client = client()

Target = netconf_db()

Timeout = timeout()

Result = ok | {error, error_reason()}

ct_netconfc

Ericsson AB. All Rights Reserved.: Common Test | 137

Unlock configuration target.

If the client earlier has aquired a lock, via lock/2 or lock/3, this operation release the associated lock. To be able to
access another target than running, the server must support :candidate and/or :startup.

ct_rpc

138 | Ericsson AB. All Rights Reserved.: Common Test

ct_rpc
Erlang module

Common Test specific layer on Erlang/OTP rpc.

Exports

app_node(App, Candidates) -> NodeName
Types:

App = atom()

Candidates = [NodeName]

NodeName = atom()

From a set of candidate nodes determines which of them is running the application App. If none of the candidate nodes
is running the application the function will make the test case calling this function fail. This function is the same as
calling app_node(App, Candidates, true).

app_node(App, Candidates, FailOnBadRPC) -> NodeName
Types:

App = atom()

Candidates = [NodeName]

NodeName = atom()

FailOnBadRPC = true | false

Same as app_node/2 only the FailOnBadRPC argument will determine if the search for a candidate node should
stop or not if badrpc is received at some point.

app_node(App, Candidates, FailOnBadRPC, Cookie) -> NodeName
Types:

App = atom()

Candidates = [NodeName]

NodeName = atom()

FailOnBadRPC = true | false

Cookie = atom()

Same as app_node/2 only the FailOnBadRPC argument will determine if the search for a candidate node should
stop or not if badrpc is received at some point. The cookie on the client node will be set to Cookie for this rpc
operation (use to match the server node cookie).

call(Node, Module, Function, Args) -> term() | {badrpc, Reason}
Same as call(Node, Module, Function, Args, infinity)

call(Node, Module, Function, Args, TimeOut) -> term() | {badrpc, Reason}
Types:

Node = NodeName | {Fun, FunArgs}

Fun = function()

ct_rpc

Ericsson AB. All Rights Reserved.: Common Test | 139

FunArgs = term()

NodeName = atom()

Module = atom()

Function = atom()

Args = [term()]

Reason = timeout | term()

Evaluates apply(Module, Function, Args) on the node Node. Returns whatever Function returns or {badrpc, Reason}
if the remote procedure call fails. If Node is {Fun, FunArgs} applying Fun to FunArgs should return a node name.

call(Node, Module, Function, Args, TimeOut, Cookie) -> term() | {badrpc,
Reason}
Types:

Node = NodeName | {Fun, FunArgs}

Fun = function()

FunArgs = term()

NodeName = atom()

Module = atom()

Function = atom()

Args = [term()]

Reason = timeout | term()

Cookie = atom()

Evaluates apply(Module, Function, Args) on the node Node. Returns whatever Function returns or {badrpc, Reason}
if the remote procedure call fails. If Node is {Fun, FunArgs} applying Fun to FunArgs should return a node name.
The cookie on the client node will be set to Cookie for this rpc operation (use to match the server node cookie).

cast(Node, Module, Function, Args) -> ok
Types:

Node = NodeName | {Fun, FunArgs}

Fun = function()

FunArgs = term()

NodeName = atom()

Module = atom()

Function = atom()

Args = [term()]

Reason = timeout | term()

Evaluates apply(Module, Function, Args) on the node Node. No response is delivered and the process which makes
the call is not suspended until the evaluation is compleated as in the case of call/[3,4]. If Node is {Fun, FunArgs}
applying Fun to FunArgs should return a node name.

cast(Node, Module, Function, Args, Cookie) -> ok
Types:

Node = NodeName | {Fun, FunArgs}

Fun = function()

FunArgs = term()

ct_rpc

140 | Ericsson AB. All Rights Reserved.: Common Test

NodeName = atom()

Module = atom()

Function = atom()

Args = [term()]

Reason = timeout | term()

Cookie = atom()

Evaluates apply(Module, Function, Args) on the node Node. No response is delivered and the process which makes
the call is not suspended until the evaluation is compleated as in the case of call/[3,4]. If Node is {Fun, FunArgs}
applying Fun to FunArgs should return a node name. The cookie on the client node will be set to Cookie for this
rpc operation (use to match the server node cookie).

ct_snmp

Ericsson AB. All Rights Reserved.: Common Test | 141

ct_snmp
Erlang module

Common Test user interface module for the OTP snmp application

The purpose of this module is to make snmp configuration easier for the test case writer. Many test cases can use default
values for common operations and then no snmp configuration files need to be supplied. When it is necessary to change
particular configuration parameters, a subset of the relevant snmp configuration files may be passed to ct_snmp by
means of Common Test configuration files. For more specialized configuration parameters, it is possible to place a
"simple snmp configuration file" in the test suite data directory. To simplify the test suite, Common Test keeps track
of some of the snmp manager information. This way the test suite doesn't have to handle as many input parameters as
it would if it had to interface the OTP snmp manager directly.

The following snmp manager and agent parameters are configurable:

 {snmp,
 %%% Manager config
 [{start_manager, boolean()} % Optional - default is true
 {users, [{user_name(), [call_back_module(), user_data()]}]}, %% Optional
 {usm_users, [{usm_user_name(), [usm_config()]}]},%% Optional - snmp v3 only
 % managed_agents is optional
 {managed_agents,[{agent_name(), [user_name(), agent_ip(), agent_port(), [agent_config()]]}]},
 {max_msg_size, integer()}, % Optional - default is 484
 {mgr_port, integer()}, % Optional - default is 5000
 {engine _id, string()}, % Optional - default is "mgrEngine"

 %%% Agent config
 {start_agent, boolean()}, % Optional - default is false
 {agent_sysname, string()}, % Optional - default is "ct_test"
 {agent_manager_ip, manager_ip()}, % Optional - default is localhost
 {agent_vsns, list()}, % Optional - default is [v2]
 {agent_trap_udp, integer()}, % Optional - default is 5000
 {agent_udp, integer()}, % Optional - default is 4000
 {agent_notify_type, atom()}, % Optional - default is trap
 {agent_sec_type, sec_type()}, % Optional - default is none
 {agent_passwd, string()}, % Optional - default is ""
 {agent_engine_id, string()}, % Optional - default is "agentEngine"
 {agent_max_msg_size, string()},% Optional - default is 484

 %% The following parameters represents the snmp configuration files
 %% context.conf, standard.conf, community.conf, vacm.conf,
 %% usm.conf, notify.conf, target_addr.conf and target_params.conf.
 %% Note all values in agent.conf can be altered by the parametes
 %% above. All these configuration files have default values set
 %% up by the snmp application. These values can be overridden by
 %% suppling a list of valid configuration values or a file located
 %% in the test suites data dir that can produce a list
 %% of valid configuration values if you apply file:consult/1 to the
 %% file.
 {agent_contexts, [term()] | {data_dir_file, rel_path()}}, % Optional
 {agent_community, [term()] | {data_dir_file, rel_path()}},% Optional
 {agent_sysinfo, [term()] | {data_dir_file, rel_path()}}, % Optional
 {agent_vacm, [term()] | {data_dir_file, rel_path()}}, % Optional
 {agent_usm, [term()] | {data_dir_file, rel_path()}}, % Optional
 {agent_notify_def, [term()] | {data_dir_file, rel_path()}},% Optional
 {agent_target_address_def, [term()] | {data_dir_file, rel_path()}},% Optional
 {agent_target_param_def, [term()] | {data_dir_file, rel_path()}},% Optional
]}.

ct_snmp

142 | Ericsson AB. All Rights Reserved.: Common Test

The MgrAgentConfName parameter in the functions should be a name you allocate in your test suite using a
require statement. Example (where MgrAgentConfName = snmp_mgr_agent):

 suite() -> [{require, snmp_mgr_agent, snmp}].

or

 ct:require(snmp_mgr_agent, snmp).

Note that Usm users are needed for snmp v3 configuration and are not to be confused with users.

Snmp traps, inform and report messages are handled by the user callback module. For more information about this
see the snmp application.

Note: It is recommended to use the .hrl-files created by the Erlang/OTP mib-compiler to define the oids. Example for
the getting the erlang node name from the erlNodeTable in the OTP-MIB:

Oid = ?erlNodeEntry ++ [?erlNodeName, 1]

It is also possible to set values for snmp application configuration parameters, such as config, server, net_if,
etc (see the "Configuring the application" chapter in the OTP snmp User's Guide for a list of valid parameters and
types). This is done by defining a configuration data variable on the following form:

 {snmp_app, [{manager, [snmp_app_manager_params()]},
 {agent, [snmp_app_agent_params()]}]}.

A name for the data needs to be allocated in the suite using require (see example above), and this name passed
as the SnmpAppConfName argument to start/3. ct_snmp specifies default values for some snmp application
configuration parameters (such as {verbosity,trace} for the config parameter). This set of defaults will be
merged with the parameters specified by the user, and user values override ct_snmp defaults.

DATA TYPES
agent_config() = {Item, Value}
agent_ip() = ip()
agent_name() = atom()
agent_port() = integer()
call_back_module() = atom()
error_index() = integer()
error_status() = noError | atom()
ip() = string() | {integer(), integer(), integer(), integer()}
manager_ip() = ip()
oid() = [byte()]
oids() = [oid()]
rel_path() = string()
sec_type() = none | minimum | semi
snmp_app_agent_params() = term()
snmp_app_manager_params() = term()
snmpreply() = {error_status(), error_index(), varbinds()}

ct_snmp

Ericsson AB. All Rights Reserved.: Common Test | 143

user_data() = term()
user_name() = atom()
usm_config() = {Item, Value}
usm_user_name() = string()
value_type() = o('OBJECT IDENTIFIER') | i('INTEGER') | u('Unsigned32') |
g('Unsigned32') | s('OCTET STRING')
var_and_val() = {oid(), value_type(), value()}
varbind() = term()
varbinds() = [varbind()]
varsandvals() = [var_and_val()]

Exports

get_next_values(Agent, Oids, MgrAgentConfName) -> SnmpReply
Types:

Agent = agent_name()

Oids = oids()

MgrAgentConfName = atom()

SnmpReply = snmpreply()

Issues a synchronous snmp get next request.

get_values(Agent, Oids, MgrAgentConfName) -> SnmpReply
Types:

Agent = agent_name()

Oids = oids()

MgrAgentConfName = atom()

SnmpReply = snmpreply()

Issues a synchronous snmp get request.

load_mibs(Mibs) -> ok | {error, Reason}
Types:

Mibs = [MibName]

MibName = string()

Reason = term()

Load the mibs into the agent 'snmp_master_agent'.

register_agents(MgrAgentConfName, ManagedAgents) -> ok | {error, Reason}
Types:

MgrAgentConfName = atom()

ManagedAgents = [agent()]

Reason = term()

Explicitly instruct the manager to handle this agent. Corresponds to making an entry in agents.conf

This function will try to register the given managed agents, without checking if any of them already exist. In order to
change an already registered managed agent, the agent must first be unregistered.

ct_snmp

144 | Ericsson AB. All Rights Reserved.: Common Test

register_users(MgrAgentConfName, Users) -> ok | {error, Reason}
Types:

MgrAgentConfName = atom()

Users = [user()]

Reason = term()

Register the manager entity (=user) responsible for specific agent(s). Corresponds to making an entry in users.conf.

This function will try to register the given users, without checking if any of them already exist. In order to change an
already registered user, the user must first be unregistered.

register_usm_users(MgrAgentConfName, UsmUsers) -> ok | {error, Reason}
Types:

MgrAgentConfName = atom()

UsmUsers = [usm_user()]

Reason = term()

Explicitly instruct the manager to handle this USM user. Corresponds to making an entry in usm.conf

This function will try to register the given users, without checking if any of them already exist. In order to change an
already registered user, the user must first be unregistered.

set_info(Config) -> [{Agent, OldVarsAndVals, NewVarsAndVals}]
Types:

Config = [{Key, Value}]

Agent = agent_name()

OldVarsAndVals = varsandvals()

NewVarsAndVals = varsandvals()

Returns a list of all successful set requests performed in the test case in reverse order. The list contains the involved user
and agent, the value prior to the set and the new value. This is intended to facilitate the clean up in the end_per_testcase
function i.e. the undoing of the set requests and its possible side-effects.

set_values(Agent, VarsAndVals, MgrAgentConfName, Config) -> SnmpReply
Types:

Agent = agent_name()

Oids = oids()

MgrAgentConfName = atom()

Config = [{Key, Value}]

SnmpReply = snmpreply()

Issues a synchronous snmp set request.

start(Config, MgrAgentConfName) -> ok
Equivalent to start(Config, MgrAgentConfName, undefined).

start(Config, MgrAgentConfName, SnmpAppConfName) -> ok
Types:

Config = [{Key, Value}]

ct_snmp

Ericsson AB. All Rights Reserved.: Common Test | 145

Key = atom()

Value = term()

MgrAgentConfName = atom()

SnmpConfName = atom()

Starts an snmp manager and/or agent. In the manager case, registrations of users and agents as specified by
the configuration MgrAgentConfName will be performed. When using snmp v3 also so called usm users
will be registered. Note that users, usm_users and managed agents may also be registered at a later time using
ct_snmp:register_users/2, ct_snmp:register_agents/2, and ct_snmp:register_usm_users/2. The agent started will be
called snmp_master_agent. Use ct_snmp:load_mibs/1 to load mibs into the agent. With SnmpAppConfName
it's possible to configure the snmp application with parameters such as config, mibs, net_if, etc. The values will
be merged with (and possibly override) default values set by ct_snmp.

stop(Config) -> ok
Types:

Config = [{Key, Value}]

Key = atom()

Value = term()

Stops the snmp manager and/or agent removes all files created.

unload_mibs(Mibs) -> ok | {error, Reason}
Types:

Mibs = [MibName]

MibName = string()

Reason = term()

Unload the mibs from the agent 'snmp_master_agent'.

unregister_agents(MgrAgentConfName) -> ok
Types:

MgrAgentConfName = atom()

Reason = term()

Unregister all managed agents.

unregister_agents(MgrAgentConfName, ManagedAgents) -> ok
Types:

MgrAgentConfName = atom()

ManagedAgents = [agent_name()]

Reason = term()

Unregister the given managed agents.

unregister_users(MgrAgentConfName) -> ok
Types:

MgrAgentConfName = atom()

Reason = term()

Unregister all users.

ct_snmp

146 | Ericsson AB. All Rights Reserved.: Common Test

unregister_users(MgrAgentConfName, Users) -> ok
Types:

MgrAgentConfName = atom()

Users = [user_name()]

Reason = term()

Unregister the given users.

unregister_usm_users(MgrAgentConfName) -> ok
Types:

MgrAgentConfName = atom()

Reason = term()

Unregister all usm users.

unregister_usm_users(MgrAgentConfName, UsmUsers) -> ok
Types:

MgrAgentConfName = atom()

UsmUsers = [usm_user_name()]

Reason = term()

Unregister the given usm users.

ct_telnet

Ericsson AB. All Rights Reserved.: Common Test | 147

ct_telnet
Erlang module

Common Test specific layer on top of telnet client ct_telnet_client.erl

Use this module to set up telnet connections, send commands and perform string matching on the result. See the
unix_telnet manual page for information about how to use ct_telnet, and configure connections, specifically for
unix hosts.

The following default values are defined in ct_telnet:

 Connection timeout = 10 sec (time to wait for connection)
 Command timeout = 10 sec (time to wait for a command to return)
 Max no of reconnection attempts = 3
 Reconnection interval = 5 sek (time to wait in between reconnection attempts)
 Keep alive = true (will send NOP to the server every 10 sec if connection is idle)

These parameters can be altered by the user with the following configuration term:

 {telnet_settings, [{connect_timeout,Millisec},
 {command_timeout,Millisec},
 {reconnection_attempts,N},
 {reconnection_interval,Millisec},
 {keep_alive,Bool}]}.

Millisec = integer(), N = integer()

Enter the telnet_settings term in a configuration file included in the test and ct_telnet will retrieve the
information automatically. Note that keep_alive may be specified per connection if required. See unix_telnet
for details.

DATA TYPES
connection() = handle() | {target_name() (see module ct), connection_type()}
| target_name() (see module ct)
connection_type() = telnet | ts1 | ts2
handle() = handle() (see module ct_gen_conn)

Handle for a specific telnet connection.

prompt_regexp() = string()

A regular expression which matches all possible prompts for a specific type of target. The regexp must not have
any groups i.e. when matching, re:run/3 shall return a list with one single element.

Exports

close(Connection) -> ok | {error, Reason}
Types:

Connection = connection() (see module ct_telnet)

Close the telnet connection and stop the process managing it.

ct_telnet

148 | Ericsson AB. All Rights Reserved.: Common Test

A connection may be associated with a target name and/or a handle. If Connection has no associated target name,
it may only be closed with the handle value (see the open/4 function).

cmd(Connection, Cmd) -> {ok, Data} | {error, Reason}
Equivalent to cmd(Connection, Cmd, DefaultTimeout).

cmd(Connection, Cmd, Timeout) -> {ok, Data} | {error, Reason}
Types:

Connection = connection() (see module ct_telnet)

Cmd = string()

Timeout = integer()

Data = [string()]

Send a command via telnet and wait for prompt.

cmdf(Connection, CmdFormat, Args) -> {ok, Data} | {error, Reason}
Equivalent to cmdf(Connection, CmdFormat, Args, DefaultTimeout).

cmdf(Connection, CmdFormat, Args, Timeout) -> {ok, Data} | {error, Reason}
Types:

Connection = connection() (see module ct_telnet)

CmdFormat = string()

Args = list()

Timeout = integer()

Data = [string()]

Send a telnet command and wait for prompt (uses a format string and list of arguments to build the command).

cont_log(Str, Args) -> term()

end_log() -> term()

expect(Connection, Patterns) -> term()
Equivalent to expect(Connections, Patterns, []).

expect(Connection, Patterns, Opts) -> {ok, Match} | {ok, MatchList,
HaltReason} | {error, Reason}
Types:

Connection = connection() (see module ct_telnet)

Patterns = Pattern | [Pattern]

Pattern = string() | {Tag, string()} | prompt | {prompt, Prompt}

Prompt = string()

Tag = term()

Opts = [Opt]

Opt = {timeout, Timeout} | repeat | {repeat, N} | sequence | {halt,
HaltPatterns} | ignore_prompt

ct_telnet

Ericsson AB. All Rights Reserved.: Common Test | 149

Timeout = integer()

N = integer()

HaltPatterns = Patterns

MatchList = [Match]

Match = RxMatch | {Tag, RxMatch} | {prompt, Prompt}

RxMatch = [string()]

HaltReason = done | Match

Reason = timeout | {prompt, Prompt}

Get data from telnet and wait for the expected pattern.

Pattern can be a POSIX regular expression. If more than one pattern is given, the function returns when the first
match is found.

RxMatch is a list of matched strings. It looks like this: [FullMatch, SubMatch1, SubMatch2, ...]
where FullMatch is the string matched by the whole regular expression and SubMatchN is the string that matched
subexpression no N. Subexpressions are denoted with '(' ')' in the regular expression

If a Tag is given, the returned Match will also include the matched Tag. Else, only RxMatch is returned.

The function will always return when a prompt is found, unless the ignore_prompt options is used.

The timeout option indicates that the function shall return if the telnet client is idle (i.e. if no data is received) for
more than Timeout milliseconds. Default timeout is 10 seconds.

The repeat option indicates that the pattern(s) shall be matched multiple times. If N is given, the pattern(s) will be
matched N times, and the function will return with HaltReason = done.

The sequence option indicates that all patterns shall be matched in a sequence. A match will not be concluded untill
all patterns are matched.

Both repeat and sequence can be interrupted by one or more HaltPatterns. When sequence or repeat
is used, there will always be a MatchList returned, i.e. a list of Match instead of only one Match. There will also
be a HaltReason returned.

Examples:
expect(Connection,[{abc,"ABC"},{xyz,"XYZ"}], [sequence,{halt,[{nnn,"NNN"}]}]).
will try to match "ABC" first and then "XYZ", but if "NNN" appears the function will return {error,{nnn,
["NNN"]}}. If both "ABC" and "XYZ" are matched, the function will return {ok,[AbcMatch,XyzMatch]}.

expect(Connection,[{abc,"ABC"},{xyz,"XYZ"}], [{repeat,2},{halt,
[{nnn,"NNN"}]}]).
will try to match "ABC" or "XYZ" twice. If "NNN" appears the function will return with HaltReason = {nnn,
["NNN"]}.

The repeat and sequence options can be combined in order to match a sequence multiple times.

get_data(Connection) -> {ok, Data} | {error, Reason}
Types:

Connection = connection() (see module ct_telnet)

Data = [string()]

Get all data which has been received by the telnet client since last command was sent.

open(Name) -> {ok, Handle} | {error, Reason}
Equivalent to open(Name, telnet).

ct_telnet

150 | Ericsson AB. All Rights Reserved.: Common Test

open(Name, ConnType) -> {ok, Handle} | {error, Reason}
Types:

Name = target_name()

ConnType = connection_type() (see module ct_telnet)

Handle = handle() (see module ct_telnet)

Open a telnet connection to the specified target host.

open(KeyOrName, ConnType, TargetMod) -> {ok, Handle} | {error, Reason}
Equivalent to open(KeyOrName, ConnType, TargetMod, []).

open(KeyOrName, ConnType, TargetMod, Extra) -> {ok, Handle} | {error, Reason}
Types:

KeyOrName = Key | Name

Key = atom()

Name = target_name() (see module ct)

ConnType = connection_type()

TargetMod = atom()

Extra = term()

Handle = handle()

Open a telnet connection to the specified target host.

The target data must exist in a configuration file. The connection may be associated with either Name and/or the
returned Handle. To allocate a name for the target, use ct:require/2 in a test case, or use a require statement
in the suite info function (suite/0), or in a test case info function. If you want the connection to be associated with
Handle only (in case you need to open multiple connections to a host for example), simply use Key, the configuration
variable name, to specify the target. Note that a connection that has no associated target name can only be closed with
the handle value.

TargetMod is a module which exports the functions connect(Ip,Port,KeepAlive,Extra) and
get_prompt_regexp() for the given TargetType (e.g. unix_telnet).

See also: ct:require/2.

send(Connection, Cmd) -> ok | {error, Reason}
Types:

Connection = connection() (see module ct_telnet)

Cmd = string()

Send a telnet command and return immediately.

The resulting output from the command can be read with get_data/1 or expect/2/3.

sendf(Connection, CmdFormat, Args) -> ok | {error, Reason}
Types:

Connection = connection() (see module ct_telnet)

CmdFormat = string()

Args = list()

Send a telnet command and return immediately (uses a format string and a list of arguments to build the command).

ct_telnet

Ericsson AB. All Rights Reserved.: Common Test | 151

See also
unix_telnet

unix_telnet

152 | Ericsson AB. All Rights Reserved.: Common Test

unix_telnet
Erlang module

Callback module for ct_telnet for talking telnet to a unix host.

It requires the following entry in the config file:

 {unix,[{telnet,HostNameOrIpAddress},
 {port,PortNum}, % optional
 {username,UserName},
 {password,Password},
 {keep_alive,Bool}]}. % optional

To talk telnet to the host specified by HostNameOrIpAddress, use the interface functions in ct, e.g.
open(Name), cmd(Name,Cmd),

Name is the name you allocated to the unix host in your require statement. E.g.

 suite() -> [{require,Name,{unix,[telnet,username,password]}}].

or

 ct:require(Name,{unix,[telnet,username,password]}).

The "keep alive" activity (i.e. that Common Test sends NOP to the server every 10 seconds if the connection is idle)
may be enabled or disabled for one particular connection as described here. It may be disabled for all connections
using telnet_settings (see ct_telnet).

Note that the {port,PortNum} tuple is optional and if omitted, default telnet port 23 will be used. Also the
keep_alive tuple is optional, and the value defauls to true (enabled).

See also
ct, ct_telnet

ct_slave

Ericsson AB. All Rights Reserved.: Common Test | 153

ct_slave
Erlang module

Common Test Framework functions for starting and stopping nodes for Large Scale Testing.

This module exports functions which are used by the Common Test Master to start and stop "slave" nodes. It is the
default callback module for the {init, node_start} term of the Test Specification.

Exports

start(Node) -> Result
Types:

Node = atom()

Result = {ok, NodeName} | {error, already_started, NodeName} | {error,
started_not_connected, NodeName} | {error, boot_timeout, NodeName} |
{error, init_timeout, NodeName} | {error, startup_timeout, NodeName} |
{error, not_alive, NodeName}

NodeName = atom()

Starts an Erlang node with name Node on the local host.

See also: start/3.

start(Host, Node) -> Result
Types:

Node = atom()

Host = atom()

Result = {ok, NodeName} | {error, already_started, NodeName} | {error,
started_not_connected, NodeName} | {error, boot_timeout, NodeName} |
{error, init_timeout, NodeName} | {error, startup_timeout, NodeName} |
{error, not_alive, NodeName}

NodeName = atom()

Starts an Erlang node with name Node on host Host with the default options.

See also: start/3.

start(Host, Node, Options::Opts) -> Result
Types:

Node = atom()

Host = atom()

Opts = [OptTuples]

OptTuples = {username, Username} | {password, Password} | {boot_timeout,
BootTimeout} | {init_timeout, InitTimeout} | {startup_timeout,
StartupTimeout} | {startup_functions, StartupFunctions} | {monitor_master,
Monitor} | {kill_if_fail, KillIfFail} | {erl_flags, ErlangFlags} | {env,
[{EnvVar, Value}]}

Username = string()

Password = string()

ct_slave

154 | Ericsson AB. All Rights Reserved.: Common Test

BootTimeout = integer()

InitTimeout = integer()

StartupTimeout = integer()

StartupFunctions = [StartupFunctionSpec]

StartupFunctionSpec = {Module, Function, Arguments}

Module = atom()

Function = atom()

Arguments = [term]

Monitor = bool()

KillIfFail = bool()

ErlangFlags = string()

EnvVar = string()

Value = string()

Result = {ok, NodeName} | {error, already_started, NodeName} | {error,
started_not_connected, NodeName} | {error, boot_timeout, NodeName} |
{error, init_timeout, NodeName} | {error, startup_timeout, NodeName} |
{error, not_alive, NodeName}

NodeName = atom()

Starts an Erlang node with name Node on host Host as specified by the combination of options in Opts.

Options Username and Password will be used to log in onto the remote host Host. Username, if omitted, defaults
to the current user name, and password is empty by default.

A list of functions specified in the Startup option will be executed after startup of the node. Note that all used
modules should be present in the code path on the Host.

The timeouts are applied as follows:

• BootTimeout - time to start the Erlang node, in seconds. Defaults to 3 seconds. If node does not become
pingable within this time, the result {error, boot_timeout, NodeName} is returned;

• InitTimeout - time to wait for the node until it calls the internal callback function informing master about
successfull startup. Defaults to one second. In case of timed out message the result {error, init_timeout,
NodeName} is returned;

• StartupTimeout - time to wait intil the node finishes to run the StartupFunctions. Defaults to one
second. If this timeout occurs, the result {error, startup_timeout, NodeName} is returned.

Option monitor_master specifies, if the slave node should be stopped in case of master node stop. Defaults to false.

Option kill_if_fail specifies, if the slave node should be killed in case of a timeout during initialization or
startup. Defaults to true. Note that node also may be still alive it the boot timeout occurred, but it will not be killed
in this case.

Option erlang_flags specifies, which flags will be added to the parameters of the erl executable.

Option env specifies a list of environment variables that will extended the environment.

Special return values are:

• {error, already_started, NodeName} - if the node with the given name is already started on a given
host;

• {error, started_not_connected, NodeName} - if node is started, but not connected to the master
node.

• {error, not_alive, NodeName} - if node on which the ct_slave:start/3 is called, is not alive.
Note that NodeName is the name of current node in this case.

ct_slave

Ericsson AB. All Rights Reserved.: Common Test | 155

stop(Node) -> Result
Types:

Node = atom()

Result = {ok, NodeName} | {error, not_started, NodeName} | {error,
not_connected, NodeName} | {error, stop_timeout, NodeName}

NodeName = atom()

Stops the running Erlang node with name Node on the localhost.

stop(Host, Node) -> Result
Types:

Host = atom()

Node = atom()

Result = {ok, NodeName} | {error, not_started, NodeName} | {error,
not_connected, NodeName} | {error, stop_timeout, NodeName}

NodeName = atom()

Stops the running Erlang node with name Node on host Host.

ct_hooks

156 | Ericsson AB. All Rights Reserved.: Common Test

ct_hooks
Erlang module

The Common Test Hook (henceforth called CTH) framework allows extensions of the default behaviour of Common
Test by means of callbacks before and after all test suite calls. It is meant for advanced users of Common Test which
want to abstract out behaviour which is common to multiple test suites.

In brief, Common Test Hooks allows you to:

• Manipulate the runtime config before each suite configuration call

• Manipulate the return of all suite configuration calls and in extension the result of the test themselves.

The following sections describe the mandatory and optional CTH functions Common Test will call during test
execution. For more details see Common Test Hooks in the User's Guide.

For information about how to add a CTH to your suite see Installing a CTH in the User's Guide.

Note:
See the Example CTH in the User's Guide for a minimal example of a CTH.

CALLBACK FUNCTIONS
The following functions define the callback interface for a Common Test Hook.

Exports

Module:init(Id, Opts) -> {ok, State} | {ok, State, Priority}
Types:

Id = reference() | term()

Opts = term()

State = term()

Priority = integer()

MANDATORY

Always called before any other callback function. Use this to initiate any common state. It should return a state for
this CTH.

Id is the return value of id/1, or a reference (created using make_ref/0) if id/1 is not implemented.

Priority is the relative priority of this hook. Hooks with a lower priority will be executed first. If no priority is
given, it will be set to 0.

For details about when init is called see scope in the User's Guide.

Module:pre_init_per_suite(SuiteName, InitData, CTHState) -> Result
Types:

SuiteName = atom()

InitData = Config | SkipOrFail

Config = NewConfig = [{Key,Value}]

ct_hooks

Ericsson AB. All Rights Reserved.: Common Test | 157

CTHState = NewCTHState = term()

Result = {Return, NewCTHState}

Return = NewConfig | SkipOrFail

SkipOrFail = {fail, Reason} | {skip, Reason}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called before init_per_suite if it exists. It typically contains initialization/logging which needs to be
done before init_per_suite is called. If {skip,Reason} or {fail,Reason} is returned, init_per_suite and all
test cases of the suite will be skipped and Reason printed in the overview log of the suite.

SuiteName is the name of the suite to be run.

InitData is the original config list of the test suite, or a SkipOrFail tuple if a previous CTH has returned this.

CTHState is the current internal state of the CTH.

Return is the result of the init_per_suite function. If it is {skip,Reason} or {fail,Reason} init_per_suite
will never be called, instead the initiation is considered to be skipped/failed respectively. If a NewConfig list is
returned, init_per_suite will be called with that NewConfig list. See Pre Hooks in the User's Guide for more details.

Note that this function is only called if the CTH has been added before init_per_suite is run, see CTH Scoping in the
User's Guide for details.

Module:post_init_per_suite(SuiteName, Config, Return, CTHState) -> Result
Types:

SuiteName = atom()

Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail, Reason} | {skip, Reason} | term()

CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after init_per_suite if it exists. It typically contains extra checks to make sure that all the correct
dependencies have been started correctly.

Return is what init_per_suite returned, i.e. {fail,Reason}, {skip,Reason}, a Config list or a term describing how
init_per_suite failed.

NewReturn is the possibly modified return value of init_per_suite . It is here possible to recover from a failure in
init_per_suite by returning the ConfigList with the tc_status element removed. See Post Hooks in the User's
Guide for more details.

CTHState is the current internal state of the CTH.

Note that this function is only called if the CTH has been added before or in init_per_suite, see CTH Scoping in the
User's Guide for details.

ct_hooks

158 | Ericsson AB. All Rights Reserved.: Common Test

Module:pre_init_per_group(GroupName, InitData, CTHState) -> Result
Types:

GroupName = atom()

InitData = Config | SkipOrFail

Config = NewConfig = [{Key,Value}]

CTHState = NewCTHState = term()

Result = {NewConfig | SkipOrFail, NewCTHState}

SkipOrFail = {fail,Reason} | {skip, Reason}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called before init_per_group if it exists. It behaves the same way as pre_init_per_suite, but for the
init_per_group instead.

Module:post_init_per_group(GroupName, Config, Return, CTHState) -> Result
Types:

GroupName = atom()

Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail,Reason} | {skip, Reason}

CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after init_per_group if it exists. It behaves the same way as post_init_per_suite, but for the
init_per_group instead.

Module:pre_init_per_testcase(TestcaseName, InitData, CTHState) -> Result
Types:

TestcaseName = atom()

InitData = Config | SkipOrFail

Config = NewConfig = [{Key,Value}]

CTHState = NewCTHState = term()

Result = {NewConfig | SkipOrFail, NewCTHState}

SkipOrFail = {fail,Reason} | {skip, Reason}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

ct_hooks

Ericsson AB. All Rights Reserved.: Common Test | 159

This function is called before init_per_testcase if it exists. It behaves the same way as pre_init_per_suite, but for
the init_per_testcase function instead.

Note that it is not possible to add CTH's here right now, that feature might be added later, but it would right now
break backwards compatibility.

Module:post_end_per_testcase(TestcaseName, Config, Return, CTHState) ->
Result
Types:

TestcaseName = atom()

Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail,Reason} | {skip, Reason}

CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after end_per_testcase if it exists. It behaves the same way as post_init_per_suite, but for the
end_per_testcase function instead.

Module:pre_end_per_group(GroupName, EndData, CTHState) -> Result
Types:

GroupName = atom()

EndData = Config | SkipOrFail

Config = NewConfig = [{Key,Value}]

CTHState = NewCTHState = term()

Result = {NewConfig | SkipOrFail, NewCTHState}

SkipOrFail = {fail,Reason} | {skip, Reason}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called before end_per_group if it exists. It behaves the same way as pre_init_per_suite, but for the
end_per_group function instead.

Module:post_end_per_group(GroupName, Config, Return, CTHState) -> Result
Types:

GroupName = atom()

Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail,Reason} | {skip, Reason}

CTHState = NewCTHState = term()

ct_hooks

160 | Ericsson AB. All Rights Reserved.: Common Test

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after end_per_group if it exists. It behaves the same way as post_init_per_suite, but for the
end_per_group function instead.

Module:pre_end_per_suite(SuiteName, EndData, CTHState) -> Result
Types:

SuiteName = atom()

EndData = Config | SkipOrFail

Config = NewConfig = [{Key,Value}]

CTHState = NewCTHState = term()

Result = {NewConfig | SkipOrFail, NewCTHState}

SkipOrFail = {fail,Reason} | {skip, Reason}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called before end_per_suite if it exists. It behaves the same way as pre_init_per_suite, but for the
end_per_suite function instead.

Module:post_end_per_suite(SuiteName, Config, Return, CTHState) -> Result
Types:

SuiteName = atom()

Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail,Reason} | {skip, Reason}

CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after end_per_suite if it exists. It behaves the same way as post_init_per_suite, but for the
end_per_suite function instead.

Module:on_tc_fail(TestcaseName, Reason, CTHState) -> NewCTHState
Types:

TestcaseName = init_per_suite | end_per_suite | init_per_group |
end_per_group | atom()

Reason = term()

ct_hooks

Ericsson AB. All Rights Reserved.: Common Test | 161

CTHState = NewCTHState = term()

OPTIONAL

This function is called whenever a testcase fails. It is called after the post function has been called for the testcase
which failed. i.e. if init_per_suite fails this function is called after post_init_per_suite, and if a testcase fails it is called
after post_end_per_testcase.

The data which comes with the Reason follows the same format as the FailReason in the tc_done event. See Event
Handling in the User's Guide for details.

Module:on_tc_skip(TestcaseName, Reason, CTHState) -> NewCTHState
Types:

TestcaseName = end_per_suite | init_per_group | end_per_group | atom()

Reason = {tc_auto_skip | tc_user_skip, term()}

CTHState = NewCTHState = term()

OPTIONAL

This function is called whenever a testcase is skipped. It is called after the post function has been called for the testcase
which was skipped. i.e. if init_per_group is skipped this function is called after post_init_per_group , and if a testcase
is skipped it is called after post_end_per_testcase .

The data which comes with the Reason follows the same format as tc_auto_skip and tc_user_skip events. See Event
Handling in the User's Guide for details.

Module:terminate(CTHState)
Types:

CTHState = term()

OPTIONAL

This function is called at the end of a CTH's scope.

Module:id(Opts) -> Id
Types:

Opts = term()

Id = term()

OPTIONAL

The Id is used to uniquely identify a CTH instance, if two CTH's return the same Id the second CTH is ignored
and subsequent calls to the CTH will only be made to the first instance. For more information see Installing a CTH
in the User's Guide.

This function should NOT have any side effects as it might be called multiple times by Common Test.

If not implemented the CTH will act as if this function returned a call to make_ref/0.

	Common Test
	Common Test User's Guide
	Common Test Basics
	Introduction
	Test Suite Organisation
	Support Libraries
	Suites and Test Cases
	External Interfaces

	Getting Started
	Are you new around here?
	Test case execution
	A simple test suite
	A test suite with configuration functions
	What happens next?

	Installation
	General information

	Writing Test Suites
	Support for test suite authors
	Test suites
	Init and end per suite
	Init and end per test case
	Test cases
	Test case info function
	Test suite info function
	Test case groups
	The parallel property and nested groups
	Parallel test cases and IO
	Repeated groups
	Shuffled test case order
	Group info function
	Info functions for init- and end-configuration
	Data and Private Directories
	Execution environment
	Timetrap timeouts
	Logging - categories and verbosity levels
	Illegal dependencies

	Test Structure
	Test structure
	Skipping test cases
	Definition of terms

	Examples and Templates
	Test suite example
	Test suite templates

	Running Tests
	Using the Common Test Framework
	Automatic compilation of test suites and help modules
	Running tests from the OS command line
	Running tests from the Erlang shell or from an Erlang program
	Releasing the Erlang shell

	Test case group execution
	Running the interactive shell mode
	Step by step execution of test cases with the Erlang Debugger
	Test Specifications
	General description
	Using multiple test specification files
	Test specification file inclusion
	Test case groups
	Test specification syntax
	Constants
	Example
	The init term
	User specific terms

	Running tests from the Web based GUI
	Log files
	Log options
	Sorting HTML table columns

	HTML Style Sheets
	Repeating tests
	Silent Connections

	External Configuration Data
	General
	Syntax
	Requiring and reading configuration data
	Using configuration variables defined in multiple files
	Encrypted configuration files
	Opening connections by using configuration data
	User specific configuration data formats
	Default callback modules for handling configuration data
	Using XML configuration files
	How to implement a user specific handler

	Examples of configuration data handling
	Example of user specific configuration handler

	Code Coverage Analysis
	General
	Usage
	Stopping the cover tool when tests are completed
	The cover specification file
	Cross cover analysis
	Logging

	Using Common Test for Large Scale Testing
	General
	Usage
	Test Specifications
	Automatic startup of test target nodes

	Event Handling
	General
	Usage

	Dependencies between Test Cases and Suites
	General
	Saving configuration data
	Sequences

	Common Test Hooks
	General
	Installing a CTH
	Overriding CTHs
	CTH Execution order

	CTH Scope
	CTH Processes and Tables
	External configuration data and Logging

	Manipulating tests
	Pre Hooks
	Post Hooks
	Skip and Fail hooks

	Example CTH
	Built-in CTHs

	Some thoughts about testing
	Goals
	What to test?

	Reference Manual
	common_test
	Module:all/0
	Module:groups/0
	Module:suite/0
	Module:init_per_suite/1
	Module:end_per_suite/1
	Module:group/1
	Module:init_per_group/2
	Module:end_per_group/2
	Module:init_per_testcase/2
	Module:end_per_testcase/2
	Module:Testcase/0
	Module:Testcase/1

	ct_run
	ct
	abort_current_testcase/1
	add_config/2
	break/1
	break/2
	capture_get/0
	capture_get/1
	capture_start/0
	capture_stop/0
	comment/1
	comment/2
	continue/0
	continue/1
	decrypt_config_file/2
	decrypt_config_file/3
	encrypt_config_file/2
	encrypt_config_file/3
	fail/1
	fail/2
	get_config/1
	get_config/2
	get_config/3
	get_status/0
	get_target_name/1
	get_timetrap_info/0
	install/1
	listenv/1
	log/1
	log/2
	log/3
	log/4
	make_priv_dir/0
	notify/2
	pal/1
	pal/2
	pal/3
	pal/4
	parse_table/1
	print/1
	print/2
	print/3
	print/4
	reload_config/1
	remove_config/2
	require/1
	require/2
	run/1
	run/2
	run/3
	run_test/1
	run_testspec/1
	sleep/1
	start_interactive/0
	step/3
	step/4
	stop_interactive/0
	sync_notify/2
	testcases/2
	timetrap/1
	userdata/2
	userdata/3

	ct_master
	abort/0
	abort/1
	basic_html/1
	progress/0
	run/1
	run/3
	run/4
	run_on_node/2
	run_on_node/3
	run_test/2

	ct_cover
	add_nodes/1
	cross_cover_analyse/2
	remove_nodes/1

	ct_ftp
	cd/2
	close/1
	delete/2
	get/3
	ls/2
	open/1
	put/3
	recv/2
	recv/3
	send/2
	send/3
	type/2

	ct_ssh
	apread/4
	apread/5
	apwrite/4
	apwrite/5
	aread/3
	aread/4
	awrite/3
	awrite/4
	close/2
	close/3
	connect/1
	connect/2
	connect/3
	del_dir/2
	del_dir/3
	delete/2
	delete/3
	disconnect/1
	exec/2
	exec/3
	exec/4
	get_file_info/2
	get_file_info/3
	list_dir/2
	list_dir/3
	make_dir/2
	make_dir/3
	make_symlink/3
	make_symlink/4
	open/3
	open/4
	opendir/2
	opendir/3
	position/3
	position/4
	pread/4
	pread/5
	pwrite/4
	pwrite/5
	read/3
	read/4
	read_file/2
	read_file/3
	read_file_info/2
	read_file_info/3
	read_link/2
	read_link/3
	read_link_info/2
	read_link_info/3
	receive_response/2
	receive_response/3
	receive_response/4
	rename/3
	rename/4
	send/3
	send/4
	send/5
	send_and_receive/3
	send_and_receive/4
	send_and_receive/5
	send_and_receive/6
	session_close/2
	session_open/1
	session_open/2
	sftp_connect/1
	subsystem/3
	subsystem/4
	write/3
	write/4
	write_file/3
	write_file/4
	write_file_info/3
	write_file_info/4

	ct_netconfc
	action/2
	action/3
	close_session/1
	close_session/2
	copy_config/3
	copy_config/4
	create_subscription/1
	create_subscription/2
	create_subscription/3
	create_subscription/4
	create_subscription/5
	create_subscription/6
	delete_config/2
	delete_config/3
	edit_config/3
	edit_config/4
	format_data/2
	get/2
	get/3
	get_capabilities/1
	get_capabilities/2
	get_config/3
	get_config/4
	get_event_streams/2
	get_event_streams/3
	get_session_id/1
	get_session_id/2
	handle_msg/2
	hello/1
	hello/2
	kill_session/2
	kill_session/3
	lock/2
	lock/3
	only_open/1
	only_open/2
	open/1
	open/2
	unlock/2
	unlock/3

	ct_rpc
	app_node/2
	app_node/3
	app_node/4
	call/4
	call/5
	call/6
	cast/4
	cast/5

	ct_snmp
	get_next_values/3
	get_values/3
	load_mibs/1
	register_agents/2
	register_users/2
	register_usm_users/2
	set_info/1
	set_values/4
	start/2
	start/3
	stop/1
	unload_mibs/1
	unregister_agents/1
	unregister_agents/2
	unregister_users/1
	unregister_users/2
	unregister_usm_users/1
	unregister_usm_users/2

	ct_telnet
	close/1
	cmd/2
	cmd/3
	cmdf/3
	cmdf/4
	cont_log/2
	end_log/0
	expect/2
	expect/3
	get_data/1
	open/1
	open/2
	open/3
	open/4
	send/2
	sendf/3

	unix_telnet
	ct_slave
	start/1
	start/2
	start/3
	stop/1
	stop/2

	ct_hooks
	Module:init/2
	Module:pre_init_per_suite/3
	Module:post_init_per_suite/4
	Module:pre_init_per_group/3
	Module:post_init_per_group/4
	Module:pre_init_per_testcase/3
	Module:post_end_per_testcase/4
	Module:pre_end_per_group/3
	Module:post_end_per_group/4
	Module:pre_end_per_suite/3
	Module:post_end_per_suite/4
	Module:on_tc_fail/3
	Module:on_tc_skip/3
	Module:terminate/1
	Module:id/1

