
Percept
Copyright © 2007-2013 Ericsson AB, All Rights Reserved

Percept 0.8.8
February 25, 2013

Copyright © 2007-2013 Ericsson AB, All Rights Reserved
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. The Initial Developer of
the Original Code is Ericsson AB. Ericsson AB, All Rights Reserved.

February 25, 2013

Ericsson AB, All Rights Reserved: Percept | 1

1.1 Percept

2 | Ericsson AB, All Rights Reserved: Percept

1 Percept User's Guide

Percept is an acronym for Percept - erlang concurrency profiling tool.

It is a tool to visualize application level concurrency and identify concurrency bottlenecks.

1.1 Percept
Percept, or Percept - Erlang Concurrency Profiling Tool, utilizes trace informations and profiler events to form a
picture of the processes's and ports runnability.

1.1.1 Introduction
Percept uses erlang:trace/3 and erlang:system_profile/2 to monitor events from process states. Such
states are,

• waiting

• running

• runnable

• free

• exiting

There are some other states too, suspended, hibernating, and garbage collecting (gc). The only ignored state
is gc and a process is considered to have its previous state through out the entire garbage collecting phase. The main
reason for this, is that our model considers the gc as a third state neither active nor inactive.

A waiting or suspended process is considered an inactive process and a running or runnable process is considered
an active process.

Events are collected and stored to a file. The file can be moved and analyzed on a different machine than the target
machine.

Note, even if percept is not installed on your target machine, profiling can still be done via the module percept_profile
located in runtime_tools.

1.1.2 Getting started
Profiling
There are a few ways to start the profiling of a specific code. The command percept:profile/3 is a preferred
way.

The command takes a filename for the data destination file as first argument, a callback entry-point as second argument
and a list of specific profiler options, for instance procs, as third argument.

Let's say we have a module called example that initializes our profiling-test and let it run under some defined manner
designed by ourself. The module needs a start function, let's call it go and it takes zero arguments. The start arguments
would look like:

percept:profile("test.dat", {test, go, []}, [procs]).

For a semi-real example we start a tree of processes that does sorting of random numbers. In our model below we use
a controller process that distributes work to different client processes.

1.1 Percept

Ericsson AB, All Rights Reserved: Percept | 3

-module(sorter).
-export([go/3,loop/0,main/4]).

go(I,N,M) ->
 spawn(?MODULE, main, [I,N,M,self()]),
 receive done -> ok end.

main(I,N,M,Parent) ->
 Pids = lists:foldl(
 fun(_,Ps) ->
 [spawn(?MODULE,loop, []) | Ps]
 end, [], lists:seq(1,M)),

 lists:foreach(
 fun(_) ->
 send_work(N,Pids),
 gather(Pids)
 end, lists:seq(1,I)),

 lists:foreach(
 fun(Pid) ->
 Pid ! {self(), quit}
 end, Pids),

 gather(Pids), Parent ! done.

send_work(_,[]) -> ok;
send_work(N,[Pid|Pids]) ->
 Pid ! {self(),sort,N},
 send_work(round(N*1.2),Pids).

loop() ->
 receive
 {Pid, sort, N} -> dummy_sort(N),Pid ! {self(), done},loop();
 {Pid, quit} -> Pid ! {self(), done}
 end.

dummy_sort(N) -> lists:sort([random:uniform(N) || _ <- lists:seq(1,N)]).

gather([]) -> ok;
gather([Pid|Pids]) -> receive {Pid, done} -> gather(Pids) end.

We can now start our test using percept:

Erlang (BEAM) emulator version 5.6 [async-threads:0] [kernel-poll:false]

Eshell V5.6 (abort with ^G)
1> percept:profile("test.dat", {sorter, go, [5, 2000, 15]}, [procs]).
Starting profiling.
ok

Percept sets up the trace and profiling facilities to listen for process specific events. It then stores these events to the
test.dat file. The profiling will go on for the whole duration until sorter:go/3 returns and the profiling has
concluded.

1.1 Percept

4 | Ericsson AB, All Rights Reserved: Percept

Data viewing
To analyze this file, use percept:analyze("test.dat"). We can do this on any machine with Percept
installed. The command will parse the data file and insert all events in a RAM database, percept_db. The initial
command will only prompt how many processes were involved in the profile.

2> percept:analyze("test.dat").
Parsing: "test.dat"
Parsed 428 entries in 3.81310e-2 s.
 17 created processes.
 0 opened ports.
ok

To view the data we start the web-server using percept:start_webserver/1. The command will return the
hostname and the a port where we should direct our favorite web browser.

3> percept:start_webserver(8888).
{started,"durin",8888}
4>

Overview selection
Now we can view our data. The database has its content from percept:analyze/1 command and the webserver
is started.

When we click on the overview button in the menu percept will generate a graph of the concurrency and send it to
our web browser. In this view we get no details but rather the big picture. We can see if our processes behave in an
inefficient manner. Dips in the graph represents low concurrency in the erlang system.

We can zoom in on different areas of the graph either using the mouse to select an area or by specifying min and
max ranges in the edit boxes.

Note:
Measured time is presented in seconds if nothing else is stated.

1.1 Percept

Ericsson AB, All Rights Reserved: Percept | 5

Figure 1.1: Overview selection

Processes selection
To get a more detailed description we can select the process view by clicking the processes button in the menu.

The table shows process id's that are click-able and direct you to the process information page, a lifetime bar that
presents a rough estimate in green color about when the process was alive during profiling, an entry-point, its registered
name if it had one and the process's parent id.

We can select which processes we want to compare and then hit the compare button on the top right of the screen.

1.1 Percept

6 | Ericsson AB, All Rights Reserved: Percept

Figure 1.2: Processes selection

Compare selection
The activity bar under the concurrency graph shows each process's runnability. The color green shows when a process
is active (which is running or runnable) and the white color represents time when a process is inactive (waiting in a
receive or is suspended).

To inspect a certain process click on the process id button, this will direct you to a process information page for that
specific process.

1.1 Percept

Ericsson AB, All Rights Reserved: Percept | 7

Figure 1.3: Processes compare selection

Process information selection
Here we can some general information for the process. Parent and children processes, spawn and exit times, entry-
point and start arguments.

We can also see the process' inactive times. How many times it has been waiting, statistical information and most
importantly in which function.

The time percentages presented in process information are of time spent in waiting, not total run time.

1.2 egd

8 | Ericsson AB, All Rights Reserved: Percept

Figure 1.4: Process information selection

1.2 egd
1.2.1 Introduction
The egd module is an interface for 2d-image rendering and is used by Percept to generate dynamic graphs to its web
pages. All code is pure erlang, no drivers needed.

The library is intended for small to medium image sizes with low complexity for optimal performance. The library
handles horizontal lines better then vertical lines.

The foremost purpose for this module is to enable users to generate images from erlang code and/or datasets and to
send these images to either files or web servers.

1.2.2 File example
Drawing examples:

-module(img).

-export([do/0]).

do() ->
 Im = egd:create(200,200),
 Red = egd:color({255,0,0}),
 Green = egd:color({0,255,0}),
 Blue = egd:color({0,0,255}),
 Black = egd:color({0,0,0}),
 Yellow = egd:color({255,255,0}),

 % Line and fillRectangle

 egd:filledRectangle(Im, {20,20}, {180,180}, Red),
 egd:line(Im, {0,0}, {200,200}, Black),

1.2 egd

Ericsson AB, All Rights Reserved: Percept | 9

 egd:save(egd:render(Im, png), "/home/egil/test1.png"),

 egd:filledEllipse(Im, {45, 60}, {55, 70}, Yellow),
 egd:filledEllipse(Im, {145, 60}, {155, 70}, Blue),

 egd:save(egd:render(Im, png), "/home/egil/test2.png"),

 R = 80,
 X0 = 99,
 Y0 = 99,

 Pts = [{ X0 + trunc(R*math:cos(A*math:pi()*2/360)),
 Y0 + trunc(R*math:sin(A*math:pi()*2/360))
 } || A <- lists:seq(0,359,5)],
 lists:map(
 fun({X,Y}) ->
 egd:rectangle(Im, {X-5, Y-5}, {X+5,Y+5}, Green)
 end, Pts),

 egd:save(egd:render(Im, png), "/home/egil/test3.png"),

 % Text
 Filename = filename:join([code:priv_dir(percept), "fonts", "6x11_latin1.wingsfont"]),
 Font = egd_font:load(Filename),
 {W,H} = egd_font:size(Font),
 String = "egd says hello",
 Length = length(String),

 egd:text(Im, {round(100 - W*Length/2), 200 - H - 5}, Font, String, Black),

 egd:save(egd:render(Im, png), "/home/egil/test4.png"),

 egd:destroy(Im).

 First save.
Figure 2.1: test1.png

1.2 egd

10 | Ericsson AB, All Rights Reserved: Percept

 Second save.
Figure 2.2: test2.png

 Third save.
Figure 2.3: test3.png

1.2 egd

Ericsson AB, All Rights Reserved: Percept | 11

 Fourth save.
Figure 2.4: test4.png

1.2.3 ESI example
Using egd with inets ESI to generate images on the fly:

-module(img_esi).

-export([image/3]).

image(SessionID, _Env, _Input) ->
 mod_esi:deliver(SessionID, header()),
 Binary = my_image(),
 mod_esi:deliver(SessionID, binary_to_list(Binary)).

my_image() ->
 Im = egd:create(300,20),
 Black = egd:color({0,0,0}),
 Red = egd:color({255,0,0}),
 egd:filledRectangle(Im, {30,14}, {270,19}, Red),
 egd:rectangle(Im, {30,14}, {270,19}, Black),

 Filename = filename:join([code:priv_dir(percept), "fonts", "6x11_latin1.wingsfont"]),
 Font = egd_font:load(Filename),
 egd:text(Im, {30, 0}, Font, "egd with esi callback", Black),
 Bin = egd:render(Im, png),
 egd:destroy(Im),
 Bin.

header() ->
 "Content-Type: image/png\r\n\r\n".

Figure 2.5: Example of result.

For more information regarding ESI, please see inets application mod_esi.

1.2 egd

12 | Ericsson AB, All Rights Reserved: Percept

2 Reference Manual

Percept is an acronym for Percept - erlang concurrency profiling tool.

It is a tool to visualize application level concurrency and identify concurrency bottlenecks.

egd

Ericsson AB, All Rights Reserved: Percept | 13

egd
Erlang module

egd - erlang graphical drawer

DATA TYPES
color()
egd_image()
font()
point() = {integer(), integer()}
render_option() = {render_engine, opaque} | {render_engine, alpha}

Exports

color(Color::Value | Name) -> color()
Types:

Value = {byte(), byte(), byte()} | {byte(), byte(), byte(), byte()}

Name = black | silver | gray | white | maroon | red | purple | fuchia |
green | lime | olive | yellow | navy | blue | teal | aqua

Creates a color reference.

create(Width::integer(), Height::integer()) -> egd_image()
Creates an image area and returns its reference.

destroy(Image::egd_image()) -> ok
Destroys the image.

filledEllipse(Image::egd_image(), P1::point(), P2::point(), Color::color()) -
> ok
Creates a filled ellipse object.

filledRectangle(Image::egd_image(), P1::point(), P2::point(), Color::color())
-> ok
Creates a filled rectangle object.

line(Image::egd_image(), P1::point(), P2::point(), Color::color()) -> ok
Creates a line object from P1 to P2 in the image.

rectangle(Image::egd_image(), P1::point(), P2::point(), Color::color()) -> ok
Creates a rectangle object.

render(Image::egd_image()) -> binary()
Equivalent to render(Image, png, [{render_engine, opaque}]).

egd

14 | Ericsson AB, All Rights Reserved: Percept

render(Image::egd_image(), Type::png | raw_bitmap) -> binary()
Equivalent to render(Image, Type, [{render_engine, opaque}]).

render(Image::egd_image(), Type::png | raw_bitmap, Options::
[render_option()]) -> binary()
Renders a binary from the primitives specified by egd_image(). The binary can either be a raw bitmap with rgb tripplets
or a binary in png format.

save(Binary::binary(), Filename::string()) -> ok
Saves the binary to file.

text(Image::egd_image(), P::point(), Font::font(), Text::string(),
Color::color()) -> ok
Creates a text object.

percept

Ericsson AB, All Rights Reserved: Percept | 15

percept
Erlang module

Percept - Erlang Concurrency Profiling Tool

This module provides the user interface for the application.

DATA TYPES
percept_option() = procs | ports | exclusive

Exports

analyze(Filename::string()) -> ok | {error, Reason}
Analyze file.

profile(Filename::string()) -> {ok, Port} | {already_started, Port}
See also: percept_profile.

profile(Filename::string(), Options::[percept_option()]) -> {ok, Port} |
{already_started, Port}
See also: percept_profile.

profile(Filename::string(), MFA::mfa(), Options::[percept_option()]) -> ok |
{already_started, Port} | {error, not_started}
See also: percept_profile.

start_webserver() -> {started, Hostname, Port} | {error, Reason}
Types:

Hostname = string()

Port = integer()

Reason = term()

Starts webserver.

start_webserver(Port::integer()) -> {started, Hostname, AssignedPort} |
{error, Reason}
Types:

Hostname = string()

AssignedPort = integer()

Reason = term()

Starts webserver. If port number is 0, an available port number will be assigned by inets.

stop_profile() -> ok | {error, not_started}
See also: percept_profile.

percept

16 | Ericsson AB, All Rights Reserved: Percept

stop_webserver() -> ok | {error, not_started}
Stops webserver.

percept_profile

Ericsson AB, All Rights Reserved: Percept | 17

percept_profile
Erlang module

Percept Collector

This module provides the user interface for the percept data collection (profiling).

DATA TYPES
percept_option() = procs | ports | exclusive

Exports

start(Filename::string()) -> {ok, Port} | {already_started, Port}
Equivalent to start(Filename, [procs]).

start(Filename::string(), Options::[percept_option()]) -> {ok, Port} |
{already_started, Port}
Types:

Port = port()

Starts profiling with supplied options. All events are stored in the file given by Filename. An explicit call to stop/0
is needed to stop profiling.

start(Filename::string(), MFA::mfa(), Options::[percept_option()]) -> ok |
{already_started, Port} | {error, not_started}
Types:

Port = port()

Starts profiling at the entrypoint specified by the MFA. All events are collected, this means that processes outside
the scope of the entry-point are also profiled. No explicit call to stop/0 is needed, the profiling stops when the entry
function returns.

stop() -> ok | {error, not_started}
Stops profiling.

	Percept
	Percept User's Guide
	Percept
	Introduction
	Getting started
	Profiling
	Data viewing
	Overview selection
	Processes selection
	Compare selection
	Process information selection

	egd
	Introduction
	File example
	ESI example

	Reference Manual
	egd
	color/1
	create/2
	destroy/1
	filledEllipse/4
	filledRectangle/4
	line/4
	rectangle/4
	render/1
	render/2
	render/3
	save/2
	text/5

	percept
	analyze/1
	profile/1
	profile/2
	profile/3
	start_webserver/0
	start_webserver/1
	stop_profile/0
	stop_webserver/0

	percept_profile
	start/1
	start/2
	start/3
	stop/0

