| v

ERLANG

Runtime_Tools

Copyright © 1999-2013 Ericsson AB. All Rights Reserved.
Runtime_Tools 1.8.10

February 25, 2013

Copyright © 1999-2013 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

February 25, 2013

Ericsson AB. All Rights Reserved.: Runtime_Tools | 1

1.1 DTrace and Erlang/OTP

1 Runtime Tools User's Guide

Runtime Tools

1.1 DTrace and Erlang/OTP
1.1.1 History

The first implementation of DTrace probes for the Erlang virtual machine was presented at the 2008 Erlang
User Conference. That work, based on the Erlang/OTP R12 release, was discontinued due to what appears to be
miscommuni cation with the original developers.

Several users have created Erlang port drivers, linked-in drivers, or NIFs that allow Erlang code to try to activate a
probe, eg.f oo_nodul e: dtrace_probe("nmessage goes herel ™).

1.1.2 Goals

« Annotate as much of the Erlang VM asis practical.

* Theinitia goal isto tracefile1/O operations.

e Support al platformsthat implement DTrace: OS X, Solaris, and (I hope) FreeBSD and NetBSD.
e Totheextent that it's practical, support SystemTap on Linux via DTrace provider compatibility.

» Allow Erlang code to supply annotations.

1.1.3 Supported platforms

e OSX 10.6.x / Snow Leopard. It should also work for 10.7 / Lion, but | haven't personally tested it.

» Solaris 10. | have done limited testing on Solaris 11 and Openlndiana release 151a, and both appear to work.
* FreeBSD 9.0, though please see the "FreeBSD 9.0 Release Notes" section below!

» Linux via SystemTap compatibility. Please see $ERL_TOP/HOWTO/SYSTEMTAP.md for more details.

Just addthe- - wi t h- dynami c-t r ace=dt r ace option to your command when you run theconf i gur e script.
If you are using systemtap, the configure optionis- - wi t h- dynani c-t r ace=syst ent ap

1.1.4 Status

Asof R15B01, the dynamictrace codeisincludedinthe OTP sourcedistribution, although it's considered experimental.
The main development of the dtrace code still happens outside of Ericsson, but there is no need to fetch a patched
version of the OTP source to get the basic funtionality.

1.1.5 Implementation summary

So far, most effort has been focused on the ef i | e_dr v. ¢ code, which implements most file 1/0 on behalf of the
Erlang virtual machine. This driver also presents a big challenge: its use of an 1/O worker pool (enabled by using the
erl +A 8 flag, for example) makes it much more difficult to trace 1/O activity because each of the following may
be executed in a different Pthread:

e l/Oinitiation (Erlang code)

» 1/O proxy process handling, e.g. read/write when file is not opened in r aw mode, operations executed by the
code & file server processes. (Erlang code)

2 | Ericsson AB. All Rights Reserved.: Runtime_Tools

href
href

1.1 DTrace and Erlang/OTP

« efile_drv command setup (C code)
« efile_drv command execution (C code)
« efile_drv statusreturn (C code)

Example output from [ib/runtime_tool s/exanples/efile_drv.d while executing
file:renane("ol d-nanme", "new nanme"):

efile drv enter tag={3,84} user tag some-user-tag | RENAME (12) | args: old-name new-name ,\
0 0 (port #Port<0.59>)

async I/0 worker tag={3,83} | RENAME (12) | efile drv-int entry

async I/0 worker tag={3,83} | RENAME (12) | efile drv-int return

efile drv return tag={3,83} user tag | RENAME (12) | errno 2

... where the following key can help decipher the outpuit:

« {3, 83} isthe Erlang scheduler thread number (3) and operation counter number (83) assigned to this1/0O
operation. Together, these two humbers form a unique ID for the 1/O operation.

e 12 isthe command number for the rename operation. See the definition for FI LE_RENAME in the source
codefileefil e_drv. c ortheBEQ N section of theD script | i b/ runt i ne_t ool s/ exanpl es/
efile_drv.d.

* ol d- nanme and new nane are the two string arguments for the source and destination of ther enane(2)
system call. The two integer arguments are unused; the simple formatting code prints the arguments anyway, 0
and 0.

e Theworker pool code was called on behalf of Erlang port #Por t <0. 59>,

* Thesystem call failed with a POSIX errno value of 2: ENCENT, because the path ol d- nane does not exist.

e Theefile drv-int_entryandefile _drv_int_return probesareprovided in casetheuseris
interested in measuring only the latency of code executed by ef i | e_dr v asynchronous functions by I/0
worker pool threads and the OS system call that they encapsul ate.

So, where does the sone- user - t ag string come from?
At the moment, the user tag comes from code like the following:

dyntrace:put tag("some-user-tag"),
file:rename("old-name", "new-name"),

This method of tagging 1/O at the Erlang level is subject to change.

1.1.6 Example DTrace probe specification

Fired when a message is sent from one local process to another.

NOTE: The 'size' parameter is in machine-dependent words and
that the actual size of any binary terms in the message
are not included.

@param sender the PID (string form) of the sender

@param receiver the PID (string form) of the receiver

@param size the size of the message being delivered (words)

@param token label for the sender's sequential trace token

@param token previous count for the sender's sequential trace token
@param token current count for the sender's sequential trace token

Ericsson AB. All Rights Reserved.: Runtime_Tools | 3

1.1

DTrace and Erlang/OTP

*/

probe message send(char *sender, char *receiver, uint32 t size,

/**

*
*
*
*
*
*
*
*
*
*
*
*
*

*/

int token label, int token previous, int token current);

Fired when a message is sent from a local process to a remote process.

NOTE: The 'size' parameter is in machine-dependent words and

@param
@param
@param
@param
@param
@param
@param

that the actual size of any binary terms in the message
are not included.

sender the PID (string form) of the sender

node name the Erlang node name (string form) of the receiver
receiver the PID/name (string form) of the receiver

size the size of the message being delivered (words)

token label for the sender's sequential trace token

token previous count for the sender's sequential trace token
token current count for the sender's sequential trace token

probe message send remote(char *sender, char *node name, char *receiver,

Fired
will n

NOTE:

@param
@param
@param
@param
@param
@param

uint32 t size,
int token label, int token previous, int token current);

when a message is queued to a local process. This probe
ot fire if the sender's pid == receiver's pid.

The 'size' parameter is in machine-dependent words and
that the actual size of any binary terms in the message
are not included.

receiver the PID (string form) of the receiver

size the size of the message being delivered (words)
queue_len length of the queue of the receiving process

token label for the sender's sequential trace token

token previous count for the sender's sequential trace token
token current count for the sender's sequential trace token

probe message queued(char *receiver, uint32 t size, uint32 t queue len,

/**

*
*
*
*
*
*
*
*
*
*
*
*
*

Fired
from i

NOTE:

@param
@param
@param
@param
@param

@param
*

int token label, int token previous, int token current);

when a message is 'receive'd by a local process and removed
ts mailbox.

The 'size' parameter is in machine-dependent words and
that the actual size of any binary terms in the message
are not included.

receiver the PID (string form) of the receiver

size the size of the message being delivered (words)
queue_len length of the queue of the receiving process

token label for the sender's sequential trace token

token previous count for the sender's sequential trace token
token current count for the sender's sequential trace token

probe message receive(char *receiver, uint32 t size, uint32 t queue len,

/*

*/

int token label, int token previous, int token current);

/* Async driver pool */

/**
* Show the post-add length of the async driver thread pool member's queue.

4 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.1

DTrace and Erlang/OTP

NOTE: The port name is not available: additional lock(s) must
be acquired in order to get the port name safely in an SMP
environment. The same is true for the aio pool get probe.

* ¥ ¥ *

*

* @param port the Port (string form)
* @param new queue length

*/

probe aio pool add(char *, int);

/**

* Show the post-get length of the async driver thread pool member's queue.

*

* @param port the Port (string form)
* @param new queue length

*/

probe aio pool get(char *, int);

/* Probes for efile drv.c */

/**
Entry into the efile drv.c file I/0 driver

For a list of command numbers used by this driver, see the section
"Guide to probe arguments" in ../../../README.md. That section
also contains explanation of the various integer and string
arguments that may be present when any particular probe fires.

TODO: Adding the port string, args[10], is a pain. Making that
port string available to all the other efile drv.c probes
will be more pain. Is the pain worth it? If yes, then
add them everywhere else and grit our teeth. If no, then

¥ X X X X X X X X X X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

rip it out.

@param thread-id number of the scheduler Pthread argo
@param tag number: {thread-id, tag} uniquely names a driver operation

@param user-tag string arg2
@param command number arg3
@param string argument 1 arg4
@param string argument 2 arg5
@param integer argument 1 argb
@param integer argument 2 arg7
@param integer argument 3 arg8
@param integer argument 4 arg9
@param port the port ID of the busy port args[10]

*/
probe efile drv__entry(int, int, char *, int, char *, char *,
int64 t, int64 t, int64 t, int64 t, char *);

/**
Entry into the driver's internal work function. Computation here
is performed by a async worker pool Pthread.

*
*
*
* @param thread-id number
* @param tag number

* @param command number

*

probe efile drv__int entry(int, int, int);

/**
Return from the driver's internal work function.

*
*
* @param thread-id number
* @param tag number

* @param command number

Ericsson AB. All Rights Reserved.: Runtime_Tools | 5

1.1 DTrace and Erlang/OTP

*/

probe efile drv__int return(int, int, int);

/**

* X X X ¥ X ¥ ¥

*/

Return from the efile drv.c file I/0 driver

@param thread-id number

@param tag number

@param user-tag string

@param command number

@param Success? 1 is success, 0 is failure
@param If failure, the errno of the error.

probe efile drv_ return(int, int, char *, int, int, int);

1.1.7 Guide to efile_drv.c probe arguments

/* Driver op code: used by efile drv-entry

/*
/*
/*

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

used by efile drv-int entry

arg3
arg3

used by efile drv-int return arg3

used by efile drv-return

FILE OPEN 1

probe argb = C driver dt il = flags;
probe arg4 = C driver dt sl = path;
FILE READ 2

probe argb = C driver dt il = fd;
probe arg7 = C driver dt i2 = flags;
probe arg8 = C driver dt i3 = size;
FILE LSEEK 3

probe argb = C driver dt il = fd;
probe arg7 = C driver dt i2 = offset;
probe arg8 = C driver dt i3 = origin;
FILE WRITE 4

probe argb = C driver dt il = fd;
probe arg7 = C driver dt i2 = flags;
probe arg8 = C driver dt i3 = size;
FILE FSTAT 5

probe argb = C driver dt il = fd;
FILE PWD 6

none

FILE READDIR 7

probe arg4 = C driver dt sl = path;

FILE CHDIR 8
probe arg4 = C driver dt sl = path;

FILE FSYNC 9
probe argb = C driver dt il = fd;

FILE MKDIR 10
probe arg4 = C driver dt sl = path;

FILE DELETE 11
probe arg4 = C driver dt sl = path;

arg3

(probe

(probe

(probe

(probe

(probe

(probe

(probe

(probe

(probe

(probe

(probe

6 | Ericsson AB. All Rights Reserved.: Runtime_Tools

*/
*/
*/
*/

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg0
argl
arg2
arg3
arg4
arg5

1.1

DTrace and Erlang/OTP

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

FILE RENAME
probe arg4 =
probe arg5 =
FILE RMDIR
probe arg4

FILE_TRUNCATE

C
C

C

12
driver dt sl
driver dt s2

13
driver dt sl

14

probe argb6 = C driver dt il

probe arg7 =

FILE READ FIL

C

E

driver dt i2

15

probe arg4 = C driver dt sl

FILE WRITE INFO
probe arg6 = C
probe arg7 = C
probe arg8 = C
FILE LSTAT
probe arg4 = C
FILE READLINK
probe arg4 = C
FILE LINK
probe arg4 = C
probe arg5 = C
FILE SYMLINK
probe arg4 = C
probe arg5 = C
FILE CLOSE
probe arg6 = C
probe arg7 = C
FILE PWRITEV
probe arg6 = C
probe arg7 = C
probe arg8 = C
FILE PREADV
probe arg6 = C
probe arg7 = C
probe arg8 = C
FILE SETOPT
probe arg6 = C
probe arg7 = C
FILE IPREAD
probe arg6 = C
probe arg7 = C
probe arg8 = C
probe arg9 = C
FILE ALTNAME
probe arg4 = C
FILE READ LINE
probe arg6 = C
probe arg7 = C
probe arg8 = C
probe arg9 = C

16
driver dt il
driver dt i2
driver dt i3

19
driver dt sl

20
driver dt sl

21
driver dt sl
driver dt s2

22
driver dt sl
driver dt s2

23
driver dt il
driver dt i2

24
driver dt il
driver dt i2
driver dt i3

25
driver dt il
driver dt i2
driver dt i3

26
driver dt il
driver dt i2

27
driver dt il
driver dt i2
driver dt i3
driver dt i4

28
driver dt sl

29
driver dt il
driver dt i2
driver dt i3
driver dt i4

(probe
old name;
new_name;

(probe
path;

(probe
fd;
flags;

(probe
path;

(probe
mode;
uid;
gid;

(probe
path;

(probe
path;

(probe
existing path;
new_path;

(probe
existing path;
new path;

(probe
fd;
flags;

(probe
fd;
flags;
size;

(probe
fd;
flags;
size;

(probe
opt name;

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

arg3)

opt specific value;

(probe
fd;
flags;
offsets[0];
size;

(probe
path;

(probe
fd;
flags;
read offset;
read ahead;

arg3)

arg3)

arg3)

Ericsson AB. All Rights Reserved.: Runtime_Tools | 7

1.2 SystemTap and Erlang/OTP

#define FILE FDATASYNC 30 (probe arg3)
probe arg6 = C driver dt il = fd;

#define FILE FADVISE 31 (probe arg3)
probe arg6 = C driver dt il = fd;
probe arg7 = C driver dt i2 = offset;
probe arg8 = C driver dt i3 = length;
probe arg9 = C driver dt i4 = advise type;

1.2 SystemTap and Erlang/OTP

1.2.1 Introduction

SystemTapisDTracefor Linux. Infact Erlang's SystemTap support isbuild using SystemTap's DTrace compatibility's
layer. For an introduction to Erlang DTrace support read $ERL_TOP/HOWTO/DTRACE.md.

1.2.2 Requisites
e Linux Kernel with UTRACE support
check for UTRACE support in your current kernel:

grep CONFIG UTRACE /boot/config- uname -r’
CONFIG UTRACE=y

Fedora 16 isknown to contain UTRACE, for most other Linux distributionsacustom build kernel will berequired.
Check Fedora's SystemTap documentation for additional required packages (e.g. Kernel Debug Symbols)

* SystemTap>1.6

A thetime of writing this, thelatest released version of SystemTapisversion 1.6. Erlang's DTrace support requires
a MACRO that was introduced after that release. So either get a newer release or build SystemTap from git
yourself (see: http://sourceware.org/systemtap/getinvol ved.html)

1.2.3 Building Erlang
Configure and build Erlang with SystemTap support:

./configure --with-dynamic-trace=systemtap + whatever args you need
make

1.2.4 Testing

SystemTap, unlike DTrace, needs to know what binary it is tracing and has to be able to read that binary before it
starts tracing. Y our probe script therefor has to reference the correct beam emulator and stap needs to be able to find
that binary. The examples are written for "beam", but other versions such as "beam.smp" or "beam.debug.smp" might
exist (depending on your configuration). Make sure you either specify the full the path of the binary in the probe or
your "beam" binary isin the search path.

All available probes can be listed like this:

8 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.2 SystemTap and Erlang/OTP

stap -L 'process("beam").mark("*")'

or:

PATH=/path/to/beam:$PATH stap -L 'process("beam").mark("*")"'

Probes in the dtrace.so NIF library like this:

PATH=/path/to/dtrace/priv/1lib:$PATH stap -L 'process("dtrace.so").mark("*")"

1.2.5 Running SystemTap scripts

Adjust the process("beam") reference to your beam version and attach the script to arunning "beam" instance:

stap /path/to/probe/script/portl.systemtap -x <pid of beam>

Ericsson AB. All Rights Reserved.: Runtime_Tools | 9

1.2 SystemTap and Erlang/OTP

2 Reference Manual

Runtime_Tools provides low footprint tracing/debugging tools suitable for inclusion in a production system.

10 | Ericsson AB. All Rights Reserved.: Runtime_Tools

runtime_tools

runtime_tools
Application

This chapter describes the Runtime_Tools application in OTP, which provides low footprint tracing/debugging tools
suitable for inclusion in a production system.

Configuration

There are currently no configuration parameters available for this application.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: Runtime_Tools | 11

dbg

dbg

Erlang module

This module implements a text based interface to thetrace/ 3 and thet race_pattern/ 2 BIFs. It makes it
possibleto trace functions, processes and messages on text based terminals. It can be used instead of, or as complement
to, the pman module.

For some examples of how to use dbg from the Erlang shell, see the simple example section.

The utilities are also suitable to usein system testing on large systems, where other tools have too much impact on the
system performance. Some primitive support for sequential tracing is aso included, see the advanced topics section.

Exports

fun2ms(LiteralFun) -> MatchSpec
Types:
Literal Fun = fun() literal
Mat chSpec = term)

Pseudo function that by means of a par se_t r ansf or mtrangdates the literalf un() typed as parameter in the
function call to a match specification as described in the mat ch_spec manua of ERTS users guide. (with literal |
mean that the f un() needs to textually be written as the parameter of the function, it cannot be held in a variable
which in turn is passed to the function).

The parse transform is implemented in the module ns_t ransf or m and the source must include the file
ns_transform hrl in STDLIB for this pseudo function to work. Failing to include the hrl file in the source
will result in a runtime error, not a compile time ditto. The include file is easiest included by adding the line -
include lib("stdlib/include/ns_transformhrl"). tothesourcefile.

Thefun() isvery restricted, it can take only a single parameter (the parameter list to match), a sole variable or a
list. It needsto use thei s_ XXX guard tests and one cannot use language constructs that have no representation in
amatch_spec (likei f, case, r ecei ve etc). The return value from the fun will be the return value of the resulting
match_spec.

Example:

1> dbg:fun2ms(fun([M,N]) when N > 3 -> return trace() end).
[{r'$1','$2"'1,[{'>","$2",3}], [{return_trace}]}]

Variables from the environment can be imported, so that this works:

2> X=3.

3

3> dbg:fun2ms (fun([M,N]) when N > X -> return_trace() end).
[{l*$1","$2'],[{">","'$2",{const,3}}], [{return_trace}]}]

Theimported variableswill be replaced by match_spec const expressions, which is consistent with the static scoping
for Erlang f un() s. Local or global function calls can not be in the guard or body of the fun however. Calls to builtin
match_spec functions of courseis allowed:

12 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

4> dbg:fun2ms(fun([M,N]) when N > X, is atomm(M) -> return trace() end).
Error: fun containing local erlang function calls ('is atomm' called in guard)\
cannot be translated into match spec

{error,transform error}

5> dbg:fun2ms(fun([M,N]) when N > X, is atom(M) -> return trace() end).
[{['$1",'$2'],[{'>","'$2"',{const,3}},{is atom, '$1'}], [{return trace}]}]

Asyou can see by the example, the function can be called from the shell too. The f un() needsto be literally in the
call when used from the shell as well. Other means than the parse_transform are used in the shell case, but more or
less the same restrictions apply (the exception being records, as they are not handled by the shell).

Warning:

If the parse_transform is not applied to a module which calls this pseudo function, the call will fail in runtime
(withabadar g). Themoduledbg actually exports afunction with this name, but it should never really becalled
except for when using the function in the shell. If thepar se_t r ansf or mis properly applied by including the
ns_transform hrl header file, compiled code will never call the function, but the function call is replaced
by aliteral match_spec.

More information is provided by thens_t r ansf or mmanual pagein STDLIB.

h() -> ok
Givesalist of items for brief online help.

h(Item) -> ok
Types:
Item = atom()
Gives abrief help text for functionsin the dbg module. The available items can be listed with dbg: h/ 0

p(Item) -> {ok, MatchDesc} | {error, term()}
Equivalenttop(ltem [n]).

p(Item, Flags) -> {ok, MatchDesc} | {error, term()}

Types:
Mat chDesc = [Mat chNum
Mat chNum = {mat ched, node(), integer()} | {matched, node(), 0, RPCError}
RPCError = term)

Traces | t emin accordance to the value specified by Fl ags. The variation of | t emislisted below:

« Ifthel t emisapi d(), the corresponding processistraced. The process may be aremote process (on another
Erlang node). The node must be in the list of traced nodes (seen/ 1 and t r acer/ 0/ 2/ 3).

e Ifthel t emistheatomal | , al processesin the system aswell as all processes created hereafter are to be
traced. This also affects al nodes added withthen/ 1 ort r acer/ 0/ 2/ 3 function.

« If thel t emisthe atom new, no currently existing processes are affected, but every process created after the
call isThis also affects al nodes added withthen/ 1 ort r acer/ 0/ 2/ 3 function.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 13

dbg

If thel t emistheatom exi sti ng, all existing processes are traced, but new processes will not be
affected. This aso affects all nodes added withthen/ 1 ort racer/ 0/ 2/ 3 function.

If thel t emisan atom other than al | , newor exi st i ng, the process with the corresponding registered name
is traced.The process may be a remote process (on another Erlang node). The node must be added with then/ 1
ortracer/ 0/ 2/ 3 function.

If thel t emisan integer, the process<0. | t em 0> istraced.
If thel t emisatuple{ X, Y, Z},theprocess<X.Y.Z> istraced.
If thel t emisastring "<X.Y.Z>" asreturned frompi d_t o_I i st/ 1, the process<X. Y. Z> istraced.

FI ags can beasingle atom, or alist of flags. The available flags are:

s (send)

r

Traces the messages the process sends.
(receive)
Traces the messages the process receives.

m (messages)

Traces the messages the process receives and sends.

c (call)

Traces global function calls for the process according to the trace patterns set in the system (see tp/2).

p (procs)

Traces process related events to the process.

sos (set on spawn)

Letsall processes created by the traced processinherit the trace flags of the traced process.

sol (set on I|ink)

L ets another process, P2, inherit the trace flags of the traced process whenever the traced process linksto P2.

sofs (set on first spawn)

Thisisthe same as sos, but only for the first process spawned by the traced process.

sof | (set on first link)

Thisisthesameassol , but only for thefirst call tol i nk/ 1 by the traced process.

al |

Sets all flags.
cl ear

Clearsal flags.

Thelist can aso include any of theflagsallowediner | ang: trace/ 3

The function returns either an error tuple or atuple{ ok, Li st}.TheLi st consistsof specifications of how many
processes that matched (in the case of apure pid() exactly 1). The specification of matched processesis{ mat ched,
Node, N}. If the remote processor call,r pc, to aremote node fails, the r pc error message is delivered as afourth
argument and the number of matched processes are 0. Note that the result { ok, List} may contain alist wherer pc
callsto one, several or even al nodes failed.

c(Mod, Fun, Args)
Equivalenttoc(Mod, Fun, Args, all).

14 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

c(Mod, Fun, Args, Flags)

Evaluatesthe expression appl y(Mod, Fun, Args) withthetraceflagsin FI ags set. Thisisaconvenient way
to trace processes from the Erlang shell.

i() -> ok
Displaysinformation about all traced processes.

tp(Module,MatchSpec)
Same astp({Module,' ',' "}, MatchSpec)

tp(Module, Function,MatchSpec)
Same as tp({ Module, Function, ' '}, MatchSpec)

tp(Module, Function, Arity, MatchSpec)
Same as tp({ Module, Function, Arity}, MatchSpec)

tp({Module, Function, Arity}, MatchSpec) -> {ok, MatchDesc} | {error, term()}
Types.

Modul e = atom() |

Function = atom() |

Arity = integer() |'_

Mat chSpec = integer() | Built-inAlias | [] | match_spec()

Built-inAlias = x| ¢ | cx

Mat chDesc = [Mat chl nf 0]

Mat chlnfo = {saved, integer()} | MatchNum

Mat chNum = {rmat ched, node(), integer()} | {rmatched, node(), 0, RPCError}
This function enables call trace for one or more functions. All exported functions matching the { Modul e,

Function, Arity} argument will be concerned, but the mat ch_spec() may further narrow down the set of
function calls generating trace messages.

For a description of the mat ch_spec() syntax, please turn to the User's guide part of the online documentation
for the runtime system (erts). The chapter Match Specification in Erlang explains the general match specification
"language”.

TheModule, Function and/or Arity partsof thetuple may be specified astheatom' ' whichisa"wild-card" matching
all modules/functiong/arities. Note, if the Moduleisspecifiedas' ' , the Function and Arity parts have to be specified
as' 'too. The same holds for the Functions relation to the Arity.

All nodes added withn/ 1 or t racer/ 0/ 2/ 3 will be affected by this call, and if Moduleisnot' ' the module
will beloaded on all nodes.

The function returns either an error tuple or atuple{ ok, Li st}.TheLi st consistsof specifications of how many
functions that matched, in the same way as the processes are presented in the return value of p/ 2.

Theremay beatuple{ saved, N} inthereturnvalue, if the MatchSpec is other than []. The integer N may then be
used in subsequent calls to this function and will stand as an "alias" for the given expression. There are also a couple
of built-in aliases for common expressions, seel t p/ 0 below for details.

If an error is returned, it can be due to errorsin compilation of the match specification. Such errors are presented as a
list of tuples{error, string()} wherethestringisatextual explanation of the compilation error. An example:

Ericsson AB. All Rights Reserved.: Runtime_Tools | 15

dbg

(x@y)4> dbg:tp({dbg,1tp,0}, [{[],[], [{message, two, arguments}, {noexist}1}]).
{error,
[{error,"Special form 'message' called with wrong number of
arguments in {message,two,arguments}."},
{error,"Function noexist/1 does not exist."}]}

tpl(Module,MatchSpec)
Sameastpl({Module, ' ',' '}, MatchSpec)

tpl(Module, Function,MatchSpec)
Same as tpl({Module, Function, ' '}, MatchSpec)

tpl(Module, Function, Arity, MatchSpec)
Same as tpl ({ Module, Function, Arity}, MatchSpec)

tpl({Module, Function, Arity}, MatchSpec) -> {ok, MatchDesc} | {error,
term()}

This function works ast p/ 2, but enables tracing for local calls (and local functions) as well as for global calls (and
functions).

ctp()

ctp(Module)
Same as ctp({Module, ' ',' })

ctp(Module, Function)
Same as ctp({ Module, Function, ' '})

ctp(Module, Function, Arity)
Same as ctp({ Module, Function, Arity})

ctp({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
Types.
Modul e = atom() |
Function = atom() | '_
Arity = integer() | '_
Mat chDesc = [Mat chNum
Mat chNum = {rmat ched, node(), integer()} | {matched, node(), 0, RPCError}

This function disables call tracing on the specified functions. The semantics of the parameter is the same as for the
corresponding function specificationint p/ 2 or t pl / 2. Both local and global call trace is disabled.

The return value reflects how many functions that matched, and is constructed as described in t p/ 2. No tuple
{saved, N} ishowever ever returned (for obvious reasons).

16 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

ctpl()

ctpl(Module)
Same asctpl({Module, ' ',* ")

ctpl(Module, Function)
Same as ctpl({ Module, Function, ' '})

ctpl(Module, Function, Arity)
Same as ctpl({ Module, Function, Arity})

ctpl({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
Thisfunction worksasct p/ 1, but only disablestracing set up witht pl / 2 (not witht p/ 2).

ctpg()
Sameasctpg{'_,' "}

ctpg(Module)
Same as ctpg({ Module, ' *,' '})

ctpg(Module, Function)
Same as ctpg({ Module, Function, *_'})

ctpg(Module, Function, Arity)
Same as ctpg({ Module, Function, Arity})

ctpg({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
Thisfunction worksasct p/ 1, but only disables tracing set up witht p/ 2 (not witht pl / 2).

1tp() -> ok

Use this function to recall all match specifications previously used in the session (i. e. previously saved during calls
tot p/ 2, and built-in match specifications. Thisisvery useful, as acomplicated match_spec can be quite awkward to
write. Note that the match specifications are lost if st op/ 0 iscalled.

Match specifications used can be saved in afile (if a read-write file system is present) for use in later debugging
sessions, seewt p/ 1 andrtp/ 1

Therearethree built-intrace patterns. except i on_trace,cal |l er _traceandcal | er _exception_trace
(or x, ¢ and cx respectively). Exception trace sets atrace which will show function names, parameters, return values
and exceptions thrown from functions. Caller traces display function names, parameters and information about which
function called it. An example using a built-in aias:

(x@y)4> dbg:tp(lists,sort,cx).
{ok, [{matched, nonode@nohost, 2}, {saved, cx}]1}

Ericsson AB. All Rights Reserved.: Runtime_Tools | 17

dbg

(x@y)4> lists:sort([2,1]).

(<0.32.0>) call lists:sort([2,1]) ({erl eval,do apply,5})
(<0.32.0>) returned from lists:sort/1 -> [1,2]

[1,2]

dtp() -> ok

Use this function to "forget" al match specifications saved during callsto t p/ 2. Thisis useful when one wants to
restore other match specifications from afilewithr t p/ 1. Use dt p/ 1 to delete specific saved match specifications.

dtp(N) -> ok
Types:
N = i nteger()
Use this function to "forget" a specific match specification saved during callstot p/ 2.

wtp(Name) -> ok | {error, IOError}
Types:
Name = string()
|CError = term)
This function will save all match specifications saved during the session (during callsto t p/ 2) and built-in match

specifications in a text file with the name designated by Nane. The format of the file istextual, why it can be edited
with an ordinary text editor, and then restored withrt p/ 1.

Each match spec in the file ends with afull stop (.) and new (syntactically correct) match specifications can be added
to the file manually.

The function returns ok or an error tuple where the second element contains the 1/0 error that made the writing
impossible.

rtp(Name) -> ok | {error, Error}
Types:
Name = string()
Error = ternm()
This function reads match specifications from afile (possibly) generated by thewt p/ 1 function. It checks the syntax
of al match specificationsand verifiesthat they are correct. The error handling principleis”al or nothing", i. e. if some

of the match specifications are wrong, none of the specifications are added to the list of saved match specifications
for the running system.

The match specifications in the file are merged with the current match specifications, so that no duplicates are
generated. Usel t p/ O to see what numbers were assigned to the specifications from the file.

The function will return an error, either due to 1/0 problems (like a non existing or non readable file) or due to file
format problems. The errorsfrom abad format file arein amore or lesstextual format, which will give ahint to what's
causing the prablem.

n(Nodename) -> {ok, Nodename} | {error, Reason}
Types:

Nodenanme = atom()

Reason = term()

18 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

Thedbg server keepsalist of nodes where tracing should be performed. Whenever at p/ 2 call or ap/ 2 call ismade,
itisexecuted for al nodesin thislist including thelocal node (except for p/ 2 with aspecific pi d() asfirst argument,
in which case the command is executed only on the node where the designated process resides).

This function adds a remote node (Nodenan®) to the list of nodes where tracing is performed. It starts a tracer
process on the remote node, which will send all trace messages to the tracer process on the local node (via the Erlang
distribution). If no tracer processis running on the local node, the error reasonno_| ocal _tracer isreturned. The
tracer process on the local node must be started with thet r acer / 0/ 2 function.

If Nodenan® isthelocal node, the error reason cant _add_I| ocal _node isreturned.

If atrace port (seet r ace_por t / 2) isrunning on thelocal node, remote nodes can not be traced with atracer process.
Theerrorreasoncant _trace_renote_pid_to_l ocal _port isreturned. A trace port can however be started
on the remote node with thet r acer / 3 function.

The function will also return an error if the node Nodenane is not reachable.

cn(Nodename) -> ok
Types:
Nodenanme = atom()

Clearsanode from thelist of traced nodes. Subsequent callstot p/ 2 and p/ 2 will not consider that node, but tracing
aready activated on the node will continue to be in effect.

Returns ok, cannot fail.

In() -> ok
Shows the list of traced nodes on the console.

tracer() -> {ok, pid()} | {error, already started}

This function starts a server on the local node that will be the recipient of all trace messages. All subsequent callsto
p/ 2 will result in messages sent to the newly started trace server.

A trace server started in this way will ssimply display the trace messages in a formatted way in the Erlang shell (i. e.
useio:format). Seet r acer/ 2 for a description of how the trace message handler can be customized.

To start asimilar tracer on aremote node, usen/ 1.

tracer(Type, Data) -> {ok, pid()} | {error, Error}
Types:
Type = port | process
Data = Port Generator | Handl er Spec
Handl er Spec = {Handl er Fun, I niti al Dat a}
Handl er Fun = fun() (two arguments)
InitialData = term)
Port Generator = fun() (no argunents)
Error = tern()
Thisfunction startsatracer server with additional parametersonthelocal node. Thefirst parameter, the Ty pe, indicates

if trace messages should be handled by areceiving process (pr ocess) or by atracer port (por t). For a description
about tracer portsseet r ace_port/ 2.

If Type is aprocess, a message handler function can be specified (Handl er Spec). The handler function, which
should be af un taking two arguments, will be called for each trace message, with the first argument containing the

Ericsson AB. All Rights Reserved.: Runtime_Tools | 19

dbg

message as it is and the second argument containing the return value from the last invocation of the fun. The initial
value of the second parameter is specified inthe | ni ti al Dat a part of the Hand| er Spec. The Handl er Fun
may choose any appropriate action to take when invoked, and can save a state for the next invocation by returning it.

If Type isaport, then the second parameter should be a fun which takes no arguments and returns a newly opened
trace port when called. Such afunis preferably generated by callingt race_port/ 2.

If an error is returned, it can either be due to a tracer server already running ({ err or, al ready_start ed}) or
dueto the Handl er Fun throwing an exception.

To start asimilar tracer on aremote node, uset r acer/ 3.

tracer(Nodename, Type, Data) -> {ok, Nodename} | {error, Reason}
Types:
Nodename = atom()

This function is equivalent to t r acer / 2, but acts on the given node. A tracer is started on the node (Nodenan®)
and the node is added to the list of traced nodes.

Note:

This function is not equivalent to n/ 1. While n/ 1 starts a process tracer which redirects al trace information
to aprocess tracer on the local node (i.e. the trace control node), t r acer / 3 starts atracer of any type whichis
independent of the tracer on the trace control node.

For details, seet r acer/ 2.

trace port(Type, Parameters) -> fun()

Types:
Type = ip | file
Paraneters = Filename | WapFil esSpec | | PPort Spec

Filename = string() | [string()] | atom()

W apFi | esSpec = {Fil enane, wap, Suffix} | {Filenane, wap, Suffix,
W apSi ze} | {Filenane, wap, Suffix, WapSize, WapCnt}

Suffix = string()
WapSize = integer() >= 0 | {time, WapTine}
WapTine = integer() >=1
WapCnt = integer() >=1
| pPor t Spec Port Nunmber | {PortNunber, QueSi ze}
Por t Nurber i nteger ()
QueSi ze = integer()
This function creates a trace port generating fun. The fun takes no arguments and returns a newly opened trace

port. The return value from this function is suitable as a second parameter to tracer/2, i.e. dbg: t r acer (port,
dbg: trace_port(ip, 4711)).

A trace port is an Erlang port to a dynamically linked in driver that handles trace messages directly, without the
overhead of sending them as messages in the Erlang virtual machine.

Twotracedriversare currently implemented, thef i | e andthei p tracedrivers. Thefiledriver sendsall trace messages
into one or severa binary files, from where they later can be fetched and processed with thetrace_client/ 2

20 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

function. The ip driver opens a TCP/IP port where it listens for connections. When a client (preferably started by
calingtrace_client/ 2 on another Erlang node) connects, all trace messages are sent over the IP network for
further processing by the remote client.

Using atrace port significantly lowers the overhead imposed by using tracing.

Thefile trace driver expects afilename or awrap files specification as parameter. A file iswritten with a high degree
of buffering, why all trace messages are not guaranteed to be saved in the file in case of a system crash. That is the
price to pay for low tracing overhead.

A wrap files specification is used to limit the disk space consumed by thetrace. Thetraceiswritten to alimited number
of files each with alimited size. The actual filenamesare Fi | ename ++ SeqCnt ++ Suf fi x, where SeqCnt
countsasadecimal string from 0 to W apCnt and then around again from 0. When atrace term written to the current
filemakesit longer than W apSi ze, that fileisclosed, if the number of filesin thiswrap traceisasmany asW apCnt
the oldest file is deleted then a new file is opened to become the current. Thus, when a wrap trace has been stopped,
there are at most W apCnt trace files saved with asize of at least W apSi ze (but not much bigger), except for the
last file that might even be empty. The default valuesare W apSi ze = 128* 1024 and W apCnt = 8.

The SeqCnt values in the filenames are all in the range O through W apCnt with a gap in the circular sequence.
The gap is needed to find the end of the trace.

If theW apSi ze isspecifiedas{ti me, WapTi ne}, the current fileis closed when it has been open more than
W apTi ne milliseconds, regardless of it being empty or not.

Theip trace driver has a queue of QueSi ze messages waiting to be delivered. If the driver cannot deliver messages
asfast asthey are produced by the runtime system, a special message is sent, which indicates how many messages that
are dropped. That message will arrive at the handler function specifiedint race_cl i ent/ 3 asthetuple{ dr op,
N} where Nisthe number of consecutive messages dropped. In case of heavy tracing, drop's are likely to occur, and
they surely occur if no client is reading the trace messages.

flush trace port()
Equivalenttof | ush_trace_port (node()).

flush trace port(Nodename) -> ok | {error, Reason}
Equivalenttotrace_port _control (Nodenane, fl ush).

trace port control(Operation)
Equivalenttotrace_port _control (node(), Operati on).

trace port control(Nodename,Operation) -> ok | {ok, Result} | {error, Reason}
Types.
Nodename = atom()

Thisfunction is used to do a control operation on the active trace port driver on the given node (Nodenane). Which
operations are allowed as well as their return values depend on which trace driver is used.

Returns either ok or { ok, Resul t} if the operation was successful, or { error, Reason} if the current tracer
isaprocessor if it isaport not supporting the operation.

The allowed values for Oper at i on are:
flush

This function is used to flush the internal buffers held by atrace port driver. Currently only the file trace driver
supports this operation. Returns ok .

Ericsson AB. All Rights Reserved.: Runtime_Tools | 21

dbg

get |isten_port

Returns{ ok, | pPort} wherel pPor t isthe P port number used by the driver listen socket. Only theip trace
driver supports this operation.

trace client(Type, Parameters) -> pid()

Types.
Type =ip | file | followfile
Paraneters = Filename | WapFilesSpec | | PCientPort Spec

Filename = string() | [string()] | atom()

W apFi | esSpec = see trace_port/2

Suffix = string()

| plientPort Spec = PortNunber | {Hostnane, PortNunber}
Port Nunber = integer()

Host name = string()

This function starts atrace client that reads the output created by atrace port driver and handlesit in mostly the same
way as atracer process created by thet r acer / 0 function.

If Type isfile, the client reads al trace messages stored in the file named Fi | enane or specified by
W apFi | esSpec (must be the same as used when creating the trace, see trace port/2) and let's the default handler
function format the messages on the console. This is one way to interpret the data stored in a file by the file trace
port driver.

If Typeisfoll ow fil e, theclient behavesasinthefi | e case, but keepstrying to read (and process) more data
from thefile until stopped by st op_trace_cl i ent/ 1. W apFi | esSpec isnot alowed as second argument for
this Type.

If Typeisi p, theclient connectsto the TCP/IP port Por t Nurber onthehost Host namne, from whereit readstrace
messages until the TCP/IP connection is closed. If no Host narme is specified, the local host is assumed.

Asan example, one can let trace messages be sent over the network to another Erlang node (preferably not distributed),
where the formatting occurs:

Onthenode st ack there's an Erlang node ant @t ack, in the shell, type the following:

ant@stack> dbg:tracer(port, dbg:trace port(ip,4711)).
<0.17.0>

ant@stack> dbg:p(self(), send).

{ok, 1}

All trace messages are now sent to the trace port driver, which in turn listensfor connections on the TCP/IP port 4711.
If we want to see the messages on another node, preferably on another host, we do like this:

-> dbg:trace client(ip, {"stack", 4711}).
<0.42.0>

If we now send a message from the shell on the node ant @t ack, where al sends from the shell are traced:

ant@stack> self() ! hello.
hello

22 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

The following will appear at the console on the node that started the trace client:

(<0.23.0>) <0.23.0> ! hello
(<0.23.0>) <0.22.0> ! {shell rep,<0.23.0>,{value,hello,[],[]1}}

Thelast lineis generated due to internal message passing in the Erlang shell. The processid's will vary.

trace client(Type, Parameters, HandlerSpec) -> pid()

Types:
Type = ip | file | followfile
Paraneters = Filename | WapFilesSpec | | PCientPort Spec

Filename = string() | [string()] | atom()

W apFi | esSpec = see trace_port/2

Suffix = string()

| plientPortSpec = PortNunber | {Hostnane, PortNunber}

Port Nunmber = integer()

Host name = string()

Handl er Spec = {Handl er Fun, I niti al Data}

Handl er Fun = fun() (two arguments)

Initial Data = term)
Thisfunction works exactly ast r ace_cl i ent / 2, but allows you to write your own handler function. The handler
function works mostly asthe one described int r acer / 2, but will also have to be prepared to handle trace messages

of theform { dr op, N}, where Nis the number of dropped messages. This pseudo trace message will only occur
if theip trace driver is used.

For tracetypef i | e, the pseudo trace messageend_of _t r ace will appear at the end of the trace. The return value
from the handler function isin this case ignored.

stop_trace client(Pid) -> ok
Types:
Pid = pid()

This function shuts down a previously started trace client. The Pi d argument is the process id returned from the
trace_client/2ortrace_client/3cal.

get tracer()
Equivalenttoget tracer (node()).

get tracer(Nodename) -> {ok, Tracer}
Types.

Nodename = atom()

Tracer = port() | pid()

Returns the process or port to which al trace messages are sent.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 23

dbg

stop() -> stopped

Stopsthe dbg server and clearsall trace flags for all processes and all trace patternsfor all functions. Also shutsdown
all trace clients and closes all trace ports.

Note that no trace patterns are affected by this function.

stop clear() -> stopped
Same as stop/0, but also clears all trace patterns on local and global functions calls.

Simple examples - tracing from the shell

The simplest way of tracing from the Erlang shell is to use dbg: ¢/ 3 or dbg: c/ 4, eg. tracing the function
dbg: get _tracer/O0:

(tiger@durin)84> dbg:c(dbg,get tracer,[]).

(<0.154.0>) <0.152.0> ! {<0.154.0>,{get tracer,tiger@durin}}
(<0.154.0>) out {dbg,req,1}

(<0.154.0>) << {dbg,{ok,<0.153.0>}}

(<0.154.0>) in {dbg,req, 1}

(<0.154.0>) << timeout

{ok,<0.153.0>}

(tiger@durin)85>

Another way of tracing from the shell isto explicitly start atracer and then set the trace flags of your choice on the
processes you want to trace, e.g. trace messages and process events:

(tiger@durin)66> Pid = spawn(fun() -> receive {From,Msg} -> From ! Msg end end).
<0.126.0>

(tiger@durin)67> dbg:tracer().
{ok,<0.128.0>}

(tiger@durin)68> dbg:p(Pid, [m,procs]).
{ok, [{matched, tiger@durin,1}]1}
(tiger@durin)69> Pid ! {self(),hello}.
(<0.126.0>) << {<0.116.0>,hello}
{<0.116.0>,hello}

(<0.126.0>) << timeout

(<0.126.0>) <0.116.0> ! hello
(<0.126.0>) exit normal
(tiger@durin)70> flush().

Shell got hello

ok

(tiger@durin)71>

If yousetthecal | traceflag, you also haveto set atrace pattern for the functions you want to trace:

(tiger@durin)77> dbg:tracer().

{ok,<0.142.0>}

(tiger@durin)78> dbg:p(all,call).

{ok, [{matched, tiger@durin,3}1}

(tiger@durin)79> dbg:tp(dbg,get tracer,0,[]).

{ok, [{matched, tiger@durin,1}1}

(tiger@durin)860> dbg:get tracer().

(<0.116.0>) call dbg:get tracer()

{ok,<0.143.0>}

(tiger@durin)81> dbg:tp(dbg,get tracer,0,[{' ',[]1,[{return trace}1}1).

24 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

{ok, [{matched, tiger@durin, 1}, {saved,1}1}

(tiger@durin)82> dbg:get tracer().

(<0.116.0>) call dbg:get tracer()

(<0.116.0>) returned from dbg:get tracer/0 -> {ok,<0.143.0>}
{ok,<0.143.0>}

(tiger@durin)83>

Advanced topics - combining with seq_trace

The dbg module is primarily targeted towards tracing through the er | ang: t race/ 3 function. It is sometimes
desired to trace messages in amore delicate way, which can be done with the help of theseq_t r ace module.

seq_t r ace implements sequential tracing (known in the AXE10 world, and sometimes called "forlopp tracing").
dbg can interpret messages generated from seq_t r ace and the same tracer function for both types of tracing can
be used. Theseq_t r ace messages can even be sent to atrace port for further analysis.

As a match specification can turn on sequential tracing, the combination of dbg and seq_t r ace can be quite
powerful. This brief example shows a session where sequential tracing is used:

1> dbg:tracer().

{0k, <0.30.0>}

2> {ok, Tracer} = dbg:get tracer().

{ok,<0.31.0>}

3> seq trace:set system tracer(Tracer).

false

4> dbg:tp(dbg, get tracer, 0, [{[],[],[{set seq token, send, true}l}]).
{ok, [{matched, nonode@nohost, 1}, {saved,1}]}

5> dbg:p(all,call).

{ok, [{matched, nonode@nohost,22}1}

6> dbg:get tracer(), seq trace:set token([]).

(<0.25.0>) call dbg:get tracer()

SeqTrace [0]: (<0.25.0>) <0.30.0> ! {<0.25.0>,get tracer} [Serial: {2,4}]
SeqTrace [0]: (<0.30.0>) <0.25.0> ! {dbg,{ok,<0.31.0>}} [Serial: {4,5}]
{1,0,5,<0.30.0>,4}

This session setsthe system_tracer to the same process as the ordinary tracer process (i. e. <0.31.0>) and setsthetrace
pattern for thefunctiondbg: get _tracer toonethat hasthe action of setting a sequential token. When the function
iscaled by atraced process (all processes are traced in this case), the process gets "contaminated" by the token and
seq_t r ace messages are sent both for the server request and the response. Theseq_trace: set _token([])
after the call clearstheseq_t r ace token, why no messages are sent when the answer propagates via the shell to the
console port. The output would otherwise have been more noisy.

Note of caution

When tracing function calls on a group leader process (an 10 process), there is risk of causing a deadlock. This will
happen if agroup leader process generates atrace message and the tracer process, by calling the trace handler function,
sends an 10 request to the same group leader. The problem can only occur if the trace handler printsto tty using an
i o functionsuchasf or mat/ 2. Notethat whendbg: p(al |, cal |) iscalled, 1O processes are also traced. Here's
an example:

%% Using a default line editing shell

1> dbg:tracer(process, {fun(Msg,) -> io:format("~p~n", [Msgl), @ end, 0}).
{ok,<0.37.0>}

2> dbg:p(all, [calll).

{ok, [{matched, nonode@nohost,25}1}

3> dbg:tp(mymod, [{'_ ', [1,[1}]).

Ericsson AB. All Rights Reserved.: Runtime_Tools | 25

dbg

{ok, [{matched, nonode@nohost, 0}, {saved,1}]}
4> mymod: % TAB pressed here
%% -- Deadlock --

Here's another example:

%% Using a shell without line editing (oldshell)
1> dbg:tracer(process).

{o0k,<0.31.0>}

2> dbg:p(all, [calll).

{ok, [{matched, nonode@nohost,25}1}

3> dbg:tp(lists, [{'_ ', [1,[1}]).

{ok, [{matched, nonode@nohost,0},{saved,1}]}

% -- Deadlock --

The reason we get a deadlock in the first example is because when TAB is pressed to expand the function name,
the group leader (which handles character input) calls mynod: nodul e_i nf o() . This generates a trace message
which, in turn, causes the tracer process to send an 10 request to the group leader (by calingi o: f or mat / 2). We
end up in adeadlock.

In the second example we use the default trace handler function. This handler prints to tty by sending 10 requests to
theuser process. When Erlang is started in oldshell mode, the shell process will have user asits group leader and
so will the tracer process in this example. Since user calsfunctionsinl i st s we end up in adeadlock as soon as
thefirst 10 request is sent.

Here are afew suggestions for how to avoid deadlock:

» Don't trace the group leader of the tracer process. If tracing has been switched on for all processes,
cal dbg: p(Tracer GLPi d, cl ear) to stop tracing the group leader (Tr acer GLPi d).
process_i nfo(TracerPi d, group_| eader) tellsyouwhich processthisis (Tr acer Pi d isreturned
fromdbg: get _tracer/0).
» Don'ttracetheuser processif using the default trace handler function.
* Inyour own trace handler function, call er | ang: di spl ay/ 1 instead of ani o function or, if
user isnot used as group leader, print to user instead of the default group leader. Example:
i o:format (user, Str, Args).

26 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dyntrace

dyntrace

Erlang module

This module implements interfaces to dynamic tracing, should such be compiled into the virtual machine. For a
standard and/or commercial build, no dynamic tracing is available, in which case none of the functionsin this module
isusable or give any effect.

Should dynamic tracing be enabled in the current build, either by configuring with . / confi gure --with-
dynanmi c-trace=dtraceorwith./configure --w th-dynam c-trace=syst ent ap, themodulecan
be used for two things:

e Trigger theuser-probeuser trace_i4s4 intheNIFlibrary dyntrace. so by calingdynt race: p/
{1,2,3,4,5,6,7,8}.

e Set auser specified tag that will be present in the trace messages of both theef i | e_dr v and the user-probe
mentioned above.

Both building with dynamic trace probes and using them isexperimental and unsupported by Erlang/OTP. Itisincluded
as an option for the devel oper to trace and debug performance issuesin their systems.

Theoriginal implementation ismostly done by Scott Lystiger Fritchie asan Open Source Contribution and it should be
viewed as such even though the source for dynamic tracing as well as this module isincluded in the main distribution.
However, the ability to use dynamic tracing of the virtual machine is a very valuable contribution which OTP has
every intention to maintain as atool for the developer.

How to writed programs or syst ent ap scripts can be learned from books and from alot of pages on the Internet.
This manual page does not include any documentation about using the dynamic trace tools of respective platform.
The exanpl es directory of ther unt i ne_t ool s application however contains comprehensive examples of both
d andsyst ent ap programsthat will help you get started. Another source of information isthe dtrace and systemtap
chaptersin the Runtime Tools Users Guide.

Exports

available() -> boolean()

This function uses the NIF library to determine if dynamic tracing is available. Usually calling erlang: system info/1
is abetter indicator of the availability of dynamic tracing.

The function will throw an exception if the dynt r ace NIF library could not be loaded by the on_load function of
this module.

p() -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message only containing the user tag and zeroes/empty stringsin all other fields.

p(integer() | string()) -> true | false | error | badarg

Calling this function will trigger the "user” trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer or string parameter in the first integer/string field.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 27

dyntrace

p(integer() | string(), integer() | string()) -> true | false | error |
badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a
trace message containing the user tag and the integer() or string() parameters as the first fields of respective type.
integer() parameters should be put before any string() parameters. l.e. p(1, "Hel | 0") isok, asisp(1, 1) and
p("Hello","Again"),butnotp("Hello",1).

p(integer() | string(), integer() | string(), integer() | string()) -> true |
false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending atrace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

p(integer() | string(), integer() | string(), integer() | string(), integer()
| string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

p(integer(), integer() | string(), integer() | string(), integer() |
string(), string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

There can be no more than four parameters of any type (integer() or string()), so the first parameter has to be an
integer() and the last a string().

p(integer(), integer(), integer() | string(), integer() | string(), string(),
string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

There can be no more than four parameters of any type (integer() or string()), so the first two parameters has to be
integer()'s and the last two string()'s.

p(integer(), integer(), integer(), integer() | string(), string(), string(),
string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

There can be no more than four parameters of any type (integer() or string()), so the first three parameters has to be
integer()'s and the last three string()'s.

28 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dyntrace

p(integer(), integer(), integer(), integer(), string(), string(), string(),
string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing all the integer()'s and string()'s provided, as well as any user tag set in the current process.

get tag() -> binary() | undefined

This function returns the user tag set in the current process. If no tag is set or dynamic tracing is not available, it
returnsundef i ned

get tag() -> binary() | undefined

This function returns the user tag set in the current process or, if no user tag is present, the last user tag sent to the
process together with a message (in the same way as sequential trace tokens are spread to other processes together
with messages. For an explanation of how user tags can be spread together with messages, see spread_tag/1. If no tag
isfound or dynamic tracing is not available, it returnsundef i ned

put tag(Item) -> binary() | undefined
Types:
Item = iodata()

This function sets the user tag of the current process. The user tag is a binary(), but can be specified as any iodata(),
which is automatically converted to a binary by this function.

The user tag is provided to the user probestriggered by callstopdynt race: p/ {1, 2, 3, 4, 5, 6, 7, 8} aswell as
probesin the efile_driver. In the future, user tags might be added to more probes.

The old user tag (if any) isreturned, or undef i ned if no user tag was present or dynamic tracing is not enabled.

spread tag(boolean()) -> TagData
Types:
TagDat a = opaque data that can be used as paraneter to restore_tag/1

This function controls if user tags are to be spread to other processes with the next message. Spreading of user tags
work like spreading of sequential trace tokens, so that a received user tag will be active in the process until the next
message arrives (if that message does not also contain the user tag.

This functionality is used when a client process communicates with a file i/o-server to spread the user tag to the I/
O-server and then down to the efile_drv driver. By using spread_t ag/ 1 and r est or e_t ag/ 1, one can enable
or disable spreading of user tags to other processes and then restore the previous state of the user tag. The TagData
returned from this call contains al previous information so the state (including any previously spread user tags) will
be completely restored by alater call tor est ore_t ag/ 1.

The file module aready spread's tags, so there is noo need to manually call these function to get user tags spread to
the efile driver through that module.

The most use of this function would be if one for example uses the io module to communicate with an 1/O-server for
aregular file, like in the following example:

f() ->
{ok, F} = file:open("test.tst", [write]),
Saved = dyntrace:spread tag(true),
io:format(F, "Hello world!",[]),
dyntrace:restore tag(Saved),

Ericsson AB. All Rights Reserved.: Runtime_Tools | 29

dyntrace

file:close(F).
In this example, any user tag set in the calling process will be spread to the 1/0O-server when theio:format call is done.

restore tag(TagData) -> true
Types:
TagDat a = opaque data returned by spread_tag/1l
Restores the previous state of user tags and their spreading as it was before a call to spread tag/1. Note that the

restoring is not limited to the same process, one can utilize this to turn off spreding in one process and restoreitin a
newly created, the one that actually is going to send messages:

f() ->
TagData=dyntrace:spread tag(false),
spawn(fun() ->

dyntrace:restore tag(TagData),
do _something()
end),
do_something else(),
dyntrace:restore tag(TagData).

Correctly handling user tags and their spreading might take some effort, as Erlang programs tend to send and receive
messages so that sometimes the user tag gets lost due to various things, like double receives or communication with a
port (ports do not handle user tags, in the same way as they do not handle regular sequential trace tokens).

30 | Ericsson AB. All Rights Reserved.: Runtime_Tools

erts_alloc_config

erts_alloc_config

Erlang module

Note:

erts_alloc_config is currently an experimental tool and might be subject to backward incompatible
changes.

erts alloc(3) is an Erlang Run-Time System internal memory allocator library. ert s_al | oc_confi g isintended
to be used to aid creation of an erts_alloc(3) configuration that is suitable for alimited number of runtime scenarios.
The configuration that ert s_al | oc_confi g produce is intended as a suggestion, and may need to be adjusted
manually.

The configuration is created based on information about a number of runtime scenarios. It is obviously impossible to
foresee every runtime scenario that can occur. The important scenarios are those that cause maximum or minimum
load on specific memory allocators. Load in this context is total size of memory blocks all ocated.

The current implementation of erts_al | oc_confi g concentrate on configuration of multi-block carriers.
Information gathered when aruntime scenario is saved is mainly current and maximum use of multi-block carriers. If
aparameter that change the use of multi-block carriersis changed, apreviously generated configuration isinvalid and
erts_all oc_confi g needsto be run again. It is mainly the single block carrier threshold that effects the use of
multi-block carriers, but other single-block carrier parameters might as well. If another value of asingle block carrier
parameter than the default is desired, use the desired value when runningert s_al | oc_confi g.

A configuration is created in the following way:

e Pass the + Mea config command-line flag to the Erlang runtime system you are going to use for creation of the
alocator configuration. It will disable features that prevent ert s_al | oc_confi g from doing its job. Note,
you should not use this flag when using the created configuration. Also note that it isimportant that you use the
same amount of schedulers when creating the configuration as you are going the use on the system using the
configuration.

* Runyour applications with different scenarios (the more the better) and save information about each scenario by
calling save_scenario/0. It may be hard to know when the applications are at an (for erts_al | oc_confi g)
important runtime scenario. A good approach may therefore beto call save _scenario/O repeatedly, e.g. once every
tenth second. Note that it is important that your applications reach the runtime scenarios that are important for
erts_al | oc_confi g when you are saving scenarios; otherwise, the configuration may perform bad.

* When you have covered all scenarios, call make _config/1 in order to create a configuration. The configuration is
written to afile that you have chosen. This configuration file can later be read by an Erlang runtime-system at
startup. Pass the command line argument -args file FileName to the erl(1) command.

e The configuration produced by erts_al | oc_confi g may need to be manually adjusted as already stated.
Do not modify thefile produced by ert s_al | oc_conf i g; instead, put your modificationsin another file and
load thisfile after the file produced by ert s_al | oc_confi g. That is, put the -args file FileName argument
that reads your modification file later on the command-line than the -args file FileName argument that reads
the configuration file produced by ert s_al | oc_confi g. If amemory alocation parameter appear multiple
times, the last version of will be used, i.e., you can override parameters in the configuration file produced by
erts_all oc_confi g.Doingit thisway simplifiesthingswhenyouwanttorerunerts_al | oc_confi g.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 31

erts_alloc_config

Note:

The configuration created by erts_al | oc_confi g may perform bad, ever horrible, for runtime scenarios
that are very different from the ones saved when creating the configuration. You are, therefore, advised to
rerun erts_al l oc_confi g if the applications run when the configuration was made are changed, or if
the load on the applications have changed since the configuration was made. You are also advised to rerun
erts_al |l oc_confi g if the Erlang runtime system used is changed.

erts_al |l oc_confi g saves information about runtime scenarios and performs computations in a server that is
automatically started. The server register itself under thename' __erts_alloc_config_ '.

Exports

save _scenario() -> ok | {error, Error}
Types:
Error = term)

save_scenari o/ 0 savesinformation about the current runtime scenario. Thisinformation will later be used when
make_config/0, or make config/lis called.

Thefirst time save_scenari o/ O is called a server will be started. This server will save runtime scenarios. All
saved scenarios can be removed by calling stop/O.

make config() -> ok | {error, Error}
Types:

Error = term)
Thisisthe same as calling make_config(group_leader()).

make config(FileNameOrIODev) -> ok | {error, Error}
Types:
Fil eNameOr 1 ODev = string() | io_device()
Error = tern()
make_confi g/ 1 usestheinformation previously saved by save scenario/O in order to produceanerts_al | oc

configuration. At least one scenario have had to be saved. All scenarios previously saved will be used when cresting
the configuration.

If Fi | eNameOr |1 ODev isastring(), make_confi g/ 1 will use Fi | eNameOr | CDev as afilename. A file
named Fi | eNameOr | ODev is created and the configuration will be written to that file. If Fi | eNameOr | ODev is
anio_device() (see the documentation of the moduleio), the configuration will be written to theio device.

stop() -> ok | {error, Error}
Types:

Error = tern()
Stops the server that saves runtime scenarios.

See Also
erts alloc(3), erl(1), io(3)

32 | Ericsson AB. All Rights Reserved.: Runtime_Tools

	Runtime_Tools
	Runtime Tools User's Guide
	DTrace and Erlang/OTP
	History
	Goals
	Supported platforms
	Status
	Implementation summary
	Example DTrace probe specification
	Guide to efile_drv.c probe arguments

	SystemTap and Erlang/OTP
	Introduction
	Requisites
	Building Erlang
	Testing
	Running SystemTap scripts

	Reference Manual
	runtime_tools
	dbg
	fun2ms/1
	h/0
	h/1
	p/1
	p/2
	c/3
	c/4
	i/0
	tp/2
	tp/3
	tp/4
	tp/2
	tpl/2
	tpl/3
	tpl/4
	tpl/2
	ctp/0
	ctp/1
	ctp/2
	ctp/3
	ctp/1
	ctpl/0
	ctpl/1
	ctpl/2
	ctpl/3
	ctpl/1
	ctpg/0
	ctpg/1
	ctpg/2
	ctpg/3
	ctpg/1
	ltp/0
	dtp/0
	dtp/1
	wtp/1
	rtp/1
	n/1
	cn/1
	ln/0
	tracer/0
	tracer/2
	tracer/3
	trace_port/2
	flush_trace_port/0
	flush_trace_port/1
	trace_port_control/1
	trace_port_control/2
	trace_client/2
	trace_client/3
	stop_trace_client/1
	get_tracer/0
	get_tracer/1
	stop/0
	stop_clear/0

	dyntrace
	available/0
	p/0
	p/1
	p/2
	p/3
	p/4
	p/5
	p/6
	p/7
	p/8
	get_tag/0
	get_tag/0
	put_tag/1
	spread_tag/1
	restore_tag/1

	erts_alloc_config
	save_scenario/0
	make_config/0
	make_config/1
	stop/0

