| v

ERLANG

Test Server

Copyright © 2002-2013 Ericsson AB. All Rights Reserved.
Test Server 3.6.1

February 25, 2013

Copyright © 2002-2013 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

February 25, 2013

Ericsson AB. All Rights Reserved.: Test Server | 1

1.1 Test Server Basics

1 Test Server User's Guide

Test Server isaportable test server for automated application testing. The server can run test suites on local or remote
targets and log progress and results to HTML pages. The main purpose of Test Server is to act as engine inside
customized test tools. A callback interface for such framework applicationsis provided.

1.1 Test Server Basics

1.1.1 Introduction

Test Server is a portable test tool for automated testing of Erlang programs and OTP applications. It provides an
interface for running test programs directly with Test Server as well as an interface for integrating Test Server with
a framework application. The latter makes it possible to use Test Server as the engine of a higher level test tool
application.

Itisstrongly recommended that Test Server be used from inside aframework application, rather than interfaced directly
for running test programs. Test Server can be pretty difficult to use since it's a very general and quite extensive and
complex application. Furthermore, thet est _server _ctr| functions are not meant to be used from within the
actual test programs. The framework should handle communication with Test Server and deal with the more complex
aspects of this interaction automatically so that a higher level interface may be provided for the tester. For test tool
usage to be productive, a simpler, more intuitive and (if required) more specific interface is required than what Test
Server can provide.

OTP deliversageneral purpose framework for Test Server, called Common Test. This application isatool well suited
for automated black box testing of target systems of any kind (not necessarily implemented in Erlang). Common Test
is aso a very useful tool for white box testing of Erlang programs and OTP applications. Unless a more specific
functionality and/or user interface is required (in which case you might need to implement your own framework),
Common Test should do the job for you. Please read the Common Test User's Guide and reference manual for more
information.

Under normal circumstances, knowledge about the Test Server application is not required for using the Common Test
framework. However, if you want to use Test Server without a framework, or learn how to integrate it with your own
framework, please read on...

1.1.2 Getting started

Testing when using Test Server is done by running test suites. A test suite is a number of test cases, where each test
case tests one or more things. The test case is the smallest unit that the test server deals with. One or more test cases
are grouped together into one ordinary Erlang module, which is called a test suite. Several test suite modules can be
grouped together in special test specification files representing whole application and/or system test "jobs".

The test suite Erlang module must follow a certain interface, which is specified by Test Server. See the section on
writing test suites for details about this.

Each test case is considered a success if it returns to the caller, no matter what the returned value is. An exception to
thisis the return value { ski p, Reason} which indicates that the test case is skipped. A failure is specified as a
crash, no matter what the crash reason is.

Asatest suite runs, al information (including output to stdout) is recorded in several different log files. A minimum
of information is displayed to the user console. Thisonly include start and stop information, plus anote for each failed
test case.

2 | Ericsson AB. All Rights Reserved.: Test Server

1.1 Test Server Basics

Theresult from each test caseisrecorded in an HTML log file which is created for each test run. Every test case gets
one row in atable presenting total time, whether the case was successful or not, if it was skipped, and possibly also a
comment. The HTML file has links to each test case's logfile, which may be viewed from e.g. Netscape or any other
HTML capable browser.

The Test Server consists of three parts:

» The part that executes the test suites on target and provides support for the test suite author is called
t est _server. Thisisdescribed in the chapter about writing test casesin this user's guide, and in the
reference manual for thet est _ser ver module.

e Thecontrolling part, which provides the low level operator interface, starts and stops the target node (if remote
target) and slave nodes and writeslog files, iscalledt est _server _ctrl . TheTest Server Controller should
not be used directly when running tests. Instead a framework built on top of it should be used. More information
about how to write your own framework can be found in this user's guide and in the reference manual for the
test _server_ctrl module

1.1.3 Definition of terms

conf(iguration) case
Thisisagroup of test cases which need some specific configuration. A conf case contains
an initiation function which sets up a specific configuration, one or more test cases using this
configuration, and a cleanup function which restores the configuration. A conf case is specified in a
test specification either like this:{ conf , I ni t Func, Li st O Cases, C eanupFunc}, or this:
{conf, Properties,InitFunc, Li st Cases, C eanupFunc}

datadir
Data directory for atest suite. This directory contains any files used by the test suite, e.g. additional erlang
modules, ¢ code or datafiles. If the data directory contains code which must be compiled before the test suiteis
run, it should also contain a makefile source called Makefile.src defining how to compile.

documentation clause
One of the function clauses in atest case. This clause shall return alist of strings describing what the test case
tests.

execution clause
One of the function clauses in atest case. This clause implements the actual test case, i.e. calls the functions
that shall be tested and checks results. The clause shall crashif it fails.

major log file
Thisisthe test suiteslog file.

Makefile.src
Thisfileisused by the test server framework to generate a makefile for a datadir. It contains some special
characters which are replaced according to the platform currently tested.

minor log file
Thisis a separate log file for each test case.

privdir
Private directory for atest suite. This directory should be used when the test suite needs to write to files.

skip case
A test case which shall be skipped.

specification clause
One of the function clausesin atest case. This clause shall return an empty list, atest specification or
{ski p, Reason}. If an empty list isreturned, it means that the test case shall be executed, and so it must also
have an execution clause. Note that the specification clause is always executed on the controller node, i.e. not
on the target node.

Ericsson AB. All Rights Reserved.: Test Server | 3

1.2 Test Structure and Test Specifications

test case
A singletest included in atest suite. Typically it tests one function in amodule or application. A test caseis
implemented as afunction in atest suite module. The function can have three clauses, the documentation-,
specification- and execution clause.

test specification
A specification of which test suites and test casesto run. There can be test specifications on three different
levelsin atest. Thetop level is atest specification file which roughly specifies what to test for awhole
application. Then there is atest specification for each test suite returned fromtheal | (sui t €) functionin the
suite. And there can also be atest specification returned from the specification clause of atest case.

test specification file
Thisisatext file containing the test specification for an application. The file has the extension ".spec” or
".spec.Platform”, where Platform is e.g. "vxworks'.

test suite
An erlang module containing a collection of test cases for a specific application or module.

topcase
Thefirst "command" in atest specification file. This command contains the test specification, like this:
{topcase, Test Speci fication}

1.2 Test Structure and Test Specifications

1.2.1 Test structure

A test consists of a set of test cases. Each test case is implemented as an erlang function. An erlang module
implementing one or more test casesis called atest suite.

1.2.2 Test specifications

A test specification is a specification of which test suites and test cases to run and which to skip. A test specification
can also group several test cases into conf cases with init and cleanup functions (see section about configuration cases
below). In atest there can be test specifications on three different levels:

The top level is a test specification file which roughly specifies what to test for a whole application. The test
specification in such afile is encapsulated in a topcase command.

Then there is a test specification for each test suite, specifying which test cases to run within the suite. The test
specification for atest suite isreturned from theal | (sui t €) function in the test suite module.

And finally there can be a test specification per test case, specifying sub test casesto run. The test specification for a
test case is returned from the specification clause of the test case.

When atest starts, the total test specification is built in atree fashion, starting from the top level test specification.

The following are the valid elements of a test specification. The specification can be one of these elements or a list
with any combination of the elements:

{Mod, Case}
This specifies the test case Mod:Case/1
{dir, Dir}

This specifiesall modules* _SUI TE in the directory Di r

{dir, Dir, Pattern}
This specifiesall modules Pat t er n* inthe directory Di r

{conf, Init, TestSpec, Fin}
Thisisaconfiguration case. In atest specification file, | ni t and Fi h must be { Mod, Func} . Insidea
module they can also be just Func. See the section named Configuration Cases below for more information
about this.

4 | Ericsson AB. All Rights Reserved.: Test Server

1.2 Test Structure and Test Specifications

{conf, Properties, Init, TestSpec, Fin}
Thisisaconfiguration case as explained above, but which also takes alist of execution properties for its group
of test cases and nested sub-groups.

{make, Init, TestSpec, Fin}
Thisisaspecial version of aconf case which isonly used by the test server framework t s. 1 ni t and Fi n are
make and unmake functions for adata directory. Test Spec isthe test specification for the test suite owning
the data directory in question. If the make function fails, al testsin the test suite are skipped. The difference
between this "make case" and anormal conf case is that for the make case, | ni t and Fi n are given with
arguments ({ Mod, Func, Ar gs}), and that they are executed on the controller node (i.e. not on target).

Case
This can only be used inside amodule, i.e. not atest specification file. It specifies the test case
Current Mbdul e: Case.

1.2.3 Test Specification Files

A test specification file is a text file containing the top level test specification (a topcase command), and possibly
one or more additional commands. A "command" in atest specification file means a key-value tuple ended by a dot-
newline sequence.

The following commands are valid:

{topcase, Test Spec}
This command is mandatory in all test specification files. Test Spec isthetop level test specification of atest.
{skip, {Md, Coment}}
This specifiesthat al casesin the module Mod shall be skipped. Corment isastring.
{skip, {Md, Case, Coment}}
This specifies that the case Mod: Case shall be skipped.
{skip, {Md, Caselist, Coment}}
This specifiesthat all cases Mbd: Case, where Case isin Caseli st , shall be skipped.
{nodes, Nodes}
Nodes isalist of nodenames available to the test suite. It will be added to the Conf i g argument to all test
cases. Nodes isalist of atoms.
{require_nodenanes, Nunt
Specifies how many nodenames the test suite will need. Theese will be automatically generated and inserted
into the Conf i g argument to all test cases. Numis an integer.
{hosts, Hosts}
Thisisalist of available hosts on which to start slave nodes. It is used when the { r enpt e, true} option
isgiventothet est _server: start_node/ 3 function. Also, if { r equi r e_nodenanes, Nun} is
contained in atest specification file, the generated nodenames will be spread over al hosts given in thisHost s
list. The hostnames are atoms or strings.
{di skl ess, true}
Adds{di skl ess, true} totheConfi g argument to al test cases. Thisiskept for backwards
compatibility and should not be used. Use a configuration case instead.
{i pv6_hosts, Hosts}
Adds{i pv6_hosts, Host s} totheConfi g argument to all test cases.

All test specification files shall have the extension ".spec”. If special test specification files are needed for Windows or
VxWorks platforms, additional files with the extension ".spec.win™" and ".spec.vxworks' shall be used. Thisis useful
e.g. if sometest cases shall be skipped on these platforms.

Some examples for test specification files can be found in the Examples section of this user's guide.

Ericsson AB. All Rights Reserved.: Test Server | 5

1.2 Test Structure and Test Specifications

1.2.4 Configuration cases

If a group of test cases need the same initialization, a so called configuration or conf case can be used. A conf case
consists of an initialization function, the group of test cases needing this initialization and a cleanup or finalization
function.

If the init function in a conf case fails or returns { ski p, Conmrent }, the rest of the test cases in the conf case
(including the cleanup function) are skipped. If the init function succeeds, the cleanup function will always be called,
even if some of the test casesin between failed.

Both the init function and the cleanup function in a conf case get the Conf i g parameter as only argument. This
parameter can be modified or returned asis. Whatever is returned by the init function is given as Conf i g parameter
to therest of the test cases in the conf case, including the cleanup function.

If the Conf i g parameter is changed by the init function, it must be restored by the cleanup function. Whatever is
returned by the cleanup function will be given to the next test case called.

The optional Pr operti es list can be used to specify execution properties for the test cases and possibly nested sub-
groups of the configuration case. The available properties are:

Properties = [parallel | sequence | Shuffle | {RepeatType,N}]

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

RepeatType = repeat | repeat until all ok | repeat until all fail |
repeat until any ok | repeat until any fail

N = integer() | forever

If the par al | el property isspecified, Test Server will execute all test casesin the group in parallel. If sequence
is specified, the cases will be executed in a sequence, meaning if one case fails, all following cases will be skipped.
If shuf f | e is specified, the cases in the group will be executed in random order. Ther epeat property orders Test
Server to repeat execution of the casesin the group a given number of times, or until any, or all, casesfail or succeed.

Properties may be combined so that eg. if shuffl e, repeat _until _any fail and sequence are al
specified, the test cases in the group will be executed repeatedly and in random order until a test case fails, when
execution isimmediately stopped and the rest of the cases skipped.

The properties for a conf case is aways printed on the top of the HTML log for the group's init function. Also, the
total execution time for a conf case can be found at the bottom of the log for the group's end function.

Configuration casesmay be nested so that setsof grouped cases can be configured with the sameinit- and end functions.

1.2.5 The parallel property and nested configuration cases

If aconf case hasa parallel property, itstest cases will be spawned simultaneously and get executed in parallel. A test
caseisnot alowed to execute in parallel with the end function however, which means that the time it takes to execute
a set of parald casesis equal to the execution time of the slowest test case in the group. A negative side effect of
running test cases in paralle isthat the HTML summary pages are not updated with links to the individual test case
logs until the end function for the conf case has finished.

A conf case nested under a parallel conf case will start executing in parallel with previous (parallel) test cases (no
matter what properties the nested conf case has). Since, however, test cases are never executed in parallel with the
init- or the end function of the same conf case, it's only after a nested group of cases has finished that any remaining
parallel casesin the previous conf case get spawned.

6 | Ericsson AB. All Rights Reserved.: Test Server

1.2 Test Structure and Test Specifications

1.2.6 Repeated execution of test cases

A conf case may be repeated a certain number of times (specified by an integer) or indefinitely (specified
by forever). The repetition may also be stopped prematurely if any or al cases fail or succeed, i.e.
if the property repeat _until _any fail, repeat_until _any_ ok, repeat _until _all _fail, or
repeat _until _all _ok isused. If the basic r epeat property is used, status of test cases isirrelevant for the
repeat operation.

Itis possibleto return the status of aconf case (ok or failed), to affect the execution of the conf case onthelevel above.
Thisisaccomplished by, in the end function, looking up thevalue of t c_gr oup_properti es intheConfi g list
and checking the result of the finished test cases. If statusf ai | ed should be returned from the conf case as aresuilt,
the end function should return the value { r et ur n_group_resul t, f ai | ed} . The status of a nested conf case
is taken into account by Test Server when deciding if execution should be repeated or not (unless the basic r epeat
property is used).

Thetc_group_properties vaueisalist of status tuples, each with the key ok, ski pped and f ai | ed. The
value of a status tuple is alist containing names of test cases that have been executed with the corresponding status
asresult.

Here's an example of how to return the status from a conf case:

conf _end function(Config) ->
Status = ?config(tc _group result, Config),
case proplists:get value(failed, Status) of

[1 -> % no failed cases
{return group result,ok};
_Failed -> % one or more failed
{return _group result, failed}

end.

It is aso possible in the end function to check the status of a nested conf case (maybe to determine what status the
current conf case should return). Thisisassimpleasillustrated in the example above, only the name of the end function
of the nested conf caseis stored in atuple{ gr oup_r esul t, EndFunc}, which can be searched for in the status
lists. Example;

conf end function X(Config) ->
Status = ?config(tc_group result, Config),
Failed = proplists:get value(failed, Status),
case lists:member({group result,conf end function Y}, Failed) of
true ->
{return group result,failed};
false ->
{return group result, ok}
end;

Note:

When a conf case is repeated, the init- and end functions are also always called with each repetition.

Ericsson AB. All Rights Reserved.: Test Server | 7

1.3 Writing Test Suites

1.2.7 Shuffled test case order

The order that test cases in a conf case are executed, is under normal circumstances the same as the order defined
in the test specification. With the shuf f | e property set, however, Test Server will instead execute the test cases in
random order.

The user may provide a seed value (a tuple of three integers) with the shuffle property: { shuf f | e, Seed}. This
way, the same shuffling order can be created every time the conf case is executed. If no seed value is given, Test
Server creates a "random” seed for the shuffling operation (using the return value of er | ang: now()). The seed
value is aways printed to the log file of the init function so that it can be used to recreate the same execution order
in subsequent test runs.

Note:
If execution of aconf case with shuffled test casesis repeated, the seed will not be reset in between turns.

If anested conf caseis specified in a conf case with ashuf f | e property, the execution order of the nested casesin
relation to the test cases (and other conf cases) is also random. The order of the test cases in the nested conf caseis
however not random (unless, of course, thisone also hasashuf f | e property).

1.2.8 Skipping test cases

Itispossibleto skip certain test cases, for exampleif you know beforehand that a specific test case fails. This might be
functionality which isn't yet implemented, a bug that is known but not yet fixed or some functionality which doesn't
work or isn't applicable on a specific platform.

There are several different ways to state that a test case should be skipped:

e Usingthe{ski p, What } command in atest specification file

* Returning { ski p, Reason} fromthei ni t _per _t est case/ 2 function
* Returning { ski p, Reason} from the specification clause of the test case

e Returning{ ski p, Reason} from the execution clause of the test case

The latter of course means that the execution clause is actually called, so the author must make sure that the test case
is not run. For more information about the different clausesin atest case, see the chapter about writing test cases.

When atest caseis skipped, it will be noted as SKI PPED in the HTML log.

1.3 Writing Test Suites
1.3.1 Support for test suite authors

Thet est _ser ver module provides some useful functions to support the test suite author. This includes:

» Starting and stopping slave or peer nodes

e Capturing and checking stdout output

» Retrieving and flushing process message queue

e Watchdog timers

» Checking that a function crashes

e Checking that afunction succeeds at least m out of n times

e Checking .app files

Please turn to the reference manual for thet est _ser ver module for details about these functions.

8 | Ericsson AB. All Rights Reserved.: Test Server

1.3 Writing Test Suites

1.3.2 Test suites

A test suiteis an ordinary Erlang module that contains test cases. It's recommended that the module has a name on the
form*_SUITE.erl. Otherwise, the directory function will not find the modules (by default).

For some of thetest server support, the test server includefilet est _server. hrl must beincluded. Never include
it with the full path, for portability reasons. Use the compiler include directive instead.

The special functional | (sui t e) ineach moduleiscalled to get the test specification for that module. The function
typicaly returns alist of test casesin that module, but any test specification could be returned. Please see the chapter
about test specifications for details about this.

1.3.3 Init per test case

In each test suite module, the functions i nit_per _testcase/2 and end_per_testcase/ 2 must be
implemented.

i nit_per _testcase iscaledbeforeeachtest caseinthetest suite, giving a(limited) possibility for initialization.
end_per _t est case/ 2 iscalled after each test case is completed, giving a possibility to clean up.

The first argument to these functions is the name of the test case. This can be used to do individual initialization and
cleanup for each test cases.

The second argument is alist of tuples called Conf i g. The first element in a Conf i g tuple should be an atom - a
key value to be used for searching. i ni t _per _t est case/ 2 may modify the Conf i g parameter or just return it
asis. Whatever isretuned by i nit _per _t estcase/ 2 isgivenasConf i g parameter to the test case itself.

Thereturn value of end_per _t est case/ 2 isignored by the test server.

1.3.4 Test cases

The smallest unit that the test server is concerned with is a test case. Each test case can in turn test many things, for
example make several calls to the same interface function with different parameters.

It is possible to put many or few tests into each test case. How many things each test case tests is up to the author,
but here are some things to keep in mind.

Very small test cases often leads to more code, since initialization has to be duplicated. Larger code, especialy with
alot of duplication, increases maintenance and reduces readability.

Larger test cases make it harder to tell what went wrong if it fails, and force us to skip larger portions of test code if
a specific part fails. These effects are accentuated when running on multiple platforms because test cases often have
to be skipped.

A test case generally consists of three parts, the documentation part, the specification part and the execution part. These
are implemented as three clauses of the same function.

The documentation clause matches the argument ‘doc' and returns alist for strings describing what the test case tests.

The specification clause matches the argument 'sui t e' and returns the test specification for this particular test case.
If the test specification is an empty list, thisindicates that the test caseis aleaf test case, i.e. one to be executed.

Note that the specification clause of a test case is executed on the test server controller host. This meansthat if target
is remote, the specification clause is probably executed on a different platform than the one tested.

The execution clause implements the actual test case. It takes one argument, Conf i g, which contain configuration
information likedat a_di r and pri v_di r . See Data and Private Directories for more information about these.

The Conf i g variable can also contain the nodenanes key, if requested by ther equi r e_nodenames command
in the test suite specification file. All Conf i g items should be extracted using the ?conf i g macro. Thisisto ensure

Ericsson AB. All Rights Reserved.: Test Server | 9

1.4 Running Test Suites

future compatibility if the Conf i g format changes. See the reference manual for t est _ser ver for details about
this macro.

If the execution clause crashes or exits, it is considered a failure. If it returns { ski p, Reason}, the test case is
considered skipped. If it returns{ conment , St ri ng}, the string will be added in the'Comment' field onthe HTML
result page. If the execution clause returns anything else, it is considered a success, unlessitis{' EXI T' , Reason}
or{'EXIT', Pi d, Reason} which can't be distinguished from a crash, and thus will be considered afailure.

1.3.5 Data and Private Directories

The data directory (dat a_di r) is the directory where the test module has its own files needed for the testing. A
compiler test case may have source files to feed into the compiler, arelease upgrade test case may have some old and
new release of something. A graphicstest case may have someicons and atest case doing alot of math with bignums
might store the correct answers there. The name of thedat a_di r isthe the name of the test suite and then "_data’".
For example, " sone_pat h/ f oo_SUl TE. beani hasthe datadirectory " sorme_pat h/ f oo_SUl TE dat a/".

Thepri v_dir isthe test suite's private directory. This directory should be used when atest case needs to write to
files. The name of the private directory is generated by the test server, which also creates the directory.

Warning: Do not depend on current directory to be writable, or to point to anything in particular. All scratch files are
to bewritteninthepri v_di r, and al datafilesfound in dat a_di r . If the current directory has to be something
specific, it must be set withfi | e: set _cwd/ 1.

1.3.6 Execution environment

Each time atest caseis about to be executed, anew processis created with spawn_| i nk. Thisis so that the test case
will have no dependencies to earlier tests, with respect to process flags, process links, messages in the queue, other
processes having registered the process, etc. As little as possible is done to change the initial context of the process
(what is created by plain spawn). Hereis alist of differences:

* Ithasalink to thetest server. If thislink is removed, the test server will not know when the test caseis finished,
just wait infinitely.

e |t often holds afew itemsin the process dictionary, all with names starting with 't est _server _'. Thisisto
keep track of if/where atest casefails.

* Thereisatop-level catch. All of the test case code is catched, so that the location of a crash can be reported
back to the test server. If the test case processis killed by another process (thus the catch code is never
executed) the test server is not able to tell where the test case was executing.

» It hasaspecia group leader implemented by the test server. Thisway the test server is able to capture theio
that the test case provokes. Thisis also used by some of the test server support functions.

There is no time Ilimit for a test case, unless the test case itself imposes such a
limit, by cdling test_server:tinetrap/1 for example. The call can be made in each
test case, or in the init_per_testcase/2 function. Make sure to cal the corresponding
test _server:tinetrap_cancel /1 function aswell, eginthe end _per testcase/ 2 function, or else
the test cases will alwaysfail.

1.4 Running Test Suites

1.4.1 Using the test server controller

The test server controller provides alow level interface to all the Test Server functionality. It is possible to use this
interface directly, but it is recommended to use a framework such as Common Test instead. If no existing framework
suits your needs, you could of course build your own on top of the test server controller. Someinformation about how
to do this can be found in the section named "Writing you own test server framework" in the Test Server User's Guide.

10 | Ericsson AB. All Rights Reserved.: Test Server

1.5 Write you own test server framework

For information about using the controller directly, please see al available functions in the reference manual for
test _server_ctrl.

1.5 Write you own test server framework
1.5.1 Introduction

The test server controller can be interfaced from the operating system or from within Erlang. The nature of your new
framework will decide which interface to use. If you want your framework to start a new node for each test, the
operating system interface is very convenient. If your node is aready started, going from within Erlang might be a
more flexible solution.

The two methods are described bel ow.

1.5.2 Interfacing the test server controller from Erlang

Using the test server from Erlang means that you have to start the test server and then add test jobs. Use
test _server_ctrl:start/O0 to start alocal target or t est _server _ctrl:start/1 to start a remote
target. Thetest server isstopped by t est _server _ctrl: stop/ 0.

Theargumenttot est _server _ctrl : st art/ 1isthenameof aparameter file. The parameter file specifieswhat
type of target to start and where to start it, aswell as some additional parameters needed for different target types. See
the reference manual for a detailed description of all valid parameters.

Adding test jobs
There are many commands available for adding test cases to the test server'sjob queue:
e Singletest case

test _server_ctrl:add case/2/3

e Multiple test cases from same suite
test _server ctrl:add cases/2/3

e Test suite module or modules
test _server_ctrl:add nodul e/ 1/2

e Some or al test suite modules in adirectory
test _server _ctrl:add dir/2/3

» Test cases specified in atest specification file
test_server_ctrl:add_spec/1

All test suites are given a unique name, which is usualy given when the test suite is added to the job queue. In some
cases, a default name is used, as in the case when a module is added without a specified name. The test job name is
used to store logfiles, which are stored in the “name.logs directory under the current directory.

See the reference manual for details about the functions for adding test jobs.

1.5.3 Interfacing the test server controller from the operating
system.

The function run_t est/ 1 is your interface in the test server controller if you wish to use it from the operating
system. You simply start an erlang shell and invoke this function with the - s option. run_t est / 1 starts the test
server, runs the test specified by the command line and stops the test server. Theargumenttorun_t est/ 1 isalist
of command line flags, typicaly [' KEY1' , Val uel, 'KEY2', Value2, ...].Thevaidcommand line
flags arelisted in the reference manual fort est _server _ctrl .

A typical command line may look like this

Ericsson AB. All Rights Reserved.: Test Server | 11

1.6 Examples

erl -noshell -s test_server_ctrl run_test KEY1l Valuel KEY2 Value2 ... -s erlang
hal t

Or make an alias (thisis for unix/tcsh)

alias erl _test '"erl -noshell -s test _server_ctrl run_test \!* -s erlang halt’

And then useit like this

erl _test KEY1l Valuel KEY2 Value2 ...
An Example

An example of starting atest run from the command line

erl -nane test_srv -noshell -rsh /home/super/otp/bin/ctrsh
-pa /clearcase/otp/erts/lib/kernel/test

-boot start_sasl -sasl errlog type error

-s test_server_ctrl run_test SPEC kernel.spec -s erlang halt

1.5.4 Framework callback functions

By defining the environment variable TEST_SERVER FRAMEWORK to a module name, the framework callback
functions can be used. Theframework callback functionsare called by thetest server in order et the framework interact
with the execution of the tests and to keep the framework upto date with information about the test progress.

The framework callback functions are described in the reference manual for t est _server _ctrl.

Note that thistopicisin an early stage of development, and changes might occur.

1.5.5 Other concerns
Some things to think about when writing you own test server framework:

* enul ator versi on - Make sure that the intended version of the emulator is started.
e operating system pat h - If test cases use port programs, make sure the paths are correct.
* reconpilation-Makesureall test suites are fresh compiled.

e test_server.hrl -Makesurethet est _server. hrl fileisintheinclude path when compiling test
suites.

 running applications - Sometest suites require some applications to be running (e.g. sasl). Make sure
they are started.

1.6 Examples
1.6.1 Test suite

-module(my SUITE).
-export([all/1,
not started/1, not started funcl/1l, not started func2/1,
start/1, stop/1,
funcl/1, func2/1
1.
-export([init per testcase/2, end per testcase/2]).
-include("test server.hrl").

-define(default timeout, ?t:minutes(1)).

12 | Ericsson AB. All Rights Reserved.: Test Server

1.6

Examples

init per testcase(Case, Config) ->
?line Dog=?t:timetrap(?default timeout),
[{watchdog, Dog}|Config].

end per testcase(Case, Config) ->
Dog=?config(watchdog, Config),
?t:timetrap cancel(Dog),
ok.

all(suite) ->
%% Test specification on test suite level
[not started,
{conf, start, [funcl, func2], stop}].

not started(suite) ->
%% Test specification on test case level
[not started funcl, not started func2];
not started(doc) ->
["Testing all functions when application is not started"].
%% No execution clause unless the specification clause returns [].

not started funcl(suite) ->
[1;
not started funcl(doc) ->
["Testing function 1 when application is not started"].
not started funcl(Config) when list(Config) ->
?line {error, not started} = myapp:funcl(dummy ref,1),
?line {error, not started} = myapp:funcl(dummy ref,2),
ok.

not started func2(suite) ->
[1;
not started func2(doc) ->
["Testing function 2 when application is not started"].
not started func2(Config) when list(Config) ->
?line {error, not started} = myapp:func2(dummy ref,1),
?line {error, not started} = myapp:func2(dummy ref,2),
ok.

%% No specification clause needed for an init function in a conf case!!!
start(doc) ->
["Testing start of my application."];
start(Config) when list(Config) ->
?line Ref = myapp:start(),
case erlang:whereis(my main process) of
Pid when pid(Pid) ->
[{myapp_ref,Ref}|Config];
undefined ->
%% Since this is the init function in a conf case, the rest of the
%% cases in the conf case will be skipped if this case fails.
?t:fail("my main process did not start")
end.

funcl(suite) ->

[1;
funcl(doc) ->

["Test that funcl returns ok when argument is 1 and error if argument is 2"];
funcl(Config) when list(Config) ->

?line Ref = ?config(myapp_ref,Config),

?line ok = myapp:funcl(Ref,1),

?line error = myapp:funcl(Ref,2),

ok.

Ericsson AB. All Rights Reserved.: Test Server | 13

1.6 Examples

func2(suite) ->

[1;
func2(doc) ->

["Test that funcl returns ok when argument is 3 and error if argument is 4"];
func2(Config) when list(Config) ->

?line Ref = ?config(myapp_ref,Config),

?line ok = myapp:func2(Ref,3),

?line error = myapp:func2(Ref,4),

ok.

%% No specification clause needed for a cleanup function in a conf case!!!
stop(doc) ->
["Testing termination of my application"];
stop(Config) when list(Config) ->
?line Ref = ?config(myapp_ref,Config),
?line ok = myapp:stop(Ref),
case erlang:whereis(my main process) of
undefined ->
lists:keydelete(myapp ref,1,Config);
Pid when pid(Pid) ->
?t:fail("my main process did not stop")
end.

1.6.2 Test specification file
nmyapp. spec:

{topcase, {dir, "../myapp test"}}. % Test specification on top level

myapp. spec. vxwor ks:

{topcase, {dir, "../myapp test"}}. % Test specification on top level
{skip,{my SUITE, func2,"Not applicable on VxWorks"}}.

14 | Ericsson AB. All Rights Reserved.: Test Server

1.6 Examples

2 Reference Manual

Test Server isaportable test server for automated application testing. The server can run test suites on local or remote
targets and log progress and results to HTML pages. The main purpose of Test Server is to act as engine inside
customized test tools. A callback interface for such framework applicationsis provided.

Ericsson AB. All Rights Reserved.: Test Server | 15

test_server

test server

Application

Test Server isaportable test server for automated application testing. The server can run test suites on local or remote
targets and log progress and results to HTML pages. The main purpose of Test Server is to act as engine inside
customized test tools. A callback interface for such framework applicationsis provided.

In brief the test server supports:

Running multiple, concurrent test suites

Running tests on remote and even diskless targets

Test suites may contain other test suites, in atree fashion
Logging of the eventsin atest suite, on both suite and case levels
HTML presentation of test suite results

HTML presentation of test suite code

Support for test suite authors, e.g. start/stop slave nodes

Call trace on target and slave nodes

For information about how to write test cases and test suites, please see the Test Server User's Guide and the reference
manual for thet est _server module.

Common Test is an existing test tool application based on the OTP Test Server. Please read the Common Test User's
Guide for more information.

Configuration

There are currently no configuration parameters available for this application.

SEE ALSO

16 | Ericsson AB. All Rights Reserved.: Test Server

test_server_ctrl

test server ctrl

Erlang module

Thet est _server _ctrl| module provides alow level interface to the Test Server. This interface is normally not
used directly by the tester, but through aframework built ontop of t est _server _ctrl .

Common Test is such a framework, well suited for automated black box testing of target systems of any kind (not
necessarily implemented in Erlang). Common Test is also a very useful tool for white box testing Erlang programs
and OTP applications. Please see the Common Test User's Guide and reference manual for more information.

If you want to write your own framework, some more information can be found in the chapter "Writing your own test
server framework" in the Test Server User's Guide. Details about the interface provided by t est _server _ctrl
follows below.

Exports

start() -> Result

start(ParameterFile) -> Result

Types.
Result = ok | {error, {already started, pid()}
ParaneterFile = atom() | string()

This function starts the test server. If the parameter fileis given, it indicates that the target is remote. In that case the
target node is started and a socket connection is established between the controller and the target node.

The parameter fileis atext file containing key-value tuples. Each tuple must be followed by a dot-newline sequence.
The following key-value tuples are allowed:

{type, Pl at f or mType}
Thisisan atom indicating the target platform type, currently supported: Pl at f or mMype = vxwor ks
Mandatory

{target, Target Host }
This isthe name of the target host, can be atom or string.
Mandatory

{sl avetargets, Sl aveTar get s}
Thisisalist of available hosts where slave nodes can be started. The hostnames are given as atoms or strings.
Optional, default S| aveTargets = []

{I ongnanes, Bool }
Thisindicatesif longnames shall be used, i.e. if the - name option should be used for the target node instead of
- snane
Optional, default Bool = fal se

{master, {MasterHost, Master Cookie}}
If target is remote and the target node is started as a slave node, this option indicates which master
and cookie to use. The given master will also be used as master for slave nodes started with
test _server:start_node/ 3. Itisexpected that theer| _boot _server isstarted on the master node
beforethet est _server _ctrl:start/ 1 functioniscalled.
Optional, if not given the test server controller node is used as master and theer | _boot _server is
automatically started.

stop() -> ok
This stops the test server (both controller and target) and all its activity. The running test suite (if any) will be halted.

Ericsson AB. All Rights Reserved.: Test Server | 17

test_server _ctrl

add dir(Name, Dir) -> ok
add dir(Name, Dir, Pattern) -> ok
add dir(Name, [Dir|Dirs]) -> ok
add dir(Name, [Dir|Dirs], Pattern) -> ok
Types:
Name = term)
The jobname for this directory.
Dr =term)
The directory to scan for test suites.
Dirs = [ternm()]
List of directoriesto scan for test suites.
Pattern = term))
Suite match pattern. Directories will be scanned for Pattern SUITE.erl files.

Puts a collection of suites matching (*_SUITE) in given directories into the job queue. Narre is an arbitrary name for
the job, it can be any erlang term. If Pat t er n isgiven, only modules matching Pat t er n* will be added.

add _module(Mod) -> ok
add module(Name, [Mod|Mods]) -> ok
Types.

Mod = atom()

Mods = [aton()]

The name(s) of the module(s) to add.

Name = term)

Name for the job.

This function adds a module or alist of modules, to the test servers job queue. Nane may be any Erlang term. When
Nane is not given, the job gets the name of the module.

add case(Mod, Case) -> ok
Types.
Mod = atom()
Name of the module the test caseisin.
Case = atom()
Function name of the test case to add.

This function will add one test case to the job queue. The job will be given the module's name.

add case(Name, Mod, Case) -> ok
Types:

Name = string()

Name to use for the test job.

Equivalent to add_case/ 2, but the test job will get the specified name.

add cases(Mod, Cases) -> ok
Types:

18 | Ericsson AB. All Rights Reserved.: Test Server

test_server_ctrl

Mod = atom()

Name of the module the test caseisin.
Cases = [Case]

Case = atom()

Function names of the test casesto add.

This function will add one or more test casesto the job queue. The job will be given the module's name.

add cases(Name, Mod, Cases) -> ok
Types:

Name = string()

Name to use for the test job.

Equivalent to add_cases/ 2, but the test job will get the specified name.

add spec(TestSpecFile) -> ok | {error, nofile}
Types.

Test SpecFile = string()

Name of the test specification file

This function will add the content of the given test specification file to the job queue. The job will be given the name
of the test specification file, e.g. if thefileiscalledt est . spec, thejob will becalledt est .

See the reference manual for the test server application for details about the test specification file.

add dir with skip(Name, [Dir|Dirs], Skip) -> ok
add dir with skip(Name, [Dir|Dirs], Pattern, Skip) -> ok
add module with skip(Mod, Skip) -> ok
add module with skip(Name, [Mod|Mods], Skip) -> ok
add case with skip(Mod, Case, Skip) -> ok
add case with skip(Name, Mod, Case, Skip) -> ok
add cases with skip(Mod, Cases, Skip) -> ok
add cases with skip(Name, Mod, Cases, Skip) -> ok
Types:
Skip = [Skiplteni
List of items to be skipped from the test.
Ski pltem = {Mdd, Comment} | {Mod, Case, Conment} | {Mod, Cases, Comment}
Mod = atom()
Test suite name.
Comment = string()
Reason why suite or case is being skipped.
Cases = [Case]
Case = atom()
Name of test case function.
These functions add test jobs just like the add_dir, add_module, add case and add_cases functions above, but carry

an additional argument, Skip. Skip isalist of items that should be skipped in the current test run. Test job items that
occur in the Skip list will be logged as SKIPPED with the associated Comment.

Ericsson AB. All Rights Reserved.: Test Server | 19

test_server _ctrl

add tests with skip(Name, Tests, Skip) -> ok
Types:
Name = term)
The jobname for this directory.
Tests = [Testlteni
List of jobsto add to the run queue.
Testltem= {Dir,all,all} | {Dr,Mds,all} | {Dr, Md, Cases}
Dr =term)
The directory to scan for test suites.
Mbds = [Mbd]
Mod = atom()
Test suite name.
Cases = [Case]
Case = atom()
Name of test case function.
Skip = [Skipltem
List of items to be skipped from the test.
Skipltem = {Mod, Comment} | {Modd, Case, Comment} | {Mod, Cases, Corment }
Commrent = string()
Reason why suite or case is being skipped.
Thisfunction adds varioustest jobsto thetest_server_ctrl job queue. Thesejobs can be of different type (all or specific

suites in one directory, all or specific cases in one suite, etc). It is also possible to get particular items skipped by
passing them along in the Skip list (see the add_*_with_skip functions above).

abort current testcase(Reason) -> ok | {error,no testcase running}
Types:
Reason = term()
The reason for stopping the test case, which will be printed in the log.
When calling this function, the currently executing test case will be aborted. It isthe user's responsibility to know for

sure which test caseis currently executing. The function is therefore only safe to call from a function which has been
called (or synchronously invoked) by the test case.

set levels(Console, Major, Minor) -> ok
Types:
Consol e = integer()
Level for I/O to be sent to console.
Maj or = integer()
Leve for I/O to be sent to the major logfile.
M nor = integer()
Level for I/O to be sent to the minor logfile.
Determines where 1/0O from test suites/test server will go. All text output from test suites and the test server istagged

with a priority value which ranges from 0 to 100, 100 being the most detailed. (see the section about log files in the
user's guide). Output from the test cases (using i o: f or mat / 2) has a detail level of 50. Depending on the levels

20 | Ericsson AB. All Rights Reserved.: Test Server

test_server_ctrl

set by this function, this I/O may be sent to the console, the major log file (for the whole test suite) or to the minor
logfile (separate for each test case).

All output with detail level:

» Lessthan or equa to Consol e isdisplayed on the screen (default 1)
e Lessthan or equal to Maj or islogged in the major log file (default 19)
* Greater than or equal to M nor islogged in the minor log files (default 10)

To view the currently set thresholds, usetheget _| evel s/ 0 function.

get levels() -> {Console, Major, Minor}
Returnsthe current levels. Seeset | evel s/ 3 for types.

jobs() -> JobQueue
Types:
JobQueue = [{list(), pid()}]
This function will return al the jobs currently in the job queue.

multiply timetraps(N) -> ok
Types:
N =integer() | infinity

This function should be called before a test is started which requires extended timetraps, e.g. if extensive tracing is
used. All timetraps started after this call will be multiplied by N.

scale timetraps(Bool) -> ok
Types.
Bool = true | false

This function should be caled before a test is started. The parameter specifies if test_server should attempt to
automatically scale the timetrap value in order to compensate for delays caused by e.g. the cover tool.

get timetrap parameters() -> {N,Bool}

Types:
N =integer() | infinity
Bool = true | false

This function may be called to read thevaluessetby mul ti ply_ti metraps/1andscal e tinmetraps/1.

cover(Application,Analyse) -> ok
cover(CoverFile,Analyse) -> ok
cover(App,CoverFile,Analyse) -> ok
Types:

Application = aton()

OTP application to cover compile

CoverFile = string()

Name of file listing modules to exclude from or include in cover compilation. The filename must include full
path to thefile.

Ericsson AB. All Rights Reserved.: Test Server | 21

test_server _ctrl

Anal yse = details | overview

This function informsthetest_server controller that next test shall run with code coverage analysis. All timetraps will
automatically be multiplied by 10 when cover i run.

Appl i cati on and Cover Fi | e indicates what to cover compile. If Appl i cati on is given, the default is that
all modulesin the ebi n directory of the application will be cover compiled. The ebi n directory isfound by adding
ebintocode: l'i b_di r(Application).

A Cover Fi | e can havethe following entries:

{exclude, all | ExcludeModulelList}.
{include, IncludeModulelist}.
{cross, CrossCoverInfo}.

Notethat each line must end with afull stop. Excl udeMbdul eLi st andl ncl udeModul eLi st arelistsof atoms,
where each atom is a module name.

Cr ossCover | nf o is used when collecting cover data over multiple tests. Modules listed here are compiled, but
they will not be analysed when the test is finished. See cross_cover_analyse/2 for more information about the cross
cover mechanism and the format of Cr ossCover | nf o.

If both an Appl i cati on andaCover Fi | e isgiven, al modulesin the application are cover compiled, except for
the moduleslisted in Excl udeModul eLi st . Themodulesin| ncl udeModul eLi st are also cover compiled.

If aCover Fi | eisgiven, butno Appl i cati on, only themodulesinl ncl udeModul eLi st arecover compiled.

Anal yse indicatesthedetail level of thecover analysis. If Anal yse = det ai | s, each cover compiled modulewill
be analysed withcover : anal yse_to_fil e/ 1.If Anal yse = overvi ewanoverview of al cover compiled
modulesis created, listing the number of covered and not covered lines for each module.

If the test following this call starts any slave or peer nodes with t est _server: start_node/ 3, the same
cover compiled code will be loaded on all nodes. If the loading fails, e.g. if the node runs an old version of OTP,
the node will ssimply not be a part of the coverage analysis. Note that slave or peer nodes must be stopped with
test _server: stop_node/ 1 for the nodeto be part of the coverage analysis, else the test server will not be able
to fetch coverage data from the node.

When the test is finished, the coverage analysis is automatically completed, logs are created and the cover compiled
modules are unloaded. If another test isto be run with coverage analysis, t est _server _ctrl:cover/ 2/ 3 must
be called again.

cross_cover analyse(Level, Tests) -> ok

Types:
Level = details | overview
Tests = [{Tag, LogDir}]
Tag = aton()
Test identifier.

LogDir = string()
Log directory for the test identified by Tag. This can either bether un. <t i nest anp> directory or the parent
directory of this (in which case thelatest r un. <t i mest anp> directory is chosen.

Analyse cover data collected from multiple tests. The modules analysed are the ones listed in cr oss statementsin
the cover files. These are modules that are heavily used by other tests than the one where they belong or are explicitly
tested. They should then be listed as cross modules in the cover file for the test where they are used but do not belong.
Se example below.

22 | Ericsson AB. All Rights Reserved.: Test Server

test_server_ctrl

This function should be run after all tests are completed, and the result will be stored in a file called
cross_cover. htnl intherun. <ti nmest anp> directory of the test the modules belong to.

Note that the function can be executed on any node, and it does not requiret est _server _ctr| tobestarted first.
Thecr oss statement in the cover file must be like this:

{cross, [{Tag,Modules}1}.

where Tag is the same as Tag in the Test s parameter to this function and Modul es is alist of module names
(atoms).

Example:

If the module mL belongs to system s 1 but is heavily used also in the tests for another system s 2, then the cover files
for the two systems' tests could be like this:

sl.cover:
{include, [m1]}.

s2.cover:
{include,[....]1}. % modules belonging to system s2
{cross, [{s1l,[m1l]}]}.

When the tests for both s 1 and s2 are completed, run

test server ctrl:cross cover analyse(Level, [{s1,S1lLogDir},{s2,S2LogDir}])

and the accumulated cover data for i will be written to SlLogDir/
[run.<timestanp>/]cross_cover.htm .

Note that the nil module will aso be presented in the normal coverage log for s1 (due to the include statement in
s1. cover), but that only includes the coverage achieved by the s1 test itself.

TheTaginthecr oss statement in the cover file has no other purpose than mapping the list of modules ([n] inthe
example above) to the correct log directory whereit should beincludedinthecr oss_cover. ht m file(S1LogDi r
in the example above). |.e. the value of Tag has no meaning, it could bef 0o aswell ass1 above, aslong asthe same
Tag isused in the cover file and in the call to this function.

trc(TraceInfoFile) -> ok | {error, Reason}
Types.

TracelnfoFile = atonm() | string()

Name of afile defining which functions to trace and how

This function starts call trace on target and on slave or peer nodes that are started or will be started by the test suites.
Timetraps are not extended automatically when tracingisused. Usermul ti ply_ti netraps/ 1 if necessary.

Note that the trace support in the test server isin avery early stage of the implementation, and thus not yet as powerful
as one might wish for.

The trace information file specified by the Tr acel nf oFi | e argument is a text file containing one or more of the
following elements:

e {SetTP, Modul e, Pattern}.

Ericsson AB. All Rights Reserved.: Test Server | 23

test_server _ctrl

e« {SetTP, Modul e, Functi on, Pattern}.

e {SetTP, Modul e, Function, Arity, Pattern}.

« JearTP.

« {d earTP, Modul e}.

« {d earTP, Modul e, Functi on}.

e {dearTP, Modul e, Function, Arity}.

SetTP =tp | tpl
Thisis mapsto the corresponding functionsin thet t b modulein the obser ver application. t p means set
trace pattern on global function calls. t pI means set trace pattern on local and global function calls.

ClearTP = ctp | ctpl | ctpg
Thisis mapsto the corresponding functionsin thet t b modulein the obser ver application. ct p means
clear trace pattern (i.e. turn off) on global and local function calls. ct pl means clear trace pattern on local
function callsonly and ct pg means clear trace pattern on global function calls only.

Modul e = atom()
The module to trace

Function = atom()
The name of the function to trace

Arity = integer()
The arity of the function to trace

Pattern =[] | match_spec()
The trace pattern to set for the module or function. For a description of the match_spec() syntax, please turn to
the User's guide for the runtime system (erts). The chapter "Match Specification in Erlang" explains the genera
match specification language.

The trace result will be logged in a (binary) file called NodeNane-t est _ser ver inthe current directory of the
test server controller node. The log must be formatted usingt t b: f or mat / 1/ 2.

stop trace() -> ok | {error, not tracing}

This function stops tracing on target, and on slave or peer nodes that are currently running. New slave or peer nodes
will no longer be traced after this.

FUNCTIONS INVOKED FROM COMMAND LINE

The following functions are supposed to be invoked from the command line using the - s option when starting the
erlang node.

Exports

run_test(CommandLine) -> ok
Types:
CommandLi ne = Fl agLi st
Thisfunctionissupposed to beinvoked from the commandline. It startsthetest server, interpretsthe argument supplied

from the commandline, runs the tests specified and when al tests are done, stops the test server and returns to the
Erlang prompt.

The CommandLi ne argument is a list of command line flags, typicaly [KEY1l', Valuel, 'KEY2',
Val ue2, ...].Thevaidcommand lineflagsarelisted below.

Under a UNIX command prompt, this function can be invoked like this;
erl -noshell -s test_server_ctrl run_test KEY1 Valuel KEY2 Value2 ... -s erlang
hal t

24 | Ericsson AB. All Rights Reserved.: Test Server

test_server_ctrl

Or make an alias (thisis for unix/tcsh)
alias erl _test '"erl -noshell -s test _server_ctrl run_test \!* -s erlang halt’

And then useit like this
erl _test KEY1l Val uel KEY2 Value2 ...

The valid command line flags are

DIR dir
Adds al test modules in the directory di r to the job queue.
MODULE nod
Adds the module nod to the job queue.
CASE nod case
Addsthe case case in module nod to the job queue.
SPEC spec
Runs the test specification file spec.
SKI PMOD nod
Skips al test casesin the module mod
SKI PCASE nod case
Skipsthe test case case in module nod.
NAMVE nane
Names the test suite to something else than the default name. This does not apply to SPEC which keepsits
names.
PARAMETERS paraneterfile
Specifies the parameter file to use when starting remote target
COVER app cover _file analyse
Indicates that the test should be run with cover analysis. app, cover _fi |l e andanal yse corresponds to the
parameterstot est _server_ctrl: cover/ 3.If no cover fileis used, the atom none should be given.
TRACE traceinfofile
Specifies atrace information file. When this option is given, call tracing is started on the target node and all
slave or peer nodes that are started. The trace information file specifies which modules and functions to trace.
Seethefunctiont r ¢/ 1 above for more information about the syntax of thisfile.

FRAMEWORK CALLBACK FUNCTIONS

A test server framework can be defined by setting theenvironment variable TEST _SERVER FRAMEWORK to amodule
name. This module will then be framework callback module, and it must export the following function:

Exports

get suite(Mod,Func) -> TestCaselList
Types.

Mod = atom()

Test suite name.

Func = atom()

Name of test case.

Test CaselLi st = [SubCase]

List of test cases.

SubCase = atom()

Name of a case.

Ericsson AB. All Rights Reserved.: Test Server | 25

test_server _ctrl

Thisfunction is called before atest case is started. The purposeisto retrieve alist of subcases. The default behaviour
of this function should beto call Mbd: Func(sui t €) and return the result from this call.

init tc(Mod,Func,Args0) -> {ok,Argsl} | {skip,ReasonToSkip} |
{auto_skip,ReasonToSkip} | {fail,ReasonToFail}
Types.
Mod = atom()
Test suite name.
Func = atom()
Name of test case or configuration function.
ArgsO = Argsl = [tuple()]
Normally Args = [Config]
ReasonToSkip = term))
Reason to skip the test case or configuration function.
ReasonToFail = term))
Reason to fail the test case or configuration function.
This function is called before a test case or configuration function starts. It is called on the process executing the

function Mod: Func. Typical use of thisfunction can beto alter the input parametersto the test case function (Ar gs)
or to set properties for the executing process.

By returning { ski p, Reason}, Func gets skipped. Func also gets skipped if {aut o_ski p, Reason} is
returned, but then gets an auto skipped status (rather than user skipped).

Tofail Func immediately instead of executing it, return{ f ai | , ReasonToFai | }.

end tc(Mod,Func,Status) -> ok | {fail,ReasonToFail}
Types:

Mod = atom()

Test suite name.

Func = atom()

Name of test case or configuration function.

Status = {Result, Args} | {TCPRi d, Result, Args}

The status of the test case or configuration function.

ReasonToFail = term))

Reason to fail the test case or configuration function.

Result = ok | Skip | Fail

Thefinal result of the test case or configuration function.

TCPid = pid()

Pid of the process executing Func

Ski p = {skip, Ski pReason}

Ski pReason = term() | {failed,{Md,init _per_testcase,term)}}

Reason why the function was skipped.

Fail = {error,term()} | {"EXIT ,term()} | {tinmetrap_timeout,integer()} |
{testcase_aborted,tern()} | testcase_aborted_or _killed | {failed,ternm()} |
{failed,{Md, end_per _testcase,term)}}

Reason why the function failed.

26 | Ericsson AB. All Rights Reserved.: Test Server

test_server_ctrl

Args = [tuple()]
Normally Args = [Config]

This function is called when atest case, or a configuration function, is finished. It is normally called on the process
where the function Mbd: Func has been executing, but if not, the pid of the test case process is passed with the
St at us argument.

Typical use of theend_t ¢/ 3 function canbetocleanup afteri nit _tc/ 3.

If Func isatest casg, it is possible to analyse the value of Resul t to verify thati nit _per _testcase/ 2 and
end_per testcase/ 2 executed successfully.

Itispossiblewithend_t ¢/ 3 tofail an otherwise successful test case, by returning { f ai | , ReasonToFai | }. The
test case Func will be logged as failed with the provided term as reason.

report(What,Data) -> ok
Types:

What = aton()

Data = term))

Thisfunctionis called in order to keep the framework up-to-date with the progress of the test. Thisisuseful e.g. if the
framework implements a GUI where the progress information is constantly updated. The following can be reported:

What = tests_start, Data = {Nanme, NunCases}

What = loginfo, Data = [{topdir, TestRootDir}, {rundir, CurrLogD r}]
What = tests_done, Data = {Ck, Fail ed, { User Ski pped, Aut oSki pped}}
What = tc_start, Data = {{Mod, Func}, TCLogFi | e}

What = tc_done, Data = {Mod, Func, Result}

What = tc_user_skip, Data = {Mdd, Func, Comrent }

What = tc_auto_skip, Data = {Mdd, Func, Comrent }

What = franework_error, Data = {{FWbd, FWrunc}, Error}

error_notification(Mod, Func, Args, Error) -> ok
Types.
Mod = atom()
Test suite name.
Func = atom()
Name of test case or configuration function.
Args = [tuple()]
Normally Args = [Config]
Error = {Reason, Locati on}
Reason = term()
Reason for termination.
Location = unknown | [{Mbd, Func, Li ne}]
Last known position in Mod before termination.
Line = integer ()
Line number in file Mod.erl.
Thisfunction is called as the result of function Mod: Func failing with Reason at Location. The function is intended
mainly to aid specific logging or error handling in the framework application. Note that for Location to have relevant

values(i.e. other than unknown), thel i ne macroort est _server _| i ne parsetransform must beused. For details,
please see the section about test suite line numbersinthet est _ser ver reference manual page.

Ericsson AB. All Rights Reserved.: Test Server | 27

test_server _ctrl

warn(What) -> boolean()
Types:
What = processes | nodes
The test server checks the number of processes and nodes before and after the test is executed. This function is a

question to the framework if the test server should warn when the number of processes or nodes has changed during
the test execution. If t r ue isreturned, awarning will be written in the test case minor log file.

target_info() -> InfoStr
Types:
InfoStr = string() |

The test server will ask the framework for information about the test target system and print InfoStr in the test case
log file below the host information.

28 | Ericsson AB. All Rights Reserved.: Test Server

test_server

test server

Erlang module

The t est _server module aids the test suite author by providing various support functions. The supported
functionality includes:

e Logging and timestamping

e Capturing output to stdout

* Retrieving and flushing the message queue of a process

« Watchdog timers, process sleep, time measurement and unit conversion

e Private scratch directory for all test suites

e Start and stop of slave- or peer nodes

For more information on how to write test cases and for examples, please see the Test Server User's Guide.

TEST SUITE SUPPORT FUNCTIONS

The following functions are supposed to be used inside a test suite.

Exports

os_type() -> 0SType
Types:
CSType = tern()
Thisisthe same asreturned fromos: t ype/ 0
This function can be called on controller or target node, and it will always return the OS type of the target node.

fail()
fail(Reason)
Types:
Reason = term()
The reason why the test case failed.
This will make the test suite fail with a given reason, or with sui t e_f ai | ed if no reason was given. Use this

function if you want to terminate atest case, asthiswill make it easier to read the log- and HTML files. Reason will
appear in the comment field in the HTML log.

timetrap(Timout) -> Handle

Types.
Timeout = integer() | {hours,H | {nmnutes,M | {seconds, S}
H= M=S = integer()
Pid = pid()

The process that isto be timetrapped (sel f () by default)

Sets up atime trap for the current process. An expired timetrap kills the processwithreasont i net rap_t i meout .
The returned handle isto be given asargument tot i met r ap_cancel before the timetrap expires. If Ti meout is
an integer, it is expected to be milliseconds.

Ericsson AB. All Rights Reserved.: Test Server | 29

test_server

Note:

If the current processistrapping exits, it will not bekilled by the exit signal withreasont i netrap_ti meout .
If this happens, the process will be sent an exit signal with reason ki | | 10 seconds later which will kill the
process. Information about the timetrap timeout will in this case not be found in the test logs. However, the
error_logger will be sent awarning.

timetrap cancel(Handle) -> ok
Types:

Handle = term)

Handle returned fromt i net r ap

This function cancels atimetrap. This must be done before the timetrap expires.

timetrap scale factor() -> ScaleFactor
Types:
Scal eFactor = integer()
This function returns the scale factor by which all timetraps are scaled. It is normally 1, but can be greater than 1 if
thetest_serverisrunning cover , using alarger amount of scheduler threads than the amount of logical processors on

the system, running under purify, valgrind or in a debug-compiled emulator. The scale factor can be used if you need
to scale you own timeouts in test cases with same factor asthe test_server uses.

sleep(MSecs) -> ok
Types:
Msecs = integer() | float() | infinity
The number of millisecondsto sleep
This function suspends the calling process for at least the supplied number of milliseconds. There are two major

reasons why you should use this function instead of t i ner : sl eep, the first being that the modulet i mer may be
unavailable at the time the test suite is run, and the second that it also accepts floating point numbers.

adjusted sleep(MSecs) -> ok
Types:
Msecs = integer() | float() | infinity
The default number of millisecondsto sleep
This function suspends the calling process for at least the supplied number of milliseconds. The function behaves the

sameway ast est _server: sl eep/ 1, only Msecs will be multiplied by the 'multiply_timetraps value, if set, and
also automatically scaled up if 'scale_timetraps' is set to true (which it is by default).

hours(N) -> MSecs
minutes(N) -> MSecs
seconds(N) -> MSecs
Types.
N = integer()
Value to convert to milliseconds.
Theese functions convert N number of hours, minutes or seconds into milliseconds.

30 | Ericsson AB. All Rights Reserved.: Test Server

test_server

Usethisfunction when youwanttot est _ser ver: sl eep/ 1 for anumber of seconds, minutes or hours(!).

format (Format) -> ok
format (Format, Args)
format(Pri, Format)
format(Pri, Format, Args)
Types.
Format = string()
Format as described fori o_: f or nat .
Args = list()
List of arguments to format.
Formats output just likei o: f or mat but sends the formatted string to alogfile. If the urgency value, Pri , islower

than some threshold value, it will also be written to the test person's console. Default urgency is 50, default threshold
for display on the consoleis 1.

Typicaly, the test person don't want to see everything atest suite outputs, but is merely interested in if the test cases
succeeded or not, which the test server tellshim. If he would like to see more, he could manually change the threshold
valuesby usingthet est _server _ctrl:set | evel s/ 3 function.

capture start() -> ok
capture stop() -> ok
capture get() -> list()

These functions makes it possible to capture all output to stdout from a process started by the test suite. The list of
characters captured can be purged by using capt ur e_get .

messages get() -> list()
This function will empty and return all the messages currently in the calling process’ message queue.

timecall(M, F, A) -> {Time, Value}
Types.
M= atom)
The name of the module where the function resides.
F = atom)
The name of the function to call in the module.
A=1list()
The arguments to supply the called function.
Time = integer()
The number of secondsit took to call the function.
Value = term))
Value returned from the called function.

This function measures the time (in seconds) it takes to call a certain function. The function call is not caught within
acatch.

Ericsson AB. All Rights Reserved.: Test Server | 31

test_server

do times(N, M, F, A) -> ok
do times(N, Fun)
Types.
N = integer()
Number of timesto call MFA.
M = at om()
Module name where the function resides.
F = atom)
Function name to call.
A=1list()
Argumentsto M:F.
Calls MFA or Fun N times. Useful for extensive testing of a sensitive function.

m out of n(M, N, Fun) -> ok | exit({m out of n failed, {R,left to do}}
Types.
N = integer()
Number of timesto call the Fun.
M = integer()
Number of times to require a successful return.
Repeatedly evaluates the given function until it succeeds (doesn't crash) M times. If, after N times, M successful

attempts have not been accomplished, the process crashes with reason {m_out_of n failed, {R,left_to_do}}, where
R indicates how many cases that was still to be successfully completed.

For example:

mout _of n(1,4,fun() -> tricky test case() end)
Triesto runtricky _test case() up to 4 times, and is happy if it succeeds once.

m out _of n(7,8,fun() -> clock_sanity check() end)

Tries running clock_sanity check() up to 8 times,and allows the function to fail once. This might be useful if
clock _sanity _check/0 is known to fail if the clock crosses an hour boundary during the test (and the up to 8 test runs
could never cross 2 boundaries)

call crash(M, F, A) -> Result
call crash(Time, M, F, A) -> Result
call crash(Time, Crash, M, F, A) -> Result
Types:
Result = ok | exit(call_crash_tineout) | exit({wong_crash_reason,
Reason})
Crash = term)
Crash return from the function.
Time = integer()
Timeout in milliseconds.
M= atom)
Module name where the function resides.
F = atom)
Function name to call.

32 | Ericsson AB. All Rights Reserved.: Test Server

test_server

A=1list()
Argumentsto M:F.

Spawns a new process that calls MFA. The call is considered successful if the call crashes with the gives reason
(Cr ash) or any reason if not specified. The call must terminate within the given time (default i nfi ni ty), oritis
considered afailure.

temp name(Stem) -> Name
Types.
Stem = string()

Returns a unique filename starting with St emwith enough extra characters appended to make up a unique filename.
The filename returned is guaranteed not to exist in the filesystem at the time of the call.

break (Comment) -> ok
Types:
Conment = string()
Conment isastring which will be written in the shell, e.g. explaining what to do.

Thisfunctionwill cancel all timetraps and pause the execution of thetest case until the user executesthecont i nue/ 0
function. It givesthe user the opportunity to interact with the erlang node running the tests, e.g. for debugging purposes
or for manually executing a part of the test case.

When the br eak/ 1 function is called, the shell will look something like this:

--- SEMIAUTOMATIC TESTING ---
The test case executes on process <0.51.0>

"Here is a comment, it could e.g. instruct to pull out a card"

Continue with --> test server:continue().

The user can now interact with the erlang node, and when ready call t est _server: conti nue() .
Note that this function can not be used if the test is executed witht s: run/ 0/ 1/ 2/ 3/ 4 in bat ch mode.

continue() -> ok
This function must be called in order to continue after atest case has caled br eak/ 1.

run_on_shielded node(Fun, CArgs) -> term()
Types:
Fun = function() (arity 0)
Function to execute on the shielded node.
CArg = string()
Extra command line arguments to use when starting the shielded node.

Fun isexecuted in aprocess on atemporarily created hidden node with aproxy for communication with the test server
node. The node is called a shielded node (should have been called a shield node). If Fun is successfully executed,

Ericsson AB. All Rights Reserved.: Test Server | 33

test_server

the result is returned. A peer node (see st art _node/ 3) started from the shielded node will be shielded from test
server node, i.e. they will not be aware of each other. Thisis useful when you want to start nodes from earlier OTP
releases than the OTP release of the test server node.

Nodes from an earlier OTP release can normally not be started if the test server hasn't been started in compatibility
mode (seethe+Rflagintheer | (1) documentation) of an earlier release. If ashielded nodeis started in compatibility
mode of an earlier OTP release than the OTP release of the test server node, the shielded node can start nodes of an
earlier OTP release.

Note:

Y ou must make sure that nodes started by the shielded node never communicate directly with the test server node.

Note:

Slave nodes always communicate with the test server node; therefore, never start slave nodes from the shielded
node, always start peer nodes.

start node(Name, Type, Options) -> {ok, Node} | {error, Reason}
Types.

Name = atom() | string()

Name of the slavenode to start (as given to -sname or -name)

Type = slave | peer

The type of node to start.

Options = [{aton(), tern()]
Tuplelist of options

This functions starts a node, possibly on a remote machine, and guarantees cross architecture transparency. Typeis
set to either sl ave or peer .

sl ave means that the new node will have a master, i.e. the slave node will terminate if the master terminates, TTY
output produced on the slave will be sent back to the master node and file I/O is done via the master. The master is
normally the target node unless the target isitself a slave.

peer meansthat the new node is an independent node with no master.
Opt i ons isatupldist which can contain one or more of

{renote, true}
Start the node on aremote host. If not specified, the node will be started on the local host (with some
exceptions, as for the case of VxWorks, where all nodes are started on aremote host). Test cases that require a
remote host will fail with areasonable comment if no remote hosts are available at the time they are run.
{args, Argunents}
Arguments passed directly to the node. Thisistypicaly astring appended to the command line.
{wait, false}
Don't wait until the node is up. By default, this function does not return until the node is up and running, but
this option makes it return as soon as the node start command is given..
Only valid for peer nodes
{fail _on_error, false}
Returns{error, Reason} rather than failing the test case.

34 | Ericsson AB. All Rights Reserved.: Test Server

test_server

Only valid for peer nodes. Note that slave nodes always act asif they hadf ai | _on_error =f al se
{erl, Rel easelist}
Use an Erlang emulator determined by Releaselist when starting nodes, instead of the same emulator as the
test server isrunning. Releaselist isalist of specifiers, where a specifier is either { release, Rel}, { prog, Prog},
or 'this. Rel is either the name of arelease, e.g., "r12b_patched" or 'latest'. 'this means using the same emulator
asthetest server. Prog is the name of an emulator executable. If the list has more than one element, one of
them is picked randomly. (Only works on Solaris and Linux, and the test server gives warnings when it notices
that nodes are not of the same version as itself.)
When specifying this option to run apreviousrelease, usei s_r el ease_avai | abl e/ 1 functionto test if
the given release is available and skip the test caseif not.
In order to avoid compatibility problems (may not appear right away), use a shielded node (see
run_on_shi el ded_node/ 2) when starting nodes from different OTP rel eases than the test server.
eanup, fal se}
Tellsthe test server not to kill thisnode if it is still alive after the test case is completed. Thisis useful if the
same node isto be used by a group of test cases.
{env, Env}
Env should be alist of tuples{ Nanme, Val }, where Nane isthe name of an environment variable, and Val
isthevalueit isto have in the started node. Both Nane and Val must be strings. The one exception is Val
being the atom f al se (in analogy with os: get env/ 1), which removes the environment variable. Only valid
for peer nodes. Not available on VxWorks.
{start _cover, false}
By default the test server will start cover on all nodes when the test is run with code coverage analysis. To
make sure cover is not started on anew node, set thisoptionto f al se. This can be necessary if the connection
to the node at some point will be broken but the node is expected to stay alive. The reason is that aremote
cover node can not continue to run without its main node. Another solution would be to explicitly stop cover on
the node before breaking the connection, but in some situations (if old code residesin one or more processes)
thisis not possible.

{c

stop_node(NodeName) -> bool()
Types:
NodeName = term()
Name of the node to stop
This functions stops a node previously started with st art _node/ 3. Use thisfunction to stop any node you start, or

the test server will produce a warning message in the test logs, and kill the nodes automatically unless it was started
withthe{cl eanup, fal se} option.

is commercial() -> bool()

This function test whether the emulator is commercially supported emulator. The tests for acommercially supported
emulator could be more stringent (for instance, a commercial release should always contain documentation for all
applications).

is release available(Release) -> bool()

Types.
Rel ease = string() | aton()
Release to test for

This function test whether the release given by Rel ease (for instance, "r12b_patched") is available on the computer
that the test_server controller is running on. Typically, you should skip the test case if not.

Caution: This function may not be called from the sui t e clause of atest case, asthetest_server will deadlock.

Ericsson AB. All Rights Reserved.: Test Server | 35

test_server

is native(Mod) -> bool()
Types:

Mod = atom()

A module name

Checks whether the module is natively compiled or not

app_test(App) -> ok | test server:fail()
app_test(App,Mode)
Types:
App = tern()
The name of the application to test
Mbde = pedantic | tolerant
Default is pedantic
Checks an applications .app file for obvious errors. The following is checked:
e requiredfields
e that all modules specified actually exists
o that all requires applications exists
e that no moduleincluded in the application has export_all

e that all modulesin the ebin/ dir isincluded (If Mode==t ol er ant thisonly producesawarning, asall
modules does not have to be included)

comment (Comment) -> ok
Types:
Comment = string()
The given String will occur in the comment field of the table on the HTML result page. If called several times, only

the last comment is printed. comment/1 is also overwritten by the return value { comment,Comment} from atest case
or by fail/1 (which prints Reason as a comment).

TEST SUITE EXPORTS

The following functions must be exported from a test suite module.

Exports

all(suite) -> TestSpec | {skip, Comment}
Types.

Test Spec = list()

Comment = string()

This comment will be printed on the HTML result page

This function must return the test specification for the test suite module. The syntax of atest specification is described
inthe Test Server User's Guide.

init per suite(Config0®) -> Configl | {skip, Comment}

Types:
Config0 = Configl = [tuple()]

36 | Ericsson AB. All Rights Reserved.: Test Server

test_server

Comrent = string()
Describes why the suiteis skipped

Thisfunctioniscalled before all other test casesin the suite. Conf i g isthe configuration which can be modified here.
Whatever is returned from this function is given as Conf i g to the test cases.

If this function fails, all test cases in the suite will be skipped.

end per suite(Config) -> void()
Types:
Config = [tuple()]

This function is called after the last test case in the suite, and can be used to clean up whatever the test cases have
done. The return value isignored.

init per testcase(Case, Config0) -> Configl | {skip, Comment}
Types.

Case = atom()

Config0 = Configl = [tuple()]

Comrent = string()

Describes why the test case is skipped

This function is called before each test case. The Case argument is the name of the test case, and Confi g is the
configuration which can be modified here. Whatever isreturned from thisfunctionisgiven asConf i g tothetest case.

end per testcase(Case, Config) -> void()
Types:

Case = atom()

Config = [tuple()]

This function is called after each test case, and can be used to clean up whatever the test case has done. The return
valueisignored.

Case(doc) -> [Decription]
Case(suite) -> [] | TestSpec | {skip, Comment}
Case(Config) -> {skip, Comment} | {comment, Comment} | Ok
Types.

Description = string()

Short description of the test case

Test Spec = list()

Comment = string()

This comment will be printed on the HTML result page

Kk =term)

Config = [tuple()]

Elements from the Config parameter can be read with the ?config macro, see section about test suite support

macros

The documentation clause (argument doc) can be used for automatic generation of test documentation or test
descriptions.

Ericsson AB. All Rights Reserved.: Test Server | 37

test_server

The specification clause (argument spec) shall return an empty list, the test specification for the test case or
{ ski p, Comment } . The syntax of atest specification is described in the Test Server User's Guide.

Note that the specification clause always is executed on the controller host.

The execution clause (argument Conf i g) isonly called if the specification clause returns an empty list. The execution
clauseisthe real test case. Here you must call the functions you want to test, and do whatever you need to check the
result. If something fails, make sure the process crashes or call t est _server: fail/0/ 1 (which aso will cause
the process to crash).

You can return { ski p, Conmrent } if you decide not to run the test case after all, e.g. if it is not applicable on this
platform.

You can return { corment , Comrment } if you wish to print some information in the 'Comment' field on the HTML
result page.

If the execution clause returns anything else, it is considered a success, unless it is {' EXI T' , Reason} or
{'EXIT , Pi d, Reason} which can't be distinguished from a crash, and thus will be considered afailure.

A conf test case is a group of test cases with an init and a cleanup function. The init and cleanup functions are also
test cases, but they have special rules:

» They do not need a specification clause.

* They must always have the execution clause.

* They must return the Conf i g parameter, amodified version of it or { ski p, Conment } from the execution
clause.

e Thecleanup function may also return atuple{r et urn_gr oup_resul t, St at us}, whichisused to
return the status of the conf case to Test Server and/or to a conf case on ahigher level. (St at us = ok |
ski pped | failed).

e init_per_testcaseandend_per _testcase arenot called before and after these functions.

TEST SUITE LINE NUMBERS

If atest case fails, the test server can report the exact line number at which it failed. There are two ways of doing this,
either by using thel i ne macro or by using thet est _server _| i ne parse transform.

Thel i ne macro is described under TEST SUITE SUPPORT MACROS below. The | i ne macro will only report
the last line executed when atest case failed.

Thet est _server _| i ne parsetransform is activated by including the headerfilet est _server _|ine. hrl in
thetest suite. When doing this, it isimportant that thet est _ser ver _| i ne moduleisin the code path of the erlang
node compiling the test suite. The parse transform will report a history of a maximum of 10 lines when a test case
fails. Consecutive lines in the same function are not shown.

The attribute - no_I i nes(FuncLi st) . can be used in the test suite to exclude specific functions from the parse
transform. This is necessary e.g. for functions that are executed on old (i.e. <R10B) OTP releases. FuncLi st =
[{Func, Arity}].

If boththel i ne macro and the parsetransformisused in the same modul e, the parsetransform will overrulethe macro.

TEST SUITE SUPPORT MACROS

There are some macros defined inthet est _server. hrl that are quite useful for test suite programmers:

Theline macro, is quite essential when writing test cases. It tells the test server exactly what line of code that is being
executed, so that it can report this line back if the test case fails. Use this macro at the beginning of every test case
line of code.

38 | Ericsson AB. All Rights Reserved.: Test Server

test_server

The config macro, is used to retrieve information from the Conf i g variable sent to all test cases. It is used with two
arguments, wherethefirst isthe name of the configuration variable you wish to retrieve, and the second isthe Conf i g
variable supplied to the test case from the test server.

Possible configuration variables include:

* data_dir - Datafiledirectory.

e priv_dir -Scrach filedirectory.

* nodes - Nodes specified in the spec file

* nodenanes - Generated nodenames.

* Whatever added by conf test casesori ni t _per _test case/ 2

Examples of thel i ne and conf i g macros can be seen in the Examples chapter in the user's guide.

If thel i ne_t r ace macroisdefined, you will get atimestamp (er | ang: now()) inyour minor log for each| i ne
macro in your suite. Thisway you can at any time see which line is currently being executed, and when the line was
called.

Thel i ne_t r ace macro can also be used together withthet est _ser ver _| i ne parsetransform described above.
A timestamp will then be written for each line in the suite, except for functions stated inthe - no_| i nes attribute.

Thel i ne_t r ace macro can e.g. be defined as a compile option, like this:
erlc -W-Dline_trace nmy_SU TE. erl

Ericsson AB. All Rights Reserved.: Test Server | 39

	Test Server
	Test Server User's Guide
	Test Server Basics
	Introduction
	Getting started
	Definition of terms

	Test Structure and Test Specifications
	Test structure
	Test specifications
	Test Specification Files
	Configuration cases
	The parallel property and nested configuration cases
	Repeated execution of test cases
	Shuffled test case order
	Skipping test cases

	Writing Test Suites
	Support for test suite authors
	Test suites
	Init per test case
	Test cases
	Data and Private Directories
	Execution environment

	Running Test Suites
	Using the test server controller

	Write you own test server framework
	Introduction
	Interfacing the test server controller from Erlang
	Adding test jobs

	Interfacing the test server controller from the operating system.
	An Example

	Framework callback functions
	Other concerns

	Examples
	Test suite
	Test specification file

	Reference Manual
	test_server
	test_server_ctrl
	start/0
	start/1
	stop/0
	add_dir/2
	add_dir/3
	add_dir/2
	add_dir/3
	add_module/1
	add_module/2
	add_case/2
	add_case/3
	add_cases/2
	add_cases/3
	add_spec/1
	add_dir_with_skip/3
	add_dir_with_skip/4
	add_module_with_skip/2
	add_module_with_skip/3
	add_case_with_skip/3
	add_case_with_skip/4
	add_cases_with_skip/3
	add_cases_with_skip/4
	add_tests_with_skip/3
	abort_current_testcase/1
	set_levels/3
	get_levels/0
	jobs/0
	multiply_timetraps/1
	scale_timetraps/1
	get_timetrap_parameters/0
	cover/2
	cover/2
	cover/3
	cross_cover_analyse/2
	trc/1
	stop_trace/0
	run_test/1
	get_suite/2
	init_tc/3
	end_tc/3
	report/2
	error_notification/4
	warn/1
	target_info/0

	test_server
	os_type/0
	fail/0
	fail/1
	timetrap/1
	timetrap_cancel/1
	timetrap_scale_factor/0
	sleep/1
	adjusted_sleep/1
	hours/1
	minutes/1
	seconds/1
	format/1
	format/2
	format/2
	format/3
	capture_start/0
	capture_stop/0
	capture_get/0
	messages_get/0
	timecall/3
	do_times/4
	do_times/2
	m_out_of_n/3
	call_crash/3
	call_crash/4
	call_crash/5
	temp_name/1
	break/1
	continue/0
	run_on_shielded_node/2
	start_node/3
	stop_node/1
	is_commercial/0
	is_release_available/1
	is_native/1
	app_test/1
	app_test/2
	comment/1
	all/1
	init_per_suite/1
	end_per_suite/1
	init_per_testcase/2
	end_per_testcase/2
	Case/1
	Case/1
	Case/1

