11.9 Command Line Arguments

Our hex program will be more useful if it can read the names of an input and output file from its command line, i.e., if it can process the command line arguments. But... Where are they?

Before a UNIX® system starts a program, it pushes some data on the stack, then jumps at the _start label of the program. Yes, I said jumps, not calls. That means the data can be accessed by reading [esp+offset], or by simply popping it.

The value at the top of the stack contains the number of command line arguments. It is traditionally called argc, for "argument count."

Command line arguments follow next, all argc of them. These are typically referred to as argv, for "argument value(s)." That is, we get argv[0], argv[1], ..., argv[argc-1]. These are not the actual arguments, but pointers to arguments, i.e., memory addresses of the actual arguments. The arguments themselves are NUL-terminated character strings.

The argv list is followed by a NULL pointer, which is simply a 0. There is more, but this is enough for our purposes right now.

Note: If you have come from the MS-DOS® programming environment, the main difference is that each argument is in a separate string. The second difference is that there is no practical limit on how many arguments there can be.

Armed with this knowledge, we are almost ready for the next version of hex.asm. First, however, we need to add a few lines to system.inc:

First, we need to add two new entries to our list of system call numbers:

%define    SYS_open    5
%define SYS_close   6

Then we add two new macros at the end of the file:

%macro sys.open    0
    system  SYS_open

%macro  sys.close   0
    system  SYS_close

Here, then, is our modified source code:

%include   'system.inc'

%define BUFSIZE 2048

section .data
fd.in   dd  stdin
fd.out  dd  stdout
hex db  '0123456789ABCDEF'

section .bss
ibuffer resb    BUFSIZE
obuffer resb    BUFSIZE

section .text
align 4
    push    dword 1     ; return failure

align 4
global  _start
    add esp, byte 8 ; discard argc and argv[0]

    pop ecx
    jecxz   .init       ; no more arguments

    ; ECX contains the path to input file
    push    dword 0     ; O_RDONLY
    push    ecx
    jc  err     ; open failed

    add esp, byte 8
    mov [fd.in], eax

    pop ecx
    jecxz   .init       ; no more arguments

    ; ECX contains the path to output file
    push    dword 420   ; file mode (644 octal)
    push    dword 0200h | 0400h | 01h
    push    ecx
    jc  err

    add esp, byte 12
    mov [fd.out], eax

    sub eax, eax
    sub ebx, ebx
    sub ecx, ecx
    mov edi, obuffer

    ; read a byte from input file or stdin
    call    getchar

    ; convert it to hex
    mov dl, al
    shr al, 4
    mov al, [hex+eax]
    call    putchar

    mov al, dl
    and al, 0Fh
    mov al, [hex+eax]
    call    putchar

    mov al, ' '
    cmp dl, 0Ah
    jne .put
    mov al, dl

    call    putchar
    cmp al, dl
    jne .loop
    call    write
    jmp short .loop

align 4
    or  ebx, ebx
    jne .fetch

    call    read

    dec ebx

    push    dword BUFSIZE
    mov esi, ibuffer
    push    esi
    push    dword [fd.in]
    add esp, byte 12
    mov ebx, eax
    or  eax, eax
    je  .done
    sub eax, eax

align 4
    call    write       ; flush output buffer

    ; close files
    push    dword [fd.in]

    push    dword [fd.out]

    ; return success
    push    dword 0

align 4
    inc ecx
    cmp ecx, BUFSIZE
    je  write

align 4
    sub edi, ecx    ; start of buffer
    push    ecx
    push    edi
    push    dword [fd.out]
    add esp, byte 12
    sub eax, eax
    sub ecx, ecx    ; buffer is empty now

In our .data section we now have two new variables, fd.in and fd.out. We store the input and output file descriptors here.

In the .text section we have replaced the references to stdin and stdout with [fd.in] and [fd.out].

The .text section now starts with a simple error handler, which does nothing but exit the program with a return value of 1. The error handler is before _start so we are within a short distance from where the errors occur.

Naturally, the program execution still begins at _start. First, we remove argc and argv[0] from the stack: They are of no interest to us (in this program, that is).

We pop argv[1] to ECX. This register is particularly suited for pointers, as we can handle NULL pointers with jecxz. If argv[1] is not NULL, we try to open the file named in the first argument. Otherwise, we continue the program as before: Reading from stdin, writing to stdout. If we fail to open the input file (e.g., it does not exist), we jump to the error handler and quit.

If all went well, we now check for the second argument. If it is there, we open the output file. Otherwise, we send the output to stdout. If we fail to open the output file (e.g., it exists and we do not have the write permission), we, again, jump to the error handler.

The rest of the code is the same as before, except we close the input and output files before exiting, and, as mentioned, we use [fd.in] and [fd.out].

Our executable is now a whopping 768 bytes long.

Can we still improve it? Of course! Every program can be improved. Here are a few ideas of what we could do:

I shall leave these enhancements as an exercise to the reader: You already know everything you need to know to implement them.

This, and other documents, can be downloaded from ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/.

For questions about FreeBSD, read the documentation before contacting <[email protected]>.
For questions about this documentation, e-mail <[email protected]>.