
Functionol Prog mming
Why no one uses functional languages

Editor: Philip Wadler, Bell Laboratories, Lucent Technologies; wadler@research.bell-labs.com

Philip Wadler

To say that no one uses functional languages is an
exaggeration. Phone calls in the European Parliament
are routed by programs written in Ericsson's functional
language Erlang. Virtual CDs are distributed on Cor-
nell's network via the Ensemble system written in IN-
RIA's CAML, and real CDs are shipped by Polygram in
Europe using Software AG's Natural Expert. Functional
languages are the language of choice for writing theorem
provers, including the HOL system which helped debug
the design of the HP 9000 line of multiprocessors. These
applications and others are described in a previous col-
umn [1].

Still ... I work at Bell Labs, where C and C++ were
invented. Compared to users of C, "no one" is a tolerably
accurate count of the users of functional languages.

Advocates of functional languages claim they produce
an order of magnitude improvement in productivity. Ex-
periments don't always verify that figure - - sometimes
they show an improvement of only a factor of four. Still,
code that's four times as short, four times as quick to
write, or four times easier to maintain is not to be sniffed
at. So why aren't functional languages more widely used?

1 Reasons

Here is a list of some of the factors that inhibit adoption
of functional languages. I'll note some research aimed
at ameliorating these factors. If you know of relevant
projects that I've failed to mention, please bring them to
my attention.

Most of these factors remain serious impediments for
most systems. Notable exceptions are Ericsson's Er-
lang (www. erlang, se) and Harlequin's ML Works
(www. h a r l e q u i n , cora), two industrial-grade systems
with extensive user environments and support.

Compatibility Computing has matured to the point
where systems are often assembled from components
rather than built from scratch. Many of these components
are written in C or C++, so a foreign function interface

to C is essential, and interfaces to other languages can be
useful.

The isolationist nature of functional languages is be-
ginning to give way to a spirit of open interchange. Seri-
ous implementations now routinely provide interfaces to
C, and sometimes other languages. Interworking with the
imperative world is straightforward for strict languages
like ML or Erlang, but trickier for lazy languages like
Haskell or Clean, since laziness makes the order of eval-
uation difficult to predict. However, through a pleas-
ing interplay of theory and practice, recent research has
shown how abstract concepts such as monads or linear
logic can be applied to smoothly interface lazy functional
languages to the real world [2, 3].

Conquering isolationism is a task for everyone, not
just functional programmers. The computing industry
is now beginning to deploy standards, such as CORBA
and COM, that support the construction of software from
reusable components. Recent work allows any Haskell
program to be packaged as a COM component, and any
COM component to be called from Haskell. Among other
applications, this allows Haskell to be used as a scripting
language for Microsoft's Internet Explorer web browser
[4].

Libraries The fashionable idea of software reuse has
been around for ages in the form of software libraries. A
good library can make or break a language. Users are at-
tracted to Tcl primarily on the strength of the Tk graphics
library. Much of the attractiveness of Java has little to do
with the language itself, but with the associated libraries
for graphics, networking, databases, telephony, and en-
terprise servers. (Much of the unattractiveness of Java is
due to the same libraries.)

Considerable effort has been extended on developing
graphic user interface libraries for functional languages.
Haskell boasts a plethora: Fudgets, Gadgets, Haggis, and
Hugs Tk. SML/NJ has two, eXene and SML Tk. The
SML language comes with a powerful module system,
which makes flexible libraries easier to construct. One
example of such a library is ML RISC, a retargetable back

23

Fune#onal Programming
end that has been used for SML and C compilers and has
been adopted to a number of architectures [5].

Portability I have heard of numerous projects where C
won out over a functional language, not because C runs
faster (although often it does), but because the hegemony
of C guarantees that it is widely portable. For example,
researchers at Lucent would have preferred to build the
PRL database language using SML, but chose C++ be-
cause SML was not available on the Amdahl mainframe
they were required to use. On the other hand, abstract ma-
chines are a popular implementation technique, for both
functional languages and for Java, in part because writing
the machine in C makes it is easy to port to a wide variety
of architectures.

Availability Even when a functional language has been
ported to the machine and operating system at hand, it
may not be easy to use. For example, a typical response
from a user of Glasgow Haskell is that installing it was an
"adventure".

Large projects are understandably reluctant to com-
mit to a language unless it comes with a guarantee of
continuing support. A few functional languages are
available commercially: Research Software markets Mi-
randa, Abstract Hardware markets Poly ML, ISL mar-
kets Poplog/SML, Harlequin markets ML Works, and
Ericsson has a division devoted to support of Erlang.
Nonetheless, for many functional languages, it remains
difficult to ensure a stable source and reliable support.

An additional problem arises because functional lan-
guages are often under active development, creating ten-
sion between the needs of stability and research. The
Haskell community is attempting to resolve these by
defining Standard Hasketl, a version of the language that
will remain stable and supported while other versions of
Haskell continue to evolve [6].

Packagability Following the LISP tradition, many
functional language implementations offer a read-eval-
print loop. While convenient, it is also essential to pro-
vide some way to convert a functional program into a
standalone application program. Most systems now of-
fer this. However, these systems often incorporate the en-
tire runtime package for the library, and thus have unac-
ceptably large memory footprints. An ability to develop
compact standalone applications is essential.

Tools To be usable, a language system must be accom-
panied by a debugger and a profiler. Just as with in-
terlanguage working, designing such tools is straightfor-
ward for strict languages, but trickier for lazy languages.
However, there are few debuggers or profilers for strict
languages, perhaps because constructing them is not per-
ceived as research. That is a shame, since such tools are
sorely needed, and there remains much of interest to learn
about their construction and use.

Constructing debuggers and profilers for lazy lan-
guages is recognized as difficult. Fortunately, there have
been great strides in profiler research, and most imple-
mentations of Haskell are now accompanied by usable
time and space profiling tools. But the slow rate of
progress on debuggers for lazy languages makes us re-
searchers look, well, lazy.

At a larger scale, one wants integrated development
environments and software engineering methodologies.
Building an integrated development environment is a lot
of work with little research content, so it is not surprising
that this has attracted little attention. But there is plenty of
interesting work to be done in applying software method-
ologies to functional languages, and it is disappointing
that there is virtually no effort in this area.

Training qb programmers practiced in C, C++, or Java,
functional programs look odd. It takes a while to come to
grips with writing f (x , y) as f x y. Curried foodand
curried functions are both acquired tastes.

Programmers practiced in imperative languages are
used to a certain style of programming. For a given task,
the imperative solution may leap immediately to mind
or be found in a handy textbook, while a comparable
functional solution may require considerable effort to find
(even if once found it is more elegant). And though there
are a large range of problems that possess efficient solu-
tions in a functional language, there remain some tough
nuts for which the best known solutions are imperative in
style. (For these reasons, many functional languages pro-
vide an escape to the imperative style, for instance SML
includes updateable references as a basic data type, and
Haskell provides them via monads [7].)

The training problem is not intractable. Software AG
found they could train industrial programmers to use Nat-
ural Expert in a one-week course that included lazy eval-
uation, polymorphic types, and higher-order functions.
Typically, students were miffed when the compiler would
repeatedly reject programs for type errors, but pleasantly
surprised when their programs finally passed the type
checker and ran correctly on the first try [8].

24

Func#ionai Pro ing
Popularity If a manager chooses to use a functional
language for a project and the project fails, then he or
she will certainly be fired. I f a manager chooses C++ and
the project fails, then he or she has the defense that the
same thing has happened to everyone else.

While management problems are a significant barrier,
the flipside is a significant opportunity: a large project
that is in trouble may be willing to consider switching to
a functional language because the increase in productivity
may get them out of a jam. An effective way in can be to
offer to prototype the solution in a functional language,
and once the prototype is running show how to scale it to
a full solution.

While managers have their worries, so too do man-
agees. Experience with C++ or Java will buff up your
resume nicely, while Haskell or SML will do you little
good. Lucent's Pdiff system, written in SML, is a key tool
in maintaining database software for the 5ESS switch. No
developer could be found willing take on the role of main-
mining the system, and eventually a physicist looking to
switch fields was hired.

2 Non-reasons

On the other hand, there are two pieces of common cant
as to why people don't use functional languages to which
I do not subscribe.

Performance This might have been a reason a decade
ago, but these days the performance of functional lan-
guages often rivals C. That's a rough estimate. Perfor-
mance can be significantly inferior to C for some appli-
cations, and a wee bit better for others. But as a rough
starting point, within a factor of two of C seems fair.

More importantly, experience shows that while perfor-
mance that rivals C helps, it is not a requirement for suc-
cess. Tcl/Tk, Perl, and Visual Basic all rose to promi-
nence with implementations that are interpreted. Java has
become enormously successful with performance signifi-
cantly short of C. In the functional world, Erlang achieved
its first successes as an interpreted language.

One has languages with high performance that are not
widely used, and languages with middling performance
that are widely used. Performance is sometimes an issue,
but it is rare for it to be the deciding factor. It is im-
prudent to expect that all we need do is make functional
languages run blindingly fast in order for them to become
immensely popular.

"They don't get it" Functional programming is beau-
tiful, a joy to behold. Once someone understands func-
tional programming, he or she will switch to it immedi-
ately. The masses that stick with outmoded imperative
and object-oriented programming do so out of blind prej-
udice. They just don' t get it.

The above paragraph echoes beliefs deeply held by
many researchers. But the long list in the preceding sec-
tion should make it clear that it may be possible to be
attracted by functional programming, but still find it un-
usable.

For instance, here is a posting to the Haskell mailing
list.

I have been trying to learn Haskell and have
been impressed with both its elegance and the
way it allows me to write code that works on
the first try (or two). However, I am not a re-
searcher. I do commercial software develop-
ment and need some documentation and stabil-
ity. [9]

Mailing lists related to functional languages are rife with
requests for foreign function interfaces, libraries, and
tools.

Doubtless, there are prejudiced individuals out there,
accustomed to C and its variants and dismissive of al-
ternatives. But many out there do "get it", and eschew
functional programming for other reasons.

3 Lessons

To summarize, there are a large number of factors that
hinder the widespread adoption of functional languages.
To be widely used, a language should support interlan-
guage working, possess extensive libraries, be highly
portable, have a stable and easy to install implementa-
tion, come with debuggers and profilers, be accompanied
by training courses, and have a good track record on pre-
vious projects. It helps if the implementation is efficient,
but this is not an absolute requirement. Potential users
may find the language attractive, but reject it because of
some or all of the preceding factors. Here are the lessons
I draw from this exercise.

Killer App The factors listed constitute a significant
barrier to use of functional languages, but not an absolute
barrier. A user will forego many conveniences if given

25

Programming
a compelling reason to do so. Tcl/Tk and Perl rose to
prominence without benefit of debuggers or profilers.

Some researchers hope that the high-level nature of
functional languages will prove compelling on its own,
but experience to date suggests this hope is misplaced.
Instead, experience shows that users will be drawn to a
language if it lets them conveniently do something that
otherwise is difficult to achieve. Like other new technolo-
gies, functional languages must seek their killer app.

A previous column listed a number of such applica-
tions, stressing how each exploited some strength of func-
tional languages [1]. Telecommunications developers are
drawn to Erlang by its support for concurrency and distri-
bution; the latter is tied directly to the fact that functional
data, being immutable, is well suited for transmission
across a network. Creators of theorem provers are drawn
to ML by its support for symbolic computations. Geneti-
cists are drawn to CPL/Kleisli because its type system
supports access to heterogeneous databases, and because
the mathematical properties of functional languages can
be exploited in query optimization. Expert system devel-
opers are drawn to Natural Expert because lazy evalua-
tion resembles reasoning by backward chaining, and be-
cause lazy evaluation enables a space-efficient interface
to databases.

Top-notch functional programming research is often
tied to applications. Carnegie-Mellon grounds its func-
tional programming work in the Fox project, which aims
to build network drivers in SML. Chalmers researchers
have close relations with Carlstedt and Logikkonsult, and
among other things have applied partial evaluation to air-
line scheduling. Glasgow teamed up with York to pro-
duce a whole book of applications. The Oregon Graduate
Institute is teaming up with Intel to look at hardware de-
sign. Yale researchers have applied functional program-
ming to music performance and natural language under-
standing, and are teaming up with Microsoft to look at
animation. However, most of this research has not cen-
tered around application libraries or packages that might
attract significant user communities.

Applications have unexplored depths. Jump in, the wa-
ter's fine!

Research emphasis Despite the applications work
listed above, functional programming researchers place
far more emphasis on developing systems than on apply-
ing those systems. Further, the bulk of effort is devoted to
language design, program analysis, and the construction
of optimizing compilers, with far less to debuggers, pro-
filers, and software engineering tools and methodologies.

Shifts in research emphasis may require shifts in the re-
ward structure. As Kuhn noted in The Structure of Scien-
tific Revolutions, the mainstream of academic work con-
sists of incremental contributions to existing paradigms.
Within functional programming, the mainstream is pro-
gram analysis and compiler development. Leaders in the
field need to move into the new areas of tools and appli-
cations, and conferences and journals need to explicitly
welcome contributions in these areas. Gopal Gupta is
organizing the PADL 99, the First International Confer-
ence on Practical Aspects of Declarative Languages [10].
To aid a paradigm shift, a field may set out new criteria
for judging new work. Simon Peyton Jones and myself
have just completed an editorial for the Journal of Func-
tional Programming that welcomes papers on functional
programming practice and experience, and sets out the
criteria we apply to judge them [11].

A modest proposal Even a modest implementation of
a functional language should provide a foreign function
interface, a debugger, and a profiler. By this measure, I
know of only a few modest implementations of functional
languages, including Ericsson's Erlang, Harlequin's ML
Works, and INRIA's CAML.

Andrew Tolmach and Andrew Appel devised an in-
genious debugger for the SML/NJ implementation [12],
but as the implementation evolved the debugger was not
maintained, and there is no debugger available for the cur-
rent release of SML/NJ.

There is a tension between building useful systems and
extending the frontiers of research, and functional lan-
guage researchers can pride themselves on having found
the resources to build some excellent systems. We now
need to take the next step, and ensure these systems in-
clude essential interfaces and tools. We should no longer
settle for implementations that are not even modest.

Hope This long list of reasons why no one uses func-
tional languages may look depressing, but I prefer to look
on the bright side. People do not reject functional lan-
guages because of stupidity, rather they reject them for a
variety of good reasons. Stupidity is famously resistant
to attack - - these other problems are something we can
tackle.

References

[1] Philip Wadler, An angry half-dozen, ACM SIG-
PLAN Notices 33(2):25-30, February 1998. [NB.

26

Functional Progra mmin
Table of contents on the cover of this issue is
wrong.]

[2] Philip Wadler. How to declare an imperative.
ACM Computing Surveys, 29(3):240-263, Septem-
ber 1997.

[3] Rinus Plasmeijer and Marko van Eekelen, Pure
and efficient functional programming using the
"unique" features of Clean. ACM SIGPLAN No-
tices, to appear.

[4] Simon Peyton Jones, Erik Meijer, and Daan Leijen.
Scripting COM components in Haskell. IEEE
F~fth International Conference on Software Reuse,
Vancouver, BC, June 1998.
www. haskell, org/active/

act ivehaskel i. html

[5] Lal George, MLRISC: Customizable and Reusable
Code Generators, Bell Labs technical report, May
1997.
www. cs. bell-labs, com/cm/cs/what /

smlnj/doc/MLRISC/

[6] John Hughes, editor, Standard Haskell.
www. cs. chalmers, se/~rjmh/Haskell /

[7] J. Launchbury and S. L. Peyton Jones, Lazy func-
tional state threads. In ACM Conference on Pro-
gramming Language Design and Implementation,
Orlando, Florida, 1994.

[8] Nigel W. O. Hutchison, Ute Neuhaus, Manfred
Schmidt-Schauss, and Cordy Hall. Natural Ex-
pert: a commercial functional programming en-
vironment. Journal of Functional Programming,
7(2): 163-182, March 1997.

[9] S. Alexander Jacobson a l e x @ i 2 x , corn, letter to
Haskell mailing list, 3 May 1998.

[10] Gopal Gupta, chair, First International Conference
on Practical Aspects.
www. cs. nsmsu, edu/~complog/

conferences/padl 9 9 /

[11] Simon Peyton Jones and Philip Wadler. Editorial:
Practice and experience papers, Journal of Func-
tional Programming, to appear.
www. dcs. glasgow, ac. uk/j fp/

[12] Andrew Tolmach and Andrew Appel, A Debugger
for Standard ML. Journal of Functional Program-
ming, 5(2): 155-200, April 1995.

Philip Wadler works with the Unix and ML groups at Bell
Labs. He must like working with others: he is co-designer
of the Haskell and GJ languages, co-author of Introduc-
tion to Functional Programming, and co-Editor-in-Chief
of the Journal of Functional Programming.

27

