
Grocery Inventory Tutorial

07/06 Version 1.2

Grocery Inventory Tutorial

The grocery demo aims to exhibit the connectivity of a SOA enabled enterprise application
system by using the FUSE SOA platform.

© Copyright 2006 LogicBlaze, Inc.™. All rights reserved. The contents of this publication are protected by
U.S. copyright law and international treaties. Unauthorized reproduction of this publication or any portion
of it is strictly prohibited.

Contents
1. Overview of the Grocery Inventory Demonstration... 4

2. Ajax Implementation..5
2.1. Running the Demonstration... 5
2.2. How the Grocery Inventory Demo Works..8

24/7 Client System... 10
27/7 Monitoring System... 12
Good Life Supplier Management System.. 15
Speed Trans Delivery Scheduling System.. 18

3. Non-Ajax Implementation... 20
3.1. Running the Demonstration... 20
3.2. Details..20

4. Additional Resources..20

Grocery Inventory Tutorial

1. Overview of the Grocery Inventory Demonstration
The Grocery Inventory Demonstration is a simulation of an inventory system for a grocery store. You
can view the inventory of the store directly, let a supplier check the stock of an item they inventory, let
a partner monitor inventory, and send transactions (random or user specified) to change inventory.

The demo consists of a single enterprise application by the company 24/7 grocery store. It consists of
a main inventory database that is accessed over different binding protocols and exposed to different
services.

Business Entities:
• Inventory Database – the inventory database contains the data owned by the 24/7 grocery store

and is queried by its own applications and external business partner applications.
• 24/7 Monitoring System – AJAX based system that continually displays the quantities of the

items in the inventory system of the 24/7 grocery store.
• 24/7 Client System – simple HTTP based system that simulates a client application that updates

the inventory database (e.g., POS system).
• Good Life Supplier Management System – simulates an external system that accesses the

inventory database via a Web service. In this case, the client is a supplier for the 24/7 grocery
store that wants to check the level of the items it is supplying by querying the database of the
store.

• Speed Trans Delivery Scheduling System – simulates an external system that accesses the
inventory database via a JMS client. Speed Trans publishes its request and waits for a reply. In
this case, Speed Trans is a partner company that delivers different products from different
grocery companies. It queries its partner groceries for availability of specific items.

The demo was implemented using two approaches : (1) the Ajax Demo shows the use of Ajax and a
ServiceMix JDBC component, and (2) the Non-Ajax Demo shows the use of a servlet/jsp front-
end interface. Both approaches were implemented to illustrate the differences between them. As you
will see if you run both of them, the Ajax Demo is a much more efficient implementation.

4

Grocery Inventory Tutorial

2. Ajax Implementation
This section shows the details of the first (and preferred) approach using Ajax.

2.1. Running the Demonstration
To run the Ajax demo perform the following steps:

1. Go to http://localhost:8080/grocery-demo/

2. Click on the “Ajax Demo” link. This will show you the inventory of the “24/7 Grocery” store.

5

http://localhost:8080/grocery-demo/

Grocery Inventory Tutorial

3. Click the link to open the “Transaction Generator”. You may chose to specify a value and submit
a single transaction or send 10 random transactions. Please watch your “Inventory Monitoring
System” window to see the results of this action.

4. Click the link to open the “Supplier Page”. Enter a value in the Stock Limit field. Click
“Search” to see what items have gone below the limit. The “Password” required to run this
portion of the demo is “password”.

6

Grocery Inventory Tutorial

5. Click the link to open the “Partner Page”. Select as many check boxes as you wish in “Grocery
Items” column and click “Check Items Availability” to view the availability of each individual
grocery item.

7

Grocery Inventory Tutorial

2.2. How the Grocery Inventory Demo Works
The diagrams below show the architecture we have used to implement this FUSE + Ajax application.
The first diagram is a complete view of the demonstration. For simplicity the main diagram has been
broken into many diagrams (shown later) representing each of the individual systems.

The grocery demo consists of JBI services, binding components, and actual client applications that
access a single inventory database.

1. HTTP Component – a HTTP binding component that gives HTTP clients access to the inventory
database.

2. HTTP + SOAP Component – SOAP enabled HTTP binding component that exposes a Web
service that provides access to the inventory database.

3. JMS (Push Model) Component – JMS binding component that allows a JBI service to publish
JMS messages to an external topic.

4. JMS (Pull Model) Component– JMS binding component that provides a request reply approach
to querying the database.

8

Figure 1: All Systems View

Grocery Inventory Tutorial

5. Inventory DB Poller Component – JBI service that constantly sends an update request to the
inventory JDBC component that tells it to publish a list of updated items, since the last check.

6. Inventory View Component – JBI service that chains together the Inventory View
Transform Component and Inventory JDBC Component to provide a limited access to
the Inventory DB with simple authentication mechanism and query checking.

7. Inventory View Transform Component – JBI service that filters a request to the inventory JDBC
component that limits the query that can be perform on the database.

8. Inventory JDBC Component – JBI service that provides direct access to the inventory database.

9

Grocery Inventory Tutorial

24/7 Client System

Figure 2: 24/7 Client System

Message Flow:
1. Client.html submits a form with the updated contents to the TransactionServlet.

2. TransactionServlet generates the XML that will be given to the JBI container. It either
sends a single request, or loops and generates several requests.

3. HTTP binding component receives the HTTP request from the HTTP client and transforms it
into a normalized message that is published to the Inventory JDBC component.

4. The Inventory JDBC Component receives the normalized message and executes the SQL
request using the configured datasource.

Component Configuration:
1. The TransactionServlet creates a HTTP client that will send a request to the URL:

http://localhost:8077/grocery-demo/JdbcService/
2. The specified URL is mapped to a HTTP binding component. This configuration is located in the

xbean.xml of the grocery-demo-http module of the grocery demo and creates a HTTP BC
mapped to the specified location URI.

 <http:endpoint
 service="grocery:JdbcToResponseService"
 endpoint="grocery:HttpJdbcEndpoint"
 role="consumer"
 locationURI="http://localhost:8077/grocery-demo/JdbcService/"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-out"
 />

• service – the target JBI service of this HTTP binding component. Messages received by this
endpoint will be routed to the JdbcToResponseService endpoint.

• endpoint – identifies this HTTP BC in the JBI namespace.
• role – as a consumer the endpoint is able to accept requests from a component outside the JBI

environment.
• locationURI – the URI this HTTP BC is mapped to.

10

http://localhost:8077/grocery-demo/JdbcService/

Grocery Inventory Tutorial

• defaultMep – the message exchange pattern this endpoint will use. In this case, it will use the in-
out MEP, which allows it to accept a request and provide a response.

3. The target of the HTTP BC is a custom JBI service called the JdbcComponent that is deployed
in the lightweight container. The class inherits from a ServiceMix component that allows it to
process message exchanges and either provides a response or not depending on the MEP. The
JdbcComponent class provides access to the underlying datasource. The deployment
configuration of the JdbcComponent is located in the servicemix.xml of the grocery-demo-
jdbc module.

 <sm:activationSpec
 componentName="JdbcToResponseComponent"
 endpoint="grocery:JdbcToResponseComponent"
 service="grocery:JdbcToResponseService">
 <sm:component>
 <bean class="org.logicblaze.soa.grocery.components.JdbcComponent">
 <property name="dataSource" ref="databaseServer"/>
 <property name="responseRequired" value="true"/>
 </bean>
 </sm:component>
 </sm:activationSpec>

• componentName/endpoint/service – identifies this JBI service in the JBI namespace.
• bean:class – specifies the class name of this custom JBI component
• bean:dataSource – the spring configured datasource this component will use.
• bean:responseRequired – if true, the component will send a request/response if an empty

record set is queried or updates were performed, else it will not send anything.

11

Grocery Inventory Tutorial

27/7 Monitoring System

Figure 3: 27/7 Monitoring System

Message Flow:
1. A polling component is deployed which sends a JBI request for item updates every 2.5

seconds to the Inventory JDBC component.
2. The JDBC Component receives the update request, and queries all updated items.

3. The result set is then routed to the JMS component.
4. The JMS component receives the result set as normalized messages and converts it to a JMS

text message.
5. The JMS component publishes the JMS text message to the JMS topic

topic.grocery.update.
6. The monitor.html via the AjaxServlet receives the JMS message and updates the

monitoring table with the selected items that have been updated.

Component Configuration:
1. The Inventory DB Poller Component is a custom JBI component that extends from a

polling component provided by ServiceMix. It is deployed in the lightweight container, where
it will constantly send a message to the Inventory JDBC component requesting the recent
updates to the database. Its deployment configuration is located in the servicemix.xml of the
grocery-demo-poll module.

 <sm:activationSpec
 componentName="InventoryDbPoller"
 service="grocery:InventoryDbPollerService"
 interfaceName="grocery:InventoryDbPollerInterface"
 destinationService="grocery:JdbcToJmsService">
 <sm:component>
 <bean class="org.logicblaze.soa.grocery.components.InventoryDbPoller">

12

Grocery Inventory Tutorial

 <property name="period" value="2500"/>
 </bean>
 </sm:component>
 </sm:activationSpec>

• componentName/interfaceName/service – identifies this JBI service in the JBI namespace.
• destinationService – the target JBI service of this component. This component will constantly

send a message exchange to the JdbcToJmsService.
• bean:class – specifies the class name of this custom JBI component
• bean:period – the interval between each poll in milliseconds.

2. The target of the polling component is the same JdbcComponent that provides access to the
Inventory Database, except that this component is configured to forward its result set to a JMS
binding component. The deployment configuration of the JdbcComponent is located in the
servicemix.xml of the grocery-demo-jdbc module.

 <sm:activationSpec
 componentName="JdbcToJmsComponent"
 service="grocery:JdbcToJmsService"
 destinationService="jms-bind:MySqlDbUpdateJmsService">
 <sm:component>
 <bean class="org.logicblaze.soa.grocery.components.JdbcComponent">
 <property name="dataSource" ref="databaseServer"/>
 </bean>
 </sm:component>
 </sm:activationSpec>

• componentName/service – identifies this JBI service in the JBI namespace.
• destinationService – the target JBI service of this component. This component will send the

result set of its query to a configured JMS component identified by:
jms-bind:MySqlDbUpdateJmsService

• bean:class – specifies the class name of this custom JBI component
• bean:dataSource – the spring configured datasource this component will use.

3. The result set of the query will be routed to a JMS component where it will publish the result as a
JMS Message to a JMS Topic. The deployment configuration of the JMS Component is located
in the xbean.xml of the grocery-demo-jms module.

 <jms:endpoint
 service="jms-bind:MySqlDbUpdateJmsService"
 endpoint="mySqlDbUpdateJms"
 role="provider"
 destinationStyle="topic"
 jmsProviderDestinationName="topic.grocery.update"
 connectionFactory="#jmsFactory"
 />

• service/endpoint – identifies this JMS BC in the JBI namespace.

13

Grocery Inventory Tutorial

• role – as a provider the endpoint is able to provide JMS services from inside the JBI container to
the outside environment. In this case, it allows JBI services to publish JMS messages to an
external broker.

• destinationStyle – identifies the type of JMS destination whether topic or queue.
• jmsProviderDestinationName – the name of the JMS destination that the message will be

published to.
• connectionFactory – the spring configured JMS connection factory that the binding component

will use to connect to the external JMS broker.

14

Grocery Inventory Tutorial

Good Life Supplier Management System

Figure 4: Good Life Supplier Management System

Message Flow:
1. supplier.html submits a form for checking supply quantities to the TransactionServlet.
2. TransactionServlet composes the SOAP message and sends it to the HTTP + SOAP

binding component.

3. HTTP + SOAP BC receives the SOAP message. It then extracts the actual message content,
transforms it into a normalized message, and sends it to the Inventory View Component.

4. The Inventory View Component receives the normalized message and routes it to the
Inventory View Transform Component.

5. The Inventory View Transform Component receives the message where it is
authenticated and transformed into a query statement message.

6. The transformed message is then sent back to the Inventory View Component as a
response.

7. The Inventory View Component then routes the transformed message to the Inventory
JDBC component, where the query is executed in the specified datasource.

8. The result of the query is then normalized and sent back to the Inventory View Component
as a response.

9. The Inventory View Component then routes the final response back to the HTTP + SOAP
binding component as its response.

10. The HTTP + SOAP BC receives the normalized message response, and transform it into a
SOAP message and sent back as the response of the HTTP request.

15

Grocery Inventory Tutorial

11. The TransactionServlet receives the response and routes it to the supplier.html.
12. The supplier.html parses the response and displays the result in the Web page.

Component Configuration:
1. The TransactionServlet will create a HTTP client that will send a request to the URL:

http://localhost:8077/grocery-demo/InventoryViewService/
2. The specified URL is mapped to a HTTP + SOAP binding component. This configuration is

located in the xbean.xml of the grocery-demo-http module of the grocery demo and
basically creates a HTTP + SOAP BC mapped to the specified location URI.

 <http:endpoint
 service="grocery:InventoryViewService"
 endpoint="grocery:HttpInventoryViewEndpoint"
 role="consumer"
 soap="true"
 locationURI="http://localhost:8077/grocery-demo/InventoryViewService/"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-out"
 />

• service – the target JBI service of this HTTP + SOAP binding component. Messages
received by this endpoint will be routed to the InventoryViewService endpoint.

• endpoint – identifies this HTTP + SOAP BC in the JBI namespace.
• role – as a consumer the endpoint is able to accept requests from component outside the JBI

environment.
• soap – indicates whether this HTTP component is SOAP enabled or not. In this case the

component is SOAP enabled.
• locationURI – the URI this HTTP + SOAP BC is mapped to.
• defaultMep – the message exchange pattern this endpoint will use. In this case, it will use the in-

out MEP, which allows it to accept a request and provide a response.

3. The Inventory View Component is a ServiceMix component that allows it to chain the
response of a JBI component as the in message of the next component in the chain. The
deployment configuration of the Inventory View Component is located in the
servicemix.xml of the grocery-demo-jdbc module.

 <sm:activationSpec
 componentName="InventoryViewComponent"
 endpoint="grocery:InventoryViewComponent"
 service="grocery:InventoryViewService">
 <sm:component>
 <util:ChainedComponent>
 <services>
 <qname>grocery:InventoryViewTransformService</qname>
 <qname>grocery:JdbcToResponseService</qname>
 </services>
 </util:ChainedComponent>

16

http://localhost:8077/grocery-demo/InventoryViewService/

Grocery Inventory Tutorial

 </sm:component>
 </sm:activationSpec>

• componentName/endpoint/service – identifies this JBI service in the JBI namespace.
• util:ChainedComponent – specifies the ServiceMix chain component as the JBI component that

will be used.
• services – an ordered list of qualified names of JBI services that will be chained together.

4. The Inventory View Transform Component is a custom component that accepts a
specific type of message format and transforms it to the query message format that is recognized
by the Inventory JDBC Component. This allows the Inventory View Transform
Component to perform simple authentication and limits the type of SQL statements that can be
executed. The deployment configuration of the Inventory View Transform Component is
located in the servicemix.xml of the grocery-demo-jdbc module.

 <sm:activationSpec
 componentName="InventoryViewTransformComponent"
 endpoint="grocery:InventoryViewTransformComponent"
 service="grocery:InventoryViewTransformService">
 <sm:component>
 <bean class="org.logicblaze.soa.grocery.components.InventoryViewTransformComponent">
 <property name="auth">
 ...
 </property>
 <property name="role">
 ...
 </property>
 </bean>
 </sm:component>
 </sm:activationSpec>

• componentName/endpoint/service – identifies this JBI service in the JBI namespace.
• bean:class – specifies the class name of this custom JBI component.
• auth/role – key-value pair of the allowed usernames and password that this component will

recognize including the roles of each user.
5. The Inventory JDBC Component configuration used is the same as that described in the

Component Configuration of the 24/7 Client System Section.

17

Grocery Inventory Tutorial

Speed Trans Delivery Scheduling System

Figure 5: Speed Trans Delivery Scheduling System

Message Flow:
1. The partner.html via the AjaxServlet publishes an item availability request message to

the JMS topic: topic.service.itemview.request.
2. The JMS binding component listens on the topic and receives the item request message

and transforms it into a normalized message.
3. The JMS BC sends the normalized message to the Inventory View Component for

processing.
4. The Inventory View Component receives the normalized message and routes it to the

Inventory View Transform Component.

5. The Inventory View Transform Component receives the message where it is
authenticated and transformed into a query statement message.

6. The transformed message is then sent back to the Inventory View Component as a
response.

7. The Inventory View Component then routes the transformed message to the Inventory
JDBC component, where the query is executed in the specified datasource.

8. The result of the query is then normalized and sent back to the Inventory View Component
as a response.

9. The Inventory View Component then routes the final response back to the JMS binding
component as its response.

10. The JMS BC receives the normalized message response and transforms it into a JMS message.

18

Grocery Inventory Tutorial

11. The JMS BC sends the message to the destination specified in the JMSReplyTo header of the
message. In this case, the destination is the JMS topic:
topic.service.itemview.response.

12. The partner.html via the AjaxServlet receives the message and updates the item
availability table in the web page.

Component Configuration:
1. The JMS Component allows the partner application to interact with the Inventory DB via JMS

by publishing and subscribing to specific JMS topics implementing a request-response model.
The deployment configuration of the JMS Component is located in the xbean.xml of the
grocery-demo-jms module.

 <jms:endpoint
 service="grocery:InventoryViewService"
 endpoint="InventoryViewComponent"
 defaultMep="http://www.w3.org/2004/08/wsdl/in-out"
 role="consumer"
 destinationStyle="topic"
 jmsProviderDestinationName="topic.service.itemview.request"
 connectionFactory="#jmsFactory"
 />

• service/endpoint - the target JBI service of this JMS binding component. JMS messages
received by this endpoint will be routed to the InventoryViewService endpoint.

• defaultMep – the message exchange pattern this endpoint will use. In this case, it will use the in-
out MEP, which allows it to accept a request and provide a response.

• role – as a consumer, this JMS BC is able to listen to an external JMS topic and process
requests directed to it. In this case, the JMS BC will listen for item availability requests from the
JMS topic: topic.service.itemview.request.

• destinationStyle – identifies the type of JMS destination whether topic or queue.
• jmsProviderDestinationName – the name of the JMS destination that the JMS BC will listen

from.
• connectionFactory – the spring configured JMS connection factory that the binding component

will use to connect to the external JMS broker.
2. The Inventory View Component configuration used is the same as that described in the

Component Configuration of the Good Life Supplier Management System Section.
3. The Inventory View Transform Component configuration used is the same as that

described in the Component Configuration of the Good Life Supplier Management System
Section.

4. The Inventory JDBC Component configuration used is the same as that described in the
Component Configuration of the 24/7 Client System Section.

19

Grocery Inventory Tutorial

3. Non-Ajax Implementation
This section shows the details of the (non-preferred) approach without Ajax.

3.1. Running the Demonstration
To run the Non-Ajax demo perform the following steps:

1. Go to http://localhost:8080/grocery-demo/
2. Click the “Non-Ajax Demo” link. This will show you the inventory of the “24/7 Grocery” store.
3. Click the link to open the “Transaction Generator”. You may chose to specify a values and submit

a single transaction or send 10 random transactions. Please watch your “Inventory Monitoring
System” window to see the results of this action.

4. Click the link to open the “Supplier Page”. Enter a value in the “Stock Limit” field. Click “Search”
to see what items have gone below the limit.

5. Click on the link to open the “Partner Page”. Select as many check boxes as you wish in
“Grocery Items” column and click “Check Items Availability” to view the availability of each
individual grocery item.

3.2. Details
The functionality of the Ajax and the non-Ajax Demonstrations are essentially the same, but the
execution has two very distinct feels. The Ajax demonstration (the one we prefer) is cleaner in its feel
when compared to the non-Ajax demonstration. Notice how the non-Ajax demonstration has to refresh
the whole web page. The Ajax demonstration just refreshes the numbers.

4. Additional Resources
For more information about MySQL please see http://www.mysql.com/.

MySQL Documentation for 5.0 - http://dev.mysql.com/doc/refman/5.0/en/index.html

For more information about Derby please see http://db.apache.org/derby/

Derby Documentation - http://db.apache.org/derby/manuals/index.html

Open Source Database Comparison - http://www.devx.com/dbzone/Article/29480?trk=DXRSS_DB

For more information on lightweight components please see
http://www.servicemix.org/What+is+a+lightweight+component.

For more information on deploying lightweight components please see
http://docs.codehaus.org/display/SM/Deploying+Lightweight+Components+Tutorial.

20

http://docs.codehaus.org/display/SM/Deploying+Lightweight+Components+Tutorial
http://www.servicemix.org/What+is+a+lightweight+component
http://www.devx.com/dbzone/Article/29480?trk=DXRSS_DB
http://db.apache.org/derby/manuals/index.html
http://db.apache.org/derby/
http://dev.mysql.com/doc/refman/5.0/en/index.html
http://www.mysql.com/

	1. Overview of the Grocery Inventory Demonstration
	2. Ajax Implementation
	2.1. Running the Demonstration
	2.2. How the Grocery Inventory Demo Works
	24/7 Client System
	27/7 Monitoring System
	Good Life Supplier Management System
	Speed Trans Delivery Scheduling System

	3. Non-Ajax Implementation
	3.1. Running the Demonstration
	3.2. Details

	4. Additional Resources

