
Introduction to Apache ActiveMQ

07/06 Version 1.2

Introduction to Apache ActiveMQ

This document is a brief introduction to Apache ActiveMQ in LogicBlaze FUSE. Apache ActiveMQ is a
fast open source Java Message Service JMS 1.1 provider and Message Fabric, supporting clustering,
peer networks, discovery, TCP, SSL, multi-cast, persistence, and XA. Apache ActiveMQ integrates
seamlessly into J2EE 1.4 containers, light weight containers, and any Java application. Apache
ActiveMQ is released under the Apache 2.0 License.

© Copyright 2006 LogicBlaze, Inc.™. All rights reserved.

Introduction to Apache ActiveMQ

1. ActiveMQ in LogicBlaze FUSE
Inside LogicBlaze FUSE we use Apache ActiveMQ to provide high performance, reliable, JMS-based
messaging, plus inter-operate with all standard JMS providers.

Apache ActiveMQ comes preinstalled with the LogicBlaze FUSE distribution. To see a sample
application using Apache ActiveMQ, please read the Loan Broker Tutorial.

2. Configuration
The LogicBlaze FUSE distribution includes Apache ActiveMQ preconfigured for you. However, if you
need to customize the configuration for Apache ActiveMQ, edit this file:

[fuse_dir]\components\activemq-xbean.xml

where [fuse_dir] is the directory in which LogicBlaze FUSE was installed.

After editing the activemq-xbean.xml please restart FUSE to make your changes take
effect.

LogicBlaze FUSE supports an XML deployment descriptor for configuring the Apache ActiveMQ
Message Broker.

There are many things which can be configured, such as:

• transport connectors which consist of transport channels and wire formats
• network connectors using network channels or discovery
• discovery agents
• persistence providers & locations
• custom message containers (such as last image caching, etc.)

XBean is used to perform the XML configuration. If you are already using XBean then you can just mix
and match your Spring/XBean XML configuration with ActiveMQ configuration.

See the XML Reference at http://incubator.apache.org/activemq/ for details of the XML
configuration.

ActiveMQ has many strategy pattern plugins for transports, wire formats, persistence, and many other
things, therefore, we wanted to leave the configuration format open so that you the developer can
configure and extend ActiveMQ in any direction you wish.

3

http://incubator.apache.org/activemq/

Introduction to Apache ActiveMQ

We use the Spring XML configuration file format, which allows any beans or POJOs to be wired
together and configured. However, Spring's XML can be verbose, so we have implemented an
ActiveMQ extension to the Spring XML which knows about the common, standard ActiveMQ things
you're likely to do, for example, tags such as connector, wireFormat, serverTransport,
persistence. At any time you can fall back to the normal Spring way of doing things, with tags such
as bean, property, etc.

This means there is an ActiveMQ DTD which extends the Spring DTD. Therefore, DTD-aware XML
editors can help you edit configuration files without you having to look at Java code to remember
property and class names, etc.

3. Monitoring a Broker
To monitor a message broker:

1. Run a broker setting the broker property useJmx to true.

• For an XBean configuration:

<broker useJmx="true"brokerName="BROKER_1">
...
 <broker>

• For url configuration

broker:(tcp://localhost:61616)?useJmx=true

In the [fuse_dir]\components\activemq\activemq-xbean.xml file the useJmx
property is set to true. You could also set this property in a custom configuration file.

2. Run a JMX console, for example, JConsole. JConsole is a JMX console included in the JDK
<JAVA_HOME>/bin/jconsole.exe.

3. Connect to the given JMX URL:

jconsole service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

4. Additional Resources
For more information on Apache ActiveMQ: http://incubator.apache.org/activemq/.

For more information on the Java Message Service (JMS): http://java.sun.com/products/jms/.

4

http://java.sun.com/products/jms/
http://incubator.apache.org/activemq/

	Introduction to Apache ActiveMQ

