
Introduction to Apache ServiceMix

Introduction to Apache
ServiceMix

07/06 Version 1.2

Introduction to Apache ServiceMix

Apache ServiceMix is a Java Business Integration (JBI) compliant Enterprise Service Bus (ESB). This
document introduces Apache ServiceMix and explains its role as an enterprise service bus within the
LogicBlaze FUSE distribution. This document defines some JBI terminology that is necessary to be
familiar with before reading the rest of the documentation.

© Copyright 2006 LogicBlaze, Inc™. All rights reserved.

2

Introduction to Apache ServiceMix

1. Introduction

Apache ServiceMix is an enterprise service bus (ESB) designed according to the Java Business
Integration (JBI) specification. An ESB allows disparate applications, platforms and business
processes to exchange data with each other in a protocol-neutral way. The JBI specification (JSR 208)
defines the manner in which this communication will take place. It is helpful to read the JSR 208
specification to better understand how Apache ServiceMix works.

The diagram below gives a simple view of a JBI container. Application A is an existing or legacy
application. It needs to exchange information with an incompatible application, Application B. Apache
ServiceMix is represented by the JBI Container. Apache ServiceMix enables the two applications to
exchange data.

Figure 1: JBI Environment

1. Application A connects into the JBI environment via a binding component (defined later).
Binding component A communicates to Application A using a protocol that A understands, e.g.,
HTTP, JMS, etc.

2. Binding Component A translates the message from its original format into a neutral or
normalized format. The normalized message is passed to a service engine component
(defined later) for some processing. The message is sent via the Normalized Message Router
(NMR).

3. The Service Engine sends the message over the NMR to Binding Component B.

4. Binding Component B will denormalize (convert) the message into a format that Application B
can understand and then send the message to Application B.

To get started quickly the next section will define some JBI terminology that will be used throughout
the LogicBlaze FUSE documentation.

3

2. Brief Background on Apache ServiceMix

To understand LogicBlaze FUSE and its capabilities it is critical to have some understanding of
Apache ServiceMix. Apache ServiceMix is a JBI compliant ESB. JBI allows third party components to
be plugged into a standard infrastructure, and it allows those components to inter-operate in a defined
way. There are two major functions of the JBI container that we will focus on here: JBI components
and the mechanism for exchanging information.

2.1. JBI Components

The JBI specification requires two types of components. They are defined by JSR 208 as:

Service Engine (SE): SEs provide business logic and transformation services to other
components.

Binding Component (BCs): BCs provide connectivity to services external to the JBI
installation. BCs convert protocol and transport specific messages, such as HTTP, SOAP, and
JMS messages to a normalized format.

Service engines perform business logic, for example, in the Loan Broker demonstration (see Loan
Broker Tutorial) there is a service engine that accepts loan rate requests, gets a credit score for a loan
applicant, and then determines the lowest loan rate. Service engines also provide transformation
services, for example, transforming XML data to an HTML format.

Binding components communicate with external applications in the protocol used by the external
application. BCs translate external messages into the normalized format that is used within the JBI
infrastructure. All messages passed within the JBI system are in normalized format.

SEs and BCs can be service providers or service consumers or both.

JBI components often function as a container themselves. Artifacts can be deployed to these
"container components" to add additional functionality to them. Using the example from JSR 208, "a
service engine that provides XSLT-based transformation services would have XSLT style sheets
deployed to it, in order to add new transformation operations. This process of adding such component-
specific artifacts to an installed component is called deployment, to distinguish it from component
installation. JBI terms a collection of deployment artifacts and associated metadata a service
assembly." Therefore, components are installed on LogicBlaze FUSE; artifacts are deployed to a
specific component.

Another term you will see is service unit. A service unit (SU) is a single deployment artifact to be
deployed on a component. A Service Assembly (SA) is a standard packaging of artifacts to be
deployed as a unit, which provides composite deployment capability. The standard packaging of SAs
and SUs is essentially a predefined directory structure of files put together in a jar file. The details of
this are discussed in JSR 208.

4

Introduction to Apache ServiceMix

There is a third type of component that is not required by the JBI specification. It is specific to Apache
ServiceMix and is called a lightweight component. A lightweight component is an easy-to-write POJO
(Plain Old Java Object) that activates a single JBI endpoint and does not support service unit
deployments.

Standard JBI components can be deployed at run-time and accept service unit deployments.
servicemix-lwcontainer is an Apache ServiceMix standard component, in other words it is
not a lightweight component. Lightweight components can be deployed on it. By deploying lightweight
components on servicemix-lwcontainer they can be added or removed at run-time, the
same as a standard JBI component.

JSR 208 defines JBI endpoints as, "Endpoints, in WSDL 2.0, refer to an address, accessible by a
particular protocol, used to access a particular service".

2.2. Message Exchange within the JBI Environment

Messages are exchanged over the normalized message router (NMR) in the JBI environment.
Messages sent via the NMR are normalized messages, which means they have been transformed into
a neutral format that all the components understand.

JBI implementations are required to support four standard message exchange sequences called
message exchange patterns (MEPs). A component can play two roles with respect to JBI message
exchanges. In a given exchange, the originator component is said to be the consumer and the target
component is said to be the provider.

The JBI specification defines service invocation as an instance of an interaction between a service
consumer and a service provider. As stated in JSR 208, the following four service invocation patterns
are required to be supported by any JBI implementation:

Table 1: Message Exchange

Message Exchange
Pattern Direction Description

In-Only in One-Way: consumer issues a request to a provider with no error (fault) path
provided.

Robust In-Only in Reliable One-Way: consumer issues a request to a provider. Provider may
respond with a fault if it fails to process the request.

In-Out in and out
Request-Response: consumer issues a request to a provider, with
expectation of response. Provider may respond with a fault if it fails to
process the request.

In, Optional Out in and out
Request Optional-Response: consumer issues a request to provider, which
may result in a response. Consumer and provider both have the option of
generating a fault in response to a message received during the interaction.

5

The WSDL 2.0 Extensions specification defines a Message Exchange Pattern (MEP) as: "the
sequence and cardinality of abstract messages listed in an operation". JBI uses this concept to define
interactions between two nodes: the consumer node and the provider node. The pattern is defined in
terms of message type (normal or fault), and message direction.

MEPs always reflect the provider's point of view. For example, in a request-response interaction, the
MEP is in-out, which reflects the flow of messages as seen by the provider. From the consumer's
perspective, the direction of message flow is reversed, but the MEP used by the NMR in its
interactions with the consumer will always reflect the provider's perspective. This is a conventional
practice when dealing with WSDL MEPs.

Looking back at Figure 1, the message exchange patterns are:

1. Binding Component A is a service provider and the MEP is In-Only.
2. Service Engine is a service provider and the MEP is In-Only.
3. Binding Component B is a service provider and the MEP is In-Only.

6

Introduction to Apache ServiceMix

3. Apache ServiceMix Components

Apache ServiceMix comes with many pre-built components. Below is a matrix of ServiceMix
components and a brief description of them.

Table 2: Apache ServiceMix Components

Component Name Type Description Role MEP

Cache LW SE
Used for caching service invocations to
avoid unnecessary load on expensive
services.

Mixed In-Out

ChainedComponent LW SE Router - Will route a message from one
component to another. Mixed In-Out

EchoComponent LW SE Echoes back what it receives Provider In-Out

Drools LW SE Mixed In-Only

Email LW BC

Email support via JavaMail
(http://java.sun.com/products/javamail/)

http://servicemix.codehaus.org/ma
ven/servicemix-
components/apidocs/org/apache/ser
vicemix/components/email/MimeMail
Sender.html
http://servicemix.codehaus.org/ma
ven/servicemix-
components/apidocs/org/apache/ser
vicemix/components/email/SimpleMa
ilSender.html
http://servicemix.codehaus.org/ma
ven/servicemix-
components/apidocs/org/apache/ser
vicemix/components/email/MimeMail
Poller.html

Provider

Provider

Consumer

In-Only

In-Only

In-Only

File LW BC

Components for writing messages to
files and polling directories and sending
files into the JBI.
http://servicemix.codehaus.org/ma
ven/servicemix-
components/apidocs/org/apache/ser
vicemix/components/file/FileSende
r.html
http://servicemix.codehaus.org/ma
ven/servicemix-
components/apidocs/org/apache/ser
vicemix/components/file/FilePolle
r.html

Provider

Consumer

In-Only

In-Only

7

http://java.sun.com/products/javamail/
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/file/FilePoller.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/file/FilePoller.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/file/FilePoller.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/file/FileSender.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/file/FileSender.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/file/FileSender.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/email/MimeMailPoller.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/email/MimeMailPoller.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/email/MimeMailPoller.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/email/SimpleMailSender.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/email/SimpleMailSender.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/email/SimpleMailSender.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/email/MimeMailSender.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/email/MimeMailSender.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/email/MimeMailSender.html

Component Name Type Description Role MEP

FTP LW BC

FTP support via the Jakarta Commons
Net library.
http://servicemix.codehaus.org/maven/s
ervicemix-
components/apidocs/org/apache/service
mix/components/net/FTPPoller.html

Provider

Consumer

In-Only

In-Only

Groovy LW SE

This component allows Groovy scripts
to be used as endpoints, transformers, or
services. This allows you to combine the
power of the Groovy scripting language
with the ServiceMix JBI container.

Provider

In-Only or In-Out
depending on the
Groovy script
sent to the
Groovy SE.

HTTP LW BC

Both client-side GET/POST with
commons httpclient and server side
processing with Servlets or Jetty.

HttpConnector
HttpInOnlyBinding
HttpSoapConnector

HttpInOnlySoapBinding

Consumer

Consumer

Consumer

Consumer

In-Out

In-Only

In-Out

In-Only

Jabber LW BC

Provides bindings to Jabber network via
the Extensible Messaging and Presence
Protocol (XMPP) protocol.

JabberReceiver
JabberChatSender
JabberGroupChatSender

Consumer

Provider

Provider

In-Only

In-Only

In-Only

JCA LW SE

Allows the Java Connector Architecture
to be used for efficient thread pooling,
transaction handling and consumption
on JMS or other Resource Adapters.

Consumer In-Only

JMS

LW BC
JMS via the Java Messaging Service
plus all of the great, reliable, and
scalable transports in ActiveMQ which
includes persistence, recovery, and
transaction support.

JmsInBinding
JmsInUsingJCABinding
JmsReceiverComponent
JmsSenderComponent

Consumer

Consumer

Consumer

Provider

In-Only

In-Only

In-Out

In-Only

8

http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/net/FTPPoller.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/net/FTPPoller.html
http://servicemix.codehaus.org/maven/servicemix-components/apidocs/org/apache/servicemix/components/net/FTPPoller.html

Introduction to Apache ServiceMix

Component Name Type Description Role MEP

JmsServiceComponent Provider In-Out

MockServiceComponent LW SE

Useful for controlling what is sent back
to consumer. You have to configure the
answer. Sends a pre-configured
response back.

Provider In-Out

PipelineComponent LW SE Will Bridge an In-Only request to an In-
Out request exchange pattern. Mixed In-Out

Quartz LW SE A component for job scheduling. Consumer In-Only

Reflection LW SE

The reflection API represents, or
reflects, the classes, interfaces, and
objects in the current Java Virtual
Machine. This API is handy if you are
writing development tools such as
debuggers, class browsers, and GUI
builders.

o.a.s.components.reflectio
n.proxyInOnlyBinding1

o.a.s.components.relection
.proxyInOutBinding

Consumer

Consumer

In-Only

In-Out

RSS LW BC

Support via Rome library for accessing
and processing RSS feeds.

Rsspollingcomponent

FeedWriter

Consumer

Provider

In-Only

In-Only

SAAJ LW BC SAAJ is for Soap With Attachments and
Apache Axis support. Provider In-Out

Scripting LW SE

A component to allow any JSR 223
compliant scripting engine to be used to
easily create a component, perform a
transformation, or be an expression
language.

Provider

In-Only or In-Out
depending on the
Groovy script
sent to the
Groovy SE.

servicemix-bpe JBI SE

WSDL 2.0 Adjuncts defines pre-defined
extensions for WSDL 2.0, including
MEPs, operation styles, and binding
extensions.

Provider
Consumer

All MEPs
supported.

servicemix-eip JBI SE

A routing container where different
routing patterns can be deployed as
service unit. Based on the EIP Patterns
book.

Consumer
and
Provider

n/a

1 o.a.s = org.apache.servicemix.

9

Component Name Type Description Role MEP

servicemix-http JBI BC HTTP binding.
Consumer
and
Provider

In-Only / In-Out

servicemix-jms JBI BC JMS binding.
Consumer
and
Provider

In-Only / In-Out

servicemix-jsr181 JBI SE Hosts annotated POJOs. Provider In-Only / In-Out

servicemix-lwcontainer JBI SE Acts as a host for lightweight
components. n/a n/a

servicemix-wsn2005 JBI SE WS-Notification.
Consumer
and
Provider

n/a

StreamWriterComponent LW SE
Similar to TraceComponent, writes
content of input message to the stream
requested.

Provider In-Only

TraceComponent LW SE Logs output to console Provider In-Only

Validation LW SE

For schema validation of documents
using Java API for XML Processing
(JAXP 1.3) and XMLSchema
(http://www.w3.org/XML/Schema) or
RelaxNG - a schema language for XML
(http://relaxng.org/). If the inputted
XML is validated as okay, the same
XML is sent back. If there is an error a
fault is returned to the sender.

Mixed

As the Provider,
the MEP is In-
Only, as the
consumer it is
also In-Only. This
component can
also have an In-
Out exchange
pattern, which is
the main pattern
for this
component

VFS LW BC

VFS via the Jakarta Commons Net
library which provides access to file
systems, jars/zips/bzip2, temporary files,
WebDAV, Samba (CIFS), HTTP,
HTTPS, FTP and SFTP among others.

FilePoller
FileWriter

Consumer

Provider

In-Only

In-Only

WSIF LW BC WSIF for integration with the Apache
Web Service Invocation Framework
(WSIF).

Provider In-Out or In-Only

Xfire LW BC XFire SOAP stack Provider In-Out

10

http://relaxng.org/
http://www.w3.org/XML/Schema

Introduction to Apache ServiceMix

Component Name Type Description Role MEP

XPath Routing LW SE

Used to perform content based routing
in an ESB. This means you route
messages around your service bus based
on the message properties or the content
of the messages. When integrating
systems across language boundaries its
common to use XML as a universal
message format; so XPath is an ideal
tool to perform content based routing
and transformation.

Mixed

Receives an In-
Only exchange
and sends an In-
Only message to
another
component.

XSLT LW SE

The XsltComponent will perform an
XSLT transformation of an inbound
Normalized Message and generate an
output message as a Normalized
Message.

Mixed

As the Provider,
the MEP is In-
Only, as the
consumer it is
also In-Only. This
component can
also have an In-
Out exchange
pattern, which is
the main pattern
for this
component.

11

4. Additional Resources
For more information please see the Apache ServiceMix Wiki documentation:
http://incubator.apache.org/servicemix/.

To read the Java Business Integration specification (JSR 208) please see:
http://www.jcp.org/en/jsr/detail?id=208.

For more information on WSDL 2.0 please see: http://www.w3.org/TR/2005/WD-wsdl20-adjuncts-
20050803.

For more information on WSDL 2.0 Adjuncts please see: http://www.w3.org/TR/wsdl20-adjuncts/.

For more information on Groovy please visit: http://groovy.codehaus.org/.

For more information on Drools please visit: http://docs.codehaus.org/display/DROOLS/Home.

For more information on Jabber please visit: http://www.jabber.org.

To see examples of service assemblies and a demo of deployment, please read the Loan Broker
Tutorial.

12

http://www.w3.org/TR/2005/WD-wsdl20-adjuncts-20050803
http://www.w3.org/TR/2005/WD-wsdl20-adjuncts-20050803
http://www.w3.org/TR/wsdl20-adjuncts/
http://www.jabber.org/
http://docs.codehaus.org/display/DROOLS/Home
http://groovy.codehaus.org/
http://www.jcp.org/en/jsr/detail?id=208
http://incubator.apache.org/servicemix/

	Introduction to Apache ServiceMix
	1.Introduction
	2.Brief Background on Apache ServiceMix
	2.1.JBI Components
	2.2.Message Exchange within the JBI Environment

	3.Apache ServiceMix Components
	4.Additional Resources

