
Introduction to Jetty

07/06 Version 1.2

Introduction to Jetty

This is an introduction to Jetty. This document is divided into two major sections. The first part
discusses Jetty with respect to LogicBlaze FUSE and shows some examples of how LogicBlaze FUSE
is using Jetty. The second part is a compilation of existing Jetty documents from
www.mortbay.org/jetty/tut/, which is included here for your convenience.

We would like to thank the creators of Jetty and the original authors of Jetty documentation for
allowing us to modify these documents to better serve you.

© Copyright 2006 LogicBlaze, Inc.™. All rights reserved.

http://www.mortbay.org/jetty/tut/

Contents
1. Jetty in LogicBlaze FUSE..3

1.1. Adding Web Applications to LogicBlaze FUSE...3
1.2. Deploying the LogicBlaze FUSE Console Web Client.. 4
1.3. Deploying the Loan Broker Demonstration...5

2. Configuration: Changing Jetty's Port Number... 6

3. Getting Started with the Jetty Package... 7
3.1. Lightweight or Standards Based..7
3.2. Http Server...7
3.3. Http Listener.. 8
3.4. Http Context...9
3.5. Http Handler.. 12
3.6. Resource Handler.. 13
3.7. Putting It All Together... 14

4. Introduction to the Web Application Server... 15
4.1. Using Servlet Handlers..16
4.2. Using Static Servlet Mappings...17
4.3. Using Dynamic Servlets...18

5. Deploying Web Applications.. 19
5.1. Multiple Web Applications ..19
5.2. Using XML...20
5.3. Web Application Configuration... 21

6. Web Application Security .. 22
6.1. Security Recommendation..23
6.2. Session Security... 23

7. Additional Resources..24

Introduction to Jetty

1. Jetty in LogicBlaze FUSE
Jetty is both an HTTP Server (like Apache) and a Servlet Container (like Tomcat) running as a single
Java component. It can be used stand-alone to deploy your static content, servlets, JSPs and Web
applications. Alternatively, it can be embedded into your Java application to add HTTP and Servlet
capabilities.

Jetty is bundled into LogicBlaze FUSE and is used by various LogicBlaze FUSE applications, such as
the LogicBlaze FUSE console and the loan broker demonstration.

The LogicBlaze FUSE distribution includes a pre-configured, pre-installed version of Jetty (version 6).
For ease-of-use Jetty is started when LogicBlaze FUSE is started, so you don't need to worry about
installation, running, and configuration of Jetty. It is ready to use upon LogicBlaze FUSE start-up. Jetty
is embedded in the LogicBlaze FUSE code and adds web container capabilities to the distribution.

Deploying your Web applications on the embedded Jetty is similar to deploying on other installations
of Jetty. This section uses LogicBlaze FUSE Web applications to illustrate how to deploy Web
applications on LogicBlaze FUSE's embedded Jetty. The general steps can be used to deploy any
Web application on the bundled Jetty.

1.1. Adding Web Applications to LogicBlaze FUSE
To deploy your Web applications on the LogicBlaze FUSE Jetty platform do the following steps:

1. Inside the top level of your directory structure you will create the root of your application.

• LogicBlaze FUSE binary download:

[fuse_dir]\components\activemq\servicemix\portal\webapps\[YourWebAppNam]

• LogicBlaze FUSE source download:

[fuse_dir]\target\fuse-1.x-SNAPSHOT\fuse-1.x-
SNAPSHOT\components\activemq\servicemix\portal\webapps\[YourWebAppName]

The directory pathnames are slightly different for binary and source downloads of LogicBlaze
FUSE, so this is shown where applicable.

Use the following rules for your directory structure:

• All files that must be visible to the client browser (.html, .jsp, etc) should be placed in your root
directory. If your application is large you may use multiple subdirectories.

• /WEB-INF/web.xml file is the Web Application Deployment Descriptor for your web
application. This XML file describes all the servlets and components that make up your web
application. It also contains all the initialization parameters and container managed security
constraints that you want the server to enforce. This file defines everything about your
application that the server will need to know except for the context path (which is defined by the
system administrator on application deployment).

4

Introduction to Jetty

• /WEB-INF/classes/ file is used for storing Java classes along with any other resources your
applications may need. If you choose to organize classes into Java packages it must be done in
this directory.

• /WEB-INF/lib/ directory is used for holding JAR files that contain Java class files (and other
resources like third party class libraries and JDBC drivers) needed to run your application.

2. After adding your Web application to the proper directories edit jetty-xbean.xml using the
code segment below so that Jetty can deploy your Web application. Your code should be added to
the section of jetty-xbean.xml where similar code is located.

• Binary Install:

[fuse_dir]\components\activemq\servicemix\portal\jetty-xbean.xml

• Source Install:

[fuse_dir]\target\fuse-1.x-SNAPSHOT\fuse-1.x-
SNAPSHOT\components\activemq\servicemix\portal\jetty-xbean.xml

For example:

<webAppContext contextPath="<YourWebAppName>";
 resourceBase="${xbean.current.dir}/webapps/<YourWebAppName>">;
<serverClasses>
</webAppContext>

1.2. Deploying the LogicBlaze FUSE Console Web Client
The LogicBlaze FUSE Console is a Web application and runs in the embedded Jetty container.

1. The liferay application can be found in the webapps folder.
2. The console is launched using Jetty's XML deployment plan, jetty-xbean.xml:

<webAppContext contextPath="/liferay"
resourceBase="${xbean.current.dir}/webapps/liferay">
 <serverClasses />
</webAppContext>

3. The configuration for the console Web application is located in the liferay\WEB-INF\web.xml
file.

For general information on the console please refer to the LogicBlaze FUSE Console Guide.

5

Introduction to Jetty

1.3. Deploying the Loan Broker Demonstration
The Loan Broker is an application that finds the lowest loan rate for its customers. The customer
interface to the Loan Broker application is a Web client. The loan broker Web client is configured
using the same general steps as the LogicBlaze FUSE console and all other Jetty deployments:

1. The loan broker Web client, loanbroker-client, can be found in the webapps folder.

2. The Jetty deployment descriptor, jetty-xbean.xml, deploys the loan broker:

<webAppContext contextPath="/loanbroker-client"
resourceBase="${xbean.current.dir}/webapps/loanbroker-client">
<serverClasses />/webAppContext>

3. The configuration for the console Web application is located in the WEB-INF\web.xml file of the
loanbroker-client application.

For general information on the loan broker please refer to the Loan Broker Tutorial.

6

Introduction to Jetty

2. Configuration: Changing Jetty's Port Number
On starting up LogicBlaze FUSE, if you see a message similar to "address already in use" your host
already has a web server installed that is using port 8080.

To resolve this modify Jetty's port number as follows:

1. Stop LogicBlaze FUSE. For shutdown instructions please see the Getting Started with LogicBlaze
FUSE manual.

2. Edit the jetty-xbean.xml file. The file is located:

• Binary install:

[fuse_dir]\components\activemq\servicemix\portal\jetty-xbean.xml

• Source install:

[fuse_dir]\target\fuse-1.x-SNAPSHOT\fuse-1.x-
SNAPSHOT\components\activemq\servicemix\portal\jetty-xbean.xml

Search for a line similar to: <nioConnector port="8080"/>. Change 8080 to an available
port number. The suggested range of port numbers is between 8000 and 9900; 8180, 8280, 8380
are all good choices if they are available on your server.

3. Save and exit the jetty-xbean.xml file.
4. Start LogicBlaze FUSE. Please see the Getting Started with LogicBlaze Fuse manual for

instructions.

Do not edit anything else in the jetty-xbean.xml file, especially the web contextPath, as
it will impact the ability to run the console.

7

Introduction to Jetty

3. Getting Started with the Jetty Package
The remainder of this document is a modified version of the Jetty Tutorial located at
www.mortbay.org/jetty/tut/.

3.1. Lightweight or Standards Based
Jetty can be used at two different levels: as the core Http Server and the complete Jetty Server. The
former provides an HTTP server with the ability to serve static content and servlets, whilst the latter
supports richer configuration capabilities and the deployment of standard web applications.

The advantages of the Http Server is that it is lightweight and embeddable and is highly customizable.

If you need standard Servlet Container support for the development and deployment of web
applications, then use the enhanced Server (referred to usually as the Jetty Server). This has the
added benefit of better support for configuration via XML. Skip down to an example of a web
application deployment here.

3.2. Http Server
The org.mortbay.http.HttpServer class provides a core HTTP server that listens on specified
ports and accepts and handles requests.

The server is configured by method calls on the Java API . This code example creates a simple server
listening on port 8080 and serving static resources (files) from the location ./docroot:

Code example: Creating a trivial HTTP server

HttpServer server = new HttpServer();
SocketListener listener = new SocketListener();
listener.setPort(8080);
server.addListener(listener);

HttpContext context = new HttpContext();
context.setContextPath("/");
context.setResourceBase("./docroot/");
context.addHandler(new ResourceHandler());
server.addContext(context);
server.start();

The server is made stand-alone by placing the above code in the body of a main method (the
HttpServer class itself has a main that can be used as an example). To use the server as a
component within an application, include the above lines at an appropriate location within the
application code.

The HttpServer provides a flexible mechanism for extending the capabilities of the server called
HttpHandlers. The server selects an appropriate HttpHandler to generate a response to an
incoming request. The release includes handlers for static content, authentication and a Servlet
Container.

8

http://www.mortbay.org/jetty/tut/

Introduction to Jetty

Servlets are the standard method for generating dynamic content, however the server can also be
extended by writing custom HttpHandlers if servlets are insufficient or too heavyweight for your
application.

The org.mortbay.http.HttpServer class also provides a linkage between a collection of
request listeners and collections of request handlers:

Diagram: HttpServer relationship model

HttpListener -> HttpServer --> HttpContext --> HttpHandler

It is the responsibility of an HttpServer to accept requests received by an HttpListener, and
match them to suitable HttpContext(s). It does this by using the host and context path elements
from the request. Note that more than one HttpContext might match the request, and in this case,
all HttpContexts are tried in the order in which they were registered with the server until the
request is marked as having been handled.

The trivial code snippet from the Introduction to the HttpServer can then be represented as:

Diagram: Trivial file server object relationships

SocketListener --> HttpServer --> HttpContext --> ResourceHandler
port:8080 "/" "./docroot"

This depicts a single listener on port 8080 passing requests to a single server, which in turn passes
them to a single context with a single handler which returns static content from the directory
./docroot.

3.3. Http Listener
Implementations of the org.mortbay.http.HttpListener interface are added to a HttpServer
and act as sources of requests for the server. The org.mortbay.http.SocketListener is the
main implementation. It listens on a standard TCP/IP port for requests, but there are also listener
implementations for SSL, Non blocking IO, testing and others.

Multiple listeners may be used to listen on different ports and on specific IP addresses. This is most
frequently used with SSL or with multi-hosting:

Diagram: Multiple listeners with multi-hosting

SocketListener -+
port:80 |
 |
JSSEListener -+> HttpServer --> HttpContext --> ResourceHandler
port:443 | "/" "./docroot"
 |
SocketListener -+
host:1.2.3.4
port: 80

9

Introduction to Jetty

Listeners are configured via set methods. Listeners can be created by using the HttpServer as a
factory to create a standard type of listener:

Code example: Convenience methods for adding standard listeners

HttpServer server=new HttpServer();
HttpListener listener=
 server.addListener(new InetAddrPort("myhost",8080));

However, in order to provide detailed configuration, it is more common to create the listener directly
and then add it to the HttpServer:

Code example: Configuring a listener

HttpServer server = new HttpServer();
SocketListener listener = new SocketListener();
listener.setHost("myhost");
listener.setPort(8080);
listener.setMinThreads(5);
listener.setMaxThreads(250);
server.addListener(listener);

All HttpListeners are responsible for allocating threads to requests, so most implementations are
extensions of the org.mortbay.util.ThreadedServer or
org.mortbay.util.ThreadPool. Thus attributes such as min/max threads, min/max idle times
etc are also set via the API.

Jetty has several type of HttpListeners including:

• org.mortbay.http.SocketListener for normal http connections.
• org.mortbay.http.JsseListener for SSL https connections using JSSE provider.
• org.mortbay.http.SunJsseListener for SSL https connections using Suns JSSE

provider.
• org.mortbay.http.SocketChannelListener for normal http connections using the
java.nio library for non-blocking idle connections.

• org.mortbay.http.ajp.AJP13Listener for integration with apache, IIS etc.

3.4. Http Context
A org.mortbay.http.HttpContext aggregates org.mortbay.http.HttpHandler
implementations. When a request is passed to a HttpContext it tries each of its HttpHandlers in
turn (in the order in which they were registered) until the request is marked as handled. Note that it is
perfectly possible for more than one handler to process the request, but only one handler can mark
the request as being finally handled.

In Jetty 3.1 and previous releases, the HttpContext class was called HandlerContext.

10

Introduction to Jetty

A typical a context might have handlers for security, servlets and static resources:

Diagram: Single context, multiple handlers

 +-> SecurityHandler
 |
SocketListener --> HttpServer --> HttpContext +-> ServletHandler
port: 80 "/" |
 +-> ResourceHandler

All HttpHandlers within a single HttpContext share the following attributes:

• Initialization parameters
• An optional virtual host name for the context
• A path prefix for the context
• A resource base for loading static resources (files/urls)
• A memory cache of resources (files/urls)
• A ClassLoader and set of Java permissions
• A request log
• Statistics
• Error page mappings
• MIME type suffix maps

A single HttpServer can have multiple HttpContexts. This is typically used to serve several
applications from the same port(s) using URL mappings:

Diagram: Multiple contexts with URL mapping

SocketListener --> HttpServer +-> HttpContext --> HttpHandler(s)
port:80 | path:"/alpha/*"
 |
 +-> HttpContext --> HttpHandler(s)
 path:"/beta/"

Alternatively, different applications can be served from the same port using virtual hosts:

Diagram: Multiple contexts with virtual hosts

SocketListener --> HttpServer +-> HttpContext --> HttpHandler(s)
port:80 | vhost: www.alpha.com
 | path: "/"
 |
 +-> HttpContext --> HttpHandler(s)
 vhost: www.beta.com
 path: "/"

11

Introduction to Jetty

If multiple contexts are to be served from the same port, but on different IP addresses, then it is
possible to give each context its own HttpServer:

Diagram: Multiple servers

SocketListener --> HttpServer --> HttpContext --> HttpHandler(s)
host:www.alpha.com path:"/"
port:80
SocketListener --> HttpServer --> HttpContext --> HttpHandler(s)
host:www.beta.com path: "/"
port:80

HttpContexts can be instantiated by the HttpServer as part of a call to addContext() with
context args:

Code example: Implied context creation

HttpContext context = server.addContext("/mydocs/*");
context.setResourceBase("./docroot/");

As addContext() will always create a new context instance, it is possible to accidentally create
multiple copies of the same context (by calling addContext() with the same parameters). To avoid
this, you can use the getContext() method instead, which will only create a new context if one with
the same specification does not already exist:

Code example: Lazy context creation

HttpContext context = server.getContext("myhost","/mydocs/*");
context.setResourceBase("./docroot/");

The previous example highlights that it is possible specify a virtual host as well as the context path. A
single context may be registered with different virtual hosts. Once context configuration becomes
complex, it is best to take explicit control over context creation:

Code example: Creating a context with multiple virtual hosts

HttpContext context = new HttpContext();
context.setContextPath("/context/*");
context.setVirtualHosts(new String[]{"alpa.com","beta.com"});
context.setResourceBase("./docroot/");
server.addContext(context);

Derivations of HttpServer may implement the newHttpContext() method to change the
factory method for creating new contexts. This is used, for example, by the
org.mortbay.jetty.Server class to return HttpContext derivations that have
convenience methods for configuring servlets. The
org.mortbay.jetty.servlet.WebApplicationContext class is a specialization of
HttpContext that configures the handlers by looking at the standard web application XML
files.

12

Introduction to Jetty

3.5. Http Handler
The org.mortbay.http.HttpHandler interface represents Jetty's core unit of content generation
or manipulation. Implementations of this interface can be used to modify or handle requests. Typically,
handlers are arranged in a list, and a request presented to each handler in turn until (at most) one
indicates that the request has been handled. This allows handlers to:

• Ignore requests that are not applicable

• Handle requests by populating the response and/or generating content

• Modify the request but allow it to pass onto the next handler(s). Headers and attributes may be
modified or an InputStream filter added

• Modify the response but allow the request to pass onto the next handler(s). Headers may be
modified or OutputStream filters added.

The handlers provided with the org.mortbay.http.handler package are:

• ResourceHandler serves static content from the resource base of the HttpContext.
• SecurityHandler provides BASIC and FORM authentication.
• HTAccessHandler provides apache .htaccess style security.
• NotFoundHandler handles unserviced requests.
• DumpHandler is a debugging tool that dumps the request and response headers.
• ForwardHandler forwards a request to another URL
• NullHandler is an abstract base implementation of the interface, used for to derive other

handlers.

A ServletHandler and WebApplicationHandler are provided by the
org.mortbay.jetty.servlet package and is discussed in detail in the Jetty Server section.

HttpHandlers are tried within a context in the order they were added to the HttpContext. The
following code creates a context that checks authentication, then tries a servlet mapping before trying
static content then finally dropping through to an error page generator if no handler marks the request
as handled:

Code example: Importance of handler ordering

HttpContext context = server.addContext("/");
context.add(new SecurityHandler());
context.add(new ServletHandler());
context.add(new ResourceHandler());
context.add(new NotFoundHandler());

13

Introduction to Jetty

3.6. Resource Handler
One of the most common things for a HttpServer to do is to serve static content from a base
directory or URL. The org.mortbay.http.handler.ResourceHandler implementation of
HttpHandler is provided for this purpose. Its features include:

• Support for GET, PUT, MOVE, DELETE, HEAD and OPTIONS methods.
• Handling of IfModified headers.
• HTTP/1.1 Range support for partial content serving.
• Index/welcome files.
• Generation of directory listings.

The root directory or URL for serving static content is the ResourceBase of the HttpContext.
Thus, to serve static content from the directory ./docroot/:

Code example: Detailed configuration of a ResourceHandler
HttpContext context = server.getContext("/context/*");
context.setResourceBase("./docroot/");
ResourceHandler handler = new ResourceHandler();
handler.setDirAllowed(true);
handler.setPutAllowed(false);
handler.setDelAllowed(false);
handler.setAcceptRanges(true);
context.addHandler(handler);
context.addHandler(new NotFoundHandler());

The NotFoundHandler is added to generate a 404 for requests for resources that don't exist. The
ResourceHandler lets requests that it cannot handle fall through to the next handler.

HttpHandlers ARE ORDER DEPENDANT. If in the above example the NotFoundHandler
had been added to the context before the ResourceHandler, then all requests would be
404'd and resources would not be served. It is a common mistake to put a ResourceHandler
before a ServletHandler with the JSPServlet, so jsp source code is served rather than
the dynamic content from the JSPServlet.

14

Introduction to Jetty

3.7. Putting It All Together
Finally, here is a fully worked code example to configure a server on port 8181 serving static content
and a dump servlet at /mystuff/.

Code example: Setting up an HttpServer
import java.io.*;
import java.net.*;
import org.mortbay.util.*;
import org.mortbay.http.*;
import org.mortbay.jetty.servlet.*;
import org.mortbay.http.handler.*;
import org.mortbay.servlet.*;

public class SimpleServer
{
 public static void main (String[] args)
 throws Exception
 {
 // Create the server
 HttpServer server=new HttpServer();

 // Create a port listener
 SocketListener listener=new SocketListener();
 listener.setPort(8181);
 server.addListener(listener);

 // Create a context
 HttpContext context = new HttpContext();
 context.setContextPath("/mystuff/*");
 server.addContext(context);

 // Create a servlet container
 ServletHandler servlets = new ServletHandler();
 context.addHandler(servlets);

 // Map a servlet onto the container
 servlets.addServlet("Dump","/Dump/*","org.mortbay.servlet.Dump");

 // Serve static content from the context
 String home = System.getProperty("jetty.home",".");
 context.setResourceBase(home+"/demo/webapps/jetty/tut/");
 context.addHandler(new ResourceHandler());

 // Start the http server
 server.start ();
 }
}

15

Introduction to Jetty

4. Introduction to the Web Application Server
The org.mortbay.jetty.Server class extends org.mortbay.http.HttpServer with XML
configuration capabilities and a J2EE compliant servlet container.

The following code example demonstrates the creation of a server, listening on port 8080 to deploy a
web application located in the directory ./webapps/myapp:

Code example: Creating a Web Application Server

Server server = new Server();
SocketListener listener = new SocketListener();
listener.setPort(8080); server.addListener(listener);
server.addWebApplication("/","./webapps/myapp/");
server.start();

As mentioned before, the Jetty Server is able to be configured via XML as an alternative to cutting
code. The same web application as coded above can be deployed by this XML configuration file:

XML example: Configuring a Web Application Server

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Configure PUBLIC
 "-//Mort Bay Consulting//DTD Configure 1.2//EN"
 "http://jetty.mortbay.org/configure_1_2.dtd">
<Configure class="org.mortbay.jetty.Server">
 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name"port"<8080</Set>
 </New>
 </Arg>
 </Call>
 <Call name="addWebApplication">
 <Arg>/</Arg>
 <Arg>./webapps/myapp/</Arg>
 </Call>
</Configure>

To run Jetty with this XML file, execute this command:

java -jar start.jar myserver.xml

16

Introduction to Jetty

4.1. Using Servlet Handlers
If you do not wish to use web applications but you want to deploy servlets, then you need to register at
least one context and at least the ServletHandler with the server. You are able to statically
configure individual servlets at a specific URL pattern, or use dynamic mapping to extract servlet
names from the request URL.

The ServletHandler can be used with a HttpServer.

Code example: Using ServletHandler in HttpServer
HttpServer server = new HttpServer();
server.addListener(":8080");
HttpContext context = server.getContext("/");
ServletHandler handler= new ServletHandler();
handler.addServlet("Dump","/dump/*",
 "org.mortbay.servlet.Dump");
context.addHandler(handler);

Alternately, the org.mortbay.jetty.Server can be used instead of a HttpServer, so that it's
convenience methods may be used:

Code example: Using ServletHandler in Server

Server server = new Server();
server.addListener(":8080");
ServletHttpContext context = (ServletHttpContext)
 server.getContext("/");
context.addServlet("Dump","/dump/*",
 "org.mortbay.servlet.Dump");

17

Introduction to Jetty

4.2. Using Static Servlet Mappings
The examples above used defined servlet mappings to map a request URL to a servlet. Prefix (eg.
"/dump/*"), suffix (eg." *.jsp"), exact (eg "/path") or default ("/") mappings may be used and they are all
within the scope of the context path:

Code example: Static servlet mappings

Server server = new Server();
server.addListener(":8080");
ServletHttpContext context = (ServletHttpContext)
 server.getContext("/context");
context.addServlet("Dump","/dump/*",
 "org.mortbay.servlet.Dump");
context.addServlet("Dump","/dump/session",
 "org.mortbay.servlet.SessionDump");
context.addServlet("JSP","*.jsp",
 "org.apache.jasper.servlet.JspServlet");
context.addServlet(";Default","/",
 "org.mortbay.jetty.servlet.Default");
Examples of URLs that will be mapped to these servlets are:
/context/dump Dump Servlet by prefix
/context/dump/info Dump Servlet by prefix
/context/dump/session SessionDump Servlet by exact
/context/welcome.jsp JSP Servlet by suffix
/context/dump/other.jsp Dump Servlet by prefix
/context/anythingelse Default Servlet
/anythingelse Not this context

18

Introduction to Jetty

4.3. Using Dynamic Servlets
Servlets can be discovered dynamically by using the org.mortbay.jetty.servlet.Invoker
servlet. This servlet uses the request URI to determine a servlet class or the name of a previously
registered servlet:

Code example: Dynamic servlet mappings

Server server = new Server();
server.addListener(":8080");
ServletHttpContext context = (ServletHttpContext)
 server.getContext("/context");
context.addServlet("Dump","/dump/*",
 "org.mortbay.servlet.Dump");
context.addServlet("Invoker","/servlet/*",
 "org.mortbay.jetty.servlet.Invoker");

Examples of URLs that will be mapped to these servlets are:

• /servlet/Dump Dump servlet by name
• /servlet/com.acme.MyServlet/info servlet by dynamic class
• /servlet/com.mortbay.servlet.Dump Dump servlet by class or ERROR

By default, the Invoker will only load servlets from the context classloader, so the last URL above will
result in an error. The Invoker can be configured to allow any servlet to be run, but this can be a
security issue

19

Introduction to Jetty

5. Deploying Web Applications
The Servlet Specification details a standard layout for web applications. If your content is packaged
according to these specifications, then simply call the addWebApplication(...) methods on the
org.mortbay.jetty.Server instance, specifying at minimum a context path, the directory or war
file of your application. Jetty is then able to discover and configure all the required handlers including
security, static content and servlets.

The addWebApplication(...) methods transparently create and return an instance of
WebApplicationContext which contains a WebApplicationHandler.

The WebApplicationHandler extends ServletHandler and as well as servlets, it provides
standard security and filters. Normally it is configured by the webdefault.xml file to contain Invoker,
JSP and Default servlets. Filters, servlets and other mechanisms are configured from the WEB-
INF/web.xml file within the web application.

This example configures a web application located in the directory ./webapps/myapp/ at the context
path / for a virtual host myhost:

Code example: Configuring a web application

{{server.addWebApplication("myhost","/","./webapps/myapp/");}}

The arguments to the addWebApplication method are:

• An (optional) virtual host name for the context
• A context path

The location of the web application, which may be a directory structure or a war file, given as a URL,
war filename or a directory name.

The addWebApplication method is overloaded to accommodate the parameters marked as
(optional).

5.1. Multiple Web Applications
To make things even easier, if you have multiple web apps to deploy, you can accomplish this with a
single method call:

Code example: Configuring multiple web apps

{{server.addWebApplications ("myhost","./webapps/");}}

Given the code above, Jetty would look in the directory ./webapps/ for all war files and
subdirectories, and configure itself with each web application specified therein. For example,
assuming the directory webapps contained the war files webapps/root.war,
webapps/customer.war and webapps/admin.war, then Jetty would create the contexts "/",
/customer/* and /admin mapped to the respective war files.

20

Introduction to Jetty

The special mapping of war files (or directories) named root to the context /.

In order to actually deploy the web application, it is also necessary to configure a port listener. The full
code example to deploy the web application in the code snippet is:

Code example: Deploying a web application

Server server = new Server();
SocketListener listener = new SocketListener();
listener.setPort(8080);
server.addListener(listener);
server.addWebApplication("myhost","./webapps/myapp/");
server.start();

5.2. Using XML
The same web application can be deployed instead via an XML configuration file instead of calls to the
API. The name of the file is passed to Jetty as an argument on the command line (see the section on
Jetty demonstrations for instructions). The following excerpt deploys the same web application as
given in the code example above:

XML example: Deploying a web application

<Configure class="org.mortbay.jetty.Server">
 <Call name='addListener">
 <Arg>
 <New class='org.mortbay.http.SocketListener">
 <Set name="Port">
 <SystemProperty name="jetty.port"
 default="8080"/>
 </Set>
 </New>
 </Arg>
 </Call>
 <Call name="addWebApplication">
 <Arg>/</Arg>
 <Arg><SystemProperty name="jetty.home"
 default="."/>/webapps/myapp
 </Arg>
 </Call>
 </Configure>

An explanation of the Jetty XML syntax can be found in the section on Jetty XML Configuration.

21

Introduction to Jetty

5.3. Web Application Configuration
When a WebApplicationContext is started, up to three configuration files are applied as follows:
webdefault.xml This file must be in standard web.xml format and typically contains all the default
settings for all webapplications.

By default the org/mortbay/jetty/servlet/webdefault.xml file is used as a resource from
the jetty jar and it configures the JspServlet and default session timeouts. The default xml file may
be changed for a particular context by calling setDefaultsDescriptor(String) web.xml.

The standard web application configuration file and is found in the WEB-INF directory of the Web
application. web-jetty.xml This file must be in org.mortbay.xml.XmlConfiguration format
and if found in the WEB-INFdirectory of a web application, it is applied to the
WebApplicationContext instance. It is typically used to change non standard configuration. Note:
the name jetty-web.xml is also accepted for this file.

XML example: A web-jetty.xml file

<Configure class="org.mortbay.jetty.servlet.WebApplicationContext">
 <Set name="statsOn" type="boolean"<false>/Set>
</Configure>

22

Introduction to Jetty

6. Web Application Security
Jetty makes the following interpretations for the configuration of security constraints within a web.xml
file:

• Methods PUT, DELETE and GET are disabled unless explicitly enabled.
• If multiple security-constraints are defined, the most specific applies to a request.
• A security-constraint an empty auth-constraint forbids all access by any user:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Forbidden</web-resource-name>
 <url-pattern>/auth/noaccess/*</url-pattern>
 </web-resource-collection>
 <auth-constraint/>
 </security-constraint>

• A security constraint with an auth-constraint with a role of * gives access to all authenticated
users:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Any User</web-resource-name>
 <url-pattern>/auth/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
 </security-constraint>

• A security-constraint with no auth-constraint and no data constraint gives access to
any request:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Relax</web-resource-name>
 <url-pattern>/auth/relax/*</url-pattern>
 </web-resource-collection>
 </security-constraint>

On platforms without the / file separator or when the system parameter
org.mortbay.util.FileResource.checkAliases is true, then the FileResouce
class compares the absolutePath and canonicalPath and treats the resource as not
found if they do not match. THIS means that win32 platforms need to exactly match the case of
drive letters and filenames.

• Dynamic servlets by default, can only be loaded from the context classpath. Use
ServletHandler.setServeDynamicSystemServlets to control this behavior.

23

Introduction to Jetty

6.1. Security Recommendation
It is strongly recommended that secure WebApplications take following approach. All access
should be denied by default with

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Default</web-resource-name>
 <url-pattern>/</url-pattern>
 </web-resource-collection>
 <auth-constraint/>
 </security-constraint>
Specific access should then be granted with constraints like:
 <security-constraint>
 <web-resource-collection>
 <url-pattern>/public/*</url-pattern>
 <url-pattern>/images/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>HEAD</http-method>
 </web-resource-collection>
 <web-resource-collection>
 <url-pattern>/servlet/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>HEAD</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
 </security-constraint>

6.2. Session Security
Jetty uses the standard java.util.Random class to generate session IDs. This may be insufficient
for high security sites. The SessionManager instance can be initialized with a more secure random
number generator, such as java.security.SecureRandom.

The Jetty configuration XML to do this to a Web application is:

<Call name="addWebApplication">
 <Arg>/myapp/*</Arg>
 <Arg><SystemProperty name="jetty.home"
 default="."</demo/webapps/myapp<Arg>
 <Call name="getServletHandler">
 <Set name="sessionManager">
 <New class="org.mortbay.jetty.servlet.HashSessionManager">
 <Arg><New class="java.security.SecureRandom"><Arg>
 </New>
 </Set>
 </Call>
</Call>

24

Introduction to Jetty

Initializing the SecureRandom object is a one-off time consuming operation which may cause the
initial request to take much longer.

7. Additional Resources
http://www.theserverside.com/news/thread.tss?thread_id=36594

http://www.sitepoint.com/blogs/2005/09/18/jetty-60-to-provide-new-architecture-for-ajax-apps/

25

http://www.sitepoint.com/blogs/2005/09/18/jetty-60-to-provide-new-architecture-for-ajax-apps/
http://www.theserverside.com/news/thread.tss?thread_id=36594

	1. Jetty in LogicBlaze FUSE
	1.1. Adding Web Applications to LogicBlaze FUSE
	1.2. Deploying the LogicBlaze FUSE Console Web Client
	1.3. Deploying the Loan Broker Demonstration

	2. Configuration: Changing Jetty's Port Number
	3. Getting Started with the Jetty Package
	3.1. Lightweight or Standards Based
	3.2. Http Server
	3.3. Http Listener
	3.4. Http Context
	3.5. Http Handler
	3.6. Resource Handler
	3.7. Putting It All Together

	4. Introduction to the Web Application Server
	4.1. Using Servlet Handlers
	4.2. Using Static Servlet Mappings
	4.3. Using Dynamic Servlets

	5. Deploying Web Applications
	5.1. Multiple Web Applications
	5.2. Using XML
	5.3. Web Application Configuration

	6. Web Application Security
	6.1. Security Recommendation
	6.2. Session Security

	7. Additional Resources

