
Loan Broker Tutorial

07/06 Version 1.2

Loan Broker Tutorial

One of the main reasons for having a service oriented architecture is to integrate incompatible existing
applications. The Loan Broker demonstration is a good example of an application requiring a service
oriented architecture. The Loan Broker application is composed of three banks and a credit agency all
modeled on different protocols. The demo leverages JBI features and uses a BPEL engine and a WS-
Notification broker to show the integration of several otherwise unrelated applications.

© Copyright 2006 LogicBlaze, Inc.™. All rights reserved.

Contents
1. Overview...4

2. Running the Demo...5

3. Installing from Scratch..7
3.1. Installing and Starting the Demo from a Command Window..7
3.2. Installing and Starting the Demo from the LogicBlaze FUSE Console.. 9

4. Undeploying... 11
4.1. Undeploying from the LogicBlaze FUSE Console.. 11
4.2. Manual Undeployment...12

5. How the Loan Broker Demo Works..13
5.1. Packaging.. 13
5.2. Message Flow.. 14
5.3. Enterprise Integration Pattern...16

6. Additional Resources..18

Loan Broker Tutorial

1. Overview

The Loan Broker is patterned after the ComposedMessagingTIBCO.html pattern from the
Enterprise Integration Patterns book. Quoting from Enterprise Integration Patterns, "Our application is
a simple bank quote request system. Customers submit quote requests to a loan broker interface. The
loan broker fulfills the request by first obtaining a credit score, then requesting quotes from a number
of banks. Once the Loan Broker obtains quotes from the banks it selects the best quote and returns it
to the customer".

The diagram shows:

1. The web client requests a loan rate from the Loan Broker system.
2. The loan broker BPEL service engine asks the Credit Agency for the credit rating of the loan

requester.
3. The loan broker solicits the best loan rate from multiple banks. The WS-Notification service

engine sends the request loan amount, duration, and the loan requester's credit score to the
banks.

4. The banks respond to the loan broker with their best loan rate.
5. The loan broker determines which bank had the best rate and returns that information to the

requester (web client).

4

Figure 1: Loan Broker System

Loan Broker Tutorial

2. Running the Demo
The loan broker demo is pre-installed and ready to run as part of the LogicBlaze FUSE distribution. To
run the demo follow the instructions below.

If you would like to try deploying the service assemblies from scratch follow the instructions in the
Installing from Scratch section of this tutorial.

To run the demo:

1. In a browser, go to http://localhost:8080/loanbroker-client/

Using the Mozilla Firefox browser is recommended.

2. Enter a nine digit number in the SSN field. This can be entered with or without the dashes, but
must start with a "1". For example, 199-99-9999 or 199999999.

3. Enter a number in the Loan Amount field, such as, 50000.00.
4. Enter a number in the Duration field, such as 10. It is assumed to be a number of years.
5. Click the Send button. The best loan rate will be displayed back to your browser.
6. Alternatively, you can send 10 random loan rate requests by clicking the Send 10 random

requests button.

Figure 2: Loan Broker Client

5

Loan Broker Tutorial

Use the LogicBlaze FUSE Console to see all the deployed service assemblies and to try starting and
stopping them.

1. Open a browser and navigate to the FUSE Console.
2. Scroll down to the JBI Components portlet. You can stop any of the loan broker components, for

example, creditAgency. Use the pull-down menu under "Actions" and select Stop.

Figure 3: Deployed Components

6

Loan Broker Tutorial

3. Installing from Scratch
It is instructive to see how to install the demo from scratch. You can install/deploy manually from a
Windows command window or Unix shell, or you can install/deploy using the LogicBlaze FUSE
Console.

3.1. Installing and Starting the Demo from a Command Window
This procedure shows how to install and start the loan broker demo from a command shell. The
procedure uses Windows style commands and the Windows specific backslash. However, the same
steps apply for Unix systems, with the appropriate substitutions of "cp" for "copy" and forward slash
replacing the backslashes. Of course you may use operating system tools, such as Windows Explorer,
as well.

LogicBlaze FUSE does not need to be running to deploy the demo. The service assembly jar
files could be copied to the hotdeploy directory prior to bringing up LogicBlaze FUSE. Upon
start-up the demo would deploy. The following steps show how to hot deploy service
assemblies.

1. By default the demo is preinstalled, therefore, you must uninstall it. Before uninstalling, put a
copy of the service assembly jar files in a safe location.

cd [fuse_dir]\hotdeploy
copy loanbroker-assembly-1.0.jar \tmp
copy creditagency-assembly-1.0.jar \tmp
copy bank0-assembly-1.0.jar \tmp
copy bank1-external-assembly-1.0.jar \tmp
copy bank1-internal-assembly-1.0.jar \tmp

 where [fuse_dir] is the directory in which LogicBlaze FUSE was installed.

2. Undeploy the service assemblies (see the Undeploying section of this document), either
manually or using the LogicBlaze Console. Then proceed to step three of this procedure.

3. LogicBlaze FUSE must be running. For instructions to start LogicBlaze FUSE, please see the
Getting Started with LogicBlaze FUSE guide.

Please allow time for LogicBlaze FUSE to completely start-up.

7

Loan Broker Tutorial

4. From a command window or shell window install the service assemblies for the loan broker
application. The directory pathnames are different for a binary distribution and a source
distribution.
For a binary distribution:

cd \tmp - if this is where you saved the JAR files, otherwise use your directory.

copy loanbroker-assembly-1.0.jar [fuse_dir]\hotdeploy
copy creditagency-assembly-1.0.jar [fuse_dir]\hotdeploy
copy bank0-assembly-1.0.jar [fuse_dir]\hotdeploy

 where [fuse_dir] is the directory in which LogicBlaze FUSE was installed.

For a source distribution:

cd \tmp - if this is where you saved the JAR files, otherwise use your directory.

copy loanbroker-assembly-1.0.jar
 [fuse_dir]\target\fuse-1.x\fuse-1.x\hotdeploy
copy creditagency-assembly-1.0.jar
 [fuse_dir]\target\fuse-1.x\fuse-1.x\hotdeploy
copy bank0-assembly-1.0.jar
 [fuse_dir]\target\fuse-1.x\fuse-1.x\hotdeploy

where [fuse_dir] is the directory in which LogicBlaze FUSE was installed.

The above steps must be done in a different command window from the one in which
LogicBlaze FUSE was started.

5. Allow time for the service assemblies (SAs) to be deployed. To see them deploy, watch the
command window where LogicBlaze FUSE was started.

6. You may have noticed that only one bank (bank 0) was deployed above. To demonstrate that
the banks can be deployed separately you can deploy the other banks now or you can run the
demo. An interesting point is that components, service units, and service assemblies can be
"hot" deployed after LogicBlaze FUSE is already running. To deploy the other banks:

cd [fuse_dir]\tmp - if this is where you saved the JAR files, otherwise use your directory.

copy bank1-external-assembly-1.0.jar [fuse_dir]\hotdeploy
copy bank1-internal-assembly-1.0.jar [fuse_dir]\hotdeploy

7. You are now ready to run the demo from a Web browser. Proceed to the Running the Demo
section for instructions.

8

Loan Broker Tutorial

3.2. Installing and Starting the Demo from the LogicBlaze FUSE Console
To install and start from the console:

1. By default the demo is preinstalled, therefore, you must uninstall it. Before uninstalling, put a
copy of the service assembly jar files in a safe location.

cd [fuse_dir]\hotdeploy

copy loanbroker-assembly-1.0.jar \tmp
copy creditagency-assembly-1.0.jar \tmp
copy bank0-assembly-1.0.jar \tmp
copy bank1-external-assembly-1.0.jar \tmp
copy bank1-internal-assembly-1.0.jar \tmp

where [fuse_dir] is the directory in which LogicBlaze FUSE was installed.
2. Go to the Undeploying section of this document and undeploy the service assemblies, either

manually or using the LogicBlaze Console. Then proceed to step three of this procedure.
3. LogicBlaze FUSE must be running. For instructions to start LogicBlaze FUSE, please see the

Getting Started with LogicBlaze FUSE guide.
Please allow time for LogicBlaze FUSE to completely start-up.

4. Open the LogicBlaze FUSE Console. In a browser go to: http://localhost:8080/, and
navigate to access the LogicBlaze FUSE console. For more information on the console please
visit the LogicBlaze FUSE Console Guide.

localhost should be replaced with the hostname where LogicBlaze FUSE is installed. If port
8080 has been reassigned you must change that as well.

5. The demo can be deployed from the Archives Installed/Deployed portlet. You may have to scroll
down in your browser to see this portlet. Click on Browse to select the service assembly to
deploy. Then click on the Install/Deploy button.

6. Deploy the following service assemblies:

loanbroker-assembly-1.0.jar
creditagency-assembly-1.0.jar
bank0-assembly-1.0.jar
bank1-external-assembly-1.0.jar
bank1-internal-assembly-1.0.jar

You saved these to another directory in an earlier step, e.g., /tmp

7. When the service assemblies are deployed they will be displayed in the JBI Components portlet
and Archives Installed/Deployed portlet in the console. By default they are deployed in a Started
state.

9

http://localhost:8080/

Loan Broker Tutorial

8. You are now ready to run the demo from a Web browser. Proceed to the Running the Demo
section for instructions.

10

Loan Broker Tutorial

4. Undeploying
Components and service assemblies can be undeployed manually or using the LogicBlaze FUSE
Console.

This is the list of service assemblies that you must uninstall to fully undeploy the loan broker demo.

loanbroker-assembly-1.0.jar
creditagency-assembly-1.0.jar
bank0-assembly-1.0.jar
bank1-internal-assembly-1.0.jar
bank1-external-assembly-1.0.jar

4.1. Undeploying from the LogicBlaze FUSE Console

Figure 4: Archives Installed/Deployed Portlet

1. LogicBlaze FUSE must be running. For instructions to start LogicBlaze FUSE, please see the
Getting Started with LogicBlaze FUSE guide.

2. In a browser go to: http://localhost:8080/ and navigate to access the LogicBlazeFUSE
console. For more information on the console please visit the LogicBlaze FUSE Console Guide.

3. In the Archives Installed/Deployed portlet, select Stop from the "Actions" pull-down menu next to
the component you are undeploying.
This puts the component into the Stopped state. You can either leave the component installed
and stopped or you can proceed to the next step to continue with undeploying the component.

4. In the Archives Installed/Deployed portlet, select Shutdown from the "Actions" pull-down menu
for the component you want to undeploy. The component is still installed (deployed), but in the
Shutdown state. To uninstall/undeploy it proceed to the next step.

11

http://localhost:8080/

Loan Broker Tutorial

5. In the Archives Installed/Deployed portlet, select the Uninstall from the "Actions" pull-down menu
for the component you want to undeploy. That's it, the component is undeployed!

6. Repeat steps 3 - 5 for each component you want to uninstall.

4.2. Manual Undeployment
To undeploy the components or service assemblies manually:

1. Remove the components from the [fuse_dir]\hotdeploy directory by deleting the jar files.

This step can be done when LogicBlaze FUSE is running or stopped.

2. If LogicBlaze FUSE was not running, start it. Please see the Getting Started with LogicBlaze
FUSE guide for instructions if needed .

After start-up if the components still seem to be deploying:

1. Shutdown LogicBlaze FUSE.
2. Delete the [fuse_dir]\data directory.

Warning: This is OK on a test system, but should not be done on a production installation of
LogicBlaze FUSE because information about all other deployed components will be lost.

3. Restart LogicBlaze FUSE.

12

Loan Broker Tutorial

5. How the Loan Broker Demo Works
The following sections provide more technical details about how this demo works and how it was
packaged.

5.1. Packaging
The demo is comprised of several service assemblies. Recall that a service assembly (SA) is a
standard way to package services together as a composite service/application to be deployed as a
unit.

loanbroker-assembly

This service assembly contains the BPEL process and related bindings:

• loanbroker-bpel - the asynchronous bpel process
• loanbroker-lb - synchronous front-end to the bpel process
• loanbroker-ca - http binding to the CreditAgency
• loanbroker-jms - JMS binding (provider) for the synchronous front-end

creditagency-assembly

This service assembly represents the external creditagency service. In the real world, this service
may not be implemented using JBI.

• creditagency-service - the creditagency service implementation
• creditagency-http - http binding (consumer) for the above service

bank0-assembly:

This service assembly contains a very simple bank implementation.

• bank0-wsn - WS-Notification subscription
• bank0-service - bank service implementation

bank1-internal-assembly:

This service assembly is the consumer side for Bank1.

• bank1-internal-wsn - WS-Notification subscription
• bank1-internal-xslt - XSLT transformations
• bank1-internal-http - http binding (provider) for the external Bank1 service.

bank1-external-assembly

This service assembly represents the external Bank1 service. In the real world, this service may not
be implemented using JBI.

• bank1-external-service - simple Bank1 implementation
• bank1-external-http - http binding (consumer) for the above service

13

Loan Broker Tutorial

5.2. Message Flow
First let's see how a single loan request is processed by following a loan rate request from when the
request is made until a loan rate result is returned. The diagram shows the flow of the loan rate
request message.

Figure 5: Message Flow

The demo is implemented with two banks. In a real world situation, the Credit Agency and the Banks
would most likely be external to the loan broker application - in fact, they would typically be external
companies. To keep the demo simple, Bank 0 has been implemented as a service internal to the Loan
Broker JBI Container. Bank 1 - Bank X are shown in the diagram as external entities. They would each
connect to the loan broker JBI system via a binding component. The binding components for the
various banks would communicate in a protocol the particular bank was using.

The diagram shows the message flow for one loan rate request:

1. The Web client is the loan requester It requests a loan rate by publishing a JMS message on an
Apache ActiveMQ queue.

14

Loan Broker Tutorial

2. loanbroker-jms receives the message. loanbroker-jms is a binding component (BC) that
can receive and process JMS messages. loanbroker-jms will normalize the incoming
message. Normalizing the message will put it in the neutral format that is used within the JBI
system. After normalization, loanbroker-jms will pass the message along to the intended
recipient via the Normalized Message Router (NMR). In this case the recipient is loanbroker-
lb. Note that loanbroker-jms implements the In-Only Message Exchange Pattern (MEP).
Please see JSR 208 and Introduction to Apache ServiceMix for details about message
exchange patterns.

3. loanbroker-lb is a front-end to the BPEL process. loanbroker-lb is a service engine
(SE) and its job is to take the loan request and pass it to the loanbroker-bpel process. It
then waits for a reply from the BPEL process. The loanbroker-lb is an aggregator; it receives
an In-Out MEP , sends an In-Only MEP to the loanbroker-bpel, and waits for an incoming
In-Only MEP on a callback endpoint. This response is sent back to the consumer as the Out
message of the In-Out MEP.

4. The loanbroker-bpel process receives the loan rate request. As the BPEL process is
asynchronous, the incoming MEP for loanbroker-bpel is In-Only and the response is sent as
an In-Only MEP to a callback endpoint.

5. First loanbroker-bpel must obtain the credit rating of the requester. To do this the BPEL
process sends a message over the NMR to the loanbroker-ca process.

6. loanbroker-ca is a binding component. It translates the normalized message (which contains
a credit rating request) into an HTTP+SOAP message. This is done so loanbroker-ca can
communicate with the creditagency-http binding component. The MEP for loanbroker-
ca is In-Out.

7. The creditagency-http BC passes the credit rating request to the creditagency-
service.

In our actual implementation, the creditagency-service is implemented inside of the JBI
bus as a service engine. However, the diagram shows it outside as a separate JBI container.. In
a real world situation the credit agency would most likely be an external entity, probably at a
another company or at least on a different server. For simplification of the demo code it is
implemented as another service engine internal to the Loan Broker JBI container, but the
diagram is showing the more likely scenario.

8. The creditagency-service processes the request and responds. The response is sent
back via a SOAP message over HTTP to the creditagency-http binding component.

9. The creditagency-http binding component receives the HTTP+SOAP response from the
creditagency-service and passes it to the loanbroker-ca binding component, also via
HTTP+SOAP.

10. loanbroker-ca normalizes the HTTP+SOAP message and sends it over the NMR to the
loanbroker-bpel process.

15

Loan Broker Tutorial

11. Now that the BPEL process has the credit score information, it can send the loan rate request to
the banks. The loan request for the banks is sent to a WS-N process. This component would
normally notify a group of banks of the request. The message exchange pattern for
loanbroker-bpel is In-Only.

In our example there are only two banks implemented, but many more could be added.
Furthermore, Bank 0 has been implemented internal to the JBI container as a service engine
component. Typically, the bank would be external to the JBI system.

12. bank0-wsn sends the loan request to Bank 0. The MEP is In-Only.
13. bank0-service processes the loan request and sends a response back to loanbroker-

bpel using an In-Only MEP.

The BPEL process and the WS-N process loop. The BPEL process sends the loan rate request to
the to the banks via WS-N. When the BPEL process receives a reply from a bank it compares
the rate to the last best rate it had. If the new rate is better, the BPEL process sends another
message to all the banks via WS-N giving them the opportunity to beat the rate. This means that
the WS-N process is also looping because when it gets another message from BPEL with the
latest best rate it, in turn, sends out another request to all the banks. When a given amount of
time has elapsed and no bank has made a better offer, the last best quote is returned to the
requester (Web client).

In an attempt to simplify this explanation, the message flow for bank 1 - bank X is not shown. The
scenario outlined above is generally the same for the external banks. Except they connect into the
Loan Broker system via binding components because they are not internal to the JBI as Bank 0 is.

5.3. Enterprise Integration Pattern
Another way to look at what is occurring in the loan broker system is to look at its enterprise
integration pattern.

Figure 6: Loan Broker Enterprise Integration Pattern

16

Loan Broker Tutorial

The diagram graphics are from Enterprise Integration Patterns. For a list of what each graphic
symbolizes see: http://www.enterpriseintegrationpatterns.com/toc.html.

In general all the green boxes represent components. The green boxes with the bridge symbol are
binding components. These components will normalize incoming messages. All other green boxes
represent service engine components. They perform some processing on the messages. All the green
boxes are within the Loan Broker JBI system and communicate with each other over the NMR. The
gray boxes represent external services, such as the Banks and the Credit Agency.

Explaining the diagram from left to right:

1. The leftmost gray box (labeled "1") represents the web client. It sends a message to the loan
broker system to request a loan rate. Note that the green boxes symbolize sending a test
message.

2. The loan rate request message is sent via a JMS queue to a message bridge.
3. The messaging bridge connects two messaging systems to each other. In other words, the JMS

queue is connected to the loan broker via the message bridge. In the JBI environment the
message bridge is a binding component that normalizes the message.

4. A process manager routes messages through a series of dynamic steps. This "process
manager" is BPEL. In the loan broker application, BPEL obtains credit scores from the Credit
Agency and it orchestrates sending the loan rate request to the banks, which will be seen in a
later step. In step 4, BPEL sends a message over a bridge to the Credit Agency.

5. The Credit Agency is external to the Loan Broker system. The loan broker messaging system
must be bridged to the messaging system of the Credit Agency. The bridge will translate the
message to a protocol understood by the Credit Agency.

6. The Credit Agency returns the credit score to the loan broker, via the message bridge.
7. The loan broker (BPEL process) now has enough information about the requestor to send the

the loan request to several banks. It passes the loan request to the WS-Notification (WS-N)
process.

8. WS-N is a standard based Web services approach to notification using a topic-based
publish/subscribe pattern. In this case, WS-N is acting as a message broker between the loan
broker and the banks. WS-N will publish the loan request to an internal JMS topic and the
interested banks will subscribe to the topic to receive the loan request.

9. Bank 1 cannot process the loan request because it is in an incompatible format. Therefore, the
message is first processed by a message translator. The translator puts the message into the
format Bank 1 can accept, in this case SOAP over HTTP.

10. After Bank 1 processes the request it returns a response to the BPEL process manager. First it
translates it back into the original message format of a JMS message.

11. In the meantime, Bank 2 uses a polling method to receive the loan request. Polling consumers
are used when a receiver wants to control when it receives messages. This is described in
Enterprise Integration Patterns, "This also known as a synchronous receiver, because the
receiver thread blocks until a message is received. We call it a Polling Consumer because the
receiver polls for a message, processes it, then polls for another."

12. After processing the request, Bank 2 returns a response message to the BPEL process
manager.

17

http://www.enterpriseintegrationpatterns.com/toc.html

Loan Broker Tutorial

13. Bank 2's response passes through the bridge to get translated back to a normalized format
which the loan broker system understands.

14. In the meantime, Bank 0 accepts the loan rate request message and processes. Bank 0 is a
special case because it is actually internal to the loan broker system. It is in the same JBI
container as the rest of the loan broker components. Therefore, it can accept the message in the
normalized format.

15. Bank 0 sends a response to the BPEL process.
16. The BPEL process has been looping for the duration of this loan request. As the banks respond,

BPEL keeps track of the best rate seen so far. After each response and comparison, BPEL
sends out another request giving all the banks a chance to offer a better rate. At that time a
timer is started. If the timer times out, then BPEL knows it has the best rate and returns that to
the requester.

6. Additional Resources
For information on MEPs, binding components, service engine components, NMR, etc., please see:

Introduction to Apache ServiceMix

Apache ServiceMix Wiki: http://incubator.apache.org/servicemix/

To read the Java Business Integration specification (JSR 208) please see:
http://www.jcp.org/en/jsr/detail?id=208.

For online information about the Enterprise Integration Patterns book, please see:
http://www.enterpriseintegrationpatterns.com/ComposedMessagingTIBCO.html.

For online information about the Enterprise Integration Patterns graphics, please see:
http://www.enterpriseintegrationpatterns.com/toc.html.

18

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/ComposedMessagingTIBCO.html
http://www.jcp.org/en/jsr/detail?id=208
http://incubator.apache.org/servicemix/

	1. Overview
	2. Running the Demo
	3. Installing from Scratch
	3.1. Installing and Starting the Demo from a Command Window
	3.2. Installing and Starting the Demo from the LogicBlaze FUSE Console

	4. Undeploying
	4.1. Undeploying from the LogicBlaze FUSE Console
	4.2. Manual Undeployment

	5. How the Loan Broker Demo Works
	5.1. Packaging
	5.2. Message Flow
	5.3. Enterprise Integration Pattern

	6. Additional Resources

