
LogicBlaze FUSE Tooling

07/06 Version 1.0

LogicBlaze FUSE Tooling Guide

This document is a developer's guide explaining the Eclipse-based tooling for LogicBlaze FUSE.

© Copyright 2006 LogicBlaze, Inc.™. All rights reserved. The contents of this publication are protected by
U.S. copyright law and international treaties. Unauthorized reproduction of this publication or any portion
of it is strictly prohibited.

Contents

1. Introduction To LogicBlaze FUSE Tooling..4

2. Prerequisites.. 4

3. Defining Servers.. 5

4. Creating New Projects...11
Understanding a little about Facets.. 16

5. Working With Servers... 17

6. Additional Resources..19

LogicBlaze FUSE Tooling Guide

1. Introduction To LogicBlaze FUSE Tooling
The easiest way to work with the FUSE platform is through the use of the Eclipse-based tooling. The
premise behind the Eclipse-based tooling is to make FUSE a first-class citizen of the Eclipse
integrated developer environment (IDE), providing access to functionality from the FUSE platform
through the standard Eclipse mechanisms. One of the most important parts of this tooling is the
integration with the Web Tooling Platform (WTP) - this allows you to work with the FUSE Server in
much the same way are you would use a J2EE server within Eclipse, providing seamless integration
with the environment and giving you a clean and simple way to work with the FUSE platform.

Much of the tooling is designed to work with Apache Maven (http://maven.apache.org), this provides a
clean way to perform not only the construction of the various package types that FUSE accepts, but
also leverages plugins for the construction of many of the descriptors. This all provides a smoother
and more structured development environment, and if you are working with JBI components, then the
inclusion of the Apache ServiceMix Maven Plugin provides an excellent basis for both packaging and
deployment.

For more information on how the Maven JBI plugin works and the functionality it offers see the
ServiceMix Web site (http://www.servicemix.org/site/maven-jbi-plugin.html).

2. Prerequisites
The following software is required:

• Callisto - Eclipse 3.2 with the Web Tools Platform (WTP)
• LogicBlaze FUSE 1.2

4

http://maven.apache.org/
http://www.servicemix.org/site/maven-jbi-plugin.html

LogicBlaze FUSE Tooling Guide

3. Defining Servers
One of the first features implemented was integrating the FUSE platform with the Eclipse Web Tools
Platform. This was done by providing a server definition for the FUSE server that allows you to
reference an installed version of FUSE and start/stop the server. This feature is also the first step
toward being able to use the platform for projects.

In order to configure a server instance for use you can simply open the Servers View in Eclipse; to do
this go to the “Window>Show View >Other...” and select “Servers”.

5

Figure 1: Servers View

LogicBlaze FUSE Tooling Guide

Once you have the view open you should see it at the bottom part of the Eclipse workspace. You can
right click on the empty pane and click “New>Server”.

6

LogicBlaze FUSE Tooling Guide

This will bring you to the standard screen for adding JEE servers for management in the platform. You
can simply expand the LogicBlaze selection and choose the FUSE server version you have installed.

Note that this requires that you have a local installation of FUSE available

7

Figure 3: Define a New Server

LogicBlaze FUSE Tooling Guide

When you select "Next" you are asked to provide the path to your FUSE installation.

Pressing "Next" will allow you to set the settings for your Server. The defaults are in line with a
standard FUSE installation, however if you have changed your FUSE installation (for example,
changed the port number) then you will need to change the settings to reflect that. This ensures that
Eclipse can communicate with the server.

8

Figure 4: Select FUSE Installation Path

LogicBlaze FUSE Tooling Guide

Once you have informed Eclipse of your server configuration you can click "Finish" to create the
server. You should then see the server showing in the server view. Note when the status is "stopped"
that means it is not currently running under Eclipse. The state shows whether projects in the
workspace need to be published to it, because they have changed.

9

Figure 5: Configuring settings for the FUSE server

LogicBlaze FUSE Tooling Guide

You can simply prove that the server is working properly by right clicking and choosing Start, this will
boot up an instance of FUSE using the runtime you provided under Eclipse. The output from the
running version of FUSE will show in the Eclipse console and can be used to determine if it is starting
properly. Once fully started you should see the status of the Server switch from "Starting" to "Started".
You may have to click the Servers tab to see this. This completes defining a server under Eclipse.

10

Figure 6: Server status

LogicBlaze FUSE Tooling Guide

4. Creating New Projects
Getting started with any type of project can be difficult, and one of the great features of any tooling is
providing a set of wizards to allow you to quickly choose the type of project you wish to create and
then create it.

The FUSE tooling provides a set of wizards which are linked to archetypes that can be used to create
projects which are fully configured to work with Eclipse tooling. One of the important features of the
FUSE tooling is that it works with the Apache Maven tooling, this means that when you create a new
project type the dependencies you might need, such as third-party libraries, are automatically
downloaded for you making it quick and easy to get started.

In order to select a project click "New>Project" from the File menu in Eclipse.

11

Figure 7: New Project

LogicBlaze FUSE Tooling Guide

This will take you to the New Project dialog where you can see all the available project types in
Eclipse. The actual projects you will have available are based on the plugins you have in your Eclipse
environment, though the FUSE tooling creates two categories for the projects. The two project
categories are Java Business Integration and Java Business Integration Service Units.

The two categories provide access to two different aspects of development on FUSE.

Java Business Integration
The Java Business Integration project wizards are in place to allow you to create your own shared
libraries, components, service engines and service assemblies. Though they don't provide out-of-the-
box functionality, they do provide you with the basic project and code structures for each of these
component types, and should be used as the basis for creating your own services.

12

Figure 8: New Project dialog

LogicBlaze FUSE Tooling Guide

Java Business Integration Service Units
These JBI service unit definitions can be used when you wish to leverage an existing component or
service engine, such as the JSR-181 annotated service engine. They provide the ability to quickly
define a service unit for a component based on a template. The service unit will already reference its
component or service engine and since the projects are based on Apache Maven functionality these
components will be automatically downloaded for you.

For this example we will go through the creation of a Service Engine, therefore, you simply select the
Service Engine option from under the Java Business Integration category and click "Next".

This will display the Service Engine wizard page; on this page we can enter the name of our new
project.

Note that we can also select a runtime for the engine (though this isn't necessary) and also use any
custom configurations, if there are any available, for the project type are you creating.

13

Figure 9: Service Engine wizard

LogicBlaze FUSE Tooling Guide

Simply pressing "Next" will bring you to the Facet view. Facet's are a way of associating Eclipse
functionality with a project. The FUSE tooling has been written to take advantage of this functionality.
For most projects we see that the facets are fixed and can not be changed.

14

Figure 10: Project Facet view

LogicBlaze FUSE Tooling Guide

You can simply click "Finish" to complete the wizard and you should then find that a project is created
in your project with the given name. The use of Apache Maven will mean that all dependencies are
downloaded for you and therefore once the project has been built you can immediately deploy it to a
server.

15

Figure 11: Eclipse Package Explorer showing the
example service engine

LogicBlaze FUSE Tooling Guide

Understanding a little about Facets
Facets are a powerful feature of Eclipse and worth a little more information. Basically the FUSE tooling
provides five new facets that a project can have, these are:

• JBI Binding Component
• JBI Service Engine
• JBI Service Assembly
• JBI Service Unit
• JBI Shared Library

Each represents one of the packaging types within the JBI specification, and it is the presence of
these facets on a project that determine whether is can be deployed to a JBI compliant server such as
FUSE or ServiceMix. Also note that we use facets such as those from Apache Maven to enable
Maven functionality on the projects.

16

LogicBlaze FUSE Tooling Guide

5. Working With Servers
One of the powerful features of the FUSE tooling is the ability to deploy projects to running Servers,
which is built around the Eclipse Web Tools Platform concept of Servers and allows you to see FUSE
and ServiceMix as Server that can be associated with a project in much the same way as a J2EE
server (such as IBM WebSphere).

In order to do this you first need to have defined a server and also created a JBI project that can be
deployed. The deployable JBI projects are:

• JBI Service Engines
• JBI Binding Components
• JBI Shared Libraries
• JBI Service Assemblies

If you have a project you can associate it with a defined server, to do this you right click on the Server
from the Server View and click “Add/Remove Projects”.

17

Figure 12: Adding and Removing projects

LogicBlaze FUSE Tooling Guide

Once you select “Add and Remove Projects” you can select the available projects from your
workspace that you wish to deploy. The projects listed here are those that are eligible for deployment
on the Server - for FUSE this means a project with one of the JBI deployable facets.

Use the “Add/Remove” buttons to decide which projects you wish to run on the server. Once you have
added your project you can simply click "Finish". You will then see the project shown under the Server
on the Server View.

18

Figure 13: Add and Remove Projects view

LogicBlaze FUSE Tooling Guide

You can now start your Server. When you start the Server the project will be automatically published
to the server. It is important to note that by default the publishing mechanism determines whether your
project is dependent on other components or shared libraries, if so these will be automatically
deployed with it. This is provided to make the process of deploying components to the server quick
and easy for developers, taking away the problems of determining and deploying dependencies
outside of Eclipse.

If you modify your project in any way Eclipse will recognize the changes and the state of the project
will switch to "Republish". When you want to do this, right click on the Server in the Server View and
click “Publish”. This will stop the project on the server (and its dependencies) and redeploy each of
them again.

It is also important to note that you can start the Server in Debug Mode, this provides a great way of
debugging your code while running against a FUSE server without any special configuration. The
debugger will function just as it does normally in Eclipse.

6. Additional Resources

To read the Java Business Integration specification (JSR 208) please see:
http://www.jcp.org/en/jsr/detail?id=208.

19

Figure 14: Example project under the Server

http://www.jcp.org/en/jsr/detail?id=208

	1. Introduction To LogicBlaze FUSE Tooling
	2. Prerequisites
	3. Defining Servers
	4. Creating New Projects
	Understanding a little about Facets

	5. Working With Servers
	6. Additional Resources

