
FUSE Mediation Router
TM

The Open Source Solution for Routing and Mediation

Why Routing?

f Ease of Use
FUSE Mediation Router uses a Java Domain
Specific Language (DSL) in addition to
Spring XML for configuring routing rules to
create powerful and concise code and
support type-safe smart completion,
minimizing the need to work with large
numbers of XML configuration files.

f Rapid Prototyping
Developers do not need to know
deployment or container configuration
details. The FUSE Mediation Router
provides a layer of abstraction to mask the
details of JMS, JBI, and JAX-WS, and
provides a Maven archetype so organizations
can quickly use Enterprise Integration
Patterns to integrate complex systems.

f Interoperability
FUSE Mediation Router uses generics,
annotations and Uniform Resource Identifiers
(URIs) to easily work directly with any kind of
transport or messaging model including
HTTP, JMS, JBI, SCA, MINA or CXF Bus API
without mandating a normalized message API,
which can often lead to leaky abstractions.

f Distributed
Like all FUSE components, the Mediation
Router is a lightweight, small-footprint
solution that can be easily embedded at
endpoints, allowing distributed systems to
intelligently interact without mandating a
centralized server.

Organizations need to integrate applications quickly, and many developers would
like to take a code-first approach without having to work with domain-specific or
platform-specific deployment details. With the FUSE Mediation Router, a Java
developer can quickly develop integration patterns by using a simple API directly
within a Java program. These integration patterns, or integration components, can
also be deployed in a number of deployment platforms, including the FUSE ESB,
providing a seamless migration path to a more formal SOA infrastructure.

FUSE Mediation Router, IONA's distribution of Apache Camel, is a powerful
rule-based routing and process mediation engine that combines the ease of basic
POJO development with the clarity of the standard Enterprise Integration Patterns.
It can be deployed inside any container or be used stand-alone, and works directly
with any kind of transport or messaging model to rapidly integrate existing
services and applications.

FUSE: A Family of Open Source SOA Components
FUSE Mediation Router is one component in a family of components that include
FUSE HQ, FUSE ESB, the FUSE Services Framework, and the FUSE Message
Broker. The FUSE components are tested together, certified, and supported to
combine the speed and innovation of open source software with the reliability
and expertise of commercially provided enterprise services.

About IONA Technologies, Inc.
IONA's commitment to open source software is part of its 15-year heritage of
solving the most complex integration problems by applying open, standards-based
solutions. An industry leader in integration and SOA, IONA has the proven expertise
to design a highly flexible, distributed SOA infrastructure for Global 2000 customers
including Raymond James & Associates, Nokia, Zurich Insurance, Ericsson and
Credit Suisse using standardized components.

MMaakkiinngg SSooffttwwaarree WWoorrkk TTooggeetthheerr
™™

Get the leading open source
mediation router now:

FUSE Mediation Router

open.IONA.com

UUSS HHeeaaddqquuaarrtteerrss

IONA Technologies, Inc.
200 West Street Waltham, MA 02451 USA

EEuurrooppeeaann HHeeaaddqquuaarrtteerrss

IONA Technologies PLC
The IONA Building
Shelbourne Road, Dublin 4, Ireland

AAssiiaa--PPaacciiffiicc HHeeaaddqquuaarrtteerrss

Kioicho Bldg. 3-12 Kioicho,
Chiyoda-ku,
Tokyo 102-0094

MMaakkiinngg SSooffttwwaarree WWoorrkk TTooggeetthheerr
™™

IO
N

A,
 IO

N
A

Te
ch

no
lo

gi
es

, t
he

 IO
N

A
lo

go
, O

rb
ix

, H
ig

h
P

er
fo

rm
an

ce
 In

te
gr

at
io

n,
 A

rt
ix

, A
da

pt
iv

e
R

un
tim

e
Te

ch
no

lo
gy

 a
nd

 M
ak

in
g

So
ft

w
ar

e
W

or
k

To
ge

th
er

 a
re

 t
ra

de
m

ar
ks

 o
r

re
gi

st
er

ed
 t

ra
de

m
ar

ks
 o

f I
O

N
A

Te
ch

no
lo

gi
es

 P
LC

an
d/

or
 it

s
su

bs
id

ia
ri

es
. C

O
R

B
A

is
 a

 tr
ad

em
ar

k
or

 r
eg

is
te

re
d

tr
ad

em
ar

k
of

 th
e

O
bj

ec
t M

an
ag

em
en

t G
ro

up
, I

nc
. i

n
th

e
U

ni
te

d
St

at
es

 a
nd

 o
th

er
 c

ou
nt

ri
es

.
Al

l o
th

er
 tr

ad
em

ar
ks

 th
at

 m
ay

 a
pp

ea
r

he
re

in
 a

re
 th

e
pr

op
er

ty
 o

f t
he

ir
re

sp
ec

tiv
e

ow
ne

rs
. C

O
P

YR
IG

H
T

N
O

TI
C

E.
 N

o
pa

rt
 o

f t
hi

s
pu

bl
ic

at
io

n
m

ay
 b

e
re

pr
od

uc
ed

, s
to

re
d

in
 a

 r
et

ri
ev

al
 s

ys
te

m
 o

r
tr

an
sm

itt
ed

, i
n

an
y

fo
rm

 o
r

by
 a

ny
 m

ea
ns

, p
ho

to
co

py
in

g,
 r

ec
or

di
ng

 o
r

ot
he

rw
is

e,
 w

ith
ou

t
pr

io
r

w
ri

tt
en

co
ns

en
t o

f I
O

N
A

Te
ch

no
lo

gi
es

 P
LC

. C
op

yr
ig

ht
 ©

 1
99

9-
20

07
 IO

N
A

Te
ch

no
lo

gi
es

 P
LC

. A
ll

ri
gh

ts
 r

es
er

ve
d.

For more information visit
open.IONA.com

03
85

4C
J0

3
12

-0
7

S u p p o r t e d E n t e r p r i s e I n t e g r a t i o n P a t t e r n s

Messaging Systems
Message Channel
How one application communicates
with another using messaging

Message
How two applications connected by a
message channel exchange a piece of
information

Pipes and Filters
How to perform complex processing
on a message while maintaining
independence and flexibility

Message Router
How to decouple individual
processing steps so that messages
can be passed to different filters
depending on a set of conditions

Message Translator
How systems using different data
formats communicate with each
other using messaging

Message Endpoint
How an application connects to a
messaging channel to send and
receive messages

Messaging Channels
Point to Point Channel
How the caller is sure that exactly one
receiver will receive the document or
perform the call

Publish Subscribe Channel
How the sender broadcasts an event
to all interested receivers

Dead Letter Channel
What the messaging system does
with a message it cannot deliver

Guaranteed Delivery
How the sender makes sure that a
message will be delivered, even if
the messaging system fails

Message Bus
An architecture that enables separate
applications to work together, but in
a de-coupled fashion such that
applications can be easily added or removed
without affecting the others

Message Routing
Content Based Router
How to handle a situation where the
implementation of a single logical
function is spread across multiple physical
systems

Message Filter
How a component avoids receiving
uninteresting messages

Recipient List
How to route a message to a list of
dynamically specified recipients

Splitter
How to process a message if it
contains multiple elements, each of
which may have to be processed in
a different way

Resequencer
How to get a stream of related but
out-of-sequence messages back
into the correct order

Message Transformation
Content Enricher
How to communicate with another
system if the message originator
does not have all the required data items
available

Content Filter
How to simplify dealing with a large
message, when interested only in a
few data items

Normalizer
How to process messages that are
semantically equivalent, but arrive in
a different format

Messaging Endpoints
Messaging Mapper
How to move data between domain objects
and the messaging infrastructure while
keeping the two independent of each other

Event Driven Consumer
How an application automatically
consumes messages as they become
available

Polling Consumer
How an application consumes a
message when the application is ready

Competing Consumers
How a messaging client processes
multiple messages concurrently

Message Dispatcher
How multiple consumers on a single
channel coordinate their message
processing

Selective Consumer
How a message consumer selects
which messages it wishes to receive

Durable Subscriber
How a subscriber avoids missing
messages while not listening for them

Idempotent Consumer
How a message receiver deals with duplicate
messages

Transactional Client
How a client controls its transactions
with the messaging system

Messaging Gateway
How to encapsulate access to the
messaging system from the rest of
the application

Service Activator
How an application designs a service
invoked both via various messaging
technologies and via non-messaging
techniques

System Management
Wire Tap
How to inspect messages that travel
on a point-to-point channel

1-877-235-8491 (toll free)

1-310-437-4870 (direct)

opensource@iona.com

The following Enterprise Integration Patterns are defined by Gregor Hohpe and Bobby Woolf.
For more information visit http://www.enterpriseintegrationpatterns.com.

To download FUSE visit
open.IONA.com/downloads

