

Lustratus Research Limited
St David’s. 5 Elsfield Way, Oxford OX2 8EW, UK
Tel: +44 (0)1865 559040

www.lustratus.com

paper

The Open Source Value
Proposition for SOA

white

Table of Contents

I. Executive Summary 3

 i. Summary of findings 4

II. Building the business case for SOA 6

 i. SOA and the budget Catch 22 7

III. Open Source Software in the Enterprise 9

 i. Open Source Myths 9

 ii. Enterprise OSS: You are already using it 9

IV SOA and Open Source Software 10

 i. Addressing the SOA budget challenge with OSS 10

 iii. Using OSS to address SOA risks 11

 Iii. Why SOA suits OSS 12

V. OSS: Risks and pitfalls 13

VI. Evaluating SOA OSS vendors 15

Appendix A short history of integration and SOA 17
VII. Conclusions 16

About Lustratus Research
Lustratus Research Limited, founded in 2006, aims to deliver independent and unbiased
analysis of global software technology trends for senior IT and business unit manage-
ment, shedding light on the latest developments and best practices and interpreting
them into business value and impact. Lustratus analysts include some of the top thought
leaders in market segments such as service-oriented architecture (SOA) and business
integration.

Lustratus offers a unique structure of materials, consisting of three categories—Insights,
Reports and Research. The Insight offers concise analysis and opinion, while the Report
offers more comprehensive breadth and depth. Research documents provide the results
of practical investigations and experiences. Lustratus prides itself on bringing the techni-
cal and business aspects of technology and best practices together, in order to clearly
address the business impacts. Each Lustratus document is graded based on its techni-
cal or business orientation, as a guide to readers.

Terms and Conditions
© 2007—Lustratus Research Ltd.

Customers who have purchased this report individually or as part of a general access
agreement, can freely copy and print this document for their internal use. Customers can
also excerpt material from this document provided that they label the document as Pro-
prietary and Confidential and add the following notice in the document: “Copyright ©
2006 Lustratus Research. Used with the permission of the copyright holder”. Additional
reproduction of this publication in any form without prior written permission is forbidden.
For information on reproduction rights and allowed usage, email info@Lustratus.com.

While the information is based on best available resources, Lustratus Research Ltd dis-
claims all warranties as to the accuracy, completeness or adequacy of such information.
Lustratus Research Ltd shall have no liability for errors, omissions or in adequacies in the
information contained herein or for interpretations thereof. Opinions reflect judgment at
the time and are subject to change. All trademarks appearing in this report are trade-
marks of their respective owners.

 2

Executive Summary
This paper is aimed at IT managers and architects considering the use of Open Source
Software within a SOA project. The deployment of any software into an organization has
implications far beyond a simple technical evaluation. Once deployed it can be expensive,
risky and disruptive to remove it. But relying on obsolete or hard to maintain software is
equally worrisome. Therefore, the decision to deploy any new software requires careful
analysis of the benefits, risks and costs associated with potentially relying on that soft-
ware for many years to come. While Open Source Software (OSS) is a high profile topic
in the software industry, a major inhibitor to adoption remains a lack of knowledge of how
to evaluate the benefits and risks associated with its use. This lack of information leads
organizations to either ignore OSS when it is the best solution or adopt OSS without fully
understanding the consequences.

This paper focuses on the use of OSS to implement Service Oriented Architecture (SOA);
an area which is notable by the number and popularity of Open Source projects. The
goals of the paper are to clear the confusion around SOA Open Source Software and to
provide decision-makers with the knowledge required to analyse whether an OSS-based
solution is the best option for their SOA project. Furthermore, it highlights the value pro-
vided by OSS vendors which in many cases are crucial to the long-term success of OSS
adoption.

As such, this paper should be considered as a guide for management in any organization
that is in the process of selecting infrastructure software for use as part of their SOA pro-
gram. It analyses the benefits derived from using Open Source Software for SOA projects:
focusing in particular on the risk and budgetary dimensions. It clarifies the role of the
businesses which provide services around the Open Source projects (the OSS vendors)
and distinguishes between vendors providing OSS versions of closed source products
and those providing OSS only solutions. Note that any reader unfamiliar with the con-
cepts of Service Oriented Architecture and how it fits into the evolution of enterprise
systems should read Appendix A prior to the rest of this paper.

This paper adopts the following structure:

1. Highlights the key issues that need to be addressed when building a SOA
business case: The difficulties associated with funding SOA projects and the
risks associated with such projects.

2. Explores the current state of Open Source Software acceptance in the enterprise
which is both more limited and more extensive than generally perceived.

3. Explains how OSS can address the SOA business case issues by providing a
model for software adoption well aligned with the roll-out of integration solutions.

4. Highlights the risks associated with OSS adoption and explains how vendors
backing these projects mitigate these risks.

5. Explores the different elements of the value proposition of the OSS vendors and
how to evaluate them.

 3

What is SOA?
SOA stands for Service-
Oriented Architecture, where
IT programs and resources
are encapsulated and made
available as business services,
each enacting a discrete
business function such as
‘Get Customer Details’. The
services can then be used
and reused as building
blocks, assembled together
into other business functions
and processes as required.

Open Source and
Closed Source
Software
Open Source Software
(OSS) is software whose
source code is available at
zero cost under licenses such
as the Gnu General Public
License (GPL) which give the
right to access, modify and
distribution rights. Open
Source software is typically
available for download from
the Internet.

Closed Source Software is
the term sometimes used to
contrast OSS with software
available under traditional
commercial licenses which do
not allow access to source,
modification or onward distri-
bution rights.

Summary of findings
OSS addresses the following problem areas for SOA:

 4

SOA Problem Area OSS Derived Solution

SOA projects can be hard to fund as they
are typified by large upfront license require-
ments, hard to execute funding models
such as internal charge-back and uncer-
tainty about the eventual functionality
requirements and scale

The OSS business model promises low upfront
cost, the ability to scale out and scale up usage.
This allows investment to match requirements
and removes some long term uncertainty around
the project cost. Scaling out is possible because
deploying onto additional servers has zero
associated license cost. Scaling up is possible
because OSS SOA projects follow a modular
approach which allows the selection of required
modules as and when they are needed.

SOA deployments will be long-lived and
business critical. This increases the risk
associated with vendor or product failure.

The Open Source model of freely available
source and user community involvement miti-
gates the risks associated with vendor failure
and product abandonment. However, this
mitigation relies on the existence of an active
user community or internal technical resources
capable of taking on support and development
of the project.

Skills required to use most integration
products are hard to find and can be ex-
pensive to retain over the life-time of a SOA
deployment.

OSS projects leverage standards heavily which
makes it easier to find knowledgeable develop-
ers. As the software is freely downloadable, staff
can try it out and build skills before committing
to the project. The community of developers
that surrounds the project also helps to foster
expertise and provides a source for expert
assistance. However, it should be stressed that
many skills can only be built from real world
experience of building large scale deployments
and such skills are independent of whether open
or closed source software is used.

All integration projects including SOA pro-
jects require large amounts of customiza-
tion and integration into diverse 3rd party
technologies.

OSS SOA projects are typically modular in struc-
ture with customization as a key design goal.
Their open architecture and use of community
development makes integration into 3rd party
software easy and increases the potential avail-
ability of adapters.

However, Open Source also introduces risks and costs not present with Closed Source
software which seriously undermines the overall benefits of adopting OSS. Therefore,
while Open Source Software may provide attractive business benefits in the context of
SOA, serious consideration should be given to these issues. One approach to mitigating
these is to partner with an OSS vendor. The benefits that may be derived from such a
relationship include:

Finally, any analysis of the value of a partnership with an OSS vendor must recognize and
take into account that OSS vendors differ in two key respects:

Business Strategy:
In the SOA OSS space, the OSS projects promoted by the OSS vendors are very
diverse. While all OSS vendors combine a number of projects to create their solution,
not all are attempting to create a complete OSS-based solution: It is common with the
larger vendors in particular to promote OSS as a light weight alternative to their full
strength closed source products. For these vendors, it is essential that due diligence
verifies that the OSS solution will be sufficient for all current and future requirements. If
this is not the case, the cost of the closed source product must be factored into the
business case.

“Product” Strategy:
The SOA OSS vendors follow significantly different “product” strategies. Not only do the
vendors promote and support different projects, they also place different emphasis on
elements such as technology innovation, community-driven development, the integration
of the projects into a coherent platform and enterprise support. Therefore for SOA, the
different OSS solutions available need to be evaluated like any closed source product
with consideration of both current features and roadmap. This is a very different situation
to commoditized Open Source technology areas such as Operating Systems.

 5

Drawback of OSS Value delivered by OSS vendor

All OSS SOA solutions rely on multiple OSS
projects as no one project provides the complete
functionality. The Open Source development
methodology leads to multiple versions and
potential incompatibilities across these required
projects. Closed software vendors provide
integration within their product set out of the
box. This integration activity typically represents
more than 20% of the vendor’s overall develop-
ment cost.

Most SOA OSS vendors provide a certified
set of projects which are tested to work
together. This provides the user with a
robust platform to work with and a ‘throat
to choke’ if bugs are discovered. It is of
course essential that the OSS vendor
keeps the platform up to date with the
latest OSS project features.

Without vendor engagement, OSS projects rely
on users to drive innovation and sustain the
development of the project.

OSS vendors have a current and on-going
commercial stake in keeping the project
competitive and vital. This can be through
support for the OSS community or through
direct investment in the development of the
software itself.

Because OSS projects rely on standards, the
skills required to use the projects are more avail-
able. However, the skills required to develop
the projects themselves are often deeply techni-
cal and may be hard to acquire or hire.

OSS vendors committed to specific pro-
jects will develop the deep skills in-house
and make these available to their custom-
ers.

Open Source
Software vendors
While Open Source Software
is freely available at no cost,
there are still requirements for
additional services such as
support, maintenance and
consulting around the pro-
jects. These services are
provided by businesses which
are typically referred to as
Open Source Software Ven-
dors. Open Source Software
Vendors may also sell Closed
Source Software (such as
IBM), be exclusively providing
Open Source Software (such
as Red Hat) or provide general
consulting services as well.

Building the business case for
SOA
The details of any IT business case vary from organization to organization. With SOA,
this is particularly the case because Service Oriented Architecture as an enabling archi-
tecture will almost always be a secondary element within the business case: The primary
element will be the solving of a business problem. The solution may benefit from SOA
but the solution is unlikely to be directly attributable to SOA. Second of all, as an
architectural model, SOA can be applied to solve a broad set of diverse problems. The
problems which when solved will deliver the most value will vary with the scale of the
organization and the industry it operates within. SOA has proven well suited for portal
integration and integration of back-end systems. It is applied as the basis for data ex-
changes, and client-server systems. In each case, the SOA principles are common.
What differs is the manner in which these principles are applied. Finally, the way the SOA
principles are manifested in any given company reflect that organization’s goals, IT strat-
egy structure, history and even its corporate culture. For instance, some organizations
are fundamentally federated while others are centralized: The SOA deployment should
reflect these structures and should not introduce a tension between IT architecture and
business organization. After all, SOA is all about alignment of technology with the
business.

While the specifics of any business case may vary greatly, some elements will always be
present. These are the key questions that must be answered as any case is built and
the return on investment calculated. Questions such as:

The roadmap: How will we achieve the end-goal and what are the steps along the
way? How long will the output from the project be used? How will the transition from
development to deployment be handled and how will the project be sustained after
development is completed?

The benefits of completion: What business benefits will accrue if the project is com-
pleted? What is the impact of not doing the project?

The risk assessment: What are the risks associated with the project and what are the
risks associated with not proceeding? What are the longer term risks associated with
the completed project? Will the project be able to meet the organization’s need through-
out its project life-span?

The total project cost: How much will the project cost including license fees, develop-
ment costs, additional hardware, maintenance fees and on-going maintenance cost?

These questions will be discussed in greater detail later in the paper in the context of
how OSS supports the SOA business case and how OSS vendors are needed to
address OSS specific limitations. For now it is sufficient to point out that the issues that
need to be addressed for a SOA project are in fact similar to those associated with any
integration project with the aspiration to be rolled out across the organization. These
risks are summarized below:

 6

Area of SOA risk Explanation

Need for organizational
maturity

SOA in particular requires a high degree of maturity around gov-
ernance to ensure that the necessary policies around service
and data definitions and use are complied to. For organizations
unused to such governance, it can be particularly challenging to
set-up governance mechanisms that will simultaneously control
behavior and engage and involve stakeholders across the or-
ganization.

Lifespan and criticality of the
deployment:

Successful integration deployments are often automated key
business processes and have lifetimes from a minimum of 3
years. Typical life spans are 5-9 years with many systems
continuing indefinitely. Will the software still be around
throughout the life span of the deployment?

SOA and budget Catch 22
The fact that SOA only delivers its full potential when it is deployed across the entire
enterprise leads to the greatest challenge when building the business case: Budgeting
for the upfront and on-going technology investment. The classic approaches to funding
IT infrastructure projects from central sources or on a project by project basis both face
significant challenges. These challenges deter some organizations from adopting SOA at
all or lead to high-risk or sub-optimal adoption strategies.

From its conception, it is clear that with SOA, the greatest benefits accrue in terms of
reuse, agility and cross-organizational efficiency when it is rolled out broadly. However,
such a widespread deployment is not an easy journey for any organization to make and
will normally take a number of years across many individual projects for even the most
committed organization. Furthermore each individual project will have its own focus.
This leads to two major problems with funding a SOA initiative:

Measuring tangible benefits: SOA as with most infrastructure investments delivers
benefit indirectly through enhancing and enabling the desired business driven outcomes.
Including such indirect benefits with a SOA business plan is difficult and requires either
co-opting of specific business projects as SOA projects or acceptance of less precisely
measured benefits.

Predicting the requirements over the life-time of the SOA deployment: Integra-
tion software is expensive to roll-out across any organization and by its nature, the return
on investment improves the more widely the software is deployed. Early on in the SOA
roll-out, decisions must be made as to how the SOA infrastructure will be implemented:
whether to use an ESB or extend the use of deployed EAI products, whether to use a
SOA-specific management platform or to use an existing management platform, whether
to buy a SOA registry or build a custom registry and so on. This does not mean that
specific products must be selected and committed to for use across the organization:
There will be requirements to use other infrastructure software in some situations where
the technology base is different (e.g. for mainframe-based systems). In other situations,
there will certainly be requirements for additional functionality to solve more complex
requirements or less functionality to solve simpler requirements. However, the front load-
ing of the decision and hence cost has always been problematic for any infrastructure
project.

Estimating the total cost of SOA: At the outset it is hard to estimate how widely SOA
will be deployed, at what rate the deployment will occur and what precise functionality

 7

Area of SOA risk Explanation

Degree of customization
required to support the
business requirements

Integration products have a deserved reputation for requiring a
high degree of customization in each project. To a degree this
reflects the underlying uniqueness inherent in each project. All
customization must be maintained throughout the life-time of
the deployment and necessitates retention of specialist skills
and knowledge.

Degree of change expected
during the deployment’s
lifetime:

The operating system and hardware required has an obvious
impact but it is an aspect already understood by IT operations
managers. The other dimension is changes in the function of
the deployment. Clearly, all businesses change over the aver-
age lifetime of an integration deployment. Integration software
deployments are in particular impacted by this change and it is
unlikely that a deployment will remain useful and unchanged
through the lifespan of the project. Therefore at the function
level, the deployment must either be designed to change or it
must be possible to extend the deployment by adding on
additional components.

Availability and expertise of
skills:

Any software deployment requires skills from both a develop-
ment and a maintenance perspective. Any skills that are specific
to individual products or OS projects carry additional risk as
such skills may become hard to source and hence more
expensive.

will be required across the set of business problems that may need to be solved. When
using Closed Source software, each of these dimensions has implications on costs in
terms of software licenses as well as effort expended on development and maintenance.

These issues create a “Catch 22” scenario when deciding whether to fund centrally or on
a project by project basis:

Centrally funded SOA: Centrally funded SOA has the advantage of making it easier to
ensure appropriate architecture choices are made, consistency is maintained and gov-
ernance structures and processes are put in place. However other challenges emerge
associated with the two funding models that can be used to cover the costs: Charge-
back and central funding. Charge-back involves recouping the centrally borne costs
from departments as they use the software. Unfortunately, this encourages departments
to ignore the central SOA architecture and to go their own way. The chargeback cost on
its own is unlikely to be used as the reason for this independence. However, it may be
used to justify alternatives as having lower cost and hence higher return for that specific
project. If SOA is funded centrally without chargeback, the large and hence very visible
investment will struggle to be justified as the benefits will be speculative and hidden
within business line projects which succeed because of the SOA program. If each
department is asked to contribute outside of any specific business-drive project, it is
hard to gain consensus across the departments as there is a perception that the rewards
of all cooperating will be the grabbed by central IT although the risk is spread. This leads
to a strong tendency for departments to take different paths which suit their own goals
and the consistency breaks down.

Project-level funded SOA : The project funded approach tends to result in a project
specific SOA: Each project creates a version of SOA well suited to its own needs and not
suited to the organization’s over-arching needs. Of equal significance to the long term
success of SOA, a project level funding model will not be able to put in place the organiza-
tional level governance structures and processes required for longer term SOA success.

This problem with the business case has resulted in the following common scenarios:

High visibility/high risk SOA:
In a minority of organizations, the argument for SOA can be made and backed as a
strategic requirement at the highest level of the organization. The business case is often
argued as part of a strategic need to decrease time to market rather than tied to benefits
associated with specific goals. These organizations will tend to have a high degree of
maturity in IT governance and operate in centralized businesses with considerable de-
pendence on and understanding of IT for day to day operations (such as financial services
firms involved in trading or large scale logistics firms with sophisticated tracking systems).
Organizations are unlikely to take this approach unless the CIO is a true visionary CIO.

Grass roots developer-led SOA:
Often closely aligned to the adoption of Web Services, SOA principles are introduced to
existing projects rather than explicitly included within the business case. This is also
known as viral SOA or guerrilla SOA. Because it makes SOA invisible, the tactical ap-
proach to SOA clearly diminishes the opportunity to extend the benefits across the or-
ganization and risks the creation of islands of SOA. However, the upside is that SOA is
tried on already funded projects to solve real business problems. Once the project has
been successful, the SOA aspect can be revealed and used to build more general use of
SOA. While difficult, if the transition from grass-roots to enterprise wide SOA can be
made effectively, such SOA programs can be highly effective.

Wait and see SOA:
SOA may be ignored or tentative pilots undertaken to ensure that some expertise is built up
until SOA is deemed a safe choice. The wait and see approach has obvious competitive
implications: Full scale SOA adoption is a multi-year program even for organizations with
established governance culture. Many organizations taking the wait and see approach are
less mature and hence will have little opportunity to catch up when competitors begin to
leverage SOA effectively.

 8

Open Source Software in the
Enterprise
Open Source Myths
Before exploring how Open Source Software can address the problems facing anybody
building the business case for a SOA initiative highlighted in the previous section, it is
useful to review how Open Source Software is currently used in the enterprise and for
what. It is fair to say that Open Source Software (OSS) has come a long way over the
last few years, with offerings such as Linux, Mozilla Firefox, and the JBoss J2EE applica-
tion server becoming mainstays in many IT departments. What is surprising is that for
such a significant trend there remain many myths around Open Source. These may add
to the romantic appeal but can actually hinder OSS adoption in the enterprise as the
decision makers may be put off by the myths.

The 1st Myth: OSS as altruism
The first myth, still promoted by many industry observers and OSS promoters, is that
Open Source is an exclusively altruistic endeavor (sharing your intellectual property and
expecting others to return the favor) with a vast network of individual developers working
in their free-time for the betterment of all. A more sophisticated version of this is that
OSS development is driven exclusively by customers, the end-user organizations who
see benefit in sharing the cost of developing the Open Source software with other or-
ganizations who have similar requirements. The first version of the myth was true to a
degree with Linux early on. However, Linux is actually an atypical example of the vast
majority of OSS projects as it implemented a very mature and widely understood tech-
nology with a pre-existing and huge community of developers and users who knew
UNIX™ inside out. The customer driven OSS myth was always mostly a myth: On rare
occasions, end-user organizations have either open sourced an internal development or
funded a new OSS project in order to share on-going costs. However, these projects
have almost always involved an OSS vendor to drive the development of the project
beyond the initial open sourcing. The reality is that vendors from industry giants such as
IBM to integration software specialists invest significantly in the OSS movement and reap
considerable revenues from this investment. This is actually a benefit to adopters of OSS
as the software is being developed by specialist developers who are writing the Open
Source code as part of their paid employment.

The 2nd Myth: OSS is free
The second myth is that OSS is free. This equating of zero license fee with free may
apply to personal use but does not apply to commercial deployments. Even software
with no license fee requires investment in skills, in the actual development of the solution
and in maintenance of the resulting deployed solution.

Enterprise OSS: You are already using it
A reasonable question to ask is how widespread is OSS adoption in the enterprise?
Unlike closed source software where vendors are typically public corporations required to
disclose revenue information, the OSS free distribution model makes it much harder to
accurately estimate the extent of its use. Further complicating the measurement is the
habit among the OSS community to use download statistics as proof of adoption. The
often huge numbers claimed inevitably include a high proportion of repeat downloads,
downloads for evaluation purposes, downloads by developers driven by simple curiosity
as well as by non-commercial users.

Unfortunately, the use of these download numbers actually clouds and undermines the
real success of the projects. What is clear is that OSS is being used successfully in
many organizations: Most organizations have at least explored migrating some aspects
of their infrastructure to Linux. While the precise level of usage remains the subject for
heated debate, it is also clear the open source Apache Web Server remains popular for
corporate web-sites. In the integration software area, Red Hat’s JBoss J2EE Application
Server is among the top 4 choices with IBM, Oracle and BEA. On the development side,
the Eclipse project, originally developed by IBM and then open sourced, has become the

 9

Integrated Development Environment (IDE) of choice for Java developers.

These examples only reflect the visible usage of OSS in the enterprise as the closed source
vendors are also keen adopters of Open Source Software within their own products which
are in turn deployed into the enterprise. In the SOA space, key OSS components such as
XML parsers and XSLT engines for message transformation are widely embedded within
closed source products. Reflecting the already mentioned popularity of the eclipse IDE,
the closed source SOA vendors also often supply plug-ins to this IDE to allow developers
to use their preferred development environment.

Finally, there is another route by which OSS is deployed in stealth mode: Development
teams recognize the value of an OSS project to address a specific problem. The soft-
ware is downloaded, developed with and deployed; all without the need to engage with
the normal procurement and legal processes. This approach has a significant and often
under-estimated implication on IT risk which will be explored later in this paper.

SOA and OSS
Addressing the SOA budget challenge with OSS
The historic problem with justifying the business case for integration projects has been
that integration is expensive and is seen as a cost as the business benefits are buried
within subsequent business-focused projects. Furthermore, integration projects are
often shared between multiple departments that they link. This means that the budget
must also be shared which is often hard to achieve organizationally.

The EAI-style broker-based integration solutions, popular until the emergence of SOA,
often had a substantial up-front infrastructure cost. This is because the broker-based
architecture is of the ‘hub-and-spoke’ type, where all flow between components has to
pass through a central hub. Therefore, even if the need is only to join two applications,
the same hub is required as would be needed to join thousands. The cost of this hub is
often a major inhibitor to initial integration projects, frequently running into hundreds of
thousands of dollars.

As was discussed in the section “SOA and the Budget Catch 22”, this core issue with
funding remains with SOA projects. Even though modern approaches to integration,
such as the Enterprise Service Bus (ESB), offer a cheaper approach, licenses will still be
required at each node to be integrated. For instance, an ESB license may only cost
around $10-50K each but this still represents a substantial outlay. When combined with
other SOA infrastructure such as a registry, and various other tools, the project cost can
be daunting. Furthermore, the scale of this outlay makes it difficult to build a business
case when the tangible benefits may be hard to measure, the total cost will be hard to
estimate over the lifetime of the SOA deployment and charge-backs or central funding
models are hard to implement.

The way OSS addresses this is both obvious and subtle. The lack of upfront license cost
is an obvious attraction even if as most IT professionals realize software license costs
make up a small component of the overall cost. However, even if the additional support
and maintenance costs are factored in, the overall cost is still likely to be much less than
going with a commercial software vendor’s solution. Furthermore, the lack of software
license cost and the reliance on generic contracts (such as the famous General Purpose
License, GPL) means that the procurement process is either greatly simplified or some-
times bypassed entirely. All of this reduces the cost implication associated with complet-
ing a project using SOA.

Of course, it should be stressed that this assumes that the project is capable of satisfy-
ing the project requirements. This apparently obvious statement becomes particularly
significant if the OSS project is promoted by a vendor as a pathway towards a much
more expensive closed source product. In this case, OSS functionality may be deliber-
ately limited for commercial reasons in order to encourage transition to the fully featured
product. This type of OSS solution should not necessarily be excluded as there are still
potential cost benefits: For instance using the OSS version to kick-the-tyres before tran-
sitioning to the full strength version. Alternatively, the OSS version may be used in con-
junction with the closed source product to handle simpler problems within some parts of

 10

a widely deployed solutions. However if the intention is not to transition to the closed
source product, additional vigilance is required: When considering one from this cate-
gory of OSS solutions, it is essential that there is clarity around what the OSS offering is
suitable for and whether the project will extend beyond this.

Returning to the way OSS in general addresses the SOA budgeting issue, OSS projects
can also reduce the impact of the second and third issues listed in the box titled “The
SOA deployment risks”: Predicting the requirements over the life-time of the project and
hence estimating the total cost of the SOA initiative. Open Source Software projects
intended for use in SOA tend to work in terms of frameworks, where the basic skeleton
is implemented together with plug-ins to add functions when necessary. The lack of ad-
ditional upfront investment and associated procurement activity means that new functions
can be tried out with minimal effort. This incremental model for investment is attractive
from a business case perspective as it allows the project to be realistically broken down
into stages. Each stage can be completed with confidence that it will be easy to move
onto the next phase and if necessary expand the functionality set required. Contrast this
with commercial software where required procurement processes are time-consuming
and software vendors bundle functionality to justify a higher price, resulting in companies
often buying a full stack of software regardless of how much functionality is actually re-
quired at the time. This drives higher up-front investment, and often leaves products on
the shelf, causing problems for future product acquisitions. With OSS software, it is easier
to simply take on the software needed at the time, and then add to this as and when
required.

Using OSS to address SOA risks
There remains a perception among some analysts and IT professionals that the risk as-
sociated with Open Source adoption in general is much higher than that associated with
closed source software. This reflects a lack of experience with evaluating risk related to
Open Source adoption rather than necessarily higher risks. This is not surprising: end-
user organizations have learnt how to evaluate the risk associated with closed source
products over many years of sometimes painful experience. In fact, a careful analysis of
the risk of OSS adoption for SOA shows that the risk profile is clearly different. Further-
more, the overall risk can be lowered significantly when OSS is adopted in partnership
with a successful OSS vendor.

The first area of risk highlighted in the table on page 6 and in the side bar, is organiza-
tional maturity. This is outside the scope of any software package to address—although
software may enable and facilitate the development of the required maturity.

The second area highlighted relates to the lifespan and criticality of the deployment. The
reality is that integration software frequently plays a mission-critical role. As more appli-
cations are integrated together, the integration software forms the nervous system for the
enterprise, and any failure in this nervous system will have serious impact. At first glance
it may appear counter-intuitive to suggest that Open Source actually lower this risk from
this perspective. To investigate the claim it is necessary to consider the main areas that
are assessed when measuring the risk associated with a closed source vendor.

 11

Recall: The SOA
deployment risks
The key areas to be considered
are:

1. A need for organizational
maturity

2. Long life-spans and busi-
ness criticality of deploy-
ment.

3. A high degree of customiza-
tion to support business
requirements.

4. A need to support business
changes throughout the life-
span of the deployment.

5. The availability of skills and
expertise required to be
successful

Areas of closed
source software
risk

Explanation

Vendor risk This risk will vary with the size and success of the vendor. The risks are
that the vendor may disappear through acquisition or liquidation or that
the vendor strategy may change so radically as to undermine the viability
of the current products.

Product risk Product risks are associated with either escalating costs and requirements
to maintain specialized skills limited to this specific vendor and the risk
that the vendor will moth-ball the product

Feature risk The risk that a specific feature or customization is not maintained as part of
the standard product. The customer will then be exposed to an additional
vendor imposed cost associated with the maintenance of this feature in-
definitely.

If for some reason the vendor, product or even feature is no longer available, this has
potentially severe cost implications for the organization and may even impact on its ability
to sustain the solution at all. Open Source addresses this risk in two related ways. Both
give the end-users much greater control over the software they have deployed than is
the case with closed source software:

The availability of the source: For larger companies with substantial technical resources,
having the source of the integration software might be very attractive. For these types of
companies, support can probably be provided in a more immediate fashion by using inter-
nal resources, but this is only possible if the source is available. It provides an opportunity
to maintain features and drive functionality required by the organization independently of
any vendor.

The existence of a user community: Most OSS projects will have an associated
community of developers across the world who may be involved in improving and ex-
panding the project, at least reporting bugs and exchanging knowledge on the project’s
use. The philosophy of open source is that whenever someone makes changes to im-
prove or enhance the particular OSS product, these changes will be made available to
the rest of the community, potentially building a constantly updated and evolving offering.
When this works, the benefits are clear in terms of shared cost of new developments and
reduced risk of failure: The community provides an alternative route to support, maintain
and develop the software overall and at a feature level independently of any vendor who
may have been involved in the project. As a shared endeavor, it allows organizations
unwilling to take on the cost and risk associated with exclusive development to partici-
pate.

When considering the need to facilitate the high level of customization required, the avail-
ability of the source code also plays a role. In addition, Open Source Software projects
intended for use in SOA tend to work in terms of frameworks and make heavy use of
standards. All of this can deliver a high degree of flexibility and adaptability. Users can
add developments to the source and make local changes and they can more easily plug
the OSS offering into other technologies from messaging queuing systems to core appli-
cations where required. These same benefits apply equally to the need to evolve the
solution inline with business evolution.

Finally, OSS projects partially address the issue around the availability of skills. The
solution is only partial for two reasons:

♦ SOA initiatives also require business and organizational skills which are outside
the scope of any software package whether open source or not.

♦ SOA OSS projects require developers with very specialized skill-sets. It is impor-
tant to distinguish between the skills required to develop the software and the skills
required to use the software, whether Open Source or closed source. Most or-
ganizations will only require and pay for staff capable of using the software to solve
business problems directly. They will be less willing to retain the more specialist
and expensive staff capable of developing such software. This leaves a potential
gap in OSS projects which Is typically filled by the OSS vendors.

However from the perspective of acquiring those skills required to use the software, OSS
projects have significant benefits as they are typically heavily reliant on standards and will
use generic development tools and methodologies. This means that it is easier to find
developers with the appropriate skills with the project specific communities acting as
mechanisms for accessing the pools of project specific expertise.

Why SOA suits OSS
An analysis of most OSS projects that have achieved sustained enterprise momentum
highlights two broad characteristics which may initially suggest that OSS and SOA are
not a good match:

♦ Low-risk OSS where the solution is well-understood or has a low cost of switch-
ing out to a closed product if OSS proves unsuitable. (E.g. Mozilla Firefox) or

♦ OSS which provides commoditized functionality where there is little scope for
vendor differentiation. (E.g. Linux).

 12

OSS Communities
Open source software projects
are based on the principle that
the software is available to all,
and that typically anyone can
contribute to it. This principle
and the safe environment cre-
ated by the Open Source li-
censes such as GPL generates
the concept of communities of
developers, all interested to
varying degrees in the code
base, its health and its on-going
vitality.

Often, OSS communities take
considerable pride and owner-
ship, and community members
are frequently not only users but
also strong advocates for the
software.

Clearly, integration does not qualify on either count: It is of its essence critical to the busi-
ness and it Is not commoditized as there are still many different approaches to solving
integration challenges. That OSS is today being used successfully for integration projects
and SOA projects forces the conclusion that the problems being addressed are funda-
mentally different. The differences are in fact straight forward and hence the reasons for
OSS success can be easily discerned:

Most OSS is written by developers for developers and SOA requires technical
solutions: OSS is dominated by the developer community and tends to be weaker on
other aspects of the development process found in commercial closed source develop-
ment. In particular, areas of tooling to allow less skilled users to utilize the software and
to a less degree documentation are common weaknesses. This has limited the adoption
of OSS outside domains with very commoditized tools (such as email or web browsing) or
to more technical areas where the user is a developer. SOA is an example of the second
domain. Furthermore, the wide adoption of Eclipse among the Java developer community
has reduced the need for projects to create their own tooling as eclipse provides a well-
known development environment into which project specific tooling can fit. Documenta-
tion is also less significant because of OSS’ active user communities and ethos of mutual
self-help. Therefore, for integration in general and SOA in particular, these OSS drawbacks
are not major obstacles.

Integration remains a highly technical area with business knowledge as secon-
dary: OSS projects are typically focused on solving technical problems. For this rea-
son, business oriented OSS projects, for instance those providing ERP functionality, have
not had much success to date. In contrast, integration remains an area where technical
skills are primary. While great progress has been made over the last 10 years in making
it easier to integrate across technology stacks, the challenges have simply moved up the
stack to address more sophisticated technical problems such as data semantics. There-
fore, the technical focus of OSS is well suited to integration.

SOA OSS projects are innovating: The adoption of OSS has often been associated
with cost reduction strategies such as consolidation or virtualization based on Linux. In
such situations, OSS projects are focused on freeing existing solutions from mature and
well understood vendor owned Intellectual Property constraints. Integration and in par-
ticular SOA is at very different stage of its evolution. In the SOA domain, OSS is being
used as the basis of innovation. However, OSS driven innovation is different from closed
source innovation at one level: the commitment to interoperability and openness. It is
notable that OSS SOA projects tend to be much more keen on key interoperability stan-
dards, such as the Java Business Integration (JBI) standard, which makes it easier to
plug together components from multiple integration stacks.

OSS: The risks and pitfalls
Over the last twenty years, most organizations have become comfortable with assessing
the risk associated with the adoption of closed source products. This paper has shown
how Open Source addresses significant risks associated with closed source software.
However, it would be naive to claim that OSS adoption is without risk. As well as the risk
that the project will fail—just as a closed source product may fail—there are risks associ-
ated with weak version control, incompatibilities between OSS projects and lack of deep
project expertise. However, careful analysis suggests that when adopted in conjunction
with a commercially successful OSS vendor these risks can be mitigated to a large
degree.

Risk analysis
One of the inhibitors to systematic adoption of OSS beyond the most established OSS
projects such as Linux has been the concern about risk inherent in the OSS model.
While this concern originates with the caricature of the anti-establishment OSS devel-
oper, it is reinforced by the perceived lack of a “throat to choke” and legitimate concerns
about the re-skilling costs associated with any major technology adoption.

At the project level, experience of incompatible and ever changing versions and the vast
array of Open Source projects have provided further grounds for avoiding OSS. This has
meant that where OSS is adopted it is often driven from the grassroots, with developers

 13

finding success with OSS and only then promoting formal adoption within IT management.
Typical OSS risks are highlighted and analysed in the context of SOA below:

Underpinning all of these concerns is the fact that Open Source software is, by definition,
distributed to all under the OSS licenses and open to all to contribute. The implication of
this is that OSS is presented on an “as is” basis. While closed source software license
agreements are often also “as is”, there is a level of control and assumed responsibility
which is lacking with OSS. Without the presence of a vendor, the only support for the
software comes from the community that is working with it. While this frees customers
from some of the vendor risk, it does expose them to the risk that the community will not
provide services to alleviate these risks. In the final analysis, these services can only
come from a business specialising in the selected project or projects. It is in addressing
these risk areas that the OSS vendor’s value proposition lies.

 14

Type of risk Explanation

Hidden Intellectual
Property: The Open
Source Software may
include third party IP
and expose the end-
user to legal claims.

Experience shows that it is highly unlikely that such
IP exists and even more unlikely that the owner of
the IP would successfully pursue the end-user. It is
much more likely that the offending project would
be modified to remove the breach or that the ven-
dor would reach an accommodation to ensure the
continuance of the project.

Security issues: the
Open Source Software
may includes security
holes which a knowl-
edgeable hacker could
use to attack the or-
ganization.

This is clearly an issue for security specific OSS
projects such as firewalls. However in this area
the consensus is that making the source open is
actually a more effective route to ensuring security
as many more eyes will examine it for faults when
compared to closed source software. In the inte-
gration and SOA area, there is less scope for such
issues to occur and likely to be much less interest
from the hacker community who naturally focus on
security specific software.

Governance: Open
Source Software can
be downloaded,
developed with and
deployed outside of
normal IT policies.

This happens when governance relies on procure-
ment and legal review of contracts as the mecha-
nisms for ensuring that policies are followed. The
implications of this are additional costs associated
with incompatibilities; costs associated with retain-
ing skills required to maintain the software and the
risk associated with not knowing what software is
in use.

Integration cost and
Version control

Most reputable closed source vendors provide
guarantees around interoperability of different ver-
sions or software components. If OSS projects are
simply downloaded, there is a significant risk of
version mismatch. While careful test in the end-
user organization will alleviate this problem, the
cost and risk must be dealt with each time versions
are upgraded.

Continuing innova-
tion and develop-
ment within the pro-
ject

If an OSS project does not have an active commu-
nity, the risk of project failure is clearly high. Popular
projects will maintain momentum but will typically
rely on a small group of key highly skilled and valu-
able individuals. If these individuals work for another
end-user organization, there is a medium risk that
they will be redeployed to another project. If a non-
vendor sponsored OSS project does not have an
active community, this will seriously undermine the
viability of the project overall.

Skill costs: Unavail-
ability or high cost of
skills required to main-
tain, develop and
patch software.

While it may appear an attractive option for the
organization’s developers to patch software them-
selves, this requires specialist expertise to be main-
tained inside the organization. The community may
provide patching capabilities but there is no guar-
antee that patching will occur within acceptable
timeframes.

Severity

Low

Low

Medium

High unless
mitigated by
an OSS ven-
dor.

Medium with-
out service
agreements
with OSS
vendor.

Depends on
the scale of
the commu-
nity and/or
commitment
of an OSS
vendor

Evaluating SOA OSS vendors
OSS can be viewed as an attractive option for SOA because it addresses key problems
faced with initiating SOA programmes. However, it has also been shown that the OSS
model is not without its own drawbacks. It is to address these drawbacks that OSS ven-
dors have emerged. The organizations in this category can include businesses focused
exclusively on promoting a specific set of OSS projects, businesses deriving revenue from
both OSS and closed source software and businesses focused on general consulting
services as well as OSS specific ones.

An evaluation of an OSS vendor must start with the same aspects as would be followed
with any supplier: How viable is the vendor? Will it make a good business partner over
the long life-span of the deployed system? Are its business motivations inline with the
customers goals? Is it committed to the business and will it provide good services?
However, OSS vendors are not simply providing support, maintenance and consulting
services, as the projects supported and the value delivered varies greatly. Therefore, the
evaluation must encompass vendor analysis, product analysis and service analysis. As
such, it means that OSS vendor analysis is much closer to closed source vendors than
the pure consulting companies they are sometimes compared to.

Evaluating OSS vendor’s strategies
Beyond a general evaluation of the OSS vendor as a potential long term partner, there
are five specific areas where they may add value that should be considered:

Integration and version control
For closed source software products, this is a core part of the development process paid
for with license fees. For that reason it is often overlooked when considering an OSS
offering. However, anybody with experience of piecing together a complex set of inte-
gration software components into a usable whole will understand the level of frustration,
technical difficulty and cost associated with the task. Furthermore, the impact of a failure
to integrate the infrastructure is typically fatal for the project. For this reason most OSS
vendors provide an integrated set of supported OSS projects which they certify will work
together.

A side effect of the open source development model is that versions will appear more
regularly than with closed source. When attempting to use OSS for SOA, it is highly
likely that the software will come from multiple projects. It is also probable that the OSS
will have to integrate with third party software (either infrastructure such as MQSeries or
applications such as SAP). Unfortunately, this increases the risk that the interplay be-
tween projects and versions will result in unexpected incompatibilities appearing as new
versions are selected and deployed. Addressing this risk requires extensive and costly
integration testing or fire-fighting when an incompatibility is discovered. To quantify this
with a simple calculation that shows how many combinations must be tested:

5 OSS projects x 3 current versions per OSS project x 3 other pieces of
software (each with potentially 2 versions active) = 45 permutations

This, sometimes called the “matrix of death”, is not a problem with OSS only: Closed
source software vendors must also complete such integration testing prior to release.
However it is an expensive problem and represents up to 20% of the total development
cost for closed source integration software vendors. Therefore, it is clear that any end-
user organization should think hard before deciding to take this risk and cost on them-
selves. For this reason a key part of many OSS vendor value proposition is the provision
of a certified set of required OSS projects guaranteed to function correctly as a bundle.

Innovation: Technology
As was explained earlier, Open Source’s origins are in commoditization of well established
software—there is no better example than Linux itself which is an IP-free recreation of
UNIX. However, this is not always the case. Areas where there are specific reasons to
innovate with OSS have followed a different path—for instance in firewalls and security.
Integration is also following a similar path with projects sometimes breaking new ground

 15

and being truly innovative. Some vendors have decided to focus on this approach—
typically developing significant intellectual property which is made available as OSS.
Such specialization is driven by a different analysis from the mass of OSS projects. This
may be a focus on data mediation or reliable messaging. By focusing and driving inno-
vation in these areas, the vendors develops unique expertise and also control to ensure
the project will meet its customers’ needs.

Innovation: Usability and productivity
This area of innovation is highlighted because it is not an area typically associated with
OSS projects. However, it is a key requirement for SOA because SOA by its nature de-
mocratizes integration: For SOA to be effective, technical developers in business units
are now expected to participate in SOA related project where before integration special-
ists would have been used. This puts an additional pressure on skills which is being
addressed by some OSS SOA vendors. Vendors are taking several different ap-
proaches: Either to create Open Source GUI tooling that would previously have only
been expected in closed source products. Or to develop frameworks that both guide
the developer and provide pre-canned components for common integration challenges.
While it should be stressed that neither approach makes it possible for business analysts
to use the tools, it does make it easier for the less technically skilled developers and
increases the productivity of all developers.

Community
While the idea of altruistic mass participation in most OSS projects is a myth, this does
not mean that the secondary innovation of OSS, organizing communities to create soft-
ware, is not valid. Communities direct new development towards real customer prob-
lems and act as a clearing house for customers to exchange solutions that they have
built themselves. The power of a community is only as strong as the breadth and depth
of the expertise available to address the problem. In the case of OSS projects related to
SOA, some areas are technically difficult and require very specialist skills. These skills
may not be available in the end-user community as organizations may be unwilling to
devote these expensive and unusual skills to the project long-term. In contrast, OSS
vendors are motivated to develop such skills and use them to sustain the project.

However, not all aspects of an OSS SOA project will be so complex. There are others
where the community can contribute the expertise to solve specific community friendly
developments such as application connectors. The example of application connectors
demonstrates how communities can develop high value components: Lustratus esti-
mates that between 50-75% of integration project costs relate to building the necessary
adapters, frequently done by getting a third-party software house to do the work. These
components rely on the skills typically found in end-user organizations while embodying
little intrinsic value that the developing organization would want to own exclusively. In
this mode, the OSS vendor becomes the community facilitator as well as taking on the
role of tester to ensure that the contributed source is compatible across the project.

Skills: Support and consultancy
 OSS vendors act as centres of excellence for key contributors to projects. These con-
tributors can focus on the technically challenging areas which do not directly interest the
end-user developers. They can also act as community organizers and facilitators. In
both cases, it is unlikely that end-user organizations can justify retaining these individuals
on a long term basis. However, they can be vital during all phases of the SOA project.
Early on the expert developers can provide insight into the technical details of the project
and the facilitators can provide guidance on how to work with the community and the
likely direction of the project. Later in the process, design and development expertise
can be tapped to assist or accelerate completion of the project or to troubleshoot.

Conclusions
The decision to deploy any new software requires careful analysis of the benefits, risks
and costs associated with potentially relying on that software for many years to come.
Organizations have sometimes been reluctant to adopt Open Source Software due a
lack of understanding and experience of evaluating OSS projects and vendors. This
paper has addressed that lack of understanding by analysing why OSS makes sense for

 16

Appendix: A short history of
Integration and SOA
Connecting together the ever increasing network of applications, departments, clients
and suppliers is an ever increasing IT challenge. The business drivers for integration
appear, in many cases, overwhelming – more efficient, streamlined processes, faster
execution and reaction to market changes, improved leverage of existing IT investments
and assets, a reduced IT cost base built on shared services, all contributing to mitigation
of business risk.

While the scale and importance of the problem has increased over the years, businesses
have since the earliest days of networking had to deal with the issue of getting different
applications to interact. For many years, this was achieved through primitive mecha-
nisms such as file transfer, or hard-coded communications programming. This tactical
approach to integration solved the problem at hand and is still relied on in many cases.
Their tactical nature meant that each solution was built from scratch. This resulted in
escalating costs to maintain what rapidly became a rat’s nest of point to point solutions.
Furthermore, the technical limitations meant it was hard to achieve real-time integration
and easy to introduce inconsistencies in business process or security model.

In the early 1990s, software began to emerge that was designed specifically to address
the needs of communication between different technology environments designed to
support both real-time integration and support enterprise qualities of service. Perhaps
the most successful of these initiatives was message-oriented middleware (MOM), pro-
viding a usually asynchronous method of passing messages between applications and
platforms. The Enterprise Application Integration (EAI) market was born.

However, the need for integrating applications continued to grow exponentially, driven by
business needs such as handling mergers and acquisitions, streamlining processes and
increasing efficiency and customer responsiveness. The basic MOM communications
layer was extended with message brokers to provide more benefits at the application
level, such as delivering added-value like data format transformations, intelligent rules-
based routing and pre-built application adapters. But these proprietary EAI stacks
proved expensive and required a considerable pool of specialist skills to deliver real
value.

Attempting to address these issues, web services, a standards-based way to describe
and integrate independently developed pieces of code emerged. These standards lever-
aged the internet standards (HTTP and XML) and distributed computing model such as
CORBA to reinvent EAI as an independent and light weight model of application integra-
tion. In parallel to the development of Web Services, Service Oriented Architecture (SOA)
emerged as a general architecture for application integration which recognized that appli-
cation integration is much more than simply a technical problem.

The core concept of SOA is the breaking down of IT applications and systems into a col-
lection of ‘services’ that can be invoked through a standard interface, with no knowledge
needed of the location and execution point of that service. This service based approach
yields the opportunity for developing a shared pool of reusable business services. By
reusing existing services rather than building new one reduces the total set of IT assets
and hence reduces maintenance costs. By reducing the amount of new code developed
on each project, there is a faster time-to-market and improved return on assets. The use
of a clean interface to invoke the service tied with the isolation of the caller from knowl-
edge of the service implementation makes these services usable from any environment.

One of the conceptual challenges at the heart of SOA is the balance between architec-
tural approach and the need for appropriate technology to implement it with. By taking
an architectural approach which operates at the level of business service rather than
function, it is easier to align the business and IT perspective. A major effect of this
change of emphasis is the increased focus on key challenges of rolling out SOA across
any enterprise: governance and the behaviour changes required to be successful with
SOA.

 17

While it is possible to build a SOA without introducing new technology, SOA projects will
in most cases involve solving technical problems which cannot be simply solved through
architecture. Therefore in almost every case, SOA programs involve the introduction of
modern technology which enables the new architecture while working in conjunction with
existing IT investment.

While the precise definition of what is needed in SOA enabling software product is still
evolving, the general properties of the software ecosystem is clear and covered in the
Lustratus Insight: “The need for a SOA ecosystem”. One of the most popular products
used to implement SOA is the Enterprise Service Bus (ESB). These provide a lighter-
weight, standards-based integration stack as an alternative or an adjunct to EAI broker-
based platforms. Web services standards are supported by ESBs, and in addition to
Message Orient Middleware functionality and basic mediation functions like routing and
transformation. In essence, ESBs provide a ‘good enough’ way to handle the integration
needs inherent in the SOA concept.

 18

The organizational
challenges of SOA
A primary benefit of SOA is
reuse of services between
projects. Good service design
while important is not enough
to achieve this. Also required
are significant organization
changes:

Governance structures and
processes must be estab-
lished to involve stakeholders
in the definition, evolution and
compliance with best prac-
tices and processes.

Behaviours among IT and
business staff must be
changed to encourage greater
communication and reuse.
This change can be achieved
through changes in role defini-
tion and incentive structures.

What is an ESB?
Enterprise Service Buses (ESBs)
offer a standards-based, gen-
eral purpose approach to inte-
gration needs. Typically ESBs
provide

• Support for standards such
as web services and XML

• Asynchronous and synchro-
nous connectivity options

• On and off ramps for com-
mon application environ-
ments

• Transformation and intelli-
gent routing services

Lustratus Research Limited
St David’s. 5 Elsfield Way, Oxford OX2 8EW, UK
Tel: +44 (0)1865 559040

www.lustratus.com

Ref RB/LR/56300411/V1.0

