
Working with Open Source

Companies

Overview

For all of the rhetoric, all of the debate, it is indisputable that open source
software is playing an increasingly important and often mission critical role
within successful IT organizations all over the globe. While no panacea,
open source can provide compelling economic and technical benefits to
businesses and other organizations constantly under pressure to eke
more performance out of their technology operations for less money.

While "vendor relationship management" models for traditional, non-open
source software providers are well understood and tested, far less so are
the techniques for successfully managing relationships with open source
communities and vendors. This paper discusses several key differences
between closed and open source software vendor management, providing
advice for managing your deployments and investments in open source
technologies.

The Role of the Open Source Community

Open source software may be produced by an individual, a group, a
company, or a combination of all of the above. This ecosystem of people,
users, and commercial entities with a common interest in the software are
collectively called "the community."

One of the most important distinctions between closed and open source
software is the importance of community. In the closed source world, a
software buyer is purchasing not only the right to use the software, but
also a relationship with the company backing the software. While this type
of relationship can exist in the open source world, as with single entity
developed open source projects such as MySQL, open source software is

November 14, 2007 Page 1/8

Michael Coté

Stephen O'Grady

more typically the product of individuals spread across disparate
organizations and geographies.

This is an important consideration for commercial buyers for two reasons.

Because assessing the long term viability of a commercial vendor can at
times be more straightforward than determining the future of a community.

Because the relationship between a community is governed by different
expectations than the relationship would be with a vendor.

How should buyers, then, identify vibrant, open source communities? The
metrics will vary from project to project, but generally buyers should look
for the following:

• Commercial Investments: The more commercial vendors are invested
in a given project, generally speaking, the greater its long term
sustainability. The Eclipse project, for example, is the platform of choice
for literally dozens of vendors and benefits from the resulting network
effect.

• Governance: There is no single governance structure that is appropriate
for every project, but it is generally true that openness is a metric of
relevance. Insular, isolationist project teams that eschew outside
contributions -either in code or other contributions -tend to suffer in
comparison with peers that are more open.

• Integration: Projects that are either well integrated or function smoothly
alongside of other existing open and closed source infrastructure
products are more likely to be successful in the longer term. Application
platforms, for example, that can run easily with either the open source
MySQL database or the closed source DB2 and Oracle products will be
more successful than projects that favor a single product.

• Speed: While project size means that release frequency will vary widely
-smaller projects can release more frequently than larger ones -trending
is important. Look for release timing over the projects history; if releases

November 14, 2007 Page 2/8

are fewer and less frequent, it may be an indication of poor project
health.

• Traffic: Strong communities typically have a high degree of "traffic." This
traffic will be expressed chiefly in the communications around the
community: email lists, online forums, chat channels like IRC, bug
tracking systems blog postings, books, magazine articles, podcasts, and
other artifacts discussing the open source project.

In addition to determining whether or not a given community is viable in
the long term, it's useful to consider how a commercial entity might best
interface with it. Often, commercial organizations turn to other commercial
organizations related to a particular community as a practical interface.

The Role of the Open Source Company

In recent years many companies have emerged whose role is to explicitly
sell service and support to users of open source software. These "open
source companies" are typically a large part of their respective
communities. Indeed, if an open source company is not "active" in a
community, be suspicious of their claims to fully support the software.

Though it is common for sizable open source communities to offer
substantial options for informal support in the form of community
maintained and generated forums and wikis, communities are under no
obligation to support users of the software, let alone respond rapidly or in-
depth. For non-production deployments of the technology, this lack of a
service level guarantee is often acceptable, but for technologies deployed
to production, support equivalent to that available from commercial
vendors is often a requirement.

The demand for this type of support has in turn given rise to open source
companies, which meet this need by offering support and services around
a particular open source project or projects. The importance of this trend
cannot be overstated, as it delays the point at which potential customers
are required to invest in technology.

November 14, 2007 Page 3/8

Evaluating Open Source Software

From an open source customer's perspective, one of the major benefit of
open source is that users of open source can perform self-service
evaluations and Request for Proposals, or RFPs: running and testing the
software, talking freely with other users in the community about their
experience, and discussing your project's needs with the community.
Because of this, most open source companies are not geared towards
working on long RFPs and evaluations.

They also typically invest less on a relative basis in high cost marketing
and sales personnel activities. This lack of investment may at times make
them appear less credible, but it also reduces the cost the vendor must
pass along to the customer.

With open source software, rather than invest up front in technologies that
might address a business need, organizations can experiment with open
source technologies often with no up front licensing, investing in support
only at the point in which it enters production. Sun Microsystems' Simon
Phipps has in the past likened this to "paying at the point of value."

Budgeting for Open Source Software

While open source software may be free to download and use, this does
not typically equate to free in terms of usage and deployment. Production
deployments are very rarely free, and typically involve expenditures for
support, services, training, and even project management.

Because there are typically no up front license fees, the cost of open
source software is typically amortized over the lifetime of the software.
Though this change in fee structure can be difficult for traditional
procurement organizations to adapt to, many open source buyers have
success by simply treating the support and service fees as the license in
contractual terms.

November 14, 2007 Page 4/8

Supporting Open Source Software

Support can broadly be defined as assisting a user of software with
achieving their goals. Often this means trouble-shooting error conditions
or unexpected results. Support can occur during all phases of the software
life-cycle: development, testing, production, and maintenance.

The open source community may provide an operable level of support, but
can not be depended on to support the use of the software on your exact
terms. An open source company, however, under Service Level
Agreements (SLAs) with customers can be contractually trusted to
respond rapidly and in-depth. As with any support relationship, the more
familiar the supporters are with the system they're supporting, the quicker
and more accurately they'll be able to address problems. In particular,
purchasers of open source support should question providers on how
many "committers" -developers with the permissions to actually commit
changes to the codebase -they have for the project in question.

As is typically the case, support is traditionally offered in tiers, in which the
level of service is commensurate with the cost. Buyers can expect pricing
for the highest levels of 24x7 support to be reflect the costs of delivering
that support; the open source nature of the software has little impact on
the cost of maintaining staff around the clock, for example. Buyers should
question vendors closely as to their specific support capabilities; the ability
to provide true, enterprise level support after all is not universal.

One potential advantage of open vs. closed source software comes at the
end of a software's life. While the availability of commercial software is
under the control of the company that backs it, the availability of the
source code allows open source software to "live" as long as there's
someone to support it. While "forking" the life of software like this is not
easy, it's at least possible to stave off the end-of-life process for open
source software.

November 14, 2007 Page 5/8

Contributing Back to Open Source Software

In addition to free access to source code, open source is unique in its
ability for users to contribute to the project itself. While that process is
rarely trivial and is by no means required, as a user you may be in the
position to contribute back to the project in the form of bug fixes,
documentation, testing, or even code for entirely new features.

Clearly, business differentiation and legal ramifications must be
considered before contributing code. Many organizations find this concept
counterintuitive, believing that any improvements they make represent a
competitive advantage over other users -some of whom may be their
direct competitors.

However, there is an important advantage to contributing back fixes and
updates.

If an organization creates a fix for the code but keeps it purely internal,
that fix must be maintained and reapplied indefinitely. This can prove
unnecessarily expensive, and may invalidate existing support contracts,
mandating as it does alterations to the existing package. Contributing such
fixes is effectively outsourcing the ongoing maintenance of that code to
the community and/or vendor, at the minimal cost of sharing a bug fix or
feature.

In addition to funding developers, you may also consider influencing the
open source project via the company if you cannot be involved yourself.
That is, you may hire the open source company to be your proxy for
involvement in the open source community, even sponsoring additional
developer to accelerate the release of key features.

Open Source Licensing and Indemnification

Licensing is undoubtedly one of the more controversial aspects to open
source software, but the actual risks are often poorly understood. For
example, in many if not most cases, open source customers have no

November 14, 2007 Page 6/8

intentions of distributing the software itself, which minimizes concerns
around even the most restrictive open source licenses they might
encounter. Likewise, some vendors may make noises about the patent
risks in the software itself, but historical precedent indicates that patent
issues are resolved amongst vendors as opposed to customers.

Buyers should consult their legal counsel, as always, for more detailed
examinations of potential liabilities, particularly if they're contributing code
back. Many customers choose to restrict their purchasing to software
released under an OSI approved license, which provides some non-legally
binding assurance of license quality but more importantly ensures that
legal isn't dealing with license to product ratios of 1:1.

As for indemnification, given the low probability of it coming into play it
should be viewed as an asset, but likely not an asset worth significant
additional cost or the justification for selecting an inferior product.

November 14, 2007 Page 7/8

About the Creative Commons
License
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/2.5/

or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
USA.

About RedMonk
RedMonk is a research and advisory services firm that assists enterprises,
vendors, systems integrators and corporate finance analysts in the
decision making process around todayʼs enterprise software stacks. We
cover the industry by looking at integrated software stacks, focusing on
business and operational context rather than speeds and feeds and
feature tick-lists.

Founded by James Governor and Stephen OʼGrady, and headquartered in
Denver, Colorado, RedMonk is on the web at www.redmonk.com. If you
would like to discuss this report email Michael Coté (cote@redmonk.com)
or Stephen O'Grady (sogrady@redmonk.com).

November 14, 2007 Page 8/8

