
FUSE™ ESB

Using the File Binding Component

Version 4.1
April 2009

Using the File Binding Component
Version 4.1

Publication date 22 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
1. Introduction to the File Binding Component ... 11
2. Using Poller Endpoints .. 15

Introduction to Poller Endpoints ... 16
Basic Configuration .. 18
Configuring How Poller Endpoints Interact with the File System ... 21
Configuring the Polling Interval .. 24
File Locking .. 26
File Filtering ... 29

3. Using Sender Endpoints .. 31
Introduction to Sender Endpoints ... 32
Basic Configuration .. 34
Configuring How Sender Endpoints Interact with the File System ... 36

4. File Marshalers ... 39
A. Poller Endpoint Properties ... 45
B. Sender Endpoint Properties ... 47
C. Using the Maven JBI Tooling .. 49

Setting Up a FUSE ESB JBI Project .. 50
A Service Unit Project ... 55
A Service Assembly Project .. 61

D. Using the Maven OSGi Tooling ... 65
Setting Up a FUSE ESB OSGi Project .. 66
Configuring a Bundle Plug-in .. 71

Index .. 79

3FUSE™ ESB Using the File Binding Component Version 4.1

FUSE™ ESB Using the File Binding Component Version 4.14

List of Figures
2.1. Poller Endpoint ... 17
3.1. Sender Endpoint ... 32

5FUSE™ ESB Using the File Binding Component Version 4.1

FUSE™ ESB Using the File Binding Component Version 4.16

List of Tables
2.1. Attributes for Identifying a Poller Endpoint 18
3.1. Attributes for Identifying a Sender Endpoint 34
3.2. Attributes Used to Determine a Temporary File Name 37
4.1. Properties for Configuring the Binary File Marshaler 39
4.2. Properties Used to Control the Flat File Marshaler 40
4.3. Parameters for Reading Messages from the File System 41
4.4. Parameters for Writing Messages to the File System 42
A.1. Attributes for Configuring a Poller Endpoint 45
A.2. Beans for Configuring a Poller Endpoint 46
B.1. Attributes for Configuring a Sender Endpoint 47
B.2. Attributes for Configuring a Sender Endpoint 47
C.1. Service Unit Archetypes .. 55

7FUSE™ ESB Using the File Binding Component Version 4.1

FUSE™ ESB Using the File Binding Component Version 4.18

List of Examples
1.1. JBI Descriptor for a File Component Service Unit 12
1.2. Namespace Declaration for Using File Endpoints 13
1.3. Schema Location for Using File Endpoints 13
2.1. Simple Poller Endpoint ... 20
2.2. Poller Endpoint that Does Not Check Subdirectories 21
2.3. Poller Endpoint that Leaves Files Behind 22
2.4. Poller Endpoint that Archives Files ... 23
2.5. Poller Endpoint with a Scheduled Start Time 24
2.6. Poller Endpoint with a Delayed Start Time 25
2.7. Poller Endpoint with a Thirty Second Polling Interval 25
2.8. The Lock Manager's Get Lock Method 26
2.9. Simple Lock Manager Implementation 26
2.10. Poller Endpoint Using a Custom Lock Manager 27
2.11. File Filter's Accept Method ... 29
2.12. Simple File Filter Implementation .. 29
2.13. Poller Endpoint Using a File Filter .. 30
3.1. Simple Sender Endpoint .. 35
3.2. Sender Endpoint that Does Create Its Target Directory 36
3.3. Sender Endpoint that Appends Existing Files 37
3.4. Configuring a Sender Endpoint's Temporary File Prefix 37
4.1. The File Marshaler Interface ... 40
4.2. Simple File Marshaler ... 42
4.3. Poller Endpoint Using a File Marshaler 43
C.1. POM Elements for Using FUSE ESB Tooling 50
C.2. Top-Level POM for a FUSE ESB JBI Project 52
C.3. Maven Archetype Command for Service Units 55
C.4. Configuring the Maven Plug-in to Build a Service Unit 57
C.5. Specifying the Target Components for a Service Unit 58
C.6. Specifying the Target Components for a Service Unit 59
C.7. POM for a Service Unit Project ... 59
C.8. Maven Archetype Command for Service Assemblies 61
C.9. Configuring the Maven Plug-in to Build a Service Assembly 61
C.10. Specifying the Target Components for a Service Unit 62
C.11. POM for a Service Assembly Project 62
D.1. Adding an OSGi Bundle Plug-in to a POM 67
D.2. Setting a Bundle's Symbolic Name .. 72
D.3. Setting a Bundle's Name ... 73
D.4. Setting a Bundle's Version ... 73
D.5. Including a Private Package in a Bundle 75
D.6. Specifying the Packages Imported by a Bundle 77

9FUSE™ ESB Using the File Binding Component Version 4.1

FUSE™ ESB Using the File Binding Component Version 4.110

Chapter 1. Introduction to the File
Binding Component
The file binding component allows you to create endpoints that read files from a file system and write files out
to the file system.

Overview The file component provides integration to the file system. It can be used to
read and write files via URI. It can also be configured to periodically poll
directories for new files.

It allows for the creation of two types of endpoint:

poller endpoint

A poller endpoint polls a specified location on the file system for files.
When it finds a file it reads the file and sends it to the NMR for delivery
to the appropriate endpoint.

Important
A poller endpoint can only create in-only message exchanges.

sender endpoint

A sender endpoint receives messages from the NMR. It then writes the
contents of the message to a specified location on the file system.

Key features The file component has the following advanced features:

• custom filters for selecting files

• custom marshalers for converting the contents of a file to and from a
normalized message

• custom locking mechanism for controlling file access during reads

11FUSE™ ESB Using the File Binding Component Version 4.1

• archiving of read files

Contents of a file component
service unit

A service unit that configures the file binding component will contain two
artifacts:

xbean.xml

The xbean.xml file contains the XML configuration for the endpoint
defined by the service unit. The contents of this file are the focus of this
guide.

Note
The service unit can define more than one endpoint.

meta-inf/jbi.xml

The jbi.xml file is the JBI descriptor for the service unit.
Example 1.1 on page 12 shows a JBI descriptor for a file component
service unit.

Example 1.1. JBI Descriptor for a File Component Service Unit

<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
<services binding-component="false" />

</jbi>

Tip
The developer typically does not need to hand code this file. It
is generated by the FUSE ESB Maven tooling.

OSGi Packaging You can package file endpoints in an OSGi bundle. To do so you need to make
two minor changes:

• you will need to include an OSGi bundle manifest in the META-INF folder

of the bundle.

• You need to add the following to your service unit's configuration file:

FUSE™ ESB Using the File Binding Component Version 4.112

Chapter 1. Introduction to the File Binding Component

<bean class="org.apache.servicemix.common.osgi.EndpointEx
porter" />

Important
When you deploy file endpoints in an OSGi bundle, the resulting
endpoints are deployed as a JBI service unit.

For more information on using the OSGi packaging see
Appendix D on page 65.

Namespace The elements used to configure file endpoints are defined in the
http://servicemix.apache.org/file/1.0 namespace. You will need to add a
namespace declaration similar to the one in Example 1.2 on page 13 to your
xbean.xml file's beans element.

Example 1.2. Namespace Declaration for Using File Endpoints

<beans ...
xmlns:file="http://servicemix.apache.org/file/1.0"
... >

...
</beans>

In addition, you need to add the schema location to the Spring beans
element's xsi:schemaLocation as shown in Example 1.3 on page 13.

Example 1.3. Schema Location for Using File Endpoints

<beans ...
xsi:schemaLocation="...

http://servicemix.apache.org/file/1.0 http://service
mix.apache.org/file/1.0/servicemix-file.xsd
...">
...

</beans>

13FUSE™ ESB Using the File Binding Component Version 4.1

FUSE™ ESB Using the File Binding Component Version 4.114

Chapter 2. Using Poller Endpoints
Poller endpoints poll the file system for files and passes the file to a target endpoint inside an in-only message
exchange.

Introduction to Poller Endpoints ... 16
Basic Configuration .. 18
Configuring How Poller Endpoints Interact with the File System ... 21
Configuring the Polling Interval .. 24
File Locking .. 26
File Filtering ... 29

15FUSE™ ESB Using the File Binding Component Version 4.1

Introduction to Poller Endpoints

Overview The function of a poller endpoint is to read data, in the form of files, from a
location on a file system and pass that information to other endpoints in the
ESB. They create an in-only message exchange containing the data read in
from a file.

A poller endpoint, as its name implies, works by continually polling the file
system to see if a file is present for consumption. The polling interval is
completely customizable. By default, poller endpoints check the file system
at predefined intervals.

You can also control the files a poller endpoint consumes. Using the basic
configuration attributes you can configure the endpoint to poll for a specific
file or you can poll it to monitor a specific directory on the file system. In
addition you can configure the endpoint to use a custom file filter.

By default, poller endpoints will only consume valid XML files. You can
customize this behavior by configuring the endpoint to use a custom marshaler.

Where does a poller endpoint fit
into a solution?

Poller endpoints play the role of consumer from the vantage point of the other
endpoints in the ESB. As shown in Figure 2.1 on page 17, a poller endpoint
watches the file system for files to consume. When it consumes a file, it
transfers its contents into a message and starts off an in-only message
exchange. Poller endpoints cannot receive messages from the NMR.

FUSE™ ESB Using the File Binding Component Version 4.116

Chapter 2. Using Poller Endpoints

Figure 2.1. Poller Endpoint

Configuration element Poller endpoints are configured using the poller element. All its configuration
can be specified using attributes of this element.

The more complex features, such as custom marshalers, require the addition
of other elements. These can either be separate bean elements or child
elements of the poller element.

17FUSE™ ESB Using the File Binding Component Version 4.1

Introduction to Poller Endpoints

Basic Configuration

Overview The basic requirements for configuring a poller endpoint are straightforward.
You need to supply the following information:

• the endpoint's name

• the endpoint's service name

• the file or directory to be monitored

• the ESB endpoint to which the resulting messages will be sent

All of this information is provided using attributes of the poller element.

Identifying the endpoint All endpoints in the ESB need to have a unique identity. An endpoint's identity
is made up of two pieces:

• a service name

• an endpoint name

Table 2.1 on page 18 describes the attributes used to identify a poller
endpoint.

Table 2.1. Attributes for Identifying a Poller Endpoint

DescriptionName

Specifies the service name of the endpoint. This value must
be a valid QName and does not need to be unique across the
ESB.

service

Specifies the name of the endpoint. This value is a simple
string. It must be unique among all of the endpoints associated
with a given service name.

endpoint

Specifying the message source You specify the location the poller endpoint looks for new messages using the
poller element's file attribute. This attribute takes a URI that identifies a
location on the file system.

If you want the endpoint to poll a specific file you use the standard
file:location URI. If you do not use the file prefix, the endpoint will

FUSE™ ESB Using the File Binding Component Version 4.118

Chapter 2. Using Poller Endpoints

assume the URI specifies a directory on the file system and will consume all
valid XML files placed in the specified directory.

For example, the URI file:inbox tells the endpoint to poll for a file called
inbox. The URI inbox instructs the endpoint to poll the directory inbox.

Important
Relative URIs are resolved from the directory in which the FUSE ESB
container was started.

Specifying the target endpoint There are a number of attributes available for configuring the endpoint to
which the generated messages are sent. The poller endpoint will determine
the target endpoint in the following manner:

1. If you explicitly specify an endpoint using both the targetService
attribute and the targetEndpoint attribute, the ESB will use that
endpoint.

The targetService attribute specifies the QName of a service deployed
into the ESB. The targetEndpoint attribute specifies the name of an
endpoint deployed by the service specified by the targetService
attribute.

2. If you only specify a value for the targetService attribute, the ESB
will attempt to find an appropriate endpoint on the specified service.

3. If you do not specify a service name or an endpoint name, you must
specify an the name of an interface that can accept the message using
the targetInterface attribute. The ESB will attempt to locate an
endpoint that implements the specified interface and direct the messages
to it.

Interface names are specified as QNames. They correspond to the value
of the name attribute of either a WSDL 1.1 serviceType element or a
WSDL 2.0 interface element.

19FUSE™ ESB Using the File Binding Component Version 4.1

Basic Configuration

Important
If you specify values for more than one of the target attributes, the
poller endpoint will use the most specific information.

Example Example 2.1 on page 20 shows the configuration for a simple poller endpoint.

Example 2.1. Simple Poller Endpoint

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:poller service="foo:filePoller"
endpoint="filePoller"
targetService="foo:fileSender"
file="file:inbox/test.xml" />

...
</beans>

FUSE™ ESB Using the File Binding Component Version 4.120

Chapter 2. Using Poller Endpoints

Configuring How Poller Endpoints Interact with the
File System

Overview Poller endpoints interact with the file system in basic ways. You can configure
a number of the aspects of this behavior including:

• if the endpoint creates the directory it is configured to poll

• if the endpoint polls the subdirectories of the configured directory

• if the endpoint deletes the files it consumes

• where the endpoint archives copies of the consumed files

Directory handling The default behavior of a poller endpoint that is configured to poll a directory
on the file system is to create the directory if it does not exist and to poll all
of that directory's subdirectories. You can configure an endpoint to not do one
or both of these behaviors.

To configure an endpoint to not create the configured directory you set its
autoCreateDirectory attribute to false. If the directory does not exist,
the endpoint will do nothing. You will have to create the directory manually.

To configure the endpoint to only poll the configured directory and ignore its
subdirectories you set the endpoint's recursive attribute to false.

Example 2.2 on page 21 shows the configuration for a poller endpoint that
does not recurse into the subdirectories of the directory it polls.

Example 2.2. Poller Endpoint that Does Not Check Subdirectories

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:poller service="foo:filePoller"
endpoint="filePoller"
targetService="foo:fileSender"
file="inbox"
recursive="false" />

21FUSE™ ESB Using the File Binding Component Version 4.1

Configuring How Poller Endpoints Interact with the File
System

...
</beans>

File retention By default poller endpoints delete a file once it is consumed. To configure the
endpoint to leave the file in place after is consumed, set its deleteFile
attribute to false.

Example 2.3 on page 22 shows the configuration for a poller endpoint that
does not delete files.

Example 2.3. Poller Endpoint that Leaves Files Behind

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:poller service="foo:filePoller"
endpoint="filePoller"
targetService="foo:fileSender"
file="inbox"
deleteFile="false" />

...
</beans>

Important
When the poller endpoint does not automatically delete consumed
files the list of consumed files is stored in memory. If the FUSE ESB
container is stopped and restarted files that have been consumed,
but not removed from the polling folder, will be reprocessed. One
possible solution is to use a custom lock manager that stores a list
of the consumed files to an external data store.

Archiving files By default, poller endpoints do not archive files after they are consumed. If
you want the files consumed by a poller endpoint to be archived you set the
endpoint's archive attribute. The value of the archive attribute is a URI
pointing to the directory into which the consumed files will archived.

Important
Relative URIs are resolved from the directory in which the FUSE ESB
container was started.

FUSE™ ESB Using the File Binding Component Version 4.122

Chapter 2. Using Poller Endpoints

Example 2.4 on page 23 shows the configuration for a poller endpoint that
files into a directory called archives.

Example 2.4. Poller Endpoint that Archives Files

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:poller service="foo:filePoller"
endpoint="filePoller"
targetService="foo:fileSender"
file="inbox"
archive="archives" />

...
</beans>

23FUSE™ ESB Using the File Binding Component Version 4.1

Configuring How Poller Endpoints Interact with the File
System

Configuring the Polling Interval

Overview A default poller endpoint provides limited scheduling facilities. You can
configure when the endpoint starts polling and the interval between polling
attempts.

Scheduling the first poll By default, poller endpoints begin polling as soon as they are started. You
can control when a poller endpoint first attempts to poll the file system using
an attribute that controls the date of the first polling attempt.

You specify a date for the first poll using the endpoint's firstTime attribute.
The firstTime attribute specifies a date using the standard xsd:date format
of YYYY-MM-DD. For example, you would specify April 1, 2025 as
2025-04-01. The first polling attempt will be made at 00:00:00 GMT on
the specified date.

Note
If you schedule the first polling attempt in the past, the endpoint will
begin polling immediately.

Example 2.5 on page 24 shows the configuration for a poller endpoint that
starts polling at 1am GMT on April 1, 2010.

Example 2.5. Poller Endpoint with a Scheduled Start Time

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:poller service="foo:filePoller"
endpoint="filePoller"
targetService="foo:fileSender"
file="inbox"
firstTime="2010-04-01" />

...
</beans>

Delaying the first poll In addition to controlling the specific data one which polling will start, you
can also specify how long to delay the first polling attempt. The delay is
specified using the endpoint's delay attribute. The delay attribute specifies
the delay in milliseconds.

FUSE™ ESB Using the File Binding Component Version 4.124

Chapter 2. Using Poller Endpoints

Note
If you have specified a date for the first polling attempt, the delay
will be added to the date to determine when to make the first polling
attempt.

Example 2.6 on page 25 shows the configuration for a poller endpoint that
begins polling 5 minutes after it is started.

Example 2.6. Poller Endpoint with a Delayed Start Time

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:poller service="foo:filePoller"
endpoint="filePoller"
targetService="foo:fileSender"
file="inbox"
delay="300000" />

...
</beans>

Configuring the polling interval By default, poller endpoints poll the file system every five seconds. You can
configure the polling interval by providing a value for the endpoint's period
attribute. The period attribute specifies the number of milliseconds the
endpoint waits between polling attempts.

Example 2.7 on page 25 shows the configuration for a poller endpoint that
uses a thirty second polling interval.

Example 2.7. Poller Endpoint with a Thirty Second Polling Interval

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:poller service="foo:filePoller"
endpoint="filePoller"
targetService="foo:fileSender"
file="inbox"
period="30000" />

...
</beans>

25FUSE™ ESB Using the File Binding Component Version 4.1

Configuring the Polling Interval

File Locking

Overview It is possible to have multiple instances of a poller endpoint attempting to
read a file on the system. To ensure that there are no conflicts in accessing
the file, poller endpoints obtain an exclusive lock on a file while it is processing
it.

The locking behavior is controlled by an implementation of the
org.apache.servicemix.common.locks.LockManager interface. By
default, poller endpoints use a provided implementation of this interface. If
the default behavior is not appropriate for your application, you can implement
the LockManager interface and configure your endpoints to use your
implementation.

Implementing a lock manager To implement a custom lock manager you need to provide your own
implementation of the
org.apache.servicemix.common.locks.LockManager interface. The
LockManager has single method, getLock() that needs to be implemented.
Example 2.8 on page 26 shows the signature for getLock().

Example 2.8. The Lock Manager's Get Lock Method

Lock getLock(String id);

The getLock() method takes a string that represents the URI of the file being
processes and it returns a java.util.concurrent.locks.Lock object.
The returned Lock object holds the lock for the specified file.

Example 2.9 on page 26 shows a simple lock manager implementation.

Example 2.9. Simple Lock Manager Implementation

package org.apache.servicemix.demo;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import org.apache.servicemix.common.locks.LockManager;

public class myLockManager implements LockManager
{
private ConcurrentMap<String, Lock> locks = new ConcurrentHashMap<String, Lock>();

FUSE™ ESB Using the File Binding Component Version 4.126

Chapter 2. Using Poller Endpoints

public Lock getLock(String id)
{
Lock lock = locks.get(id);
if (lock == null)
{
lock = new ReentrantLock();
Lock oldLock = locks.putIfAbsent(id, lock);
if (oldLock != null)
{
lock = oldLock;

}
}
return lock;

}

}

Configuring the endpoint to use a
lock manager

You configure a poller endpoint to use a custom lock manager using its
lockManager attribute. The lockManager attribute's value is a reference to
a bean element specifying the class of your custom lock manager
implementation.

Example 2.10 on page 27 shows configuration for a poller endpoint that
uses a custom lock manager.

Example 2.10. Poller Endpoint Using a Custom Lock Manager

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:poller service="foo:filePoller"
endpoint="filePoller"
targetService="foo:fileSender"
file="inbox"
lockManager="#myLockManager" />

<bean id="myLockManager" class="org.apache.servicemix.demo.myLockManager" />
...

</beans>

Note
You can also configure a poller endpoint to use a custom lock
manager by adding a child lockManager element to the endpoint's

27FUSE™ ESB Using the File Binding Component Version 4.1

File Locking

configuration. The lockManager element simply wraps the bean
element that configures the lock manager.

FUSE™ ESB Using the File Binding Component Version 4.128

Chapter 2. Using Poller Endpoints

File Filtering

Overview When a poller endpoint is configured to poll a directory it will attempt to
consume any file placed into that directory. If you want to limit the files a
poller endpoint will attempt to consume, you can configure the endpoint to
filter files based on their names. To do so, you must supply the endpoint with
an implementation of the java.io.FileFilter interface.

There are several file filter implementation available in open source including
the Apache Commons IO implementations and the Apache Jakarta-ORO
implementations. You can also implement your own file filter if you need
specific filtering capabilities.

Implementing a file filter To implement a file filter you need to provide and implementation of the
java.io.FileFilter interface. The FileFilter interface has a single
method, accept() that needs to be implemented. Example 2.11 on page 29
shows the signature of the accept() method.

Example 2.11. File Filter's Accept Method

public boolean accept()(java.io.File pathname);

The accept() method takes a File object that represents the file being
checked against the filter. If the file passes the filter, the accept() method
should return true. If the file does not pass, then the method should return
false.

Example 2.12 on page 29 shows a file filter implementation that matches
against a string passed into its constructor.

Example 2.12. Simple File Filter Implementation

package org.apache.servicemix.demo;

import java.io.File;
import java.io.FileFilter;

public class myFileFilter implements FileFilter
{
String filtername = "joe.xml";

public myFileFilter()
{
}

29FUSE™ ESB Using the File Binding Component Version 4.1

File Filtering

public myFileFilter(String filtername)
{
this.filtername = filtername;

}

public boolean accept(File file)
{
String name = file.getName();
return name.equals(this.filtername);

}
}

Configuring an endpoint to use a
file filter

You configure a poller endpoint to use a file filter using its filter attribute.
The filter attribute's value is a reference to a bean element specifying the
class of the file filter implementation.

Example 2.13 on page 30 shows configuration for a poller endpoint that
uses the file filter implemented in Example 2.11 on page 29. The
constructor-arg element sets the filter's fitlername by passing a value into
the constructor.

Example 2.13. Poller Endpoint Using a File Filter

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:poller service="foo:filePoller"
endpoint="filePoller"
targetService="foo:fileSender"
file="inbox"
filter="#myFilter" />

<bean id="myFilter" class="org.apache.servicemix.demo.myFileFilter">
<constructor-arg value="joefred.xml" />

</bean>
...

</beans>

Note
You can also configure a poller endpoint to use a file filter by adding
a child filter element to the endpoint's configuration. The filter
element simply wraps the bean element that configures the file filter.

FUSE™ ESB Using the File Binding Component Version 4.130

Chapter 2. Using Poller Endpoints

Chapter 3. Using Sender Endpoints
Sender endpoints write messages to the file system.

Introduction to Sender Endpoints ... 32
Basic Configuration .. 34
Configuring How Sender Endpoints Interact with the File System ... 36

31FUSE™ ESB Using the File Binding Component Version 4.1

Introduction to Sender Endpoints

Overview The function of a sender endpoint is to write data, in the form of files, to a
location on a file system. You can control the location of the files written to
the file system and have some control over the name of the generated files.
You can also control if data is appended to existing files or if new copies of
a file are created.

By default, sender endpoints write XML data to the file system. You can
change this behavior by configuring the endpoint to use a custom marshaler.

Where does a sender endpoint fit
into a solution?

Sender endpoints play the role of provider from the vantage point of the other
endpoints in the ESB. As shown in Figure 3.1 on page 32, a sender endpoint
receives messages from the NMR and writes the message data to the file
system.

Figure 3.1. Sender Endpoint

Configuration element Sender endpoints are configured using the sender element. All its
configuration can be specified using attributes of this element.

FUSE™ ESB Using the File Binding Component Version 4.132

Chapter 3. Using Sender Endpoints

Configuring a sender endpoint to use custom marshalers require the addition
of other elements. These can either be separate bean elements or child
elements of the sender element.

33FUSE™ ESB Using the File Binding Component Version 4.1

Introduction to Sender Endpoints

Basic Configuration

Overview The basic requirements for configuring a sender endpoint are straightforward.
You need to supply the following information:

• the endpoint's name

• the endpoint's service name

• the file or directory to which files are written

All of this information is provided using attributes of the sender element.

Identifying the endpoint All endpoints in the ESB need to have a unique identity. An endpoint's identity
is made up of two pieces:

• a service name

• an endpoint name

Table 3.1 on page 34 describes the attributes used to identify a sender
endpoint.

Table 3.1. Attributes for Identifying a Sender Endpoint

DescriptionName

Specifies the service name of the endpoint. This value must
be a valid QName and does not need to be unique across the
ESB.

service

Specifies the name of the endpoint. This value is a simple
string. It must be unique among all of the endpoints associated
with a given service name.

endpoint

Specifying the file destination You specify the location the sender endpoint writes files using the sender
element's directory attribute. This attribute takes a URI that identifies a
location on the file system.

FUSE™ ESB Using the File Binding Component Version 4.134

Chapter 3. Using Sender Endpoints

Important
Relative URIs are resolved from the directory in which the FUSE ESB
container was started.

Using the default marshaler, the name of the file is determined by the
org.apache.servicemix.file.name property. This property is set on either the
message exchange or the message by the endpoint originating the message
exchange.

Important
The marshaler is responsible for determining the name of the file
being written. For more information on marshalers see "File
Marshalers" on page 39.

Example Example 3.1 on page 35 shows the configuration for a simple sender
endpoint.

Example 3.1. Simple Sender Endpoint

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:sender service="foo:fileSender"
endpoint="sender"
directory="outbox" />

...
</beans>

35FUSE™ ESB Using the File Binding Component Version 4.1

Basic Configuration

Configuring How Sender Endpoints Interact with the
File System

Overview Sender endpoints interact with the file system in basic ways. You can configure
a number of the aspects of this behavior including:

• if the endpoint creates the directory where it writes files

• how the endpoint names temporary files

Directory creation The default behavior of a sender endpoint that is to automatically create the
target directory for its files if that directory does not already exist. To configure
an endpoint to not create the target directory you set its
autoCreateDirectory attribute to false. If the directory does not exist,
the endpoint will do nothing. You will have to create the directory manually.

Example 3.2 on page 36 shows the configuration for a sender endpoint that
does not automatically create its target directory.

Example 3.2. Sender Endpoint that Does Create Its Target Directory

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:sender service="foo:fileSender"
endpoint="fileSender"
directory="outbox"
autoCreateDirectory="false" />

...
</beans>

Appending data By default, sender endpoints overwrite existing files. If a message wants to
reuse the name of an existing file, the file on the file system is overwritten.
You can configure a sender endpoint to append the message to the existing
file by setting the endpoint's append attribute to true.

Example 3.3 on page 37 shows the configuration for an endpoint that
appends messages to a file if it already exists.

FUSE™ ESB Using the File Binding Component Version 4.136

Chapter 3. Using Sender Endpoints

Example 3.3. Sender Endpoint that Appends Existing Files

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:sender service="foo:fileSender"
endpoint="fileSender"
directory="outbox"
append="true" />

...
</beans>

Temporary file naming By default, sender endpoints check the message exchange, or the message
itself, for the name to use for the file being written. If the endpoint cannot
determine a name for the target file, it will use a temporary file name.
Table 3.2 on page 37 describes the attributes used to generate the temporary
file name.

Note
Checking for the name of the file to write is handled by the marshaler.
For more information on marshalers see "File Marshalers"
on page 39.

Table 3.2. Attributes Used to Determine a Temporary File Name

DefaultDescriptionName

servicemix-Specifies the prefix used when creating output files.tempFilePrefix

.xmlSpecifies the file extension to use when creating output files.tempFileSuffix

The generated file names will have the form
tempFilePrefixXXXXXtempFileSuffix. The five Xs in the middle of the
filename will be filled with randomly generated characters. So given the
configuration shown in Example 3.4 on page 37, a possible temporary
filename would be widgets-xy60s.xml.

Example 3.4. Configuring a Sender Endpoint's Temporary File Prefix

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:sender service="foo:fileSender"
endpoint="fileSender"

37FUSE™ ESB Using the File Binding Component Version 4.1

Configuring How Sender Endpoints Interact with the
File System

directory="outbox"
tempFilePrefix="widgets-" />

...
</beans>

FUSE™ ESB Using the File Binding Component Version 4.138

Chapter 3. Using Sender Endpoints

Chapter 4. File Marshalers
When using file component endpoints, you may want to customize how messages are processed as they pass in
and out of the ESB. The FUSE ESB file binding component allows you to write custom marshalers for your file
component endpoints.

Overview File component endpoints use a marshaler for processing messages. Poller
endpoints rely on the marshaler for reading data off of the file system and
normalizing it so it can be passed to the NMR. Sender endpoints rely on the
marshaler for determining the name of the file to be written and for converting
the normalized messages into the format to be written to the file system.

The default marshaler used by file component endpoints reads and writes
valid XML files. It queries the message exchange, and the message, received
from the NMR for the name of the outgoing message. The default marshaler
expects the file name to be stored in a property called
org.apache.servicemix.file.name.

If your application requires different functionality from the marshaler, you can
provide a custom marshaler by implementing the
org.apache.servicemix.components.util.FileMarshaler interface.
You can easily configure your endpoints to use your custom marshaler instead
of the default one.

Provided file marshalers In addition to the default file marshaler, FUSE ESB provides two other file
marshalers that file component endpoints can use:

Binary File Marshaler

The binary file marshaler is provided by the class
org.apache.servicemix.components.util.BinaryFileMarshaler.
It reads in binary data and adds it to the normalized message as an
attachment. You can set the name of the attachment and specify a
content type for the attachment using the properties shown in
Table 4.1 on page 39.

Table 4.1. Properties for Configuring the Binary File Marshaler

DefaultDescriptionName

contentSpecifies the name of the attachment added to the normalized message.attachment

39FUSE™ ESB Using the File Binding Component Version 4.1

DefaultDescriptionName

Specifies the content type of the binary data being used. Content types are specified
using MIME types. MIME types are specified by RFC 20451.

contentType

Flat File Marshaler

The flat file marshaler is provided by the class
org.apache.servicemix.components.util.SimpleFlatFileMarshaler.
It reads in flat text files and converts them into XML messages.

By default the file is wrapped in a File element. Each line in the file is
wrapped in a Line attribute. Each line also has a number attribute that
represents the position of the line in the original file.

You can control some aspects of the generated XML file using the
properties described in Table 4.2 on page 40.

Table 4.2. Properties Used to Control the Flat File Marshaler

DefaultDescriptionName

FileSpecifies the name of the root element generated by a file.docElementname

LineSpecifies the name of the element generated for each line of the file.lineElementname

trueSpecifies if the elements corresponding to a line will use the number attribute.insertLineNumbers

Implementing a file marshaler To develop a custom file marshaler you need to implement the
org.apache.servicemix.components.util.FileMarshaler interface.
Example 4.1 on page 40 shows the interface.

Example 4.1. The File Marshaler Interface

package org.apache.servicemix.components.util;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import javax.jbi.JBIException;
import javax.jbi.messaging.MessageExchange;
import javax.jbi.messaging.MessagingException;

1 http://tools.ietf.org/html/rfc2045

FUSE™ ESB Using the File Binding Component Version 4.140

Chapter 4. File Marshalers

http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045

import javax.jbi.messaging.NormalizedMessage;

public interface FileMarshaler
{
void readMessage(MessageExchange exchange, NormalizedMessage message, InputStream in,

String path) throws IOException, JBIException;

String getOutputName(MessageExchange exchange, NormalizedMessage message) throws Mes
sagingException;

void writeMessage(MessageExchange exchange, NormalizedMessage message, OutputStream out,
String path) throws IOException, JBIException;
}

The FileMarshaler interface has three methods that need to be
implemented:

readMessage()

The readMessage() method is responsible for reading a file from the
file system and converting the data into a normalized message.
Table 4.3 on page 41 describes the parameters used by the method.

Table 4.3. Parameters for Reading Messages from the File System

DescriptionName

Contains the MessageExchange object that is going to be passed to the NMR.exchange

Contains the NormalizedMessage object that is going to be passed to the NMR.message

Contains the BufferedInputStream which points to the file in the file system.in

Contains the full path to the file on the file system as determined by the Java getCanonicalPath()

method.

path

getOutputName()

The getOutputName() method returns the name of the file to be written
to the file system. The message exchange and the message received by
the sender endpoint are passed to the method.

Important
The returned file name does not contain a directory path. The
sender endpoint uses the directory it was configured to use.

41FUSE™ ESB Using the File Binding Component Version 4.1

writeMessage()

The writeMessage() method is responsible for writing messages
received from the NMR to the file system as files. Table 4.4 on page 42
describes the parameters used by the method.

Table 4.4. Parameters for Writing Messages to the File System

DescriptionName

Contains the MessageExchange object received from the ESB.exchange

Contains the NormalizedMessage object received from the ESB.message

Contains the BufferedOutputStream which points to the file in the file system.out

Contains the path to the file are returned from the getOutputName() method.path

Example 4.2 on page 42 shows a simple file mashaler.

Example 4.2. Simple File Marshaler

package org.apache.servicemix.demos;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.ObjectOutputStream;
import java.io.OutputStream;

import javax.jbi.JBIException;
import javax.jbi.messaging.MessageExchange;
import javax.jbi.messaging.MessagingException;
import javax.jbi.messaging.NormalizedMessage;

public class myFileMarshaler implements FileMarshaler
{

public void readMessage(MessageExchange exchange, NormalizedMessage message,
InputStream in, String path)

throws IOException, JBIException
{
message.setContent(new StreamSource(in, path));

}

public String getOutputName(MessageExchange exchange, NormalizedMessage message)
throws MessagingException
{

FUSE™ ESB Using the File Binding Component Version 4.142

Chapter 4. File Marshalers

return "fred.xml";
}

public void writeMessage(MessageExchange exchange, NormalizedMessage message,
OutputStream out, String path)

throws IOException, JBIException
{
Source src = message.getContent();
if (src == null)
{
throw new NoMessageContentAvailableException(exchange);

}
try
{
ObjectOutputStream objectOut = new ObjectOutputStream(out);
objectOut.writeObject(src);

}
}

}

Configuring an endpoint to use a
file marshaler

You configure a file component endpoint to use a file marshaler using its
marshaler attribute. The marshaler attribute's value is a reference to a
bean element specifying the class of the file filter implementation.

Example 4.3 on page 43 shows configuration for a poller endpoint that uses
the file marshaler implemented in Example 4.2 on page 42.

Example 4.3. Poller Endpoint Using a File Marshaler

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:foo="http://servicemix.org/demo/">

<file:poller service="foo:filePoller"
endpoint="filePoller"
targetService="foo:fileSender"
file="inbox"
marshaler="#myMarshaler" />

<bean id="myMarshaler" class="org.apache.servicemix.demo.myFileMarshaler" />

Note
You can also configure a file component endpoint to use a file
marshaler by adding a child marshaler element to the endpoint's
configuration. The marshaler element simply wraps the bean
element that configures the file marshaler.

43FUSE™ ESB Using the File Binding Component Version 4.1

FUSE™ ESB Using the File Binding Component Version 4.144

Appendix A. Poller Endpoint Properties
Attributes Table A.1 on page 45 describes the attributes used to configure a poller

endpoint.

Table A.1. Attributes for Configuring a Poller Endpoint

DefaultDescriptionTypeName

requiredSpecifies the service name of the endpoint.QNameservice

requiredSpecifies the name of the endpoint.Stringendpoint

Specifies the interface name of the endpoint.QNameinterfaceName

Specifies the service name of the target endpoint.QNametargetService

Specifies the name of the target endpoint.StringtargetEndPoint

Specifies the interface name of the target endpoint.QNametargetInterface

Specifies the URI of the target endpoint.stringtargetUri

trueSpecifies if the endpoint will create the target directory
if it does not exist.

booleanautoCreateDirectory

null (The first poll will
happen right after
start up.)

Specifies the date and the time the first poll will take
place.

datefirstTime

0Specifies amount of time, in milliseconds, to wait before
performing the first poll.

longdelay

5000Specifies the amount of time, in milliseconds, between
polls.

longperiod

requiredSpeficies the file or directory to poll.Stringfile

trueSpecifies if the file is deleted after it is processed.booleandeleteFile

trueSpecifies if the endpoint processes sub directories when
polling.

booleanrecursive

45FUSE™ ESB Using the File Binding Component Version 4.1

DefaultDescriptionTypeName

null (no archiving)Specifies the name of the directory to archive files into
before deleting them.

stringarchive

Beans Table A.2 on page 46 describes the beans which can be used to configure
a poller endpoint.

Table A.2. Beans for Configuring a Poller Endpoint

DefaultDescriptionTypeName

DefaultFileMarshalerSpecifies the
class used to

org.apache.servicemix.components.util.FileMarshalermarshaler

marshal data
from the file.

SimpleLockManagerSpecifies the
class

org.apache.servicemix.locks.LockManagerlockManager

implementing
the file
locking.

Specifies the
class

java.io.FileFilterfilter

implementing
the filtering
logic to use
for selecting
files.

FUSE™ ESB Using the File Binding Component Version 4.146

Appendix B. Sender Endpoint Properties
Attributes Table B.1 on page 47 describes the attributes used to configure a sender

endpoint.

Table B.1. Attributes for Configuring a Sender Endpoint

DefaultDescriptionTypeName

requiredSpecifies the service name of the endpoint.QNameservice

requiredSpecifies the name of the endpoint.Stringendpoint

requiredSpecifies the name of the directory into which data is written.Stringdirectory

trueSpecifies if the endpoint creates the output directory if it does
not exist.

booleanautoCreateDirectory

falseSpecifies if the data is appended to the end of an existing file
or if the data is written to a new file.

booleanappend

servicemix-Specifies the prefix used when creating output files.StringtempFilePrefix

.xmlSpecifies the file extension to use when creating output files.StringtempFileSuffix

Beans Table B.2 on page 47 describes the beans used to configure a sender
endpoint.

Table B.2. Attributes for Configuring a Sender Endpoint

DefaultDescriptionTypeName

DefaultFileMarshalerSpecifies
the

org.apache.servicemix.components.util.FileMarshalermarshaler

marshaler
to use
when
writing data
from the
NMR to the
file system.

47FUSE™ ESB Using the File Binding Component Version 4.1

FUSE™ ESB Using the File Binding Component Version 4.148

Appendix C. Using the Maven JBI
Tooling
Packaging application components so that they conform the JBI specification is a cumbersome job. FUSE ESB
includes tooling that automates the process of packaging you applications and creating the required JBI descriptors.

Setting Up a FUSE ESB JBI Project .. 50
A Service Unit Project ... 55
A Service Assembly Project .. 61

FUSE ESB provides a Maven plug-in and a number of Maven archetypes that
make developing, packaging, and deploying JBI artifacts easier. The tooling
provides you with a number of benefits. These benefits include:

• automatic generation of JBI descriptors

• dependency checking

Because FUSE ESB only allows you to deploy service assemblies, you will
need to do the following when using the Maven JBI tooling:

1. Set up a top-level project on page 50 to build all of the service units and
the final service assembly.

2. Create a project for each of your service units. on page 55.

3. Create a project for the service assembly on page 61.

49FUSE™ ESB Using the File Binding Component Version 4.1

Setting Up a FUSE ESB JBI Project

Overview When working with the FUSE ESB JBI Maven tooling, you will want to create
a top-level project that can build all of the service units and package them
into a service assembly. Using a top-level project for this purpose has several
advantages. It allows you to control the dependencies for all of the parts of
an application in a central location. It limits the number of times you need
to specify the proper repositories to load. It also gives you a central location
from which to build and deploy the application.

The top-level project is responsible for assembling the application. It will use
the Maven assembly plug-in and list your service units and the service
assembly as modules of the project.

Directory structure Your top-level project will contain the following directories:

• a source directory containing the information needed by the Maven assembly
plug-in

• a directory to hold the service assembly project

• at least one directory containing a service unit project

Tip
You will need a project folder for each service unit that is to be
included in the generated service assembly.

Setting up the Maven tools In order to use the FUSE ESB JBI Maven tooling, you add the elements shown
in Example C.1 on page 50 to your top-level POM file.

Example C.1. POM Elements for Using FUSE ESB Tooling

...
<pluginRepositories>
<pluginRepository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>
<enabled>false</enabled>

FUSE™ ESB Using the File Binding Component Version 4.150

</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</pluginRepository>

</pluginRepositories>
<repositories>
<repository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>

<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</repository>
<repository>
<id>fusesource.m2-snapshot</id>
<name>FUSE Open Source Community Snapshot Repository</name>
<url>http://repo.fusesource.com/maven2-snapshot</url>
<snapshots>
<enabled>true</enabled>

</snapshots>
<releases>
<enabled>false</enabled>

</releases>
</repository>

</repositories>
...

<build>
<plugins>
<plugin>
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<version>servicemix-version</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
...

These elements point Maven to the correct repositories to download the FUSE
ESB Maven tooling and load the plug-in that implements the tooling.

Listing the subprojects Your top-level POM lists all of the service units and the service assembly that
will be generated as modules. The modules are contained in a modules

51FUSE™ ESB Using the File Binding Component Version 4.1

element. The modules element contains one module element for each service
unit in the assembly. You will also need a module element for the service
assembly.

The modules should be listed in the order in which they are built. This means
that the service assembly module should be listed after all of the service unit
modules.

Example JBI Project POM Example C.2 on page 52 shows a top-level pom for a project that contains
a single service unit.

Example C.2. Top-Level POM for a FUSE ESB JBI Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.widgets</groupId>
<artifactId>demos</artifactId>
<version>1.0</version>

</parent>

<groupId>com.widgets.demo</groupId>
<artifactId>cxf-wsdl-first</artifactId>
<name>CXF WSDL Fisrt Demo</name>
<packaging>pom</packaging>

<pluginRepositories> ❶
<pluginRepository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>
<enabled>false</enabled>

</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</pluginRepository>

</pluginRepositories>
<repositories>
<repository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>

FUSE™ ESB Using the File Binding Component Version 4.152

<url>http://repo.fusesource.com/maven2</url>
<snapshots>

<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</repository>
<repository>
<id>fusesource.m2-snapshot</id>
<name>FUSE Open Source Community Snapshot Repository</name>
<url>http://repo.fusesource.com/maven2-snapshot</url>
<snapshots>
<enabled>true</enabled>

</snapshots>
<releases>
<enabled>false</enabled>

</releases>
</repository>

</repositories>

<modules> ❷
<module>wsdl-first-cxfse-su</module>
<module>wsdl-first-cxf-sa</module>

</modules>

<build>
<plugins>
<plugin> ❸
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.1</version>
<inherited>false</inherited>
<executions>
<execution>

<id>src</id>
<phase>package</phase>
<goals>
<goal>single</goal>

</goals>
<configuration>
<descriptors>
<descriptor>src/main/assembly/src.xml</descriptor>

</descriptors>
</configuration>

</execution>
</executions>

</plugin>
<plugin> ❹

53FUSE™ ESB Using the File Binding Component Version 4.1

<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

The POM shown in Example C.2 on page 52 does the following:

❶ Configures Maven to use the FUSE repositories for loading the FUSE
ESB plug-ins.

❷ Lists the sub-projects used for this application. The
wsdl-first-cxfse-su module is the module for the service unit. The

wsdl-first-cxf-sa module is the module for the service assembly

❸ Configures the Maven assembly plug-in.

❹ Loads the FUSE ESB JBI plug-in.

FUSE™ ESB Using the File Binding Component Version 4.154

A Service Unit Project

Overview Each service unit in the service assembly needs to be its own project. These
projects are placed at the same level as the service assembly project. The
contents of a service unit's project depends on the component at which the
service unit is targeted. At a minimum, a service unit project will contain a
POM and an XML configuration file.

Seeding a project using a Maven
artifact

FUSE ESB provides Maven artifacts for a number of service unit types. You
can use them to seed a project with the smx-arch command. As shown in
Example C.3 on page 55, the smx-arch command takes three arguments.
The groupId value and the artifactId values correspond to the project's
group ID and artifact ID.

Example C.3. Maven Archetype Command for Service Units

smx-arch su suArchetypeName ["-DgroupId=my.group.id"]
["-DartifactId=my.artifact.id"]

Important
The double quotes(") are required when using the -DgroupId
argument and the -DartifactId argument.

The suArchetypeName specifies the type of service unit to seed.
Table C.1 on page 55 lists the possible values and describes what type of
project will be seeded.

Table C.1. Service Unit Archetypes

DescriptionName

Creates a project for using the FUSE Mediation Router
service engine.

camel

Creates a project for developing a Java-first service using
the FUSE Services Framework service engine.

cxf-se

Creates a project for developing a WSDL-first service using
the FUSE Services Framework service engine.

cxf-se-wsdl-first

Creates an endpoint project targeted at the FUSE Services
Framework binding component.

cxf-bc

55FUSE™ ESB Using the File Binding Component Version 4.1

DescriptionName

Creates a consumer endpoint project targeted at the HTTP
binding component.

http-consumer

Creates a provider endpoint project targeted at the HTTP
binding component.

http-provider

Creates a consumer endpoint project targeted at the JMS
binding component. See Using the JMS Binding
Component.

jms-consumer

Creates a provider endpoint project targeted at the JMS
binding component. See Using the JMS Binding
Component.

jms-provider

Creates a polling (consumer) endpoint project targeted at
the file binding component. See "Using Poller Endpoints"
on page 15.

file-poller

Creates a sender (provider) endpoint project targeted at
the file binding component. See "Using Sender Endpoints"
on page 31.

file-sender

Creates a polling (consumer) endpoint project targeted at
the FTP binding component.

ftp-poller

Creates a sender (provider) endpoint project targeted at
the FTP binding component.

ftp-sender

Creates a project for developing an annotated Java service
to be run by the JSR181 service engine. a

jsr181-annotated

Creates a project for developing a WSDL generated Java
service to be run by the JSR181 service engine.a

jsr181-wsdl-first

Create a project for executing xquery statements using the
Saxon service engine.

saxon-xquery

Create a project for executing XSLT scripts using the Saxon
service engine.

saxon-xslt

Creates a project for using the EIP service engine. beip

Create a project for deploying functionality into the
lightweight container. c

lwcontainer

Creates a project for deploying a POJO to be executed by
the bean service engine.

bean

FUSE™ ESB Using the File Binding Component Version 4.156

http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/jms/jms.pdf

DescriptionName

Create a project for deploying a BPEL process into the
ODE service engine.

ode

aThe JSR181 has been deprecated. The FUSE Services Framework service engine has superseded
it.
bThe EIP service engine has been deprecated. The FUSE Mediation Router service engine has
superseded it.
cThe lightweight container has been deprecated.

Contents of a project The contents of your service unit project change from service unit to service
unit. Different components require different configuration. Some components,
such as the FUSE Services Framework service engine, require that you include
Java classes.

At a minimum, a service unit project will contain two things:

• a POM file that configures the JBI plug-in to create a service unit

• an XML configuration file stored in src/main/resources

For many of the components the XML configuration file is called xbean.xml.
The FUSE Mediation Router component uses a file called
camel-context.xml.

Configuring the Maven plug-in You configure the Maven plug-in to package the results of the project build
as a service unit by changing the value of the project's packaging element
to jbi-service-unit as shown in Example C.4 on page 57.

Example C.4. Configuring the Maven Plug-in to Build a Service Unit

<project ...>
<modelVersion>4.0.0</modelVersion>

...
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<name>CXF WSDL Fisrt Demo :: SE Service Unit</name>
<packaging>jbi-service-unit</packaging>

57FUSE™ ESB Using the File Binding Component Version 4.1

...
</project>

Specifying the target components In order to properly fill in the metadata required for packaging a service unit,
the Maven plug-in needs to be told what component, or components, the
service unit is targeting. If your service unit only has a single component
dependency, you can specify it in one of two ways:

• list the targeted component as a dependency

• add a componentName property specifying the targeted component

If your service unit has more than one component dependency you need to
configure the project as follows:

1. Add a componentName property specifying the targeted component.

2. Add the remaining components to the list dependencies.

Example C.5 on page 58 shows configuration for a service unit targeting the
FUSE Services Framework binding component.

Example C.5. Specifying the Target Components for a Service Unit

...
<dependencies>
<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-cxf-bc</artifactId>
<version>3.3.1.0-fuse</version>1

</dependency>
>/dependencies>
...

The advantage of using the Maven dependency mechanism is that it allows
Maven to check if the targeted component is deployed in the container. If one
of the components is not deployed, FUSE ESB will not hold off deploying the
service unit until all of the required components are deployed.

1You replace this with the version of FUSE Services Framework you are using.

FUSE™ ESB Using the File Binding Component Version 4.158

Tip
A message identifying the missing component(s) is typically written
to the log.

If your service unit targets is not available as a Maven artifact, you can specify
the targeted component using the componentName element. This element is
added to the standard Maven properties block and specifies the name of a
targeted component. Example C.6 on page 59 shows how to use the
componentName element to specify the target component.

Example C.6. Specifying the Target Components for a Service Unit

...
<properties>
<componentName>servicemix-bean</componentName>

>/properties>
...

When you use the componentName element Maven does not check to see if
the component is installed. Maven also cannot download the required
component.

Example Example C.7 on page 59 shows the POM file for a project building a service
unit targeted to the FUSE Services Framework binding component.

Example C.7. POM for a Service Unit Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent> ❶
<groupId>com.widgets.demo</groupId>
<artifactId>cxf-wsdl-first</artifactId>
<version>1.0</version>

</parent>

<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<name>CXF WSDL Fisrt Demo :: SE Service Unit</name>
<packaging>jbi-service-unit</packaging> ❷

59FUSE™ ESB Using the File Binding Component Version 4.1

<dependencies> ❸
<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-cxf-bc</artifactId>
<version>3.3.1.0-fuse</version>

</dependency>
>/dependencies>

<build>
<plugins>
<plugin> ❹
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

The POM in Example C.7 on page 59 does the following:

❶ Specifies that it is a part of the top-level project described in
Example C.2 on page 52.

❷ Specifies that this project builds a service unit.

❸ Specifies that the service unit targets the FUSE Services Framework
binding component.

❹ Specifies that the FUSE ESB Maven plug-in is to be used.

FUSE™ ESB Using the File Binding Component Version 4.160

A Service Assembly Project

Overview FUSE ESB requires that all service units be bundled into a service assembly
before they can be deployed into a container. The FUSE ESB Maven plug-in
will collect all of the service units to be bundled and the metadata needed
for packaging. It will then build a service assembly containing the service
units.

Seeding a project using a Maven
artifact

FUSE ESB provides a Maven artifact for seeding a service assembly project.
You can seed a project with the smx-arch command. As shown in
Example C.8 on page 61, the smx-arch command takes two arguments. The
groupId value and the artifactId values correspond to the project's group
ID and artifact ID.

Example C.8. Maven Archetype Command for Service Assemblies

smx-arch sa ["-DgroupId=my.group.id"] ["-DartifactId=my.artifact.id"]

Important
The double quotes(") are required when using the -DgroupId
argument and the -DartifactId argument.

Contents of a project A service assembly project typically only contains the POM file used by Maven.

Configuring the Maven plug-in You configure the Maven plug-in to package the results of the project build
as a service assembly by changing the value of the project's packaging
element to jbi-service-assembly as shown in Example C.9 on page 61.

Example C.9. Configuring the Maven Plug-in to Build a Service Assembly

<project ...>
<modelVersion>4.0.0</modelVersion>

...
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxf-wsdl-first-sa</artifactId>
<name>CXF WSDL Fisrt Demo :: Service Assembly</name>
<packaging>jbi-service-assembly</packaging>

61FUSE™ ESB Using the File Binding Component Version 4.1

...
</project>

Specifying the target components The Maven plug-in needs to be told what service units are being bundled into
the service assembly. You do this by specifying the service units as a
dependencies using the standard Maven dependencies element. You add a
dependency child element for each service unit. Example C.10 on page 62
shows configuration for a service assembly that bundles two service units.

Example C.10. Specifying the Target Components for a Service Unit

...
<dependencies>
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfbc-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
</dependencies>
...

Example Example C.11 on page 62 shows the POM file for a project building a service
assembly.

Example C.11. POM for a Service Assembly Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent> ❶
<groupId>com.widgets.demo</groupId>
<artifactId>cxf-wsdl-first</artifactId>
<version>1.0</version>

</parent>

<groupId>com.widgets.demo.cxf-wsdl-first</groupId>

FUSE™ ESB Using the File Binding Component Version 4.162

<artifactId>cxf-wsdl-first-sa</artifactId>
<name>CXF WSDL Fisrt Demo :: Service Assemby</name>
<packaging>jbi-service-assembly</packaging> ❷

<dependencies> ❸
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfbc-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
</dependencies>

<build>
<plugins>
<plugin> ❹
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

The POM in Example C.11 on page 62 does the following:

❶ Specifies that it is a part of the top-level project described in
Example C.2 on page 52.

❷ Specifies that this project builds a service assembly.

❸ Specifies the service units the service assembly bundles.

❹ Specifies that the FUSE ESB Maven plug-in is to be used.

63FUSE™ ESB Using the File Binding Component Version 4.1

FUSE™ ESB Using the File Binding Component Version 4.164

Appendix D. Using the Maven OSGi
Tooling
Manually creating a bundle, or a collection of bundles, for a large project can be cumbersome. The Maven bundle
plug-in makes the job easier by automating the process and providing a number of shortcuts for specifying the
contents of the bundle manifest.

Setting Up a FUSE ESB OSGi Project .. 66
Configuring a Bundle Plug-in .. 71

The FUSE ESB OSGi tooling uses the Maven bundle plug-in1 from Apache
Felix. The bundle plug-in is based on the bnd2 tool from Peter Kriens. It
automates the construction of OSGi bundle manifests by introspecting the
contents of the classes being packaged in the bundle. Using the knowledge
of the classes contained in the bundle, the plug-in can calculate the proper
values to populate the Import-Packages and the Export-Package properties
in the bundle manifest. The plug-in also has default values that are used for
other required properties in the bundle manifest.

To use the bundle plug-in you will need to do the following:

1. Add the bundle plug-in to your project's POM file.

2. Configure the plug-in to correctly populate your bundle's manifest.

1 http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
2 http://www.aqute.biz/Code/Bnd

65FUSE™ ESB Using the File Binding Component Version 4.1

http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd
http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

Setting Up a FUSE ESB OSGi Project

Overview A Maven project for building an OSGi bundle can be a simple single level
project. It does not require any sub-projects. It does, however, require that
you do the following:

1. Add the bundle plug-in to your POM.

2. Instruct Maven to package the results as an OSGi bundle.

Tip
There are several Maven archetypes to set up your project with the
appropriate settings.

Directory structure A project that constructs an OSGi bundle can be a single level project. It only
requires that you have a top-level POM file and a src folder. As in all Maven
projects, you place all Java source code in the src/java folder. You place
any non-Java resources into the src/resources folder.

Non-Java resources include Spring configuration files, JBI endpoint
configuration files, WSDL contracts, etc.

Note
FUSE ESB OSGi projects that use FUSE Services Framework, FUSE
Mediation Router, or another Spring configured bean also include a
beans.xml file located in the src/resources/META-INF/spring
folder.

FUSE™ ESB Using the File Binding Component Version 4.166

Adding a bundle plug-in Before you can use the bundle plug-in you must add a dependency on Apache
Felix. After you add the dependency, you can add the bundle plug-in to the
plug-in portion of the POM.

Example D.1 on page 67 shows the POM entries required to add the bundle
plug-in to your project.

Example D.1. Adding an OSGi Bundle Plug-in to a POM

...
<dependencies>
<dependency> ❶
<groupId>org.apache.felix</groupId>
<artifactId>org.osgi.core</artifactId>
<version>1.0.0</version>

</dependency>
...
</dependencies>
...
<build>
<plugins>
<plugin> ❷
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName> ❸
<Import-Package>*,org.apache.camel.osgi</Import-Package> ❹
<Private-Package>org.apache.servicemix.examples.camel</Private-Package> ❺

</instructions>
</configuration>

</plugin>
</plugins>

</build>
...

67FUSE™ ESB Using the File Binding Component Version 4.1

The entries in Example D.1 on page 67 do the following:

❶ Adds the dependency on Apache Felix.

❷ Adds the bundle plug-in to your project.

❸ Configures the plug-in to use the project's artifact ID as the bundle's
symbolic name.

❹ Configures the plug-in to include all Java packages imported by the
bundled classes and also import the org.apache.camel.osgi package.

❺ Configures the plug-in to bundle the listed class, but not include them
in the list of exported packages.

Note
You should edit the configuration to meet the requirements of your
project.

For more information on configuring the bundle plug-in, see "Configuring a
Bundle Plug-in" on page 71.

Activating a bundle plug-in To instruct Maven to use the bundle plug-in, you instruct it to package the
results of the project as a bundle. You do this by setting the POM file's
packaging element to bundle.

Useful Maven archetypes There are several Maven archetypes to generate a project that is preconfigured
to use the bundle plug-in:

• "Spring OSGi archetype"

• "FUSE Services Framework code-first archetype"

• "FUSE Services Framework wsdl-first archetype"

• "FUSE Mediation Router archetype"

FUSE™ ESB Using the File Binding Component Version 4.168

Spring OSGi archetype The Spring OSGi archetype creates a generic project for building an OSGi
project using Spring DM:

org.springframework.osgi/spring-bundle-osgi-archetype/1.1.2

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.springframework.osgi
-DarchetypeArtifactId=spring-osgi-bundle-archetype
-DarchetypeVersion=1.12
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSE Services Framework
code-first archetype

The FUSE Services Framework code-first archetype creates a project for
building a service from Java:

org.apache.servicemix.tooling/servicemix-osgi-cxf-code-first-archetype/2008.01.0.3-fuse

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=spring-osgi-bundle-archetype
-DarchetypeVersion=2008.01.0.3-fuse
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSE Services Framework
wsdl-first archetype

The FUSE Services Framework wsdl-first archetype creates a project for
creating a service from WSDL:

org.apache.servicemix.tooling/servicemix-osgi-cxf-wsdl-first-archetype/2008.01.0.3-fuse

69FUSE™ ESB Using the File Binding Component Version 4.1

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=servicemix-osgi-cxf-wsdl-first-archetype
-DarchetypeVersion=2008.01.0.3-fuse
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSEMediation Router archetype The FUSE Mediation Router archetype creates a project for building a route
that is deployed into FUSE ESB:

org.apache.servicemix.tooling/servicemix-osgi-camel-archetype/2008.01.0.3-fuse

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=servicemix-osgi-camel-archetype
-DarchetypeVersion=2008.01.0.3-fuse
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSE™ ESB Using the File Binding Component Version 4.170

Configuring a Bundle Plug-in

Overview A bundle plug-in requires very little information to function. All of the required
properties have default settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will
likely want to modify some of the values. You can specify most of the
properties inside the plug-in's instructions element.

Configuration properties Some of the commonly used configuration properties are:

• Bundle-SymbolicName

• Bundle-Name

• Bundle-Version

• Export-Package

• Private-Package

• Import-Package

71FUSE™ ESB Using the File Binding Component Version 4.1

Setting a bundle's symbolic name By default, the bundle plug-in sets the value for the Bundle-SymbolicName
property to groupId+ "." + artifactId, with the following exceptions:

• If groupId has only one section (no dots), the first package name with

classes is returned.

For example, if the groupId is commons-logging:commons-logging, the
bundle's symbolic name is org.apache.commons.logging.

• If artifactId is equal to the last section of groupId, then groupId is

used.

For example, if the POM specifies the group ID and artifact ID as
org.apache.maven:maven, the bundle's symbolic name is
org.apache.maven.

• If artifactId starts with the last section of groupId, that portion is

removed.

For example, if the POM specifies the group ID and artifact ID as
org.apache.maven:maven-core, the bundle's symbolic name is
org.apache.maven.core.

To specify your own value for the bundle's symbolic name, add a
Bundle-SymbolicName child in the plug-in's instructions element, as
shown in Example D.2.

Example D.2. Setting a Bundle's Symbolic Name

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName>
...
</instructions>

</configuration>
</plugin>

FUSE™ ESB Using the File Binding Component Version 4.172

Setting a bundle's name By default, a bundle's name is set to ${pom.name}.

To specify your own value for the bundle's name, add a Bundle-Name child
to the plug-in's instructions element, as shown in Example D.3.

Example D.3. Setting a Bundle's Name

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-Name>JoeFred</Bundle-Name>
...
</instructions>

</configuration>
</plugin>

Setting a bundle's version By default, a bundle's version is set to ${pom.version}. Any dashes (-) are
replaced with dots (.).

To specify your own value for the bundle's version, add a Bundle-Version
child to the plug-in's instructions element, as shown in Example D.4.

Example D.4. Setting a Bundle's Version

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-Version>1.0.3.1</Bundle-Version>
...
</instructions>

</configuration>
</plugin>

73FUSE™ ESB Using the File Binding Component Version 4.1

Specifying exported packages By default, the OSGi manifest's Export-Package list is populated by all of
the packages in your project's class path that match the pattern
Bundle-SymbolicName.*. These packages are also included in the bundle.

Important
If you use a Private-Package element in your plug-in configuration
and do not specify a list of packages to export, the default behavior
is to assume that no packages are exported. Only the packages listed
in the Private-Package element are included in the bundle and
none of them are exported.

The default behavior can result in very large packages as well as exporting
packages that should be kept private. To change the list of exported packages
you can add a Export-Package child to the plug-in's instructions element.

The Export-Package element specifies a list of packages that are to be
included in the bundle and be exported. The package names can be specified
using the * wildcard. For example, the entry com.fuse.demo.*, includes all
packages on the project's classpath that start with com.fuse.demo.

You can specify packages to be excluded be prefixing the entry with !. For
example, the entry, !com.fuse.demo.private, excludes the package
com.fuse.demo.private.

When attempting to exclude packages, the order of entries in the list is
important. The list is processed in order from the start and subsequent
contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except
the package com.fuse.demo.private, list the packages in the following
way:

!com.fuse.demo.private,com.fuse.demo.*

However, if you list the packages as:

com.fuse.demo.*,!com.fuse.demo.private

Then com.fuse.demo.private is included in the bundle because it matches
the first pattern.

FUSE™ ESB Using the File Binding Component Version 4.174

Specifying private packages By default, all packages included in a bundle are exported. You can include
packages in the bundle without exporting them. To specify a list of packages
to be included in a bundle, but not exported, add a Private-Package child
to the plug-in's instructions element.

The Private-Package element works similarly to the Export-Package
element. You specify a list of packages to be included in the bundle. The
bundle plug-in uses the list to find all classes on the project's classpath to be
included in the bundle. These packages are packaged in the bundle, but not
exported.

Important
If a package matches an entry in both the Private-Package element
and the Export-Package element, the Export-Package element
takes precedent. The package is added to the bundle and exported.

Example D.5 shows the configuration for including a private package in a
bundle

Example D.5. Including a Private Package in a Bundle

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>
...
</instructions>

</configuration>
</plugin>

75FUSE™ ESB Using the File Binding Component Version 4.1

Specifying imported packages By default, the bundle plug-in populates the OSGi manifest's Import-Package
property with a list of all the packages referred to by the contents of the bundle
and not included in the bundle.

While the default behavior is typically sufficient for most projects, you might
find instances where you want to import packages that are not automatically
added to the list. The default behavior can also result in unwanted packages
being imported.

To specify a list of packages to be imported by the bundle, add a
Import-Package child to the plug-in's instructions element. The syntax
for the package list is the same as for both the Export-Package and
Private-Package elements.

Important
When you use the Import-Package element, the plug-in does not
automatically scan the bundle's contents to determine if there are
any required imports. To ensure that the contents of the bundle are
scanned, you must place * as the last entry in the package list.

FUSE™ ESB Using the File Binding Component Version 4.176

Example D.6 shows the configuration for including a private package in a
bundle

Example D.6. Specifying the Packages Imported by a Bundle

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Import-Package>javax.jws,

javax.wsdl,
org.apache.cxf.bus,
org.apache.cxf.bus.spring,
org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring,
org.apache.cxf.resource,
org.springframework.beans.factory.config,
*

</Import-Package>
...

</instructions>
</configuration>

</plugin>

More information For more information on configuring a bundle plug-in, see:

• Apache Felix documentation3

• Peter Kriens' aQute Software Consultancy web site4

3 http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
4 http://www.aqute.biz/Code/Bnd

77FUSE™ ESB Using the File Binding Component Version 4.1

http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd
http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

FUSE™ ESB Using the File Binding Component Version 4.178

Index
B
binary files, 39
BinaryFileMarshaler, 39

attachment, 39
contentType, 40

Bundle-Name, 73
Bundle-SymbolicName, 72
Bundle-Version, 73
bundles

exporting packages, 74
importing packages, 76
name, 73
private packages, 75
symbolic name, 72
version, 73

C
componentName, 58

E
Export-Package, 74

F
file name, 34
FileFilter, 29

accept(), 29
implementing, 29

FileMarshaler, 40
getOutputName(), 41
readMessage(), 41
writeMessage(), 42

filter, 30
flat files, 40

G
getOutoutName(), 41

I
Import-Package, 76

J
jbi.xml, 12

L
LockManager, 26

getLock(), 26
implementing, 26

lockManager, 27

M
marshaler, 43
marshaling

binary files, 39
flat files, 40

Maven archetypes, 68
Maven tooling

adding the bundle plug-in, 67
set up, 50

N
namespace, 13

P
poller, 17

archive, 22
autoCreateDirectory, 21
delay, 24
deleteFile, 22
endpoint, 18
file, 18
filter, 30
firstTime, 24
lockManager, 27
marshaler, 43
period, 25
recursive, 21
service, 18
targetEndpoint, 19

79FUSE™ ESB Using the File Binding Component Version 4.1

targetInterface, 19
targetService, 19

poller endpoint, 11
Private-Package, 75

R
readMessage(), 41

S
sender, 32

append, 36
autoCreateDirectory, 36
directory, 34
endpoint, 34
marshaler, 43
service, 34
tempFilePrefix, 37
tempFileSuffix, 37

sender endpoint, 11
service assembly

seeding, 61
specifying the service units, 62

service unit
seeding, 55
specifying the target component, 58

SimpleFlatFileMarshaler, 40
docElementname, 40
insertLineNumbers, 40
lineElementname , 40

smx-arch, 55, 61

W
writeMessage(), 42

X
xbean.xml, 12

FUSE™ ESB Using the File Binding Component Version 4.180

	Using the File Binding Component
	Table of Contents
	Chapter 1. Introduction to the File Binding Component
	Chapter 2. Using Poller Endpoints
	Introduction to Poller Endpoints
	Basic Configuration
	Configuring How Poller Endpoints Interact with the File System
	Configuring the Polling Interval
	File Locking
	File Filtering

	Chapter 3. Using Sender Endpoints
	Introduction to Sender Endpoints
	Basic Configuration
	Configuring How Sender Endpoints Interact with the File System

	Chapter 4. File Marshalers
	Appendix A. Poller Endpoint Properties
	Appendix B. Sender Endpoint Properties
	Appendix C. Using the Maven JBI Tooling
	Setting Up a FUSE ESB JBI Project
	A Service Unit Project
	A Service Assembly Project

	Appendix D. Using the Maven OSGi Tooling
	Setting Up a FUSE ESB OSGi Project
	Configuring a Bundle Plug-in

	Index

