
FUSE™ ESB

Using the FUSE™ Services Framework Binding
Component

[DRAFT]

Version 4.1
April 2009

Using the FUSE™ Services Framework Binding Component
Version 4.1

Publication date 22 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
1. Introduction to the FUSE Services Framework Binding Component ... 13
I. Defining an Endpoint in WSDL .. 15

2. Introducing WSDL Contracts .. 17
WSDL Elements .. 18
Structure of a WSDL Document ... 19
Designing a contract ... 20

3. Defining Logical Data Units ... 21
Mapping Data into Logical Data Units ... 22
Adding Data Units to a Contract .. 24
XML Schema Simple Types .. 26
Defining Complex Data Types .. 29

Defining Data Structures .. 30
Defining Arrays ... 34
Defining Types by Extension ... 36
Defining Types by Restriction .. 37
Defining Enumerated Types .. 39

Defining Elements .. 40
4. Defining Logical Messages Used by a Service ... 41
5. Defining Your Logical Interfaces .. 45
6. Using HTTP ... 49

Adding a Basic HTTP Endpoint ... 50
Consumer Configuration .. 52
Provider Configuration ... 57
Using the HTTP Transport in Decoupled Mode .. 60

7. Using JMS ... 65
Basic Configuration .. 66
Using a Named Reply Destination .. 69
JMS Consumer Configuration .. 70
JMS Provider Configuration .. 71

II. Configuring and Packaging Endpoints .. 73
8. Introduction to the FUSE Services Framework Binding Component 75
9. Consumer Endpoints .. 79
10. Provider Endpoints ... 87
11. Using MTOM to Process Binary Content .. 93
12. Working with the JBI Wrapper .. 95
13. Using Message Interceptors ... 97

III. Configuring the CXF Transport Runtimes .. 101
14. Configuring the Endpoints to Load FUSE Services Framework Runtime Configuration 103
15. JMS Runtime Configuration .. 105

JMS Session Pool Configuration ... 106
Consumer Specific Runtime Configuration .. 107

3FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Provider Specific Runtime Configuration ... 108
16. Configuring the Jetty Runtime ... 109
17. Deploying WS-Addressing .. 113

Introduction to WS-Addressing .. 114
WS-Addressing Interceptors .. 115
Enabling WS-Addressing .. 116
Configuring WS-Addressing Attributes ... 118

18. Enabling Reliable Messaging .. 121
Introduction to WS-RM .. 122
WS-RM Interceptors ... 124
Enabling WS-RM ... 126
Configuring WS-RM .. 130

Configuring FUSE Services Framework-Specific WS-RM Attributes 131
Configuring Standard WS-RM Policy Attributes .. 133
WS-RM Configuration Use Cases ... 137

Configuring WS-RM Persistence ... 141
A. Consumer Endpoint Properties .. 143
B. Provider Endpoint Properties .. 145
C. Using the Maven JBI Tooling .. 147

Setting Up a FUSE ESB JBI Project .. 148
A Service Unit Project ... 153
A Service Assembly Project ... 159

D. Using the Maven OSGi Tooling .. 163
Setting Up a FUSE ESB OSGi Project .. 164
Configuring a Bundle Plug-in ... 169

Index .. 177

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.14

List of Figures
6.1. Message Flow in for a Decoupled HTTP Transport 63
9.1. Consumer Endpoint ... 80
10.1. Provider Endpoint .. 87
18.1. Web Services Reliable Messaging 122

5FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.16

List of Tables
3.1. Complex Type Descriptor Elements .. 31
4.1. Part Data Type Attributes .. 43
5.1. Operation Message Elements ... 46
5.2. Attributes of the Input and Output Elements 47
6.1. HTTP Consumer Configuration Attributes 52
6.2. http-conf:client Cache Control Directives 55

6.3. HTTP Service Provider Configuration Attributes 57
6.4. http-conf:server Cache Control Directives 58

7.1. JMS Endpoint Attributes ... 66
7.2. JMS Client WSDL Extensions ... 70
7.3. JMS Provider Endpoint WSDL Extensions 71
13.1. Elements Used to Configure an Endpoint's Interceptor
Chain ... 98
15.1. Attributes for Configuring the JMS Session Pool 106
16.1. Elements for Configuring a Jetty Runtime Factory 110
16.2. Elements for Configuring a Jetty Runtime Instance 111
16.3. Attributes for Configuring a Jetty Thread Pool 111
17.1. WS-Addressing Interceptors ... 115
17.2. WS-Addressing Attributes .. 118
18.1. FUSE Services Framework WS-ReliableMessaging
Interceptors .. 124
18.2. Children of the rmManager Spring Bean 131
18.3. Children of the WS-Policy RMAssertion Element 133
18.4. JDBC Store Properties .. 142
A.1. Consumer Endpoint Attributes .. 143
B.1. Provider Endpoint Attributes ... 145
C.1. Service Unit Archetypes .. 153

7FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.18

List of Examples
3.1. Schema Entry for a WSDL Contract 24
3.2. Defining an Element with a Simple Type 26
3.3. Simple Structure ... 30
3.4. A Complex Type .. 30
3.5. Simple Complex Choice Type ... 31
3.6. Simple Complex Type with Occurrence Constraints 32
3.7. Simple Complex Type with minOccurs Set to Zero 32

3.8. Complex Type with an Attribute .. 33
3.9. Complex Type Array ... 34
3.10. Syntax for a SOAP Array derived using wsdl:arrayType 34

3.11. Definition of a SOAP Array ... 35
3.12. Syntax for a SOAP Array derived using an Element 35
3.13. Type Defined by Extension ... 36
3.14. int as Base Type .. 37
3.15. SSN Simple Type Description ... 38
3.16. Syntax for an Enumeration ... 39
3.17. widgetSize Enumeration .. 39
4.1. Reused Part ... 43
4.2. personalInfo lookup Method ... 44
4.3. RPC WSDL Message Definitions ... 44
4.4. Wrapped Document WSDL Message Definitions 44
5.1. personalInfo lookup interface ... 47
5.2. personalInfo lookup port type ... 47
6.1. SOAP 1.1 Port Element .. 50
6.2. SOAP 1.2 Port Element .. 51
6.3. HTTP Port Element .. 51
6.4. HTTP Consumer WSDL Element's Namespace 52
6.5. WSDL to Configure an HTTP Consumer Endpoint 56
6.6. HTTP Provider WSDL Element's Namespace 57
6.7. WSDL to Configure an HTTP Service Provider Endpoint 59
6.8. Activating WS-Addressing using WSDL 61
6.9. Activating WS-Addressing using a Policy 61
6.10. Configuring a Consumer to Use a Decoupled HTTP
Endpoint ... 62
7.1. JMS Extension Namespace .. 66
7.2. JMS WSDL Port Specification ... 68
7.3. JMS Consumer Specification Using a Named Reply Queue 69
7.4. WSDL for a JMS Consumer Endpoint 70
7.5. WSDL for a JMS Provider Endpoint .. 71

9FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

8.1. JBI Descriptor for a FUSE Services Framework Binding Component
Service Unit ... 75
8.2. Namespace Declaration for Using FUSE Services Framework
Binding Component Endpoints .. 76
8.3. Schema Location for Using FUSE Services Framework Binding
Component Endpoints .. 76
9.1. Minimal Consumer Endpoint Configuration 82
9.2. WSDL with Two Services .. 82
9.3. Consumer Endpoint with a Defined Service Name 83
9.4. Service with Two Endpoints ... 83
9.5. Consumer Endpoint with a Defined Endpoint Name 84
9.6. Consumer Endpoint Configuration Specifying a Target
Endpoint ... 84
10.1. Minimal Provider Endpoint Configuration 89
10.2. WSDL with Two Services ... 90
10.3. Provider Endpoint with a Defined Service Name 90
10.4. Service with Two Endpoints ... 91
10.5. Provider Endpoint with a Defined Endpoint Name 91
11.1. Configuring an Endpoint to Use MTOM 93
12.1. Configuring a Consumer to Not Use the JBI Wrapper 95
13.1. Configuring an Interceptor Chain ... 98
14.1. Provider Endpoint that Loads FUSE Services Framework Runtime
Configuration .. 103
15.1. JMS Session Pool Configuration .. 106
15.2. JMS Consumer Endpoint Runtime Configuration 107
15.3. Provider Endpoint Runtime Configuration 108
16.1. Jetty Runtime Configuration Namespace 109
16.2. Configuring a Jetty Instance ... 112
17.1. client.xml—Adding WS-Addressing Feature to Client
Configuration .. 116
17.2. server.xml—Adding WS-Addressing Feature to Server
Configuration .. 116
17.3. Using the Policies to Configure WS-Addressing 118
18.1. Enabling WS-RM Using Spring Beans 126
18.2. Configuring WS-RM using WS-Policy 128
18.3. Adding an RM Policy to Your WSDL File 129
18.4. Configuring FUSE Services Framework-Specific WS-RM
Attributes .. 131
18.5. Configuring WS-RM Attributes Using an RMAssertion in an
rmManager Spring Bean .. 134
18.6. Configuring WS-RM Attributes as a Policy within a Feature 135
18.7. Configuring WS-RM in an External Attachment 136
18.8. Setting the WS-RM Base Retransmission Interval 137
18.9. Setting the WS-RM Exponential Backoff Property 138

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.110

18.10. Setting the WS-RM Acknowledgement Interval 139
18.11. Setting the WS-RM Maximum Unacknowledged Message
Threshold .. 139
18.12. Setting the Maximum Length of a WS-RM Message
Sequence .. 139
18.13. Setting the WS-RM Message Delivery Assurance Policy 140
18.14. Configuration for the Default WS-RM Persistence Store 142
18.15. Configuring the JDBC Store for WS-RM Persistence 142
C.1. POM Elements for Using FUSE ESB Tooling 148
C.2. Top-Level POM for a FUSE ESB JBI Project 150
C.3. Maven Archetype Command for Service Units 153
C.4. Configuring the Maven Plug-in to Build a Service Unit 155
C.5. Specifying the Target Components for a Service Unit 156
C.6. Specifying the Target Components for a Service Unit 157
C.7. POM for a Service Unit Project ... 157
C.8. Maven Archetype Command for Service Assemblies 159
C.9. Configuring the Maven Plug-in to Build a Service Assembly 159
C.10. Specifying the Target Components for a Service Unit 160
C.11. POM for a Service Assembly Project 160
D.1. Adding an OSGi Bundle Plug-in to a POM 165
D.2. Setting a Bundle's Symbolic Name 170
D.3. Setting a Bundle's Name ... 171
D.4. Setting a Bundle's Version ... 171
D.5. Including a Private Package in a Bundle 173
D.6. Specifying the Packages Imported by a Bundle 175

11FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.112

Chapter 1. Introduction to the FUSE
Services Framework Binding Component
The FUSE Services Framework binding component allows you to create SOAP/HTTP and SOAP/JMS endpoints.

Overview The FUSE Services Framework binding component provides connectivity to
external endpoints using either SOAP/HTTP or SOAP/JMS. The endpoints are
defined using WSDl files that contain FUSE Services Framework specific
extensions for defining the transport. In addition, you can add FUSE Services
Framework-based Spring configuration to use the advanced features.

It allows for the creation of two types of endpoint:

consumer endpoint

A consumer endpoint listens for messages on a specified address. When
it receives a message it sends it to the NMR for delivery to the appropriate
endpoint. If the message is part of a two-way exchange, then the
consumer endpoint is also responsible for returning the response to the
external endpoint.

For information about configuring consumer endpoints see "Consumer
Endpoints" on page 79.

provider endpoint

A provider endpoint receives messages from the NMR. It then packages
the message as a SOAP message and sends it to the specified external
address. If the message is part of a two-way message exchange, the
provider endpoint waits for the response from the external endpoint. The
provider endpoint will then direct the response back to the NMR.

For information about configuring provider endpoints see "Provider
Endpoints" on page 87.

Key features The FUSE Services Framework binding component has the following features:

• HTTP support

• JMS 1.1 support

13FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

• SOAP 1.1 support

• SOAP 1.2 support

• MTOM support

• Support for all MEPs as consumers or providers

• SSL support

• WS-Security support

• WS-Policy support

• WS-RM support

• WS-Addressing support

Steps for working with the FUSE
Services Framework binding
component

Using the FUSE Services Framework binding component to expose SOAP
endpoints usually involves the following steps:

1. Defining the contract for your endpoint in WSDL.

See Part I: on page 15.

2. Configuring the endpoint and packaging it into a service unit.

See Part II: on page 73.

3. Bundling the service unit into a service assembly for deployment into the
FUSE ESB container.

More information For more information about using FUSE Services Framework to create SOAP
endpoints see the FUSE Services Framework library.1.

1 http://fusesource.com/documentation/fuse-service-framework-documentation

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.114

Chapter 1. Introduction to the FUSE Services
Framework Binding Component

http://fusesource.com/documentation/fuse-service-framework-documentation
http://fusesource.com/documentation/fuse-service-framework-documentation

Part I. Defining an Endpoint in WSDL
Endpoints are defined in WSDL 1.1 documents. The WSDL contract specifies the messages, operations, and
the interfaces exposed by the endpoint. It also defines the transport used by the endpoint.

2. Introducing WSDL Contracts .. 17
WSDL Elements .. 18
Structure of a WSDL Document ... 19
Designing a contract ... 20

3. Defining Logical Data Units ... 21
Mapping Data into Logical Data Units ... 22
Adding Data Units to a Contract .. 24
XML Schema Simple Types .. 26
Defining Complex Data Types .. 29

Defining Data Structures .. 30
Defining Arrays ... 34
Defining Types by Extension ... 36
Defining Types by Restriction .. 37
Defining Enumerated Types .. 39

Defining Elements .. 40
4. Defining Logical Messages Used by a Service ... 41
5. Defining Your Logical Interfaces .. 45
6. Using HTTP ... 49

Adding a Basic HTTP Endpoint ... 50
Consumer Configuration .. 52
Provider Configuration ... 57
Using the HTTP Transport in Decoupled Mode .. 60

7. Using JMS ... 65
Basic Configuration .. 66
Using a Named Reply Destination .. 69
JMS Consumer Configuration .. 70
JMS Provider Configuration .. 71

Chapter 2. Introducing WSDL Contracts
WSDL documents define services using Web Service Description Language and a number of possible extensions.
The documents have a logical part and a concrete part. The abstract part of the contract defines the service in
terms of implementation neutral data types and messages. The concrete part of the document defines how an
endpoint implementing a service will interact with the outside world.

WSDL Elements .. 18
Structure of a WSDL Document ... 19
Designing a contract ... 20

The recommended approach to design services is to define your services in
WSDL and XML Schema before writing any code. When hand-editing WSDL
documents you must make sure that the document is valid, as well as correct.
To do this you must have some familiarity with WSDL. You can find the
standard on the W3C web site, www.w3.org1.

1 http://www.w3.org/TR/wsdl

17FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

WSDL Elements
A WSDL document is made up of the following elements:

• definitions — The root element of a WSDL document. The attributes
of this element specify the name of the WSDL document, the document’s
target namespace, and the shorthand definitions for the namespaces
referenced in the WSDL document.

• types — The XML Schema definitions for the data units that form the
building blocks of the messages used by a service. For information about
defining data types see "Defining Logical Data Units" on page 21.

• message — The description of the messages exchanged during invocation
of a services operations. These elements define the arguments of the
operations making up your service. For information on defining messages
see "Defining Logical Messages Used by a Service" on page 41.

• portType — A collection of operation elements describing the logical
interface of a service. For information about defining port types see "Defining
Your Logical Interfaces" on page 45.

• operation — The description of an action performed by a service.
Operations are defined by the messages passed between two endpoints
when the operation is invoked. For information on defining operations see
"Operations" on page 46.

• binding — The concrete data format specification for an endpoint. A
binding element defines how the abstract messages are mapped into the
concrete data format used by an endpoint. This element is where specifics
such as parameter order and return values are specified.

• service — A collection of related port elements. These elements are
repositories for organizing endpoint definitions.

• port — The endpoint defined by a binding and a physical address. These
elements bring all of the abstract definitions together, combined with the
definition of transport details, and they define the physical endpoint on
which a service is exposed.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.118

Chapter 2. Introducing WSDL Contracts

Structure of a WSDL Document
A WSDL document is, at its simplest, a collection of elements contained
within a root definition element. These elements describe a service and
how an endpoint implementing that service is accessed.

A WSDL document has two distinct parts:

• An abstract part that defines the service in implementation neutral terms

• A concrete part that defines how an endpoint implementing the service is
exposed on a network

The logical part The logical part of a WSDL document contains the types, the message, and
the portType elements. It describes the service’s interface and the messages
exchanged by the service. Within the types element, XML Schema is used
to define the structure of the data that makes up the messages. A number of
message elements are used to define the structure of the messages used by
the service. The portType element contains one or more operation elements
that define the messages sent by the operations exposed by the service.

The concrete part The concrete part of a WSDL document contains the binding and the
service elements. It describes how an endpoint that implements the service
connects to the outside world. The binding elements describe how the data
units described by the message elements are mapped into a concrete,
on-the-wire data format, such as SOAP. The service elements contain one
or more port elements which define the endpoints implementing the service.

19FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Structure of a WSDL Document

Designing a contract
To design a WSDL contract for your services you must perform the following
steps:

1. Define the data types used by your services.

2. Define the messages used by your services.

3. Define the interfaces for your services.

4. Define the bindings between the messages used by each interface and the
concrete representation of the data on the wire.

5. Define the transport details for each of the services.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.120

Chapter 2. Introducing WSDL Contracts

Chapter 3. Defining Logical Data Units
When describing a service in a WSDL contract complex data types are defined as logical units using XML Schema.

Mapping Data into Logical Data Units ... 22
Adding Data Units to a Contract .. 24
XML Schema Simple Types .. 26
Defining Complex Data Types .. 29

Defining Data Structures .. 30
Defining Arrays ... 34
Defining Types by Extension ... 36
Defining Types by Restriction .. 37
Defining Enumerated Types .. 39

Defining Elements .. 40

When defining a service, the first thing you must consider is how the data
used as parameters for the exposed operations is going to be represented.
Unlike applications that are written in a programming language that uses
fixed data structures, services must define their data in logical units that can
be consumed by any number of applications. This involves two steps:

1. Breaking the data into logical units that can be mapped into the data
types used by the physical implementations of the service

2. Combining the logical units into messages that are passed between
endpoints to carry out the operations

This chapter discusses the first step. "Defining Logical Messages Used by a
Service" on page 41 discusses the second step.

21FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Mapping Data into Logical Data Units
The interfaces used to implement a service define the data representing
operation parameters as XML documents. If you are defining an interface for
a service that is already implemented, you must translate the data types of
the implemented operations into discreet XML elements that can be assembled
into messages. If you are starting from scratch, you must determine the
building blocks from which your messages are built, so that they make sense
from an implementation standpoint.

Available type systems for
defining service data units

According to the WSDL specification, you can use any type system you choose
to define data types in a WSDL contract. However, the W3C specification
states that XML Schema is the preferred canonical type system for a WSDL
document. Therefore, XML Schema is the intrinsic type system in FUSE
Services Framework.

XML Schema as a type system XML Schema is used to define how an XML document is structured. This is
done by defining the elements that make up the document. These elements
can use native XML Schema types, like xsd:int, or they can use types that
are defined by the user. User defined types are either built up using
combinations of XML elements or they are defined by restricting existing types.
By combining type definitions and element definitions you can create intricate
XML documents that can contain complex data.

When used in WSDL XML Schema defines the structure of the XML document
that holds the data used to interact with a service. When defining the data
units used by your service, you can define them as types that specify the
structure of the message parts. You can also define your data units as elements
that make up the message parts.

Considerations for creating your
data units

You might consider simply creating logical data units that map directly to the
types you envision using when implementing the service. While this approach
works, and closely follows the model of building RPC-style applications, it is
not necessarily ideal for building a piece of a service-oriented architecture.

The Web Services Interoperability Organization’s WS-I basic profile provides
a number of guidelines for defining data units and can be accessed at http://
www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES. In
addition, the W3C also provides the following guidelines for using XML Schema
to represent data types in WSDL documents:

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.122

Chapter 3. Defining Logical Data Units

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

23FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Mapping Data into Logical Data Units

Adding Data Units to a Contract
Depending on how you choose to create your WSDL contract, creating new
data definitions requires varying amounts of knowledge. The FUSE Services
Framework GUI tools provide a number of aids for describing data types using
XML Schema. Other XML editors offer different levels of assistance. Regardless
of the editor you choose, it is a good idea to have some knowledge about
what the resulting contract should look like.

Procedure Defining the data used in a WSDL contract involves the following steps:

1. Determine all the data units used in the interface described by the
contract.

2. Create a types element in your contract.

3. Create a schema element, shown in Example 3.1 on page 24, as a child

of the type element.

The targetNamespace attribute specifies the namespace under which
new data types are defined. The remaining entries should not be changed.

Example 3.1. Schema Entry for a WSDL Contract

<schema targetNamespace="http://schemas.iona.com/bank.idl"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

4. For each complex type that is a collection of elements, define the data
type using a complexType element. See "Defining Data Structures"

on page 30.

5. For each array, define the data type using a complexType element. See

"Defining Arrays" on page 34.

6. For each complex type that is derived from a simple type, define the data
type using a simpleType element. See "Defining Types by Restriction"

on page 37.

7. For each enumerated type, define the data type using a simpleType

element. See "Defining Enumerated Types" on page 39.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.124

Chapter 3. Defining Logical Data Units

8. For each element, define it using an element element. See "Defining

Elements" on page 40.

25FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Adding Data Units to a Contract

XML Schema Simple Types
If a message part is going to be of a simple type it is not necessary to create
a type definition for it. However, the complex types used by the interfaces
defined in the contract are defined using simple types.

Entering simple types XML Schema simple types are mainly placed in the element elements used
in the types section of your contract. They are also used in the base attribute
of restriction elements and extension elements.

Simple types are always entered using the xsd prefix. For example, to specify
that an element is of type int, you would enter xsd:int in its type attribute
as shown in Example 3.2 on page 26.

Example 3.2. Defining an Element with a Simple Type

<element name="simpleInt" type="xsd:int" />

Supported XSD simple types FUSE Services Framework supports the following XML Schema simple types:

• xsd:string

• xsd:normalizedString

• xsd:int

• xsd:unsignedInt

• xsd:long

• xsd:unsignedLong

• xsd:short

• xsd:unsignedShort

• xsd:float

• xsd:double

• xsd:boolean

• xsd:byte

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.126

Chapter 3. Defining Logical Data Units

• xsd:unsignedByte

• xsd:integer

• xsd:positiveInteger

• xsd:negativeInteger

• xsd:nonPositiveInteger

• xsd:nonNegativeInteger

• xsd:decimal

• xsd:dateTime

• xsd:time

• xsd:date

• xsd:QName

• xsd:base64Binary

• xsd:hexBinary

• xsd:ID

• xsd:token

• xsd:language

• xsd:Name

• xsd:NCName

• xsd:NMTOKEN

• xsd:anySimpleType

• xsd:anyURI

• xsd:gYear

• xsd:gMonth

• xsd:gDay

27FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

XML Schema Simple Types

• xsd:gYearMonth

• xsd:gMonthDay

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.128

Chapter 3. Defining Logical Data Units

Defining Complex Data Types
Defining Data Structures .. 30
Defining Arrays ... 34
Defining Types by Extension ... 36
Defining Types by Restriction .. 37
Defining Enumerated Types .. 39

XML Schema provides a flexible and powerful mechanism for building complex
data structures from its simple data types. You can create data structures by
creating a sequence of elements and attributes. You can also extend your
defined types to create even more complex types.

In addition to building complex data structures, you can also describe
specialized types such as enumerated types, data types that have a specific
range of values, or data types that need to follow certain patterns by either
extending or restricting the primitive types.

29FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Defining Complex Data Types

Defining Data Structures
In XML Schema, data units that are a collection of data fields are defined
using complexType elements. Specifying a complex type requires three pieces
of information:

1. The name of the defined type is specified in the name attribute of the

complexType element.

2. The first child element of the complexType describes the behavior of the

structure’s fields when it is put on the wire. See "Complex type varieties"
on page 30.

3. Each of the fields of the defined structure are defined in element elements

that are grandchildren of the complexType element. See "Defining the

parts of a structure" on page 31.

For example, the structure shown in Example 3.3 on page 30 is be defined
in XML Schema as a complex type with two elements.

Example 3.3. Simple Structure

struct personalInfo
{
string name;
int age;

};

Example 3.4 on page 30 shows one possible XML Schema mapping for the
structure shown in Example 3.3 on page 30.

Example 3.4. A Complex Type

<complexType name="personalInfo">
<sequence>
<element name="name" type="xsd:string" />
<element name="age" type="xsd:int" />

</sequence>
</complexType>

Complex type varieties XML Schema has three ways of describing how the fields of a complex type
are organized when represented as an XML document and passed on the
wire. The first child element of the complexType element determines which

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.130

Chapter 3. Defining Logical Data Units

variety of complex type is being used. Table 3.1 on page 31 shows the
elements used to define complex type behavior.

Table 3.1. Complex Type Descriptor Elements

Complex Type BehaviorElement

All the complex type’s fields must be present and they must
be in the exact order they are specified in the type definition.

sequence

All of the complex type’s fields must be present but they can
be in any order.

all

Only one of the elements in the structure can be placed in the
message.

choice

If a sequence element, an all element, or a choice is not specified, then
a sequence is assumed. For example, the structure defined in
Example 3.4 on page 30 generates a message containing two elements:
name and age.

If the structure is defined using a choice element, as shown in
Example 3.5 on page 31, it generates a message with either a name element
or an age element.

Example 3.5. Simple Complex Choice Type

<complexType name="personalInfo">
<choice>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int"/>

</choice>
</complexType>

Defining the parts of a structure You define the data fields that make up a structure using element elements.
Every complexType element should contain at least one element element.
Each element element in the complexType element represents a field in the
defined data structure.

To fully describe a field in a data structure, element elements have two
required attributes:

• The name attribute specifies the name of the data field and it must be
unique within the defined complex type.

31FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Defining Data Structures

• The type attribute specifies the type of the data stored in the field. The
type can be either one of the XML Schema simple types, or any named
complex type that is defined in the contract.

In addition to name and type, element elements have two other commonly
used optional attributes: minOcurrs and maxOccurs. These attributes place
bounds on the number of times the field occurs in the structure. By default,
each field occurs only once in a complex type. Using these attributes, you
can change how many times a field must or can appear in a structure. For
example, you can define a field, previousJobs, that must occur at least
three times, and no more than seven times, as shown in
Example 3.6 on page 32.

Example 3.6. Simple Complex Type with Occurrence Constraints

<complexType name="personalInfo>
<all>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int"/>
<element name="previousJobs" type="xsd:string:

minOccurs="3" maxOccurs="7"/>
</all>

</complexType>

You can also use the minOccurs to make the age field optional by setting
the minOccurs to zero as shown in Example 3.7 on page 32. In this case
age can be omitted and the data will still be valid.

Example 3.7. Simple Complex Type with minOccurs Set to Zero

<complexType name="personalInfo>
<choice>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int" minOccurs="0"/>

</choice>
</complexType>

Defining attributes In XML documents attributes are contained in the element’s tag. For example,
in the complexType element name is an attribute. They are specified using
the attribute element. It comes after the all, sequence, or choice element
and are a direct child of the complexType element. Example 3.8 on page 33
shows a complex type with an attribute.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.132

Chapter 3. Defining Logical Data Units

Example 3.8. Complex Type with an Attribute

<complexType name="personalInfo>
<all>
<element name="name" type="xsd:string"/>
<element name="previousJobs" type="xsd:string"

minOccurs="3" maxOccurs="7"/>
</all>
<attribute name="age" type="xsd:int" use="optional" />

</complexType>

The attribute element has three attributes:

• name — A required attribute that specifies the string identifying the attribute.

• type — Specifies the type of the data stored in the field. The type can be
one of the XML Schema simple types.

• use — Specifies if the attribute is required or optional. Valid values are
required or optional.

If you specify that the attribute is optional you can add the optional attribute
default. The default attribute allows you to specify a default value for the
attribute.

33FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Defining Data Structures

Defining Arrays
FUSE Services Framework supports two methods for defining arrays in a
contract. The first is define a complex type with a single element whose
maxOccurs attribute has a value greater than one. The second is to use SOAP
arrays. SOAP arrays provide added functionality such as the ability to easily
define multi-dimensional arrays and to transmit sparsely populated arrays.

Complex type arrays Complex type arrays are a special case of a sequence complex type. You
simply define a complex type with a single element and specify a value for
the maxOccurs attribute. For example, to define an array of twenty floating
point numbers you use a complex type similar to the one shown in
Example 3.9 on page 34.

Example 3.9. Complex Type Array

<complexType name="personalInfo>
<element name="averages" type="xsd:float" maxOccurs="20"/>

</complexType>

You can also specify a value for the minOccurs attribute.

SOAP arrays SOAP arrays are defined by deriving from the SOAP-ENC:Array base type
using the wsdl:arrayType element. The syntax for this is shown in
Example 3.10 on page 34.

Example 3.10. Syntax for a SOAP Array derived using wsdl:arrayType

<complexType name="TypeName">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="ElementType<ArrayBounds>"/>
</restriction>

</complexContent>
</complexType>

Using this syntax, TypeName specifies the name of the newly-defined array
type. ElementType specifies the type of the elements in the array.
ArrayBounds specifies the number of dimensions in the array. To specify a
single dimension array use []; to specify a two-dimensional array use either
[][] or [,].

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.134

Chapter 3. Defining Logical Data Units

For example, the SOAP Array, SOAPStrings, shown in
Example 3.11 on page 35, defines a one-dimensional array of strings. The
wsdl:arrayType attribute specifies the type of the array elements, xsd:string,
and the number of dimensions, with [] implying one dimension.

Example 3.11. Definition of a SOAP Array

<complexType name="SOAPStrings">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="xsd:string[]"/>
</restriction>

</complexContent>
</complexType>

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in
Example 3.12 on page 35.

Example 3.12. Syntax for a SOAP Array derived using an Element

<complexType name="TypeName">
<complexContent>
<restriction base="SOAP-ENC:Array">
<sequence>
<element name="ElementName" type="ElementType"

maxOccurs="unbounded"/>
</sequence>

</restriction>
</complexContent>

</complexType>

When using this syntax, the element's maxOccurs attribute must always be
set to unbounded.

35FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Defining Arrays

Defining Types by Extension
Like most major coding languages, XML Schema allows you to create data
types that inherit some of their elements from other data types. This is called
defining a type by extension. For example, you could create a new type called
alienInfo, that extends the personalInfo structure defined in
Example 3.4 on page 30 by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of the complexType

element.

2. The complexContent element specifies that the new type will have more

than one element.

Note
If you are only adding new attributes to the complex type, you
can use a simpleContent element.

3. The type from which the new type is derived, called the base type, is
specified in the base attribute of the extension element.

4. The new type’s elements and attributes are defined in the extension

element, the same as they are for a regular complex type.

For example, alienInfo is defined as shown in Example 3.13 on page 36.

Example 3.13. Type Defined by Extension

<complexType name="alienInfo">
<complexContent>
<extension base="personalInfo">
<sequence>
<element name="planet" type="xsd:string"/>

</sequence>
</extension>

</complexContent>
</complexType>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.136

Chapter 3. Defining Logical Data Units

Defining Types by Restriction
XML Schema allows you to create new types by restricting the possible values
of an XML Schema simple type. For example, you can define a simple type,
SSN, which is a string of exactly nine characters. New types defined by
restricting simple types are defined using a simpleType element.

The definition of a type by restriction requires three things:

1. The name of the new type is specified by the name attribute of the

simpleType element.

2. The simple type from which the new type is derived, called the base type,
is specified in the restriction element. See "Specifying the base type"

on page 37.

3. The rules, called facets, defining the restrictions placed on the base type
are defined as children of the restriction element. See "Defining the

restrictions" on page 37.

Specifying the base type The base type is the type that is being restricted to define the new type. It is
specified using a restriction element. The restriction element is the
only child of a simpleType element and has one attribute, base, that specifies
the base type. The base type can be any of the XML Schema simple types.

For example, to define a new type by restricting the values of an xsd:int you
use a definition like the one shown in Example 3.14 on page 37.

Example 3.14. int as Base Type

<simpleType name="restrictedInt">
<restriction base="xsd:int">
...

</restriction>
</simpleType>

Defining the restrictions The rules defining the restrictions placed on the base type are called facets.
Facets are elements with one attribute, value, that defines how the facet is
enforced. The available facets and their valid value settings depend on the
base type. For example, xsd:string supports six facets, including:

37FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Defining Types by Restriction

• length

• minLength

• maxLength

• pattern

• whitespace

• enumeration

Each facet element is a child of the restriction element.

Example Example 3.15 on page 38 shows an example of a simple type, SSN, which
represents a social security number. The resulting type is a string of the form
xxx-xx-xxxx. <SSN>032-43-9876<SSN> is a valid value for an element
of this type, but <SSN>032439876</SSN> is not.

Example 3.15. SSN Simple Type Description

<simpleType name="SSN">
<restriction base="xsd:string">
<pattern value="\d{3}-\d{2}-\d{4}"/>

</restriction>
</simpleType>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.138

Chapter 3. Defining Logical Data Units

Defining Enumerated Types
Enumerated types in XML Schema are a special case of definition by
restriction. They are described by using the enumeration facet which is
supported by all XML Schema primitive types. As with enumerated types in
most modern programming languages, a variable of this type can only have
one of the specified values.

Defining an enumeration in XML
Schema

The syntax for defining an enumeration is shown in Example 3.16 on page 39.

Example 3.16. Syntax for an Enumeration

<simpleType name="EnumName">
<restriction base="EnumType">
<enumeration value="Case1Value"/>
<enumeration value="Case2Value"/>
...
<enumeration value="CaseNValue"/>

</restriction>
</simpleType>

EnumName specifies the name of the enumeration type. EnumType specifies
the type of the case values. CaseNValue, where N is any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

Example For example, an XML document with an element defined by the enumeration
widgetSize, shown in Example 3.17 on page 39, would be valid if it
contained <widgetSize>big</widgetSize>, but it would not be valid if it
contained <widgetSize>big,mungo</widgetSize>.

Example 3.17. widgetSize Enumeration

<simpleType name="widgetSize">
<restriction base="xsd:string">
<enumeration value="big"/>
<enumeration value="large"/>
<enumeration value="mungo"/>

</restriction>
</simpleType>

39FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Defining Enumerated Types

Defining Elements
Elements in XML Schema represent an instance of an element in an XML
document generated from the schema. The most basic element consists of a
single element element. Like the element element used to define the
members of a complex type, they have three attributes:

• name — A required attribute that specifies the name of the element as it

appears in an XML document.

• type — Specifies the type of the element. The type can be any XML Schema

primitive type or any named complex type defined in the contract. This
attribute can be omitted if the type has an in-line definition.

• nillable — Specifies whether an element can be omitted from a document

entirely. If nillable is set to true, the element can be omitted from any

document generated using the schema.

An element can also have an in-line type definition. In-line types are specified
using either a complexType element or a simpleType element. Once you
specify if the type of data is complex or simple, you can define any type of
data needed using the tools available for each type of data. In-line type
definitions are discouraged because they are not reusable.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.140

Chapter 3. Defining Logical Data Units

Chapter 4. Defining Logical Messages
Used by a Service
A service is defined by the messages exchanged when its operations are invoked. In a WSDL contract these
messages are defined using message element. The messages are made up of one or more parts that are defined
using part elements.

A service’s operations are defined by specifying the logical messages that are
exchanged when an operation is invoked. These logical messages define the
data that is passed over a network as an XML document. They contain all of
the parameters that are a part of a method invocation.

Logical messages are defined using the message element in your contracts.
Each logical message consists of one or more parts, defined in part elements.

Tip
While your messages can list each parameter as a separate part, the
recommended practice is to use only a single part that encapsulates
the data needed for the operation.

Messages and parameter lists Each operation exposed by a service can have only one input message and
one output message. The input message defines all of the information the
service receives when the operation is invoked. The output message defines
all of the data that the service returns when the operation is completed. Fault
messages define the data that the service returns when an error occurs.

In addition, each operation can have any number of fault messages. The fault
messages define the data that is returned when the service encounters an
error. These messages usually have only one part that provides enough
information for the consumer to understand the error.

Message design for integrating
with legacy systems

If you are defining an existing application as a service, you must ensure that
each parameter used by the method implementing the operation is represented
in a message. You must also ensure that the return value is included in the
operation’s output message.

One approach to defining your messages is RPC style. When using RPC style,
you define the messages using one part for each parameter in the method’s

41FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

parameter list. Each message part is based on a type defined in the types
element of the contract. Your input message contains one part for each input
parameter in the method. Your output message contains one part for each
output parameter, plus a part to represent the return value, if needed. If a
parameter is both an input and an output parameter, it is listed as a part for
both the input message and the output message.

RPC style message definition is useful when service enabling legacy systems
that use transports such as Tibco or CORBA. These systems are designed
around procedures and methods. As such, they are easiest to model using
messages that resemble the parameter lists for the operation being invoked.
RPC style also makes a cleaner mapping between the service and the
application it is exposing.

Message design for SOAP services While RPC style is useful for modeling existing systems, the service’s
community strongly favors the wrapped document style. In wrapped document
style, each message has a single part. The message’s part references a wrapper
element defined in the types element of the contract. The wrapper element
has the following characteristics:

• It is a complex type containing a sequence of elements. For more information
see "Defining Complex Data Types" on page 29.

• If it is a wrapper for an input message:

• It has one element for each of the method’s input parameters.

• Its name is the same as the name of the operation with which it is
associated.

• If it is a wrapper for an output message:

• It has one element for each of the method’s output parameters and one
element for each of the method’s inout parameters.

• Its first element represents the method’s return parameter.

• Its name would be generated by appending Response to the name of

the operation with which the wrapper is associated.

Message naming Each message in a contract must have a unique name within its namespace.
It is recommended that you use the following naming conventions:

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.142

Chapter 4. Defining Logical Messages Used by a
Service

• Messages should only be used by a single operation.

• Input message names are formed by appending Request to the name of

the operation.

• Output message names are formed by appending Response to the name

of the operation.

• Fault message names should represent the reason for the fault.

Message parts Message parts are the formal data units of the logical message. Each part is
defined using a part element, and is identified by a name attribute and either
a type attribute or an element attribute that specifies its data type. The data
type attributes are listed in Table 4.1 on page 43.

Table 4.1. Part Data Type Attributes

DescriptionAttribute

The data type of the part is defined by an element called elem_name.element="elem_name"

The data type of the part is defined by a type called type_name.type="type_name"

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, that is passed by reference or is an in/out, it can be a part
in both the request message and the response message, as shown in
Example 4.1 on page 43.

Example 4.1. Reused Part

<message name="fooRequest">
<part name="foo" type="xsd:int"/>

<message>
<message name="fooReply">
<part name="foo" type="xsd:int"/>

<message>

Example For example, imagine you had a server that stored personal information and
provided a method that returned an employee’s data based on the employee's
ID number. The method signature for looking up the data is similar to
Example 4.2 on page 44.

43FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Example 4.2. personalInfo lookup Method

personalInfo lookup(long empId)

This method signature can be mapped to the RPC style WSDL fragment shown
in Example 4.3 on page 44.

Example 4.3. RPC WSDL Message Definitions

<message name="personalLookupRequest">
<part name="empId" type="xsd:int"/>

<message/>
<message name="personalLookupResponse>
<part name="return" element="xsd1:personalInfo"/>

<message/>

It can also be mapped to the wrapped document style WSDL fragment shown
in Example 4.4 on page 44.

Example 4.4. Wrapped Document WSDL Message Definitions

<types>
<schema ...>
...
<element name="personalLookup">
<complexType>
<sequence>
<element name="empID" type="xsd:int" />

</sequence>
</complexType>

</element>
<element name="personalLookupResponse">
<complexType>
<sequence>
<element name="return" type="personalInfo" />

</sequence>
</complexType>

</element>
</schema>

</types>
<message name="personalLookupRequest">
<part name="empId" element="xsd1:personalLookup"/>

<message/>
<message name="personalLookupResponse>
<part name="return" element="xsd1:personalLookupResponse"/>

<message/>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.144

Chapter 4. Defining Logical Messages Used by a
Service

Chapter 5. Defining Your Logical
Interfaces
Logical service interfaces are defined using the portType element.

Logical service interfaces are defined using the WSDL portType element.
The portType element is a collection of abstract operation definitions. Each
operation is defined by the input, output, and fault messages used to complete
the transaction the operation represents. When code is generated to implement
the service interface defined by a portType element, each operation is
converted into a method containing the parameters defined by the input,
output, and fault messages specified in the contract.

Process To define a logical interface in a WSDL contract you must do the following:

1. Create a portType element to contain the interface definition and give

it a unique name. See "Port types" on page 45.

2. Create an operation element for each operation defined in the interface.

See "Operations" on page 46.

3. For each operation, specify the messages used to represent the operation’s
parameter list, return type, and exceptions. See "Operation messages"
on page 46.

Port types A WSDL portType element is the root element in a logical interface definition.
While many Web service implementations map portType elements directly
to generated implementation objects, a logical interface definition does not
specify the exact functionality provided by the the implemented service. For
example, a logical interface named ticketSystem can result in an
implementation that either sells concert tickets or issues parking tickets.

The portType element is the unit of a WSDL document that is mapped into
a binding to define the physical data used by an endpoint exposing the defined
service.

Each portType element in a WSDL document must have a unique name,
which is specified using the name attribute, and is made up of a collection of

45FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

operations, which are described in operation elements. A WSDL document
can describe any number of port types.

Operations Logical operations, defined using WSDL operation elements, define the
interaction between two endpoints. For example, a request for a checking
account balance and an order for a gross of widgets can both be defined as
operations.

Each operation defined within a portType element must have a unique name,
specified using the name attribute. The name attribute is required to define
an operation.

Operation messages Logical operations are made up of a set of elements representing the logical
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in
Table 5.1 on page 46.

Table 5.1. Operation Message Elements

DescriptionElement

Specifies the message the client endpoint sends to the service
provider when a request is made. The parts of this message
correspond to the input parameters of the operation.

input

Specifies the message that the service provider sends to the client
endpoint in response to a request. The parts of this message

output

correspond to any operation parameters that can be changed by
the service provider, such as values passed by reference. This
includes the return value of the operation.

Specifies a message used to communicate an error condition
between the endpoints.

fault

An operation is required to have at least one input or one output element.
An operation can have both input and output elements, but it can only
have one of each. Operations are not required to have any fault elements,
but can, if required, have any number of fault elements.

The elements have the two attributes listed in Table 5.2 on page 47.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.146

Chapter 5. Defining Your Logical Interfaces

Table 5.2. Attributes of the Input and Output Elements

DescriptionAttribute

Identifies the message so it can be referenced when mapping the
operation to a concrete data format. The name must be unique
within the enclosing port type.

name

Specifies the abstract message that describes the data being sent
or received. The value of the message attribute must correspond

message

to the name attribute of one of the abstract messages defined in

the WSDL document.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation
with either Request or Response respectively appended to the name.

Return values Because the operation element is an abstract definition of the data passed
during an operation, WSDL does not provide for return values to be specified
for an operation. If a method returns a value it will be mapped into the output
element as the last part of that message.

Example For example, you might have an interface similar to the one shown in
Example 5.1 on page 47.

Example 5.1. personalInfo lookup interface

interface personalInfoLookup
{
personalInfo lookup(in int empID)
raises(idNotFound);

}

This interface can be mapped to the port type in Example 5.2 on page 47.

Example 5.2. personalInfo lookup port type

<message name="personalLookupRequest">
<part name="empId" element="xsd1:personalLookup"/>

<message/>
<message name="personalLookupResponse">
<part name="return" element="xsd1:personalLookupResponse"/>

47FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

<message/>
<message name="idNotFoundException">
<part name="exception" element="xsd1:idNotFound"/>

<message/>
<portType name="personalInfoLookup">
<operation name="lookup">
<input name="empID" message="personalLookupRequest"/>
<output name="return" message="personalLookupResponse"/>
<fault name="exception" message="idNotFoundException"/>

</operation>
</portType>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.148

Chapter 5. Defining Your Logical Interfaces

Chapter 6. Using HTTP
HTTP is the underlying transport for the Web. It provides a standardized, robust, and flexible platform for
communicating between endpoints. Because of these factors it is the assumed transport for most WS-*
specifications and is integral to RESTful architectures.

Adding a Basic HTTP Endpoint ... 50
Consumer Configuration .. 52
Provider Configuration ... 57
Using the HTTP Transport in Decoupled Mode .. 60

49FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Adding a Basic HTTP Endpoint

Overview There are three ways of specifying an HTTP endpoint’s address depending
on the payload format you are using.

• SOAP 1.1 uses the standardized soap:address element.

• SOAP 1.2 uses the soap12:address element.

• All other payload formats use the http:address element.

SOAP 1.1 When you are sending SOAP 1.1 messages over HTTP you must use the
SOAP 1.1 address element to specify the endpoint’s address. It has one
attribute, location, that specifies the endpoint’s address as a URL. The
SOAP 1.1 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap/.

Example 6.1 on page 50 shows a port element used to send SOAP 1.1
messages over HTTP.

Example 6.1. SOAP 1.1 Port Element

<definitions ...
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...>

...
<service name="SOAP11Service">
<port binding="SOAP11Binding" name="SOAP11Port">
<soap:address location="http://artie.com/index.xml">

</port>
</service>
...

<definitions>

SOAP 1.2 When you are sending SOAP 1.2 messages over HTTP you must use the
SOAP 1.2 address element to specify the endpoint’s address. It has one
attribute, location, that specifies the endpoint’s address as a URL. The
SOAP 1.2 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap12/.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.150

Chapter 6. Using HTTP

Example 6.2 on page 51 shows a port element used to send SOAP 1.2
messages over HTTP.

Example 6.2. SOAP 1.2 Port Element

<definitions ...
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" ... >

<service name="SOAP12Service">
<port binding="SOAP12Binding" name="SOAP12Port">
<soap12:address location="http://artie.com/index.xml">

</port>
</service>
...

</definitions>

Other messages types When your messages are mapped to any payload format other than SOAP
you must use the HTTP address element to specify the endpoint’s address.
It has one attribute, location, that specifies the endpoint’s address as a
URL. The HTTP address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/http/.

Example 6.3 on page 51 shows a port element used to send an XML
message.

Example 6.3. HTTP Port Element

<definitions ...
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" ... >

<service name="HTTPService">
<port binding="HTTPBinding" name="HTTPPort">
<http:address location="http://artie.com/index.xml">

</port>
</service>
...

</definitions>

51FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Adding a Basic HTTP Endpoint

Consumer Configuration

Namespace The WSDL extension elements used to configure an HTTP consumer endpoint
are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is
commonly referred to using the prefix http-conf. In order to use the HTTP
configuration elements you must add the line shown in
Example 6.4 on page 52 to the definitions element of your endpoint's
WSDL document.

Example 6.4. HTTP Consumer WSDL Element's Namespace

<definitions ...
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration

Configuring the endpoint The http-conf:client element is used to specify the connection properties
of an HTTP consumer in a WSDL document. The http-conf:client element
is a child of the WSDL port element. The attributes are described in
Table 6.1 on page 52.

Table 6.1. HTTP Consumer Configuration Attributes

DescriptionAttribute

Specifies the amount of time, in milliseconds, that the consumer attempts to establish a
connection before it times out. The default is 30000.

ConnectionTimeout

0 specifies that the consumer will continue to send the request indefinitely.

Specifies the amount of time, in milliseconds, that the consumer will wait for a response
before it times out. The default is 30000.

ReceiveTimeout

0 specifies that the consumer will wait indefinitely.

Specifies if the consumer will automatically follow a server issued redirection. The default
is false.

AutoRedirect

Specifies the maximum number of times a consumer will retransmit a request to satisfy a
redirect. The default is -1 which specifies that unlimited retransmissions are allowed.

MaxRetransmits

Specifies whether the consumer will send requests using chunking. The default is true
which specifies that the consumer will use chunking when sending requests.

AllowChunking

Chunking cannot be used if either of the following are true:

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.152

Chapter 6. Using HTTP

DescriptionAttribute

• http-conf:basicAuthSupplier is configured to provide credentials preemptively.

• AutoRedirect is set to true.

In both cases the value of AllowChunking is ignored and chunking is disallowed.

Specifies what media types the consumer is prepared to handle. The value is used as the
value of the HTTP Accept property. The value of the attribute is specified using multipurpose
internet mail extensions (MIME) types.

Accept

Specifies what language (for example, American English) the consumer prefers for the
purpose of receiving a response. The value is used as the value of the HTTP AcceptLanguage
property.

AcceptLanguage

Language tags are regulated by the International Organization for Standards (ISO) and are
typically formed by combining a language code, determined by the ISO-639 standard, and
country code, determined by the ISO-3166 standard, separated by a hyphen. For example,
en-US represents American English.

Specifies what content encodings the consumer is prepared to handle. Content encoding
labels are regulated by the Internet Assigned Numbers Authority (IANA). The value is used
as the value of the HTTP AcceptEncoding property.

AcceptEncoding

Specifies the media type of the data being sent in the body of a message. Media types are
specified using multipurpose internet mail extensions (MIME) types. The value is used as
the value of the HTTP ContentType property. The default is text/xml.

ContentType

For web services, this should be set to text/xml. If the client is sending HTML form data
to a CGI script, this should be set to application/x-www-form-urlencoded. If the HTTP
POST request is bound to a fixed payload format (as opposed to SOAP), the content type
is typically set to application/octet-stream.

Specifies the Internet host and port number of the resource on which the request is being
invoked. The value is used as the value of the HTTP Host property.

Host

This attribute is typically not required. It is only required by certain DNS scenarios or
application designs. For example, it indicates what host the client prefers for clusters (that
is, for virtual servers mapping to the same Internet protocol (IP) address).

Specifies whether a particular connection is to be kept open or closed after each
request/response dialog. There are two valid values:

Connection

• Keep-Alive — Specifies that the consumer wants the connection kept open after the

initial request/response sequence. If the server honors it, the connection is kept open
until the consumer closes it.

53FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Consumer Configuration

DescriptionAttribute

• close(default) — Specifies that the connection to the server is closed after each

request/response sequence.

Specifies directives about the behavior that must be adhered to by caches involved in the
chain comprising a request from a consumer to a service provider. See "Consumer Cache
Control Directives" on page 55.

CacheControl

Specifies a static cookie to be sent with all requests.Cookie

Specifies information about the browser from which the request originates. In the HTTP
specification from the World Wide Web consortium (W3C) this is also known as the
user-agent. Some servers optimize based on the client that is sending the request.

BrowserType

Specifies the URL of the resource that directed the consumer to make requests on a
particular service. The value is used as the value of the HTTP Referer property.

Referer

This HTTP property is used when a request is the result of a browser user clicking on a
hyperlink rather than typing a URL. This can allow the server to optimize processing based
upon previous task flow, and to generate lists of back-links to resources for the purposes
of logging, optimized caching, tracing of obsolete or mistyped links, and so on. However,
it is typically not used in web services applications.

If the AutoRedirect attribute is set to true and the request is redirected, any value
specified in the Referer attribute is overridden. The value of the HTTP Referer property
is set to the URL of the service that redirected the consumer’s original request.

Specifies the URL of a decoupled endpoint for the receipt of responses over a separate
provider->consumer connection. For more information on using decoupled endpoints see,
"Using the HTTP Transport in Decoupled Mode" on page 60.

DecoupledEndpoint

You must configure both the consumer endpoint and the service provider endpoint to use
WS-Addressing for the decoupled endpoint to work.

Specifies the URL of the proxy server through which requests are routed.ProxyServer

Specifies the port number of the proxy server through which requests are routed.ProxyServerPort

Specifies the type of proxy server used to route requests. Valid values are:ProxyServerType

• HTTP(default)

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.154

Chapter 6. Using HTTP

DescriptionAttribute

• SOCKS

Consumer Cache Control
Directives

Table 6.2 on page 55 lists the cache control directives supported by an HTTP
consumer.

Table 6.2. http-conf:client Cache Control Directives

BehaviorDirective

Caches cannot use a particular response to satisfy subsequent requests without first revalidating
that response with the server. If specific response header fields are specified with this value, the

no-cache

restriction applies only to those header fields within the response. If no response header fields
are specified, the restriction applies to the entire response.

Caches must not store either any part of a response or any part of the request that invoked it.no-store

The consumer can accept a response whose age is no greater than the specified time in seconds.max-age

The consumer can accept a response that has exceeded its expiration time. If a value is assigned
to max-stale, it represents the number of seconds beyond the expiration time of a response up

max-stale

to which the consumer can still accept that response. If no value is assigned, the consumer can
accept a stale response of any age.

The consumer wants a response that is still fresh for at least the specified number of seconds
indicated.

min-fresh

Caches must not modify media type or location of the content in a response between a provider
and a consumer.

no-transform

Caches should return only responses that are currently stored in the cache, and not responses
that need to be reloaded or revalidated.

only-if-cached

Specifies additional extensions to the other cache directives. Extensions can be informational or
behavioral. An extended directive is specified in the context of a standard directive, so that

cache-extension

applications not understanding the extended directive can adhere to the behavior mandated by
the standard directive.

Example Example 6.5 on page 56 shows a WSDL fragment that configures an HTTP
consumer endpoint to specify that it does not interact with caches.

55FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Consumer Configuration

Example 6.5. WSDL to Configure an HTTP Consumer Endpoint

<service ...>
<port ...>
<soap:address ... />
<http-conf:client CacheControl="no-cache" />

</port>
</service>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.156

Chapter 6. Using HTTP

Provider Configuration

Namespace The WSDL extension elements used to configure an HTTP provider endpoint
are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is
commonly referred to using the prefix http-conf. To use the HTTP configuration
elements you must add the line shown in Example 6.6 on page 57 to the
definitions element of your endpoint's WSDL document.

Example 6.6. HTTP Provider WSDL Element's Namespace

<definitions ...
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration

Configuring the endpoint The http-conf:server element is used to specify the connection properties
of an HTTP service provider in a WSDL document. The http-conf:server
element is a child of the WSDL port element. The attributes are described
in Table 6.3 on page 57.

Table 6.3. HTTP Service Provider Configuration Attributes

DescriptionAttribute

Sets the length of time, in milliseconds, the service provider attempts to receive
a request before the connection times out. The default is 30000.

ReceiveTimeout

0 specifies that the provider will not timeout.

Specifies whether exceptions are to be thrown when an error is encountered
on receiving a request. The default is false; exceptions are thrown on
encountering errors.

SuppressClientSendErrors

Specifies whether exceptions are to be thrown when an error is encountered
on sending a response to a consumer. The default is false; exceptions are
thrown on encountering errors.

SuppressClientReceiveErrors

Specifies whether the service provider honors requests for a connection to
remain open after a response has been sent. The default is false; keep-alive
requests are ignored.

HonorKeepAlive

Specifies the URL to which the client request should be redirected if the URL
specified in the client request is no longer appropriate for the requested

RedirectURL

resource. In this case, if a status code is not automatically set in the first line
of the server response, the status code is set to 302 and the status description

57FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Provider Configuration

DescriptionAttribute

is set to Object Moved. The value is used as the value of the HTTP
RedirectURL property.

Specifies directives about the behavior that must be adhered to by caches
involved in the chain comprising a response from a service provider to a
consumer. See "Service Provider Cache Control Directives" on page 58.

CacheControl

Sets the URL where the resource being sent in a response is located.ContentLocation

Specifies the media type of the information being sent in a response. Media
types are specified using multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP ContentType location.

ContentType

Specifies any additional content encodings that have been applied to the
information being sent by the service provider. Content encoding labels are

ContentEncoding

regulated by the Internet Assigned Numbers Authority (IANA). Possible content
encoding values include zip, gzip, compress, deflate, and identity.
This value is used as the value of the HTTP ContentEncoding property.

The primary use of content encodings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. FUSE Services
Framework performs no validation on content codings. It is the user’s
responsibility to ensure that a specified content coding is supported at
application level.

Specifies what type of server is sending the response. Values take the form
program-name/version; for example, Apache/1.2.5.

ServerType

Service Provider Cache Control
Directives

Table 6.4 on page 58 lists the cache control directives supported by an HTTP
service provider.

Table 6.4. http-conf:server Cache Control Directives

BehaviorDirective

Caches cannot use a particular response to satisfy subsequent requests without first revalidating
that response with the server. If specific response header fields are specified with this value, the

no-cache

restriction applies only to those header fields within the response. If no response header fields
are specified, the restriction applies to the entire response.

Any cache can store the response.public

Public (shared) caches cannot store the response because the response is intended for a single
user. If specific response header fields are specified with this value, the restriction applies only

private

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.158

Chapter 6. Using HTTP

BehaviorDirective

to those header fields within the response. If no response header fields are specified, the restriction
applies to the entire response.

Caches must not store any part of the response or any part of the request that invoked it.no-store

Caches must not modify the media type or location of the content in a response between a server
and a client.

no-transform

Caches must revalidate expired entries that relate to a response before that entry can be used
in a subsequent response.

must-revalidate

Does the same as must-revalidate, except that it can only be enforced on shared caches and is
ignored by private unshared caches. When using this directive, the public cache directive must
also be used.

proxy-revalidate

Clients can accept a response whose age is no greater that the specified number of seconds.max-age

Does the same as max-age, except that it can only be enforced on shared caches and is ignored
by private unshared caches. The age specified by s-max-age overrides the age specified by
max-age. When using this directive, the proxy-revalidate directive must also be used.

s-max-age

Specifies additional extensions to the other cache directives. Extensions can be informational or
behavioral. An extended directive is specified in the context of a standard directive, so that

cache-extension

applications not understanding the extended directive can adhere to the behavior mandated by
the standard directive.

Example Example 6.7 on page 59 shows a WSDL fragment that configures an HTTP
service provider endpoint specifying that it will not interact with caches.

Example 6.7. WSDL to Configure an HTTP Service Provider Endpoint

<service ...>
<port ...>
<soap:address ... />
<http-conf:server CacheControl="no-cache" />

</port>
</service>

59FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Provider Configuration

Using the HTTP Transport in Decoupled Mode

Overview In normal HTTP request/response scenarios, the request and the response
are sent using the same HTTP connection. The service provider processes
the request and responds with a response containing the appropriate HTTP
status code and the contents of the response. In the case of a successful
request, the HTTP status code is set to 200.

In some instances, such as when using WS-RM or when requests take an
extended period of time to execute, it makes sense to decouple the request
and response message. In this case the service providers sends the consumer
a 202 Accepted response to the consumer over the back-channel of the
HTTP connection on which the request was received. It then processes the
request and sends the response back to the consumer using a new decoupled
server->client HTTP connection. The consumer runtime receives the incoming
response and correlates it with the appropriate request before returning to
the application code.

Configuring decoupled
interactions

Using the HTTP transport in decoupled mode requires that you do the
following:

1. Configure the consumer to use WS-Addressing.

See "Configuring an endpoint to use WS-Addressing" on page 60.

2. Configure the consumer to use a decoupled endpoint.

See "Configuring the consumer" on page 61.

3. Configure any service providers that the consumer interacts with to use
WS-Addressing.

See "Configuring an endpoint to use WS-Addressing" on page 60.

Configuring an endpoint to use
WS-Addressing

Specify that the consumer and any service provider with which the consumer
interacts use WS-Addressing.

You can specify that an endpoint uses WS-Addressing in one of two ways:

• Adding the wswa:UsingAddressing element to the endpoint's WSDL port

element as shown in Example 6.8 on page 61.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.160

Chapter 6. Using HTTP

Example 6.8. Activating WS-Addressing using WSDL

...
<service name="WidgetSOAPService">
<port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
<soap:address="http://widgetvendor.net/widgetSeller" />
<wswa:UsingAddressing xmlns:wswa="http://www.w3.org/2005/02/addressing/wsdl"/>

</port>
</service>
...

• Adding the WS-Addressing policy to the endpoint's WSDL port element

as shown in Example 6.9 on page 61.

Example 6.9. Activating WS-Addressing using a Policy

...
<service name="WidgetSOAPService">
<port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
<soap:address="http://widgetvendor.net/widgetSeller" />
<wsp:Policy xmlns:wsp="http://www.w3.org/2006/07/ws-policy">
<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
<wsp:Policy/>

</wsam:Addressing>
</wsp:Policy>

</port>
</service>
...

Note
The WS-Addressing policy supersedes the wswa:UsingAddressing
WSDL element.

Configuring the consumer Configure the consumer endpoint to use a decoupled endpoint using the
DecoupledEndpoint attribute of the http-conf:conduit element.

Example 6.10 on page 62 shows the configuration for setting up the endpoint
defined in Example 6.8 on page 61 to use use a decoupled endpoint. The
consumer now receives all responses at
http://widgetvendor.net/widgetSellerInbox.

61FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Using the HTTP Transport in Decoupled Mode

Example 6.10. Configuring a Consumer to Use a Decoupled HTTP Endpoint

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http:conduit name="{http://widgetvendor.net/services}WidgetSOAPPort.http-conduit">
<http:client DecoupledEndpoint="http://widgetvendor.net:9999/decoupled_endpoint" />

</http:conduit>
</beans>

How messages are processed Using the HTTP transport in decoupled mode adds extra layers of complexity
to the processing of HTTP messages. While the added complexity is
transparent to the implementation level code in an application, it might be
important to understand what happens for debugging reasons.

Figure 6.1 on page 63 shows the flow of messages when using HTTP in
decoupled mode.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.162

Chapter 6. Using HTTP

Figure 6.1. Message Flow in for a Decoupled HTTP Transport

A request starts the following process:

1. The consumer implementation invokes an operation and a request
message is generated.

2. The WS-Addressing layer adds the WS-A headers to the message.

When a decoupled endpoint is specified in the consumer's configuration,
the address of the decoupled endpoint is placed in the WS-A ReplyTo
header.

3. The message is sent to the service provider.

63FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Using the HTTP Transport in Decoupled Mode

4. The service provider receives the message.

5. The request message from the consumer is dispatched to the provider's
WS-A layer.

6. Because the WS-A ReplyTo header is not set to anonymous, the provider
sends back a message with the HTTP status code set to 202,

acknowledging that the request has been received.

7. The HTTP layer sends a 202 Accepted message back to the consumer

using the original connection's back-channel.

8. The consumer receives the 202 Accepted reply on the back-channel of

the HTTP connection used to send the original message.

When the consumer receives the 202 Accepted reply, the HTTP
connection closes.

9. The request is passed to the service provider's implementation where
the request is processed.

10. When the response is ready, it is dispatched to the WS-A layer.

11. The WS-A layer adds the WS-Addressing headers to the response
message.

12. The HTTP transport sends the response to the consumer's decoupled
endpoint.

13. The consumer's decoupled endpoint receives the response from the
service provider.

14. The response is dispatched to the consumer's WS-A layer where it is
correlated to the proper request using the WS-A RelatesTo header.

15. The correlated response is returned to the client implementation and the
invoking call is unblocked.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.164

Chapter 6. Using HTTP

Chapter 7. Using JMS
The JMS is a standards based messaging system that is widely used in enterprise Java applications.

Basic Configuration .. 66
Using a Named Reply Destination .. 69
JMS Consumer Configuration .. 70
JMS Provider Configuration .. 71

65FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Basic Configuration

WSDL Namespace The WSDL extensions for defining a JMS endpoint are defined in the
namespace http://cxf.apache.org/transports/jms. In order to use
the JMS extensions you will need to add the line shown in
Example 7.1 on page 66 to the definitions element of your contract.

Example 7.1. JMS Extension Namespace

xmlns:jms="http://cxf.apache.org/transports/jms"

The address element The basic configuration for a JMS endpoint is done by using a jms:address
element as the child of your service’s port element. The jms:address
element's attributes are listed in Table 7.1 on page 66. The jms:address
element uses a jms:JMSNamingProperties child element to specify
additional information needed to connect to a JNDI provider.

Table 7.1. JMS Endpoint Attributes

DescriptionAttribute

Specifies if the JMS destination is a JMS queue or a JMS topic.destinationStyle

Specifies the JNDI name bound to the JMS connection factory to use when
connecting to the JMS destination.

jndiConnectionFactoryName

Specifies the JMS name of the JMS destination to which requests are sent.jmsDestinationName

Specifies the JMS name of the JMS destinations where replies are sent. This
attribute allows you to use a user defined destination for replies. For more
details see "Using a Named Reply Destination" on page 69.

jmsReplyDestinationName

Specifies the JNDI name bound to the JMS destination to which requests are
sent.

jndiDestinationName

Specifies the JNDI name bound to the JMS destinations where replies are
sent. This attribute allows you to use a user defined destination for replies.
For more details see "Using a Named Reply Destination" on page 69.

jndiReplyDestinationName

Specifies the user name to use when connecting to a JMS broker.connectionUserName

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.166

Chapter 7. Using JMS

DescriptionAttribute

Specifies the password to use when connecting to a JMS broker.connectionPassword

The JMSNamingProperties
element

To increase interoperability with JMS and JNDI providers, the jms:address
element has a child element, jms:JMSNamingProperties, that allows you
to specify the values used to populate the properties used when connecting
to the JNDI provider. The jms:JMSNamingProperties element has two
attributes: name and value. name specifies the name of the property to set.
value attribute specifies the value for the specified property.
jms:JMSNamingProperties element can also be used for specification of
provider specific properties.

The following is a list of common JNDI properties that can be set:

1. java.naming.factory.initial

2. java.naming.provider.url

3. java.naming.factory.object

4. java.naming.factory.state

5. java.naming.factory.url.pkgs

6. java.naming.dns.url

7. java.naming.authoritative

8. java.naming.batchsize

9. java.naming.referral

10. java.naming.security.protocol

11. java.naming.security.authentication

12. java.naming.security.principal

13. java.naming.security.credentials

67FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Basic Configuration

14. java.naming.language

15. java.naming.applet

For more details on what information to use in these attributes, check your
JNDI provider’s documentation and consult the Java API reference material.

Example Example 7.2 on page 68 shows an example of a JMS WSDL port
specification.

Example 7.2. JMS WSDL Port Specification

<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
<jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>

</port>
</service>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.168

Chapter 7. Using JMS

Using a Named Reply Destination

Overview By default, FUSE Services Framework endpoints using JMS create a temporary
queue for sending replies back and forth. If you prefer to use named queues,
you can configure the queue used to send replies as part of an endpoint's
JMS configuration.

Setting the reply destination name You specify the reply destination using either the jmsReplyDestinationName
attribute or the jndiReplyDestinationName attribute in the endpoint's JMS
configuration. A client endpoint will listen for replies on the specified
destination and it will specify the value of the attribute in the ReplyTo field
of all outgoing requests. A service endpoint will use the value of the
jndiReplyDestinationName attribute as the location for placing replies if
there is no destination specified in the request’s ReplyTo field.

Example Example 7.3 on page 69 shows the configuration for a JMS client endpoint.

Example 7.3. JMS Consumer Specification Using a Named Reply Queue

<jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
<jms:address destinationStyle="queue"

jndiConnectionFactoryName="myConnectionFactory"
jndiDestinationName="myDestination"
jndiReplyDestinationName="myReplyDestination" >

<jms:JMSNamingProperty name="java.naming.factory.initial"
value="org.apache.cxf.transport.jms.MyInitialContextFactory"

/>
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>

</jms:conduit>

69FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Using a Named Reply Destination

JMS Consumer Configuration

Specifying the message type The type of messages accepted by a JMS consumer endpoint is configured
using the optional jms:client element. The jms:client element is a child
of the WSDL port element and has one attribute:

Table 7.2. JMS Client WSDL Extensions

Specifies how the message data will be packaged as a JMS message. text specifies that the

data will be packaged as a TextMessage. binary specifies that the data will be packaged as

an ByteMessage.

messageType

Example Example 7.4 on page 70 shows the WSDL for configuring a JMS consumer
endpoint.

Example 7.4. WSDL for a JMS Consumer Endpoint

<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
<jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>
<jms:client messageType="binary" />

</port>
</service>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.170

Chapter 7. Using JMS

JMS Provider Configuration

Overview JMS provider endpoints have a number of behaviors that are configurable.
These include:

• how messages are correlated

• the use of durable subscriptions

• if the service uses local JMS transactions

• the message selectors used by the endpoint

Configuring the endpoint Provider endpoint behaviors are configured using the optional jms:server
element. The jms:server element is a child of the WSDL wsdl:port element
and has the following attributes:

Table 7.3. JMS Provider Endpoint WSDL Extensions

DescriptionAttribute

Specifies whether JMS will use the message ID to correlate messages. The
default is false.

useMessageIDAsCorrealationID

Specifies the name used to register a durable subscription.durableSubscriberName

Specifies the string value of a message selector to use. For more information
on the syntax used to specify message selectors, see the JMS 1.1
specification.

messageSelector

Specifies whether the local JMS broker will create transactions around
message processing. The default is false. a

transactional

aCurrently,setting the transactional attribute to true is not supported by the runtime.

Example Example 7.5 on page 71 shows the WSDL for configuring a JMS provider
endpoint.

Example 7.5. WSDL for a JMS Provider Endpoint

<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

71FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

JMS Provider Configuration

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
<jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>
<jms:server messageSelector="cxf_message_selector"

useMessageIDAsCorrelationID="true"
transactional="true"
durableSubscriberName="cxf_subscriber" />

</port>
</service>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.172

Chapter 7. Using JMS

Part II. Configuring and Packaging
Endpoints
Endpoints exposed by the FUSE Services Framework binding component are configured in a service unit's
xbean.xml file. The endpoints are then packaged into a service unit that can be deployed to FUSE ESB.

8. Introduction to the FUSE Services Framework Binding Component ... 75
9. Consumer Endpoints .. 79
10. Provider Endpoints ... 87
11. Using MTOM to Process Binary Content .. 93
12. Working with the JBI Wrapper .. 95
13. Using Message Interceptors ... 97

Chapter 8. Introduction to the FUSE
Services Framework Binding Component
Endpoints being deployed using the FUSE Services Framework binding component are packaged into a service
unit. The service unit will container the WSDL document defining the endpoint's interface and a configuration
file that sets-up the endpoint's runtime behavior.

Contents of a file component
service unit

A service unit that configures the FUSE Services Framework binding
component will contain the following artifacts:

xbean.xml

The xbean.xml file contains the XML configuration for the endpoint
defined by the service unit. The contents of this file are the focus of this
guide.

Note
The service unit can define more than one endpoint.

WSDL file
The WSDL file defines the endpoint the interface exposes.

Spring configuration file
The Spring configuration file contains configuration for the FUSE Services
Framework runtime.

meta-inf/jbi.xml

The jbi.xml file is the JBI descriptor for the service unit.
Example 8.1 on page 75 shows a JBI descriptor for a FUSE Services
Framework binding component service unit.

Example 8.1. JBI Descriptor for a FUSE Services Framework Binding Component Service Unit

<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
<services binding-component="false" />

</jbi>

75FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

For information on using the Maven tooling to package endpoints into a JBI
service unit see Appendix C: on page 147.

OSGi Packaging You can package FUSE Services Framework binding component endpoints
in an OSGi bundle. To do so you need to make two minor changes:

• you will need to include an OSGi bundle manifest in the META-INF folder

of the bundle.

• You need to add the following to your service unit's configuration file:

<bean class="org.apache.servicemix.common.osgi.EndpointEx
porter" />

Important
When you deploy FUSE Services Framework binding component
endpoints in an OSGi bundle, the resulting endpoints are deployed
as a JBI service unit.

For more information on using the OSGi packaging see
Appendix D on page 163.

Namespace The elements used to configure FUSE Services Framework binding component
endpoints are defined in the http://servicemix.apache.org/cxfbc/1.0 namespace.
You will need to add a namespace declaration similar to the one in
Example 8.2 on page 76 to your xbeans.xml file's beans element.

Example 8.2. Namespace Declaration for Using FUSE Services Framework Binding Component Endpoints

<beans ...
xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
... >

...
</beans>

In addition, you need to add the schema location to the Spring beans
element's xsi:schemaLocation as shown in Example 8.3 on page 76.

Example 8.3. Schema Location for Using FUSE Services Framework Binding
Component Endpoints

<beans ...
xsi:schemaLocation="...

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.176

Chapter 8. Introduction to the FUSE Services
Framework Binding Component

http://servicemix.apache.org/cxfbc/1.0 http://service
mix.apache.org/cxfbc/1.0/servicemix-cxfbc.xsd
...">
...

</beans>

77FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.178

Chapter 9. Consumer Endpoints
A consumer endpoint listens for requests from external endpoints and delivers responses back to the requesting
endpoint. It is configured using a single XML element that specifies the WSDL document defining the endpoint.

Overview Consumer endpoints play the role of consumer from the vantage point of other
endpoints running inside of the ESB. However, from outside of the ESB a
consumer endpoint plays the role of a service provider. As shown in
Figure 9.1 on page 80, consumer endpoints listen from incoming requests
from external endpoints. When it receives a request, the consumer passes it
off to the NMR fro delivery to endpoint that will process the request. If a
response is generated, the consumer endpoint delivers the response back to
the external endpoint.

79FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Figure 9.1. Consumer Endpoint

Important
Because consumer endpoint's behave like service providers to external
endpoints, you configure the runtime behavior of the transport using
the provider-specific WSDL entries.

Procedure To configure a consumer endpoint do the following:

1. Add a consumer element to your xbean.xml file.

2. Add a wsdl attribute to the consumer element.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.180

Chapter 9. Consumer Endpoints

See "Specifying the WSDL" on page 81.

3. If your WSDL defines more than one service, you will need to specify a
value for the service attribute.

See "Specifying the endpoint details" on page 82.

4. If the service you choose defines more than one endpoint, you will need
to specify a value for the endpoint attribute.

See "Specifying the endpoint details" on page 82.

5. Specify the details for the target of the requests received by the endpoint.

See "Specifying the target endpoint" on page 84.

6. If your endpoint is going to be receiving binary attachments set its
mtomEnabled attribute to true.

See "Using MTOM to Process Binary Content" on page 93.

7. If your endpoint does not need to process the JBI wrapper set its
useJbiWrapper attribute to false.

See "Working with the JBI Wrapper" on page 95.

8. If you are using any of the advanced features, such as WS-Addressing
or WS-Policy, specify a value for the busCfg attribute.

See Part III on page 101.

Specifying the WSDL The wsdl attribute is the only required attribute to configure a consumer
endpoint. It specifies the location of the WSDL document that defines the
endpoint being exposed. The path used is relative to the top-level of the
exploded service unit.

Tip
If the WSDL document defines a single service with a single endpoint,
then you do not require any additional information to expose a
consumer endpoint.

81FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Example 9.1 on page 82 shows the minimal configuration for a consumer
endpoint.

Example 9.1. Minimal Consumer Endpoint Configuration

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
... >

...
<cxfbc:consumer wsdl="/wsdl/widget.wsdl" />

...
</beans>

For information on creating a WSDL document see Part I: on page 15.

Specifying the endpoint details If the endpoint's WSDL document defines a single service with a single
endpoint, the ESB can easily determine which endpoint to use. It will use the
values from the WSDL document to specify the service name, endpoint name
and interface name for the instantiated endpoint.

However, if the endpoint's WSDL document defines multiple services or if it
defines multiple endpoints for a service, you will need to provide the consumer
endpoint with additional information so that it can determine the proper
definition to use. What information you need to provide depends on the
complexity of the WSDL document. You may need to supply values for both
the service name and the endpoint name, or you may only have to supply
one of these values.

If the WSDL document contains more than one service element you will
need to specify a value for the consumer's service attribute. The value of
the consumer's service attribute is the QName of the WSDL service
element that defines the desired service in the WSDL document. For example,
if you wanted your endpoint to use the WidgetSalesService in the WSDL
shown in Example 9.2 on page 82 you would use the configuration shown
in Example 9.3 on page 83.

Example 9.2. WSDL with Two Services

<definitions ...
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://demos.widgetVendor.com" ...>

...
<service name="WidgetSalesService">
<port binding="WidgetSalesBinding" name="WidgetSalesPort">
<soap:address location="http://widget.sales.com/index.xml">

</port>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.182

Chapter 9. Consumer Endpoints

</service>

<service name="WidgetInventoryService">
<port binding="WidgetInventoryBinding" name="WidgetInventoryPort">
<soap:address location="http://widget.inventory.com/index.xml">

</port>
</service>
...

<definitions>

Example 9.3. Consumer Endpoint with a Defined Service Name

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
xmlns:widgets="http://demos.widgetVendor.com"
... >

...
<cxfbc:consumer wsdl="/wsdl/widget.wsdl"

service="widgets:WidgetSalesService" />

...
</beans>

If the WSDL document's service definition contains more than one endpoint,
then you will need to provide a value for the consumer's endpoint attribute.
The value of the endpoint attribute corresponds to the value of the WSDL
port element's name attribute. For example, if you wanted your endpoint to
use the WidgetEasternSalesPort in the WSDL shown in
Example 9.4 on page 83 you would use the configuration shown in
Example 9.5 on page 84.

Example 9.4. Service with Two Endpoints

<definitions ...
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://demos.widgetVendor.com" ...>

...
<service name="WidgetSalesService">
<port binding="WidgetSalesBinding" name="WidgetWesternSalesPort">
<soap:address location="http://widget.sales.com/index.xml">

</port>
<port binding="WidgetSalesBinding" name="WidgetEasternSalesPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
<jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>

83FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

</port>
</service>
...

<definitions>

Example 9.5. Consumer Endpoint with a Defined Endpoint Name

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
xmlns:widgets="http://demos.widgetVendor.com"
... >

...
<cxfbc:consumer wsdl="/wsdl/widget.wsdl"

endpoint="WidgetEasternSalesService" />
...

</beans>

Specifying the target endpoint The consumer endpoint will determine the target endpoint in the following
manner:

1. If you explicitly specify an endpoint using both the targetService

attribute and the targetEndpoint attribute, the ESB will use that

endpoint.

2. If you only specify a value for the targetService attribute, the ESB

will attempt to find an appropriate endpoint on the specified service.

3. If you specify an the name of an interface that can accept the message
using the targetInterface attribute, the ESB will attempt to locate

an endpoint that implements the specified interface and direct the
messages to it.

4. If you do not use any of the target attributes, the ESB will use the values
used in configuring the endpoint's service name and endpoint name to
determine the target endpoint.

Example 9.6 on page 84 shows the configuration for a consumer endpoint
that specifies the target endpoint to use.

Example 9.6. Consumer Endpoint Configuration Specifying a Target Endpoint

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
xmlns:widgets="http://demos.widgetVendor.com"
... >

...

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.184

Chapter 9. Consumer Endpoints

<cxfbc:consumer wsdl="/wsdl/widget.wsdl"
targetEndpoint="WidgetSalesTargetPort"
targetService="widgets:WidgetSalesTargetService" />

...
</beans>

Important
If you specify values for more than one of the target attributes, the
consumer endpoint will use the most specific information.

85FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.186

Chapter 10. Provider Endpoints
A provider endpoint sends requests to external endpoints and waits for the response. It is configured using a
single XML element that specifies the WSDL document defining the endpoint.

Overview Provider endpoints play the role of service provider from the vantage point of
other endpoints running inside of the ESB. However, from outside of the ESB
a provider endpoint plays the role of a consumer. As shown in
Figure 10.1 on page 87, provider endpoints make requests on external
endpoints. When it receives the response, the provider endpoint returns it
back to the NMR.

Figure 10.1. Provider Endpoint

87FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Important
Because provider endpoint's behave like consumers to external
endpoints, you configure the runtime behavior of the transport using
the consumer-specific WSDL entries.

Procedure To configure a provider endpoint do the following:

1. Add a provider element to your xbean.xml file.

2. Add a wsdl attribute to the provider element.

See "Specifying the WSDL" on page 89.

3. If your WSDL defines more than one service, you will need to specify a
value for the service attribute.

See "Specifying the endpoint details" on page 89.

4. If the service you choose defines more than one endpoint, you will need
to specify a value for the endpoint attribute.

See "Specifying the endpoint details" on page 89.

5. If your endpoint is going to be receiving binary attachments set its
mtomEnabled attribute to true.

See "Using MTOM to Process Binary Content" on page 93.

6. If your endpoint does not need to process the JBI wrapper set its
useJbiWrapper attribute to false.

See "Working with the JBI Wrapper" on page 95.

7. If you are using any of the advanced features, such as WS-Addressing
or WS-Policy, specify a value for the busCfg attribute.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.188

Chapter 10. Provider Endpoints

See Part III on page 101.

Specifying the WSDL The wsdl attribute is the only required attribute to configure a provider
endpoint. It specifies the location of the WSDL document that defines the
endpoint being exposed. The path used is relative to the top-level of the
exploded service unit.

Tip
If the WSDL document defines a single service with a single endpoint,
then you do not require any additional information to expose a
provider endpoint.

Example 10.1 on page 89 shows the minimal configuration for a provider
endpoint.

Example 10.1. Minimal Provider Endpoint Configuration

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
... >

...
<cxfbc:provider wsdl="/wsdl/widget.wsdl" />

...
</beans>

For information on creating a WSDL document see Part I: on page 15.

Specifying the endpoint details If the endpoint's WSDL document defines a single service with a single
endpoint, the ESB can easily determine which endpoint to use. It will use the
values from the WSDL document to specify the service name, endpoint name
and interface name for the instantiated endpoint.

However, if the endpoint's WSDL document defines multiple services or if it
defines multiple endpoints for a service, you will need to provide the consumer
endpoint with additional information so that it can determine the proper
definition to use. What information you need to provide depends on the
complexity of the WSDL document. You may need to supply values for both
the service name and the endpoint name, or you may only have to supply
one of these values.

If the WSDL document contains more than one service element you will
need to specify a value for the provider's service attribute. The value of the

89FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

provider's service attribute is the QName of the WSDL service element
that defines the desired service in the WSDL document. For example, if you
wanted your endpoint to use the WidgetInventoryService in the WSDL shown
in Example 10.2 on page 90 you would use the configuration shown in
Example 10.3 on page 90.

Example 10.2. WSDL with Two Services

<definitions ...
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://demos.widgetVendor.com" ...>

...
<service name="WidgetSalesService">
<port binding="WidgetSalesBinding" name="WidgetSalesPort">
<soap:address location="http://widget.sales.com/index.xml">

</port>
</service>

<service name="WidgetInventoryService">
<port binding="WidgetInventoryBinding" name="WidgetInventoryPort">
<soap:address location="http://widget.inventory.com/index.xml">

</port>
</service>
...

<definitions>

Example 10.3. Provider Endpoint with a Defined Service Name

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
xmlns:widgets="http://demos.widgetVendor.com"
... >

...
<cxfbc:provider wsdl="/wsdl/widget.wsdl"

service="widgets:WidgetInventoryService" />

...
</beans>

If the WSDL document's service definition contains more than one endpoint,
then you will need to provide a value for the provider's endpoint attribute.
The value of the endpoint attribute corresponds to the value of the WSDL
port element's name attribute. For example, if you wanted your endpoint to
use the WidgetWesternSalesPort in the WSDL shown in
Example 10.4 on page 91 you would use the configuration shown in
Example 10.5 on page 91.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.190

Chapter 10. Provider Endpoints

Example 10.4. Service with Two Endpoints

<definitions ...
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://demos.widgetVendor.com" ...>

...
<service name="WidgetSalesService">
<port binding="WidgetSalesBinding" name="WidgetWesternSalesPort">
<soap:address location="http://widget.sales.com/index.xml">

</port>
<port binding="WidgetSalesBinding" name="WidgetEasternSalesPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
<jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>

</port>
</service>
...

<definitions>

Example 10.5. Provider Endpoint with a Defined Endpoint Name

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
xmlns:widgets="http://demos.widgetVendor.com"
... >

...
<cxfbc:provider wsdl="/wsdl/widget.wsdl"

endpoint="WidgetWesternSalesService" />
...

</beans>

91FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.192

Chapter 11. Using MTOM to Process
Binary Content
Enabling MTOM support allows your endpoints to consume and produce messages that contain binary data.

Overview SOAP Message Transmission Optimization Mechanism (MTOM) specifies an
optimized method for sending binary data as part of a SOAP message using
the XML-binary Optimized Packaging (XOP) packages for transmitting binary
data. The FUSE Services Framework binding supports the use of MTOM to
send and receive binary data. MTOM support is enabled on an endpoint by
endpoint basis.

Configuring an endpoint to
support MTOM

As shown in Example 11.1 on page 93, you configure an endpoint to support
MTOM by setting its mtomEnabled attribute to true.

Example 11.1. Configuring an Endpoint to Use MTOM

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
...>

<cxfbc:consumer wsdl="/wsdl/widget.wsdl"
mtomEnabled="true" />

...
</beans>

93FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.194

Chapter 12. Working with the JBI
Wrapper
By default, all FUSE Services Framework binding component endpoints expect SOAP messages to be inside of
the JBI wrapper. You can turn off the extra processing if it is not required.

Overview There are instances when a JBI component cannot consume a native SOAP
message. For instance, SOAP headers pose difficulty for JBI components. The
JBI specification defines a JBI wrapper that can be used to make SOAP
messages, or any message defined in WSDL 1.1, conform to the expectations
of a JBI component.

For the sake of compatibility, all endpoints exposed by the FUSE Services
Framework binding component will check for the JBI wrapper. If it is present
the endpoint will unwrap the messages. If you are positive that your endpoints
will never receive messages that use the JBI wrapper, you can turn off the
extra processing.

Turning of JBI wrapper processing If you are sure your endpoint will not receive messages using the JBI wrapper
you can set its useJbiWrapper attribute to false. This instructs the endpoint
to disable the processing of the JBI wrapper. If the endpoint does receive a
message that uses the JBI wrapper, it will fail to process the message and
generate an error.

Example Example 12.1 on page 95 shows a configuration fragment for configuring a
consumer that does not process the JBI wrapper.

Example 12.1. Configuring a Consumer to Not Use the JBI Wrapper

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
... >

...
<cxfbc:consumer wsdl="/wsdl/widget.wsdl"

useJbiWrapper="false" />
...

</beans>

95FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.196

Chapter 13. Using Message Interceptors
You can use low-level message interceptors to process messages before they are delivered to your endpoint's
service implementation.

Overview Interceptors are a low-level pieces of code that process messages as they are
passed between the message channel and service's implementation. They
have access to the raw message data and can be used to process SOAP action
entries, process security tokens, or correlate messages. Interceptors are called
in a chain and you can configure what interceptors are used at a number of
points along the chain.

Configuring an endpoint's
interceptor chain

A FUSE Services Framework binding component endpoint's interceptor chain
has four points at which you can insert an interceptor:

in interceptors
On consumer endpoints the in interceptors process messages when they
are received from the external endpoint.

On provider endpoints the in interceptors process messages when they
are received from the NMR.

in fault interceptors
The in fault interceptors process fault messages that are generated before
the service implementation gets called.

out interceptors
On consumer endpoints the out interceptors process messages as they
pass from the service implementation to the external endpoint.

On provider endpoints the out interceptors process messages as they
pass from the service implementation to the NMR.

out fault interceptors
The out fault interceptors process fault messages that are generated by
the service implementation or by an out interceptor.

An endpoint's interceptor chain is configured using children of its consumer
element or provider element. Table 13.1 on page 98 lists the elements
used to configure an endpoint's interceptor chain.

97FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Table 13.1. Elements Used to Configure an Endpoint's Interceptor Chain

DescriptionName

Specifies a list of interceptors that process
incoming messages.

inInterceptors

Specifies a list of interceptors that process
incoming fault messages.

inFaultInterceptors

Specifies a list of interceptors that process
outgoing messages.

outInterceptors

Specifies a list of interceptors that process
outgoing fault messages.

outFaultInterceptors

Example 13.1 on page 98 shows a consumer endpoint configured to use
the FUSE Services Framework logging interceptors.

Example 13.1. Configuring an Interceptor Chain

<cxfbc:consumer ...>
...
<cxfbc:inInterceptors>
<bean class="org.apache.cxf.interceptor.LoggingInInterceptor" />

</cxfbc:inInterceptors>
<cxfbc:outInterceptors>
<bean class="org.apache.cxf.interceptor.LoggingOutInterceptor" />

</cxfbc:outInterceptors>
<cxfbc:inFaultInterceptors>
<bean class="org.apache.cxf.interceptor.LoggingInInterceptor" />

</cxfbc:inFaultInterceptors>
<cxfbc:outFaultInterceptors>
<bean class="org.apache.cxf.interceptor.LoggingOutInterceptor" />

</cxfbc:outFaultInterceptors>
</cxfbc:consumer>

Implementing an interceptor You can implement a custom interceptor by extending the
org.apache.cxf.phase.AbstractPhaseInterceptor class or one of its
sub-classes. Extending AbstractPhaseInterceptor provides you with
access to the generic message handling APIs used by FUSE Services
Framework. Extending one of the sub-classes provides you with more specific

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.198

Chapter 13. Using Message Interceptors

APIs. For example, extending the AbstractSoapInterceptor class allows
your interceptor to work directly with the SOAP APIs.

More information For more information about writing FUSE Services Framework interceptors
see the Apache CXF documentation1.

1 http://cwiki.apache.org/CXF20DOC/interceptors.html

99FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

http://cwiki.apache.org/CXF20DOC/interceptors.html
http://cwiki.apache.org/CXF20DOC/interceptors.html

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1100

Part III. Configuring the CXF Transport
Runtimes
To take advantage of some of the features of the FUSE Services Framework transports you need to configure the
FUSE Services Framework's runtime. You do this by configuring your endpoint to pass configuration information
to the runtime using the busCfg attribute.

14. Configuring the Endpoints to Load FUSE Services Framework Runtime Configuration 103
15. JMS Runtime Configuration .. 105

JMS Session Pool Configuration ... 106
Consumer Specific Runtime Configuration .. 107
Provider Specific Runtime Configuration ... 108

16. Configuring the Jetty Runtime ... 109
17. Deploying WS-Addressing .. 113

Introduction to WS-Addressing .. 114
WS-Addressing Interceptors .. 115
Enabling WS-Addressing .. 116
Configuring WS-Addressing Attributes ... 118

18. Enabling Reliable Messaging .. 121
Introduction to WS-RM .. 122
WS-RM Interceptors ... 124
Enabling WS-RM ... 126
Configuring WS-RM .. 130

Configuring FUSE Services Framework-Specific WS-RM Attributes 131
Configuring Standard WS-RM Policy Attributes .. 133
WS-RM Configuration Use Cases ... 137

Configuring WS-RM Persistence ... 141

Chapter 14. Configuring the Endpoints
to Load FUSE Services Framework
Runtime Configuration
Both consumers and providers use the busCfg attribute to configure the endpoint to load FUSE Services Framework
runtime configuration. Its value points to a FUSE Services Framework configuration file.

Specifying the configuration to
load

You instruct an endpoint to load FUSE Services Framework runtime
configuration using the busCfg attribute. Both the provider element and
the consumer element accept this attribute. The attribute's value is the path
to a file containing configuration information used by the FUSE Services
Framework runtime. This path is relative to the location of the endpoint's
xbean.xml file.

Tip
The FUSE Services Framework configuration file should be stored in
the endpoint's service unit.

Each endpoint uses a separate FUSE Services Framework runtime. If your
service unit creates multiple endpoints, each endpoint can load its own FUSE
Services Framework runtime configuration.

Example Example 14.1 on page 103 shows the configuraiton for a provider endpoint
that loads a FUSE Services Framework configuration file called
jms-config.xml.

Example 14.1. Provider Endpoint that Loads FUSE Services Framework
Runtime Configuration

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
xmlns:greeter="http://cxf.apache.org/jms_greeter"
xmlns:test="http://test">

<cxfbc:provider wsdl="classpath:jms_greeter.wsdl"
service="greeter:JMSGreeterService"
endpoint="GreeterPort"
interfaceName="greeter:JMSGreeterPortType"
useJBIWrapper="false"

103FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

busCfg="./jms-config.xml" />

</beans>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1104

Chapter 14. Configuring the Endpoints to Load FUSE
Services Framework Runtime Configuration

Chapter 15. JMS Runtime Configuration
The FUSE Services Framework JMS runtime is highly configurable.

JMS Session Pool Configuration ... 106
Consumer Specific Runtime Configuration .. 107
Provider Specific Runtime Configuration ... 108

In addition to configuring the externally visible aspects of your JMS endpoint,
you can also configure aspects of its internal runtime behavior. There are
three types of runtime configuration:

• JMS session pool configuration on page 106

• Consumer specific configuration on page 107

• Provider specific configuration on page 108

105FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

JMS Session Pool Configuration

Overview The JMS configuration allows you to specify the number of JMS sessions an
endpoint will keep in a pool.

Configuration element You use the jms:sessionPool element to specify the session pool
configuration for a JMS endpoint. The jms:sessionPool element is a child
of both the jms:conduit element and the jms:destination element.

The jms:sessionPool element's attributes, listed in Table 15.1 on page 106,
specify the high and low water marks for the endpoint's JMS session pool.

Table 15.1. Attributes for Configuring the JMS Session Pool

DescriptionAttribute

Specifies the minimum number of JMS sessions pooled
by the endpoint. The default is 20.

lowWaterMark

Specifies the maximum number of JMS sessions pooled
by the endpoint. The default is 500.

highWaterMark

Example Example 15.1 on page 106 shows an example of configuring the session pool
for a FUSE Services Framework JMS provider endpoint.

Example 15.1. JMS Session Pool Configuration

...
<jms:destination name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-destination>

<jms:address ... >
...

</jms:address>
...
<jms:sessionPool lowWaterMark="10"

highWaterMark="5000" />
...

</jms:destination>
...

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1106

Chapter 15. JMS Runtime Configuration

Consumer Specific Runtime Configuration

Overview The JMS consumer configuration allows you to specify two runtime behaviors:

• the number of milliseconds the consumer will wait for a response.

• the number of milliseconds a request will exist before the JMS broker can
remove it.

Configuration element You configure consumer runtime behavior using the jms:clientConfig
element. The jms:clientConfig element is a child of the jms:conduit
element. It has two attributes that are used to specify the configurable runtime
properties of a consumer endpoint.

Configuring the response timeout
interval

You specify the interval, in milliseconds, a consumer endpoint will wait for a
response before timing out using the jms:clientConfig element's
clientReceiveTimeout attribute. The default timeout interval is 2000.

Configure the request time to live You specify the interval, in milliseconds, that a request can remain unreceived
before the JMS broker can delete it using the jms:clientConfig element's
messageTimeToLive attribute. The default time to live interval is 0 which
specifies that the request has an infinite time to live.

Example Example 15.2 on page 107 shows a configuration fragment that sets the
consumer endpoint's request lifetime to 500 milliseconds and its timeout
value to 500 milliseconds.

Example 15.2. JMS Consumer Endpoint Runtime Configuration

...
<jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
<jms:address ... >
...

</jms:address>
...
<jms:clientConfig clientReceiveTimeout="500"

messageTimeToLive="500" />
...

</jms:conduit>
...

107FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Consumer Specific Runtime Configuration

Provider Specific Runtime Configuration

Overview The provider specific configuration allows you to specify to runtime behaviors:

• the amount of time a response message can remain unreceived before the
JMS broker can delete it.

• the client identifier used when creating and accessing durable subscriptions.

Configuration element You configure provider runtime behavior using the jms:serverConfig
element. The jms:serverConfig element is a child of the jms:destination
element. It has two attributes that are used to specify the configurable runtime
properties of a provider endpoint.

Configuring the response time to
live

The jms:serverConfig element's messageTimeToLive attribute specifies
the amount of time, in milliseconds, that a response can remain unread before
the JMS broker is allowed to delete it. The default is 0 which specifies that
the message can live forever.

Configuring the durable
subscriber identifier

The jms:serverConfig element's durableSubscriptionClientId attribute
specifies the client identifier the endpoint uses to create and access durable
subscriptions.

Example Example 15.3 on page 108 shows a configuration fragment that sets the
provider endpoint's response lifetime to 500 milliseconds and its durable
subscription client identifier to jms-test-id.

Example 15.3. Provider Endpoint Runtime Configuration

...
<jms:destination name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-destination">

<jms:address ... >
...

</jms:address>
...
<jms:serverConfig messageTimeToLive="500"

durableSubscriptionClientId="jms-test-id" />
...

</jms:destination>
...

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1108

Chapter 15. JMS Runtime Configuration

Chapter 16. Configuring the Jetty
Runtime
The Jetty instance used to implement the HTTP server runtime has a number of configurable properties.

Overview The Jetty runtime is used by HTTP service providers and HTTP consumers
using a decoupled endpoint. The runtime's thread pool can be configured,
and you can also set a number of the security settings for an HTTP service
provider through the Jetty runtime.

Namespace The elements used to configure the Jetty runtime are defined in the namespace
http://cxf.apache.org/transports/http-jetty/configuration. It
is commonly referred to using the prefix httpj. In order to use the Jetty
configuration elements you must add the lines shown in
Example 16.1 on page 109 to the beans element of your endpoint's
configuration file. In addition, you must add the configuration elements'
namespace to the xsi:schemaLocation attribute.

Example 16.1. Jetty Runtime Configuration Namespace

<beans ...
xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration
...
xsi:schemaLocation="...

http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd

...>

The engine-factory element The httpj:engine-factory element is the root element used to configure
the Jetty runtime used by an application. It has a single required attribute,
bus, whose value is the name of the Bus that manages the Jetty instances
being configured.

Tip
The value is typically cxf which is the name of the default Bus
instance.

109FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

The httpj:engine-factory element has three children that contain the
information used to configure the HTTP ports instantiated by the Jetty runtime
factory. The children are described in Table 16.1 on page 110.

Table 16.1. Elements for Configuring a Jetty Runtime Factory

DescriptionElement

Specifies the configuration for a particular Jetty runtime instance.
See "The engine element" on page 110.

httpj:engine

Specifies a reusable set of properties for securing an HTTP service
provider. It has a single attribute, id, that specifies a unique
identifier by which the property set can be referred.

httpj:identifiedTLSServerParameters

Specifies a reusable set of properties for controlling a Jetty instance's
thread pool. It has a single attribute, id, that specifies a unique
identifier by which the property set can be referred.

httpj:identifiedThreadingParameters

See "Configuring the thread pool" on page 111.

The engine element The httpj:engine element is used to configure specific instances of the
Jetty runtime. It has a single attribute, port, that specifies the number of the
port being managed by the Jetty instance.

Tip
You can specify a value of 0 for the port attribute. Any threading
properties specified in an httpj:engine element with its port
attribute set to 0 are used as the configuration for all Jetty listeners
that are not explicitly configured.

Each httpj:engine element can have two children: one for configuring
security properties and one for configuring the Jetty instance's thread pool.
For each type of configuration you can either directly provide the configuration
information or you can provide a reference to a set of configuration properties
defined in the parent httpj:engine-factory element.

The child elements used to provide the configuration properties are described
in Table 16.2 on page 111.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1110

Chapter 16. Configuring the Jetty Runtime

Table 16.2. Elements for Configuring a Jetty Runtime Instance

DescriptionElement

Specifies a set of properties for configuring the security used for the specific
Jetty instance.

httpj:tlsServerParameters

Refers to a set of security properties defined by a
identifiedTLSServerParameters element. The id attribute provides the
id of the referred identifiedTLSServerParameters element.

httpj:tlsServerParametersRef

Specifies the size of the thread pool used by the specific Jetty instance. See
"Configuring the thread pool" on page 111.

httpj:threadingParameters

Refers to a set of properties defined by a identifiedThreadingParameters
element. The id attribute provides the id of the referred
identifiedThreadingParameters element.

httpj:threadingParametersRef

Configuring the thread pool You can configure the size of a Jetty instance's thread pool by either:

• Specifying the size of the thread pool using a
identifiedThreadingParameters element in the engine-factory

element. You then refer to the element using a threadingParametersRef

element.

• Specifying the size of the of the thread pool directly using a
threadingParameters element.

The threadingParameters has two attributes to specify the size of a thread
pool. The attributes are described in Table 16.3 on page 111.

Note
The httpj:identifiedThreadingParameters element has a
single child threadingParameters element.

Table 16.3. Attributes for Configuring a Jetty Thread Pool

DescriptionAttribute

Specifies the minimum number of threads available to the
Jetty instance for processing requests.

minThreads

111FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

DescriptionAttribute

Specifies the maximum number of threads available to the
Jetty instance for processing requests.

maxThreads

Example Example 16.2 on page 112 shows a configuration fragment that configures
a Jetty instance on port number 9001.

Example 16.2. Configuring a Jetty Instance

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="http://cxf.apache.org/configuration/security

http://cxf.apache.org/schemas/configuration/security.xsd
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

...

<httpj:engine-factory bus="cxf">
<httpj:identifiedTLSServerParameters id="secure">
<sec:keyManagers keyPassword="password">
<sec:keyStore type="JKS" password="password"

file="certs/cherry.jks"/>
</sec:keyManagers>

</httpj:identifiedTLSServerParameters>

<httpj:engine port="9001">
<httpj:tlsServerParametersRef id="secure" />
<httpj:threadingParameters minThreads="5"

maxThreads="15" />
</httpj:engine>

</httpj:engine-factory>
</beans>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1112

Chapter 16. Configuring the Jetty Runtime

Chapter 17. Deploying WS-Addressing
FUSE Services Framework supports WS-Addressing for JAX-WS applications. This chapter explains how to deploy
WS-Addressing in the FUSE Services Framework runtime environment.

Introduction to WS-Addressing .. 114
WS-Addressing Interceptors .. 115
Enabling WS-Addressing .. 116
Configuring WS-Addressing Attributes ... 118

113FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Introduction to WS-Addressing

Overview WS-Addressing is a specification that allows services to communicate
addressing information in a transport neutral way. It consists of two parts:

• A structure for communicating a reference to a Web service endpoint

• A set of Message Addressing Properties (MAP) that associate addressing
information with a particular message

Supported specifications FUSE Services Framework supports both the WS-Addressing 2004/08
specification and the WS-Addressing 2005/03 specification.

Further information For detailed information on WS-Addressing, see the 2004/08 submission at
http://www.w3.org/Submission/ws-addressing/.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1114

Chapter 17. Deploying WS-Addressing

http://www.w3.org/Submission/ws-addressing/

WS-Addressing Interceptors

Overview In FUSE Services Framework, WS-Addressing functionality is implemented
as interceptors. The FUSE Services Framework runtime uses interceptors to
intercept and work with the raw messages that are being sent and received.
When a transport receives a message, it creates a message object and sends
that message through an interceptor chain. If the WS-Addressing interceptors
are added to the application's interceptor chain, any WS-Addressing
information included with a message is processed.

WS-Addressing Interceptors The WS-Addressing implementation consists of two interceptors, as described
in Table 17.1 on page 115.

Table 17.1. WS-Addressing Interceptors

DescriptionInterceptor

A logical interceptor responsible for aggregating the
Message Addressing Properties (MAPs) for outgoing
messages.

org.apache.cxf.ws.addressing.MAPAggregator

A protocol-specific interceptor responsible for encoding and
decoding the Message Addressing Properties (MAPs) as
SOAP headers.

org.apache.cxf.ws.addressing.soap.MAPCodec

115FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

WS-Addressing Interceptors

Enabling WS-Addressing

Overview To enable WS-Addressing the WS-Addressing interceptors must be added to
the inbound and outbound interceptor chains. This is done in one of the
following ways:

• FUSE Services Framework Features

• RMAssertion and WS-Policy Framework

• Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a
Feature

WS-Addressing can be enabled by adding the WS-Addressing feature to the
client and the server configuration as shown in Example 17.1 on page 116
and Example 17.2 on page 116 respectively.

Example 17.1. client.xml—Adding WS-Addressing Feature to Client
Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemaLocation="
http://www.springframework.org/schema/beans ht

tp://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:client ...>
<jaxws:features>

<wsa:addressing/>
</jaxws:features>

</jaxws:client>
</beans>

Example 17.2. server.xml—Adding WS-Addressing Feature to Server
Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemaLocation="

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1116

Chapter 17. Deploying WS-Addressing

http://www.springframework.org/schema/beans http://www.spring
framework.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint ...>
<jaxws:features>

<wsa:addressing/>
</jaxws:features>

</jaxws:endpoint>
</beans>

117FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Enabling WS-Addressing

Configuring WS-Addressing Attributes

Overview The FUSE Services Framework WS-Addressing feature element is defined in
the namespace http://cxf.apache.org/ws/addressing. It supports the two
attributes described in Table 17.2 on page 118.

Table 17.2. WS-Addressing Attributes

ValueAttribute Name

A boolean that determines if duplicate MessageIDs are tolerated. The default
setting is true.

allowDuplicates

A boolean that indicates if the presence of the UsingAddressing element in the

WSDL is advisory only; that is, its absence does not prevent the encoding of
WS-Addressing headers.

usingAddressingAdvisory

Configuring WS-Addressing
attributes

Configure WS-Addressing attributes by adding the attribute and the value you
want to set it to the WS-Addressing feature in your server or client configuration
file. For example, the following configuration extract sets the
allowDublicates attribute to false on the server endpoint:

<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing"
...>

<jaxws:endpoint ...>
<jaxws:features>

<wsa:addressing allowDuplicates="false"/>
</jaxws:features>

</jaxws:endpoint>
</beans>

Using a WS-Policy assertion
embedded in a feature

In Example 17.3 on page 118 an addressing policy assertion to enable
non-anonymous responses is embedded in the policies element.

Example 17.3. Using the Policies to Configure WS-Addressing

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:policy="http://cxf.apache.org/policy-config"

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1118

Chapter 17. Deploying WS-Addressing

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort"
createdFromAPI="true">

<jaxws:features>
<policy:policies>

<wsp:Policy xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
<wsam:Addressing>

<wsp:Policy>
<wsam:NonAnonymousResponses/>

</wsp:Policy>
</wsam:Addressing>

</wsp:Policy>
<policy:policies>

</jaxws:features>
</jaxws:endpoint>

</beans>

119FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Configuring WS-Addressing Attributes

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1120

Chapter 18. Enabling Reliable
Messaging
FUSE Services Framework supports WS-Reliable Messaging(WS-RM). This chapter explains how to enable and
configure WS-RM in FUSE Services Framework.

Introduction to WS-RM .. 122
WS-RM Interceptors ... 124
Enabling WS-RM ... 126
Configuring WS-RM .. 130

Configuring FUSE Services Framework-Specific WS-RM Attributes .. 131
Configuring Standard WS-RM Policy Attributes .. 133
WS-RM Configuration Use Cases ... 137

Configuring WS-RM Persistence ... 141

121FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Introduction to WS-RM

Overview WS-ReliableMessaging (WS-RM) is a protocol that ensures the reliable delivery
of messages in a distributed environment. It enables messages to be delivered
reliably between distributed applications in the presence of software, system,
or network failures.

For example, WS-RM can be used to ensure that the correct messages have
been delivered across a network exactly once, and in the correct order.

How WS-RM works WS-RM ensures the reliable delivery of messages between a source and a
destination endpoint. The source is the initial sender of the message and the
destination is the ultimate receiver, as shown in Figure 18.1 on page 122.

Figure 18.1. Web Services Reliable Messaging

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM
destination. This contains a reference for the endpoint that receives
acknowledgements (the wsrm:AcksTo endpoint).

2. The RM destination sends a CreateSequenceResponse protocol message
back to the RM source. This message contains the sequence ID for the
RM sequence session.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1122

Chapter 18. Enabling Reliable Messaging

3. The RM source adds an RM Sequence header to each message sent by
the application source. This header contains the sequence ID and a unique
message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the RM
source by sending messages that contain the RM
SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination in
an exactly-once-in-order fashion.

7. The RM source retransmits a message that it has not yet received an
acknowledgement.

The first retransmission attempt is made after a base retransmission
interval. Successive retransmission attempts are made, by default, at
exponential back-off intervals or, alternatively, at fixed intervals. For more
details, see "Configuring WS-RM" on page 130.

This entire process occurs symmetrically for both the request and the response
message; that is, in the case of the response message, the server acts as the
RM source and the client acts as the RM destination.

WS-RM delivery assurances WS-RM guarantees reliable message delivery in a distributed environment,
regardless of the transport protocol used. Either the source or the destination
endpoint logs an error if reliable delivery can not be assured.

Supported specifications FUSE Services Framework supports the 2005/02 version of the WS-RM
specification, which is based on the WS-Addressing 2004/08 specification.

Further information For detailed information on WS-RM, see the specification at http://
specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf.

123FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Introduction to WS-RM

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

WS-RM Interceptors

Overview In FUSE Services Framework, WS-RM functionality is implemented as
interceptors. The FUSE Services Framework runtime uses interceptors to
intercept and work with the raw messages that are being sent and received.
When a transport receives a message, it creates a message object and sends
that message through an interceptor chain. If the application's interceptor
chain includes the WS-RM interceptors, the application can participate in
reliable messaging sessions. The WS-RM interceptors handle the collection
and aggregation of the message chunks. They also handle all of the
acknowledgement and retransmission logic.

FUSE Services Framework
WS-RM Interceptors

The FUSE Services Framework WS-RM implementation consists of four
interceptors, which are described in Table 18.1 on page 124.

Table 18.1. FUSE Services Framework WS-ReliableMessaging Interceptors

DescriptionInterceptor

Deals with the logical aspects of providing reliability
guarantees for outgoing messages.

org.apache.cxf.ws.rm.RMOutInterceptor

Responsible for sending the CreateSequence
requests and waiting for their
CreateSequenceResponse responses.

Also responsible for aggregating the sequence
properties—ID and message number—for an
application message.

Responsible for intercepting and processing RM
protocol messages and SequenceAcknowledgement

org.apache.cxf.ws.rm.RMInInterceptor

messages that are piggybacked on application
messages.

Responsible for encoding and decoding the reliability
properties as SOAP headers.

org.apache.cxf.ws.rm.soap.RMSoapInterceptor

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1124

Chapter 18. Enabling Reliable Messaging

DescriptionInterceptor

Responsible for creating copies of application
messages for future resending.

org.apache.cxf.ws.rm.RetransmissionInterceptor

Enabling WS-RM The presence of the WS-RM interceptors on the interceptor chains ensures
that WS-RM protocol messages are exchanged when necessary. For example,
when intercepting the first application message on the outbound interceptor
chain, the RMOutInterceptor sends a CreateSequence request and waits
to process the original application message until it receives the
CreateSequenceResponse response. In addition, the WS-RM interceptors
add the sequence headers to the application messages and, on the destination
side, extract them from the messages. It is not necessary to make any changes
to your application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see "Enabling WS-RM"
on page 126.

Configuring WS-RM Attributes You control sequence demarcation and other aspects of the reliable exchange
through configuration. For example, by default FUSE Services Framework
attempts to maximize the lifetime of a sequence, thus reducing the overhead
incurred by the out-of-band WS-RM protocol messages. To enforce the use
of a separate sequence per application message configure the WS-RM source’s
sequence termination policy (setting the maximum sequence length to 1).

For more information on configuring WS-RM behavior, see "Configuring
WS-RM" on page 130.

125FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

WS-RM Interceptors

Enabling WS-RM

Overview To enable reliable messaging, the WS-RM interceptors must be added to the
interceptor chains for both inbound and outbound messages and faults.
Because the WS-RM interceptors use WS-Addressing, the WS-Addressing
interceptors must also be present on the interceptor chains.

You can ensure the presence of these interceptors in one of two ways:

• Explicitly, by adding them to the dispatch chains using Spring beans

• Implicitly, using WS-Policy assertions, which cause the FUSE Services
Framework runtime to transparently add the interceptors on your behalf.

Spring beans—explicitly adding
interceptors

To enable WS-RM add the WS-RM and WS-Addressing interceptors to the
FUSE Services Framework bus, or to a consumer or service endpoint using
Spring bean configuration. This is the approach taken in the WS-RM sample
that is found in the InstallDir/samples/ws_rm directory. The configuration
file, ws-rm.cxf, shows the WS-RM and WS-Addressing interceptors being
added one-by-one as Spring beans (see Example 18.1 on page 126).

Example 18.1. Enabling WS-RM Using Spring Beans

<?xml version="1.0" encoding="UTF-8"?>
❶<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/

beans http://www.springframework.org/schema/beans/spring-beans.xsd">
❷ <bean id="mapAggregator" class="org.apache.cxf.ws.addressing.MAPAggregator"/>

<bean id="mapCodec" class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>
❸ <bean id="rmLogicalOut" class="org.apache.cxf.ws.rm.RMOutInterceptor">

<property name="bus" ref="cxf"/>
</bean>
<bean id="rmLogicalIn" class="org.apache.cxf.ws.rm.RMInInterceptor">

<property name="bus" ref="cxf"/>
</bean>
<bean id="rmCodec" class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>
<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">

❹ <property name="inInterceptors">
<list>

<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalIn"/>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1126

Chapter 18. Enabling Reliable Messaging

<ref bean="rmCodec"/>
</list>

</property>
❺ <property name="inFaultInterceptors">

<list>
<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalIn"/>
<ref bean="rmCodec"/>

</list>
</property>

❻ <property name="outInterceptors">
<list>

<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>

</list>
</property>

❼ <property name="outFaultInterceptors">
<list>

<ref bean="mapAggregator">
<ref bean="mapCodec"/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>

</list>
</property>

</bean>
</beans>

The code shown in Example 18.1 on page 126 can be explained as follows:

❶ A FUSE Services Framework configuration file is a Spring XML file. You
must include an opening Spring beans element that declares the

namespaces and schema files for the child elements that are
encapsulated by the beans element.

❷ Configures each of the WS-Addressing interceptors—MAPAggregator

and MAPCodec. For more information on WS-Addressing, see "Deploying

WS-Addressing" on page 113.
❸ Configures each of the WS-RM interceptors—RMOutInterceptor,

RMInInterceptor, and RMSoapInterceptor.

❹ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for inbound messages.

❺ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for inbound faults.

127FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Enabling WS-RM

❻ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for outbound messages.

❼ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for outbound faults.

WS-Policy framework—implicitly
adding interceptors

The WS-Policy framework provides the infrastructure and APIs that allow you
to use WS-Policy. It is compliant with the November 2006 draft publications
of the Web Services Policy 1.5—Framework1 and Web Services Policy
1.5—Attachment2 specifications.

To enable WS-RM using the FUSE Services Framework WS-Policy framework,
do the following:

1. Add the policy feature to your client and server endpoint.
Example 18.2 on page 128 shows a reference bean nested within a
jaxws:feature element. The reference bean specifies the

AddressingPolicy, which is defined as a separate element within the

same configuration file.

Example 18.2. Configuring WS-RM using WS-Policy

<jaxws:client>
<jaxws:features>
<ref bean="AddressingPolicy"/>

</jaxws:features>
</jaxws:client>
<wsp:Policy wsu:Id="AddressingPolicy" xmlns:wsam="http://www.w3.org/2007/02/address
ing/metadata">

<wsam:Addressing>
<wsp:Policy>
<wsam:NonAnonymousResponses/>

</wsp:Policy>
</wsam:Addressing>

</wsp:Policy>

2. Add a reliable messaging policy to the wsdl:service element—or any

other WSDL element that can be used as an attachment point for policy
or policy reference elements—to your WSDL file, as shown in
Example 18.3 on page 129.

1 http://www.w3.org/TR/2006/WD-ws-policy-20061117/
2 http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1128

Chapter 18. Enabling Reliable Messaging

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

Example 18.3. Adding an RM Policy to Your WSDL File

<wsp:Policy wsu:Id="RM"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-

1.0.xsd">
<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

<wsp:Policy/>
</wsam:Addressing>
<wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">

<wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
</wsrmp:RMAssertion>

</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">

<wsdl:port binding="tns:GreeterSOAPBinding" name="GreeterPort">
<soap:address location="http://localhost:9020/SoapContext/GreeterPort"/>
<wsp:PolicyReference URI="#RM" xmlns:wsp="http://www.w3.org/2006/07/ws-policy"/>

</wsdl:port>
</wsdl:service>

129FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Enabling WS-RM

Configuring WS-RM
Configuring FUSE Services Framework-Specific WS-RM Attributes .. 131
Configuring Standard WS-RM Policy Attributes .. 133
WS-RM Configuration Use Cases ... 137

You can configure WS-RM by:

• Setting FUSE Services Framework-specific attributes that are defined in
the FUSE Services Framework WS-RM manager namespace,
http://cxf.apache.org/ws/rm/manager.

• Setting standard WS-RM policy attributes that are defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1130

Chapter 18. Enabling Reliable Messaging

Configuring FUSE Services Framework-Specific WS-RM Attributes

Overview To configure the FUSE Services Framework-specific attributes, use the
rmManager Spring bean. Add the following to your configuration file:

• The http://cxf.apache.org/ws/rm/manager namespace to your list of
namespaces.

• An rmManager Spring bean for the specific attribute that your want to

configure.

Example 18.4 on page 131 shows a simple example.

Example 18.4. Configuring FUSE Services Framework-Specific WS-RM Attributes

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"

xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/ws/rm/manager http://cxf.apache.org/schemas/configuration/wsrm-man
ager.xsd">
...
<wsrm-mgr:rmManager>
<!--
...Your configuration goes here

-->
</wsrm-mgr:rmManager>

Children of the rmManager Spring
bean

Table 18.2 on page 131 shows the child elements of the rmManager Spring
bean, defined in the http://cxf.apache.org/ws/rm/manager namespace.

Table 18.2. Children of the rmManager Spring Bean

DescriptionElement

An element of type RMAssertionRMAssertion

An element of type DeliveryAssuranceType that
describes the delivery assurance that should apply

deliveryAssurance

An element of type SourcePolicyType that allows you
to configure details of the RM source

sourcePolicy

131FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Configuring FUSE Services Framework-Specific WS-RM
Attributes

DescriptionElement

An element of type DestinationPolicyType that allows
you to configure details of the RM destination

destinationPolicy

Example For an example, see "Maximum unacknowledged messages threshold"
on page 139.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1132

Chapter 18. Enabling Reliable Messaging

Configuring Standard WS-RM Policy Attributes

Overview You can configure standard WS-RM policy attributes in one of the following
ways:

• "RMAssertion in rmManager Spring bean"

• "Policy within a feature"

• "WSDL file"

• "External attachment"

WS-Policy RMAssertion Children Table 18.3 on page 133 shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 18.3. Children of the WS-Policy RMAssertion Element

DescriptionName

Specifies the amount of time that must pass without receiving a message before
an endpoint can consider an RM sequence to have been terminated due to
inactivity.

InactivityTimeout

Sets the interval within which an acknowledgement must be received by the
RM Source for a given message. If an acknowledgement is not received within

BaseRetransmissionInterval

the time set by the BaseRetransmissionInterval, the RM Source will

retransmit the message.

Indicates the retransmission interval will be adjusted using the commonly known
exponential backoff algorithm (Tanenbaum).

ExponentialBackoff

For more information, see Computer Networks, Andrew S. Tanenbaum, Prentice
Hall PTR, 2003.

In WS-RM, acknowledgements are sent on return messages or sent stand-alone.
If a return message is not available to send an acknowledgement, an RM

AcknowledgementInterval

Destination can wait for up to the acknowledgement interval before sending a

133FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Configuring Standard WS-RM Policy Attributes

DescriptionName

stand-alone acknowledgement. If there are no unacknowledged messages, the
RM Destination can choose not to send an acknowledgement.

More detailed reference
information

For more detailed reference information, including descriptions of each
element’s sub-elements and attributes, please refer to http://
schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.

RMAssertion in rmManager
Spring bean

You can configure standard WS-RM policy attributes by adding an
RMAssertion within a FUSE Services Framework rmManager Spring bean.
This is the best approach if you want to keep all of your WS-RM configuration
in the same configuration file; that is, if you want to configure FUSE Services
Framework-specific attributes and standard WS-RM policy attributes in the
same file.

For example, the configuration in Example 18.5 on page 134 shows:

• A standard WS-RM policy attribute, BaseRetransmissionInterval,

configured using an RMAssertion within an rmManager Spring bean.

• An FUSE Services Framework-specific RM attribute,
intraMessageThreshold, configured in the same configuration file.

Example 18.5. Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring Bean

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"

...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>

</wsrm-policy:RMAssertion>
<wsrm-mgr:destinationPolicy>

<wsrm-mgr:acksPolicy intraMessageThreshold="0" />
</wsrm-mgr:destinationPolicy>

</wsrm-mgr:rmManager>
</beans>

Policy within a feature You can configure standard WS-RM policy attributes within features, as shown
in Example 18.6 on page 135.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1134

Chapter 18. Enabling Reliable Messaging

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

Example 18.6. Configuring WS-RM Attributes as a Policy within a Feature

<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-

utility-1.0.xsd"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort" created
FromAPI="true">

<jaxws:features>
<wsp:Policy>

<wsrm:RMAssertion xmlns:wsrm="http://schem
as.xmlsoap.org/ws/2005/02/rm/policy">

<wsrm:AcknowledgementInterval Milliseconds="200" />
</wsrm:RMAssertion>
<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/address

ing/metadata">
<wsp:Policy>

<wsam:NonAnonymousResponses/>
</wsp:Policy>

</wsam:Addressing>
</wsp:Policy>

</jaxws:features>
</jaxws:endpoint>

</beans>

WSDL file If you use the WS-Policy framework to enable WS-RM, you can configure
standard WS-RM policy attributes in a WSDL file. This is a good approach if
you want your service to interoperate and use WS-RM seamlessly with
consumers deployed to other policy-aware Web services stacks.

135FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Configuring Standard WS-RM Policy Attributes

For an example, see "WS-Policy framework—implicitly adding interceptors"
on page 128 where the base retransmission interval is configured in the WSDL
file.

External attachment You can configure standard WS-RM policy attributes in an external attachment
file. This is a good approach if you cannot, or do not want to, change your
WSDL file.

Example 18.7 on page 136 shows an external attachment that enables both
WS-A and WS-RM (base retransmission interval of 30 seconds) for a specific
EPR.

Example 18.7. Configuring WS-RM in an External Attachment

<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy" xmlns:wsa="ht
tp://www.w3.org/2005/08/addressing">

<wsp:PolicyAttachment>
<wsp:AppliesTo>

<wsa:EndpointReference>
<wsa:Address>http://localhost:9020/SoapContext/GreeterPort</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>
<wsp:Policy>

<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
<wsp:Policy/>

</wsam:Addressing>
<wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">

<wsrmp:BaseRetransmissionInterval Milliseconds="30000"/>
</wsrmp:RMAssertion>

</wsp:Policy>
</wsp:PolicyAttachment>

</attachments>/

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1136

Chapter 18. Enabling Reliable Messaging

WS-RM Configuration Use Cases

Overview This subsection focuses on configuring WS-RM attributes from a use case
point of view. Where an attribute is a standard WS-RM policy attribute, defined
in the http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace, only
the example of setting it in an RMAssertion within an rmManager Spring
bean is shown. For details of how to set such attributes as a policy within a
feature; in a WSDL file, or in an external attachment, see "Configuring
Standard WS-RM Policy Attributes" on page 133.

The following use cases are covered:

• "Base retransmission interval"

• "Exponential backoff for retransmission"

• "Acknowledgement interval"

• "Maximum unacknowledged messages threshold"

• "Maximum length of an RM sequence"

• "Message delivery assurance policies"

Base retransmission interval The BaseRetransmissionInterval element specifies the interval at which
an RM source retransmits a message that has not yet been acknowledged. It
is defined in the http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
schema file. The default value is 3000 milliseconds.

Example 18.8 on page 137 shows how to set the WS-RM base retransmission
interval.

Example 18.8. Setting the WS-RM Base Retransmission Interval

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>

</wsrm-policy:RMAssertion>

137FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

WS-RM Configuration Use Cases

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

</wsrm-mgr:rmManager>
</beans>

Exponential backoff for
retransmission

The ExponentialBackoff element determines if successive retransmission
attempts for an unacknowledged message are performed at exponential
intervals.

The presence of the ExponentialBackoff element enables this feature. An
exponential backoff ratio of 2 is used by default.

Example 18.9 on page 138 shows how to set the WS-RM exponential backoff
for retransmission.

Example 18.9. Setting the WS-RM Exponential Backoff Property

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:ExponentialBackoff="4"/>

</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Acknowledgement interval The AcknowledgementInterval element specifies the interval at which the
WS-RM destination sends asynchronous acknowledgements. These are in
addition to the synchronous acknowledgements that it sends on receipt of an
incoming message. The default asynchronous acknowledgement interval is 0
milliseconds. This means that if the AcknowledgementInterval is not
configured to a specific value, acknowledgements are sent immediately (that
is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM destination only if both
of the following conditions are met:

• The RM destination is using a non-anonymous wsrm:acksTo endpoint.

• The opportunity to piggyback an acknowledgement on a response message
does not occur before the expiry of the acknowledgement interval.

Example 18.10 on page 139 shows how to set the WS-RM acknowledgement
interval.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1138

Chapter 18. Enabling Reliable Messaging

Example 18.10. Setting the WS-RM Acknowledgement Interval

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:AcknowledgementInterval Milliseconds="2000"/>

</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Maximum unacknowledged
messages threshold

The maxUnacknowledged attribute sets the maximum number of
unacknowledged messages that can accrue per sequence before the sequence
is terminated.

Example 18.11 on page 139 shows how to set the WS-RM maximum
unacknowledged messages threshold.

Example 18.11. Setting the WS-RM Maximum Unacknowledged Message Threshold

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>

<wsrm-mgr:sourcePolicy>
<wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />

</wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

Maximum length of an RM
sequence

The maxLength attribute sets the maximum length of a WS-RM sequence.
The default value is 0, which means that the length of a WS-RM sequence
is unbound.

When this attribute is set, the RM endpoint creates a new RM sequence when
the limit is reached, and after receiving all of the acknowledgements for the
previously sent messages. The new message is sent using a newsequence.

Example 18.12 on page 139 shows how to set the maximum length of an
RM sequence.

Example 18.12. Setting the Maximum Length of a WS-RM Message Sequence

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>

139FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

WS-RM Configuration Use Cases

<wsrm-mgr:reliableMessaging>
<wsrm-mgr:sourcePolicy>

<wsrm-mgr:sequenceTerminationPolicy maxLength="100" />
</wsrm-mgr:sourcePolicy>

</wsrm-mgr:reliableMessaging>
</beans>

Message delivery assurance
policies

You can configure the RM destination to use the following delivery assurance
policies:

• AtMostOnce — The RM destination delivers the messages to the application
destination only once. If a message is delivered more than once an error is
raised. It is possible that some messages in a sequence may not be
delivered.

• AtLeastOnce — The RM destination delivers the messages to the
application destination at least once. Every message sent will be delivered
or an error will be raised. Some messages might be delivered more than
once.

• InOrder — The RM destination delivers the messages to the application
destination in the order that they are sent. This delivery assurance can be
combined with the AtMostOnce or AtLeastOnce assurances.

Example 18.13 on page 140 shows how to set the WS-RM message delivery
assurance.

Example 18.13. Setting the WS-RM Message Delivery Assurance Policy

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>

<wsrm-mgr:deliveryAssurance>
<wsrm-mgr:AtLeastOnce />

</wsrm-mgr:deliveryAssurance>
</wsrm-mgr:reliableMessaging>
</beans>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1140

Chapter 18. Enabling Reliable Messaging

Configuring WS-RM Persistence

Overview The FUSE Services Framework WS-RM features already described in this
chapter provide reliability for cases such as network failures. WS-RM
persistence provides reliability across other types of failure such as an RM
source or an RM destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in
persistent storage. This enables the endpoints to continue sending and
receiving messages when they are reincarnated.

FUSE Services Framework enables WS-RM persistence in a configuration file.
The default WS-RM persistence store is JDBC-based. For convenience, FUSE
Services Framework includes Derby for out-of-the-box deployment. In addition,
the persistent store is also exposed using a Java API.

Important
WS-RM persistence is supported for oneway calls only, and it is
disabled by default.

How it works FUSE Services Framework WS-RM persistence works as follows:

• At the RM source endpoint, an outgoing message is persisted before
transmission. It is evicted from the persistent store after the
acknowledgement is received.

• After a recovery from crash, it recovers the persisted messages and
retransmits until all the messages have been acknowledged. At that point,
the RM sequence is closed.

• At the RM destination endpoint, an incoming message is persisted, and
upon a successful store, the acknowledgement is sent. When a message
is successfully dispatched, it is evicted from the persistent store.

141FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Configuring WS-RM Persistence

• After a recovery from a crash, it recovers the persisted messages and
dispatches them. It also brings the RM sequence to a state where new
messages are accepted, acknowledged, and delivered.

Enabling WS-persistence To enable WS-RM persistence, you must specify the object implementing the
persistent store for WS-RM. You can develop your own or you can use the
JDBC based store that comes with FUSE Services Framework.

The configuration shown in Example 18.14 on page 142 enables the
JDBC-based store that comes with FUSE Services Framework.

Example 18.14. Configuration for the Default WS-RM Persistence Store

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

Configuring WS-persistence The JDBC-based store that comes with FUSE Services Framework supports
the properties shown in Table 18.4 on page 142.

Table 18.4. JDBC Store Properties

Default SettingTypeAttribute Name

org.apache.derby.jdbc.EmbeddedDriverStringdriverClassName

nullStringuserName

nullStringpassWord

jdbc:derby:rmdb;create=trueStringurl

The configuration shown in Example 18.15 on page 142 enables the
JDBC-based store that comes with FUSE Services Framework, while setting
the driverClassName and url to non-default values.

Example 18.15. Configuring the JDBC Store for WS-RM Persistence

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
<property name="driverClassName" value="com.acme.jdbc.Driver"/>
<property name="url" value="jdbc:acme:rmdb;create=true"/>

</bean>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1142

Chapter 18. Enabling Reliable Messaging

Appendix A. Consumer Endpoint
Properties

The attributes described in Table A.1 on page 143 are used to configure a
consumer endpoint.

Table A.1. Consumer Endpoint Attributes

RequiredDescriptionTypeName

yesSpecifies the location of the WSDL defining the
endpoint.

Stringwsdl

noaSpecifies the service name of the proxied endpoint.
This corresponds to WSDL service element's name

attribute.

QNameservice

nobSpecifies the endpoint name of the proxied endpoint.
This corresponds to WSDL port element's name

attribute.

Stringendpoint

noSpecifies the interface name of the proxied endpoint.
This corresponds to WSDL portType element's name

attribute.

QNameinterfaceName

no (defaults to the value
of the service

attribute)

Specifies the service name of the target endpoint.QNametargetService

no (defaults to the value
of the endpoint

attribute)

Specifies the endpoint name of the target endpoint.StringtargetEndpoint

noSpecifies the interface name of the target endpoint.QNametargetInterfaceName

noSpecifies the location of a spring configuration file
used for FUSE Services Framework bus initialization.

StringbusCfg

no (defaults to false)Specifies if MTOM / attachment support is enabled.booleanmtomEnabled

no (defaults to true)Specifies if the JBI wrapper is sent in the body of the
message.

booleanuseJbiWrapper

143FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

RequiredDescriptionTypeName

no (defaults to 10Specifies the number of seconds to wait for a
response.

inttimeout

aIf the WSDL defining the service has more than one service element, this attribute is required.
bIf the service being used defines more than one endpoint, this attribute is required.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1144

Appendix B. Provider Endpoint
Properties

The attributes described in Table B.1 on page 145 are used to configure a
provider endpoint.

Table B.1. Provider Endpoint Attributes

RequiredDescriptionTypeAttribute

yesSpecifies the location of the WSDL defining the endpoint.Stringwsdl

noaSpecifies the service name of the exposed endpoint.QNameservice

nobSpecifies the endpoint name of the exposed endpoint.Stringendpoint

nocdSpecifies the URL of the target service.URIlocationURI

noSpecifies the interface name of the exposed jbi endpoint.QNameinterfaceName

noSpecifies the location of the spring configuration file used for
FUSE Services Framework bus initialization.

StringbusCfg

no (defaults to false)Specifies if MTOM / attachment support is enabled.booleanmtomEnabled

no (defaults to true)Specifies if the JBI wrapper is sent in the body of the message.booleanuseJbiWrapper

aIf the WSDL defining the service has more than one service element, this attribute is required.
bIf the service being used defines more than one endpoint, this attribute is required.
cIf specified, the value of this attribute overrides the HTTP address specified in the WSDL contract.
dThis attribute is ignored if the endpoint uses a JMS address in the WSDL.

145FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1146

Appendix C. Using the Maven JBI
Tooling
Packaging application components so that they conform the JBI specification is a cumbersome job. FUSE ESB
includes tooling that automates the process of packaging you applications and creating the required JBI descriptors.

Setting Up a FUSE ESB JBI Project .. 148
A Service Unit Project ... 153
A Service Assembly Project ... 159

FUSE ESB provides a Maven plug-in and a number of Maven archetypes that
make developing, packaging, and deploying JBI artifacts easier. The tooling
provides you with a number of benefits. These benefits include:

• automatic generation of JBI descriptors

• dependency checking

Because FUSE ESB only allows you to deploy service assemblies, you will
need to do the following when using the Maven JBI tooling:

1. Set up a top-level project on page 148 to build all of the service units and
the final service assembly.

2. Create a project for each of your service units. on page 153.

3. Create a project for the service assembly on page 159.

147FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Setting Up a FUSE ESB JBI Project

Overview When working with the FUSE ESB JBI Maven tooling, you will want to create
a top-level project that can build all of the service units and package them
into a service assembly. Using a top-level project for this purpose has several
advantages. It allows you to control the dependencies for all of the parts of
an application in a central location. It limits the number of times you need
to specify the proper repositories to load. It also gives you a central location
from which to build and deploy the application.

The top-level project is responsible for assembling the application. It will use
the Maven assembly plug-in and list your service units and the service
assembly as modules of the project.

Directory structure Your top-level project will contain the following directories:

• a source directory containing the information needed by the Maven assembly
plug-in

• a directory to hold the service assembly project

• at least one directory containing a service unit project

Tip
You will need a project folder for each service unit that is to be
included in the generated service assembly.

Setting up the Maven tools In order to use the FUSE ESB JBI Maven tooling, you add the elements shown
in Example C.1 on page 148 to your top-level POM file.

Example C.1. POM Elements for Using FUSE ESB Tooling

...
<pluginRepositories>
<pluginRepository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>
<enabled>false</enabled>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1148

</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</pluginRepository>

</pluginRepositories>
<repositories>
<repository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>

<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</repository>
<repository>
<id>fusesource.m2-snapshot</id>
<name>FUSE Open Source Community Snapshot Repository</name>
<url>http://repo.fusesource.com/maven2-snapshot</url>
<snapshots>
<enabled>true</enabled>

</snapshots>
<releases>
<enabled>false</enabled>

</releases>
</repository>

</repositories>
...

<build>
<plugins>
<plugin>
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<version>servicemix-version</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
...

These elements point Maven to the correct repositories to download the FUSE
ESB Maven tooling and load the plug-in that implements the tooling.

Listing the subprojects Your top-level POM lists all of the service units and the service assembly that
will be generated as modules. The modules are contained in a modules

149FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

element. The modules element contains one module element for each service
unit in the assembly. You will also need a module element for the service
assembly.

The modules should be listed in the order in which they are built. This means
that the service assembly module should be listed after all of the service unit
modules.

Example JBI Project POM Example C.2 on page 150 shows a top-level pom for a project that contains
a single service unit.

Example C.2. Top-Level POM for a FUSE ESB JBI Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.widgets</groupId>
<artifactId>demos</artifactId>
<version>1.0</version>

</parent>

<groupId>com.widgets.demo</groupId>
<artifactId>cxf-wsdl-first</artifactId>
<name>CXF WSDL Fisrt Demo</name>
<packaging>pom</packaging>

<pluginRepositories> ❶
<pluginRepository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>
<enabled>false</enabled>

</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</pluginRepository>

</pluginRepositories>
<repositories>
<repository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1150

<url>http://repo.fusesource.com/maven2</url>
<snapshots>

<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</repository>
<repository>
<id>fusesource.m2-snapshot</id>
<name>FUSE Open Source Community Snapshot Repository</name>
<url>http://repo.fusesource.com/maven2-snapshot</url>
<snapshots>
<enabled>true</enabled>

</snapshots>
<releases>
<enabled>false</enabled>

</releases>
</repository>

</repositories>

<modules> ❷
<module>wsdl-first-cxfse-su</module>
<module>wsdl-first-cxf-sa</module>

</modules>

<build>
<plugins>
<plugin> ❸
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.1</version>
<inherited>false</inherited>
<executions>
<execution>

<id>src</id>
<phase>package</phase>
<goals>
<goal>single</goal>

</goals>
<configuration>
<descriptors>
<descriptor>src/main/assembly/src.xml</descriptor>

</descriptors>
</configuration>

</execution>
</executions>

</plugin>
<plugin> ❹

151FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

The POM shown in Example C.2 on page 150 does the following:

❶ Configures Maven to use the FUSE repositories for loading the FUSE
ESB plug-ins.

❷ Lists the sub-projects used for this application. The
wsdl-first-cxfse-su module is the module for the service unit. The

wsdl-first-cxf-sa module is the module for the service assembly

❸ Configures the Maven assembly plug-in.

❹ Loads the FUSE ESB JBI plug-in.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1152

A Service Unit Project

Overview Each service unit in the service assembly needs to be its own project. These
projects are placed at the same level as the service assembly project. The
contents of a service unit's project depends on the component at which the
service unit is targeted. At a minimum, a service unit project will contain a
POM and an XML configuration file.

Seeding a project using a Maven
artifact

FUSE ESB provides Maven artifacts for a number of service unit types. You
can use them to seed a project with the smx-arch command. As shown in
Example C.3 on page 153, the smx-arch command takes three arguments.
The groupId value and the artifactId values correspond to the project's
group ID and artifact ID.

Example C.3. Maven Archetype Command for Service Units

smx-arch su suArchetypeName ["-DgroupId=my.group.id"]
["-DartifactId=my.artifact.id"]

Important
The double quotes(") are required when using the -DgroupId
argument and the -DartifactId argument.

The suArchetypeName specifies the type of service unit to seed.
Table C.1 on page 153 lists the possible values and describes what type of
project will be seeded.

Table C.1. Service Unit Archetypes

DescriptionName

Creates a project for using the FUSE Mediation Router
service engine.

camel

Creates a project for developing a Java-first service using
the FUSE Services Framework service engine.

cxf-se

Creates a project for developing a WSDL-first service using
the FUSE Services Framework service engine.

cxf-se-wsdl-first

Creates an endpoint project targeted at the FUSE Services
Framework binding component.

cxf-bc

153FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

DescriptionName

Creates a consumer endpoint project targeted at the HTTP
binding component.

http-consumer

Creates a provider endpoint project targeted at the HTTP
binding component.

http-provider

Creates a consumer endpoint project targeted at the JMS
binding component. See Using the JMS Binding
Component.

jms-consumer

Creates a provider endpoint project targeted at the JMS
binding component. See Using the JMS Binding
Component.

jms-provider

Creates a polling (consumer) endpoint project targeted at
the file binding component. See "Using Poller Endpoints"
in Using the File Binding Component.

file-poller

Creates a sender (provider) endpoint project targeted at
the file binding component. See "Using Sender Endpoints"
in Using the File Binding Component.

file-sender

Creates a polling (consumer) endpoint project targeted at
the FTP binding component.

ftp-poller

Creates a sender (provider) endpoint project targeted at
the FTP binding component.

ftp-sender

Creates a project for developing an annotated Java service
to be run by the JSR181 service engine. a

jsr181-annotated

Creates a project for developing a WSDL generated Java
service to be run by the JSR181 service engine.a

jsr181-wsdl-first

Create a project for executing xquery statements using the
Saxon service engine.

saxon-xquery

Create a project for executing XSLT scripts using the Saxon
service engine.

saxon-xslt

Creates a project for using the EIP service engine. beip

Create a project for deploying functionality into the
lightweight container. c

lwcontainer

Creates a project for deploying a POJO to be executed by
the bean service engine.

bean

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1154

http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/file/file.pdf
http://fusesource.com/docs/esb/4.1/file/file.pdf

DescriptionName

Create a project for deploying a BPEL process into the
ODE service engine.

ode

aThe JSR181 has been deprecated. The FUSE Services Framework service engine has superseded
it.
bThe EIP service engine has been deprecated. The FUSE Mediation Router service engine has
superseded it.
cThe lightweight container has been deprecated.

Contents of a project The contents of your service unit project change from service unit to service
unit. Different components require different configuration. Some components,
such as the FUSE Services Framework service engine, require that you include
Java classes.

At a minimum, a service unit project will contain two things:

• a POM file that configures the JBI plug-in to create a service unit

• an XML configuration file stored in src/main/resources

For many of the components the XML configuration file is called xbean.xml.
The FUSE Mediation Router component uses a file called
camel-context.xml.

Configuring the Maven plug-in You configure the Maven plug-in to package the results of the project build
as a service unit by changing the value of the project's packaging element
to jbi-service-unit as shown in Example C.4 on page 155.

Example C.4. Configuring the Maven Plug-in to Build a Service Unit

<project ...>
<modelVersion>4.0.0</modelVersion>

...
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<name>CXF WSDL Fisrt Demo :: SE Service Unit</name>
<packaging>jbi-service-unit</packaging>

155FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

...
</project>

Specifying the target components In order to properly fill in the metadata required for packaging a service unit,
the Maven plug-in needs to be told what component, or components, the
service unit is targeting. If your service unit only has a single component
dependency, you can specify it in one of two ways:

• list the targeted component as a dependency

• add a componentName property specifying the targeted component

If your service unit has more than one component dependency you need to
configure the project as follows:

1. Add a componentName property specifying the targeted component.

2. Add the remaining components to the list dependencies.

Example C.5 on page 156 shows configuration for a service unit targeting the
FUSE Services Framework binding component.

Example C.5. Specifying the Target Components for a Service Unit

...
<dependencies>
<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-cxf-bc</artifactId>
<version>3.3.1.0-fuse</version>1

</dependency>
>/dependencies>
...

The advantage of using the Maven dependency mechanism is that it allows
Maven to check if the targeted component is deployed in the container. If one
of the components is not deployed, FUSE ESB will not hold off deploying the
service unit until all of the required components are deployed.

1You replace this with the version of FUSE Services Framework you are using.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1156

Tip
A message identifying the missing component(s) is typically written
to the log.

If your service unit targets is not available as a Maven artifact, you can specify
the targeted component using the componentName element. This element is
added to the standard Maven properties block and specifies the name of a
targeted component. Example C.6 on page 157 shows how to use the
componentName element to specify the target component.

Example C.6. Specifying the Target Components for a Service Unit

...
<properties>
<componentName>servicemix-bean</componentName>

>/properties>
...

When you use the componentName element Maven does not check to see if
the component is installed. Maven also cannot download the required
component.

Example Example C.7 on page 157 shows the POM file for a project building a service
unit targeted to the FUSE Services Framework binding component.

Example C.7. POM for a Service Unit Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent> ❶
<groupId>com.widgets.demo</groupId>
<artifactId>cxf-wsdl-first</artifactId>
<version>1.0</version>

</parent>

<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<name>CXF WSDL Fisrt Demo :: SE Service Unit</name>
<packaging>jbi-service-unit</packaging> ❷

157FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

<dependencies> ❸
<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-cxf-bc</artifactId>
<version>3.3.1.0-fuse</version>

</dependency>
>/dependencies>

<build>
<plugins>
<plugin> ❹
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

The POM in Example C.7 on page 157 does the following:

❶ Specifies that it is a part of the top-level project described in
Example C.2 on page 150.

❷ Specifies that this project builds a service unit.

❸ Specifies that the service unit targets the FUSE Services Framework
binding component.

❹ Specifies that the FUSE ESB Maven plug-in is to be used.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1158

A Service Assembly Project

Overview FUSE ESB requires that all service units be bundled into a service assembly
before they can be deployed into a container. The FUSE ESB Maven plug-in
will collect all of the service units to be bundled and the metadata needed
for packaging. It will then build a service assembly containing the service
units.

Seeding a project using a Maven
artifact

FUSE ESB provides a Maven artifact for seeding a service assembly project.
You can seed a project with the smx-arch command. As shown in
Example C.8 on page 159, the smx-arch command takes two arguments. The
groupId value and the artifactId values correspond to the project's group
ID and artifact ID.

Example C.8. Maven Archetype Command for Service Assemblies

smx-arch sa ["-DgroupId=my.group.id"] ["-DartifactId=my.artifact.id"]

Important
The double quotes(") are required when using the -DgroupId
argument and the -DartifactId argument.

Contents of a project A service assembly project typically only contains the POM file used by Maven.

Configuring the Maven plug-in You configure the Maven plug-in to package the results of the project build
as a service assembly by changing the value of the project's packaging
element to jbi-service-assembly as shown in Example C.9 on page 159.

Example C.9. Configuring the Maven Plug-in to Build a Service Assembly

<project ...>
<modelVersion>4.0.0</modelVersion>

...
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxf-wsdl-first-sa</artifactId>
<name>CXF WSDL Fisrt Demo :: Service Assembly</name>
<packaging>jbi-service-assembly</packaging>

159FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

...
</project>

Specifying the target components The Maven plug-in needs to be told what service units are being bundled into
the service assembly. You do this by specifying the service units as a
dependencies using the standard Maven dependencies element. You add a
dependency child element for each service unit. Example C.10 on page 160
shows configuration for a service assembly that bundles two service units.

Example C.10. Specifying the Target Components for a Service Unit

...
<dependencies>
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfbc-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
</dependencies>
...

Example Example C.11 on page 160 shows the POM file for a project building a service
assembly.

Example C.11. POM for a Service Assembly Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent> ❶
<groupId>com.widgets.demo</groupId>
<artifactId>cxf-wsdl-first</artifactId>
<version>1.0</version>

</parent>

<groupId>com.widgets.demo.cxf-wsdl-first</groupId>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1160

<artifactId>cxf-wsdl-first-sa</artifactId>
<name>CXF WSDL Fisrt Demo :: Service Assemby</name>
<packaging>jbi-service-assembly</packaging> ❷

<dependencies> ❸
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfbc-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
</dependencies>

<build>
<plugins>
<plugin> ❹
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

The POM in Example C.11 on page 160 does the following:

❶ Specifies that it is a part of the top-level project described in
Example C.2 on page 150.

❷ Specifies that this project builds a service assembly.

❸ Specifies the service units the service assembly bundles.

❹ Specifies that the FUSE ESB Maven plug-in is to be used.

161FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1162

Appendix D. Using the Maven OSGi
Tooling
Manually creating a bundle, or a collection of bundles, for a large project can be cumbersome. The Maven bundle
plug-in makes the job easier by automating the process and providing a number of shortcuts for specifying the
contents of the bundle manifest.

Setting Up a FUSE ESB OSGi Project .. 164
Configuring a Bundle Plug-in ... 169

The FUSE ESB OSGi tooling uses the Maven bundle plug-in1 from Apache
Felix. The bundle plug-in is based on the bnd2 tool from Peter Kriens. It
automates the construction of OSGi bundle manifests by introspecting the
contents of the classes being packaged in the bundle. Using the knowledge
of the classes contained in the bundle, the plug-in can calculate the proper
values to populate the Import-Packages and the Export-Package properties
in the bundle manifest. The plug-in also has default values that are used for
other required properties in the bundle manifest.

To use the bundle plug-in you will need to do the following:

1. Add the bundle plug-in to your project's POM file.

2. Configure the plug-in to correctly populate your bundle's manifest.

1 http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
2 http://www.aqute.biz/Code/Bnd

163FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd
http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

Setting Up a FUSE ESB OSGi Project

Overview A Maven project for building an OSGi bundle can be a simple single level
project. It does not require any sub-projects. It does, however, require that
you do the following:

1. Add the bundle plug-in to your POM.

2. Instruct Maven to package the results as an OSGi bundle.

Tip
There are several Maven archetypes to set up your project with the
appropriate settings.

Directory structure A project that constructs an OSGi bundle can be a single level project. It only
requires that you have a top-level POM file and a src folder. As in all Maven
projects, you place all Java source code in the src/java folder. You place
any non-Java resources into the src/resources folder.

Non-Java resources include Spring configuration files, JBI endpoint
configuration files, WSDL contracts, etc.

Note
FUSE ESB OSGi projects that use FUSE Services Framework, FUSE
Mediation Router, or another Spring configured bean also include a
beans.xml file located in the src/resources/META-INF/spring
folder.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1164

Adding a bundle plug-in Before you can use the bundle plug-in you must add a dependency on Apache
Felix. After you add the dependency, you can add the bundle plug-in to the
plug-in portion of the POM.

Example D.1 on page 165 shows the POM entries required to add the bundle
plug-in to your project.

Example D.1. Adding an OSGi Bundle Plug-in to a POM

...
<dependencies>
<dependency> ❶
<groupId>org.apache.felix</groupId>
<artifactId>org.osgi.core</artifactId>
<version>1.0.0</version>

</dependency>
...
</dependencies>
...
<build>
<plugins>
<plugin> ❷
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName> ❸
<Import-Package>*,org.apache.camel.osgi</Import-Package> ❹
<Private-Package>org.apache.servicemix.examples.camel</Private-Package> ❺

</instructions>
</configuration>

</plugin>
</plugins>

</build>
...

165FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

The entries in Example D.1 on page 165 do the following:

❶ Adds the dependency on Apache Felix.

❷ Adds the bundle plug-in to your project.

❸ Configures the plug-in to use the project's artifact ID as the bundle's
symbolic name.

❹ Configures the plug-in to include all Java packages imported by the
bundled classes and also import the org.apache.camel.osgi package.

❺ Configures the plug-in to bundle the listed class, but not include them
in the list of exported packages.

Note
You should edit the configuration to meet the requirements of your
project.

For more information on configuring the bundle plug-in, see "Configuring a
Bundle Plug-in" on page 169.

Activating a bundle plug-in To instruct Maven to use the bundle plug-in, you instruct it to package the
results of the project as a bundle. You do this by setting the POM file's
packaging element to bundle.

Useful Maven archetypes There are several Maven archetypes to generate a project that is preconfigured
to use the bundle plug-in:

• "Spring OSGi archetype"

• "FUSE Services Framework code-first archetype"

• "FUSE Services Framework wsdl-first archetype"

• "FUSE Mediation Router archetype"

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1166

Spring OSGi archetype The Spring OSGi archetype creates a generic project for building an OSGi
project using Spring DM:

org.springframework.osgi/spring-bundle-osgi-archetype/1.1.2

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.springframework.osgi
-DarchetypeArtifactId=spring-osgi-bundle-archetype
-DarchetypeVersion=1.12
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSE Services Framework
code-first archetype

The FUSE Services Framework code-first archetype creates a project for
building a service from Java:

org.apache.servicemix.tooling/servicemix-osgi-cxf-code-first-archetype/2008.01.0.3-fuse

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=spring-osgi-bundle-archetype
-DarchetypeVersion=2008.01.0.3-fuse
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSE Services Framework
wsdl-first archetype

The FUSE Services Framework wsdl-first archetype creates a project for
creating a service from WSDL:

org.apache.servicemix.tooling/servicemix-osgi-cxf-wsdl-first-archetype/2008.01.0.3-fuse

167FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=servicemix-osgi-cxf-wsdl-first-archetype
-DarchetypeVersion=2008.01.0.3-fuse
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSEMediation Router archetype The FUSE Mediation Router archetype creates a project for building a route
that is deployed into FUSE ESB:

org.apache.servicemix.tooling/servicemix-osgi-camel-archetype/2008.01.0.3-fuse

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=servicemix-osgi-camel-archetype
-DarchetypeVersion=2008.01.0.3-fuse
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1168

Configuring a Bundle Plug-in

Overview A bundle plug-in requires very little information to function. All of the required
properties have default settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will
likely want to modify some of the values. You can specify most of the
properties inside the plug-in's instructions element.

Configuration properties Some of the commonly used configuration properties are:

• Bundle-SymbolicName

• Bundle-Name

• Bundle-Version

• Export-Package

• Private-Package

• Import-Package

169FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Setting a bundle's symbolic name By default, the bundle plug-in sets the value for the Bundle-SymbolicName
property to groupId+ "." + artifactId, with the following exceptions:

• If groupId has only one section (no dots), the first package name with

classes is returned.

For example, if the groupId is commons-logging:commons-logging, the
bundle's symbolic name is org.apache.commons.logging.

• If artifactId is equal to the last section of groupId, then groupId is

used.

For example, if the POM specifies the group ID and artifact ID as
org.apache.maven:maven, the bundle's symbolic name is
org.apache.maven.

• If artifactId starts with the last section of groupId, that portion is

removed.

For example, if the POM specifies the group ID and artifact ID as
org.apache.maven:maven-core, the bundle's symbolic name is
org.apache.maven.core.

To specify your own value for the bundle's symbolic name, add a
Bundle-SymbolicName child in the plug-in's instructions element, as
shown in Example D.2.

Example D.2. Setting a Bundle's Symbolic Name

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName>
...
</instructions>

</configuration>
</plugin>

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1170

Setting a bundle's name By default, a bundle's name is set to ${pom.name}.

To specify your own value for the bundle's name, add a Bundle-Name child
to the plug-in's instructions element, as shown in Example D.3.

Example D.3. Setting a Bundle's Name

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-Name>JoeFred</Bundle-Name>
...
</instructions>

</configuration>
</plugin>

Setting a bundle's version By default, a bundle's version is set to ${pom.version}. Any dashes (-) are
replaced with dots (.).

To specify your own value for the bundle's version, add a Bundle-Version
child to the plug-in's instructions element, as shown in Example D.4.

Example D.4. Setting a Bundle's Version

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-Version>1.0.3.1</Bundle-Version>
...
</instructions>

</configuration>
</plugin>

171FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Specifying exported packages By default, the OSGi manifest's Export-Package list is populated by all of
the packages in your project's class path that match the pattern
Bundle-SymbolicName.*. These packages are also included in the bundle.

Important
If you use a Private-Package element in your plug-in configuration
and do not specify a list of packages to export, the default behavior
is to assume that no packages are exported. Only the packages listed
in the Private-Package element are included in the bundle and
none of them are exported.

The default behavior can result in very large packages as well as exporting
packages that should be kept private. To change the list of exported packages
you can add a Export-Package child to the plug-in's instructions element.

The Export-Package element specifies a list of packages that are to be
included in the bundle and be exported. The package names can be specified
using the * wildcard. For example, the entry com.fuse.demo.*, includes all
packages on the project's classpath that start with com.fuse.demo.

You can specify packages to be excluded be prefixing the entry with !. For
example, the entry, !com.fuse.demo.private, excludes the package
com.fuse.demo.private.

When attempting to exclude packages, the order of entries in the list is
important. The list is processed in order from the start and subsequent
contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except
the package com.fuse.demo.private, list the packages in the following
way:

!com.fuse.demo.private,com.fuse.demo.*

However, if you list the packages as:

com.fuse.demo.*,!com.fuse.demo.private

Then com.fuse.demo.private is included in the bundle because it matches
the first pattern.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1172

Specifying private packages By default, all packages included in a bundle are exported. You can include
packages in the bundle without exporting them. To specify a list of packages
to be included in a bundle, but not exported, add a Private-Package child
to the plug-in's instructions element.

The Private-Package element works similarly to the Export-Package
element. You specify a list of packages to be included in the bundle. The
bundle plug-in uses the list to find all classes on the project's classpath to be
included in the bundle. These packages are packaged in the bundle, but not
exported.

Important
If a package matches an entry in both the Private-Package element
and the Export-Package element, the Export-Package element
takes precedent. The package is added to the bundle and exported.

Example D.5 shows the configuration for including a private package in a
bundle

Example D.5. Including a Private Package in a Bundle

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>
...
</instructions>

</configuration>
</plugin>

173FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

Specifying imported packages By default, the bundle plug-in populates the OSGi manifest's Import-Package
property with a list of all the packages referred to by the contents of the bundle
and not included in the bundle.

While the default behavior is typically sufficient for most projects, you might
find instances where you want to import packages that are not automatically
added to the list. The default behavior can also result in unwanted packages
being imported.

To specify a list of packages to be imported by the bundle, add a
Import-Package child to the plug-in's instructions element. The syntax
for the package list is the same as for both the Export-Package and
Private-Package elements.

Important
When you use the Import-Package element, the plug-in does not
automatically scan the bundle's contents to determine if there are
any required imports. To ensure that the contents of the bundle are
scanned, you must place * as the last entry in the package list.

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1174

Example D.6 shows the configuration for including a private package in a
bundle

Example D.6. Specifying the Packages Imported by a Bundle

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Import-Package>javax.jws,

javax.wsdl,
org.apache.cxf.bus,
org.apache.cxf.bus.spring,
org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring,
org.apache.cxf.resource,
org.springframework.beans.factory.config,
*

</Import-Package>
...

</instructions>
</configuration>

</plugin>

More information For more information on configuring a bundle plug-in, see:

• Apache Felix documentation3

• Peter Kriens' aQute Software Consultancy web site4

3 http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
4 http://www.aqute.biz/Code/Bnd

175FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd
http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1176

Index
A
AcknowledgementInterval, 138
all element, 31
application source, 123
AtLeastOnce, 140
AtMostOnce, 140
attribute element, 32

name attribute, 33
type attribute, 33
use attribute, 33

B
BaseRetransmissionInterval, 137
binding element, 18
Bundle-Name, 171
Bundle-SymbolicName, 170
Bundle-Version, 171
bundles

exporting packages, 172
importing packages, 174
name, 171
private packages, 173
symbolic name, 170
version, 171

C
choice element, 31
complex types

all type, 31
choice type, 31
elements, 31
occurrence constraints, 32
sequence type, 31

complexType element, 30
componentName, 156
concrete part, 19
configuration

consumer runtime, 107
HTTP thread pool, 111

Jetty engine, 109
Jetty instance, 110
JMS session pool (see jms:sessionPool)
provider runtime, 108

consumer
busCfg, 103
endpoint, 82, 89
mtomEnabled, 93
service, 82, 89
targetEndpoint, 84
targetInterface, 84
targetService, 84
useJbiWrapper, 95
wsdl, 81

consumer endpoint, 13
consumer runtime configuration, 107

request time to live, 107
response timeout, 107

CreateSequence, 122
CreateSequenceResponse, 122

D
definitions element, 18
driverClassName, 142

E
element element, 31

maxOccurs attribute, 32
minOccurrs attribute, 32
name attribute, 31
type attribute, 32

ExponentialBackoff, 138
Export-Package, 172

H
HTTP

endpoint address, 50
http-conf:client

Accept, 53
AcceptEncoding, 53
AcceptLanguage, 53
AllowChunking, 52

177FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

AutoRedirect, 52
BrowserType, 54
CacheControl, 54, 55
Connection, 53
ConnectionTimeout, 52
ContentType, 53
Cookie, 54
DecoupledEndpoint, 54, 61
Host, 53
MaxRetransmits, 52
ProxyServer, 54
ProxyServerPort, 54
ProxyServerType, 54
ReceiveTimeout, 52
Referer, 54

http-conf:server
CacheControl, 58
ContentEncoding, 58
ContentLocation, 58
ContentType, 58
HonorKeepAlive, 57
ReceiveTimeout, 57
RedirectURL, 57
ServerType, 58
SuppressClientReceiveErrors, 57
SuppressClientSendErrors, 57

http:address, 51
httpj:engine, 110
httpj:engine-factory, 109
httpj:identifiedThreadingParameters, 110, 111
httpj:identifiedTLSServerParameters, 110
httpj:threadingParameters, 111

maxThreads, 112
minThreads, 111

httpj:threadingParametersRef, 111
httpj:tlsServerParameters, 111
httpj:tlsServerParametersRef, 111

I
Import-Package, 174
inFaultInterceptors, 98
inInterceptors, 98
InOrder, 140

J
jbi.xml, 75
JMS

specifying the message type, 70
JMS destination

specifying, 66
jms:address, 66

connectionPassword attribute, 67
connectionUserName attribute, 66
destinationStyle attribute, 66
jmsDestinationName attribute, 66
jmsiReplyDestinationName attribute, 69
jmsReplyDestinationName attribute, 66
jndiConnectionFactoryName attribute, 66
jndiDestinationName attribute, 66
jndiReplyDestinationName attribute, 66, 69

jms:client, 70
messageType attribute, 70

jms:clientConfig, 107
clientReceiveTimeout, 107
messageTimeToLive, 107

jms:JMSNamingProperties, 67
jms:server, 71

durableSubscriberName, 71
messageSelector, 71
transactional, 71
useMessageIDAsCorrealationID, 71

jms:serverConfig, 108
durableSubscriptionClientId, 108
messageTimeToLive, 108

jms:sessionPool, 106
highWaterMark, 106
lowWaterMark, 106

JNDI
specifying the connection factory, 66

L
logical part, 19

M
Maven archetypes, 166
Maven tooling

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1178

adding the bundle plug-in, 165
set up, 148

maxLength, 139
maxUnacknowledged, 139
message element, 18, 41

N
named reply destination

specifying in WSDL, 66
using, 69

namespace, 76

O
operation element, 18
outFaultInterceptors, 98
outInterceptors, 98

P
part element, 41, 43

element attribute, 43
name attribute, 43
type attribute, 43

passWord, 142
port element, 18
portType element, 18, 45
Private-Package, 173
provider

busCfg, 103
mtomEnabled, 93
useJbiWrapper, 95
wsdl, 89

provider endpoint, 13
provider runtime configuration, 108

durable subscriber identification, 108
response time to live, 108

R
RMAssertion, 133
RPC style design, 41

S
Sequence, 123
sequence element, 31
SequenceAcknowledgment, 123
service assembly

seeding, 159
specifying the service units, 160

service element, 18
service unit

seeding, 153
specifying the target component, 156

session pool configuration (see jms:sessionPool)
smx-arch, 153, 159
SOAP 1.1

endpoint address, 50
SOAP 1.2

endpoint address, 50
soap12:address, 50
soap:address, 50

T
types element, 18

U
userName, 142

W
wrapped document style, 42
WS-Addressing

using, 60
WS-RM

AcknowledgementInterval, 138
AtLeastOnce, 140
AtMostOnce, 140
BaseRetransmissionInterval, 137
configuring, 130
destination, 122
driverClassName, 142
enabling, 126
ExponentialBackoff, 138
externaL attachment, 136
initial sender, 122

179FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1

InOrder, 140
interceptors, 124
maxLength, 139
maxUnacknowledged, 139
passWord, 142
rmManager, 131
source, 122
ultimate receiver, 122
url, 142
userName, 142

wsam:Addressing, 60
WSDL design

RPC style, 41
wrapped document style, 42

WSDL extensors
jms:address (see jms:address)
jms:client (see jms:client)
jms:JMSNamingProperties (see
jms:JMSNamingProperties)
jms:server (see jms:server)

wsrm:AcksTo, 122
wswa:UsingAddressing, 60

X
xbean.xml, 75

FUSE™ ESB Using the FUSE™ Services Framework Binding Component Version 4.1180

	Using the FUSE™ Services Framework Binding Component
	Table of Contents
	Chapter 1. Introduction to the FUSE Services Framework Binding Component
	Part I. Defining an Endpoint in WSDL
	Chapter 2. Introducing WSDL Contracts
	WSDL Elements
	Structure of a WSDL Document
	Designing a contract

	Chapter 3. Defining Logical Data Units
	Mapping Data into Logical Data Units
	Adding Data Units to a Contract
	XML Schema Simple Types
	Defining Complex Data Types
	Defining Data Structures
	Defining Arrays
	Defining Types by Extension
	Defining Types by Restriction
	Defining Enumerated Types

	Defining Elements

	Chapter 4. Defining Logical Messages Used by a Service
	Chapter 5. Defining Your Logical Interfaces
	Chapter 6. Using HTTP
	Adding a Basic HTTP Endpoint
	Consumer Configuration
	Provider Configuration
	Using the HTTP Transport in Decoupled Mode

	Chapter 7. Using JMS
	Basic Configuration
	Using a Named Reply Destination
	JMS Consumer Configuration
	JMS Provider Configuration

	Part II. Configuring and Packaging Endpoints
	Chapter 8. Introduction to the FUSE Services Framework Binding Component
	Chapter 9. Consumer Endpoints
	Chapter 10. Provider Endpoints
	Chapter 11. Using MTOM to Process Binary Content
	Chapter 12. Working with the JBI Wrapper
	Chapter 13. Using Message Interceptors

	Part III. Configuring the CXF Transport Runtimes
	Chapter 14. Configuring the Endpoints to Load FUSE Services Framework Runtime Configuration
	Chapter 15. JMS Runtime Configuration
	JMS Session Pool Configuration
	Consumer Specific Runtime Configuration
	Provider Specific Runtime Configuration

	Chapter 16. Configuring the Jetty Runtime
	Chapter 17. Deploying WS-Addressing
	Introduction to WS-Addressing
	WS-Addressing Interceptors
	Enabling WS-Addressing
	Configuring WS-Addressing Attributes

	Chapter 18. Enabling Reliable Messaging
	Introduction to WS-RM
	WS-RM Interceptors
	Enabling WS-RM
	Configuring WS-RM
	Configuring FUSE Services Framework-Specific WS-RM Attributes
	Configuring Standard WS-RM Policy Attributes
	WS-RM Configuration Use Cases

	Configuring WS-RM Persistence

	Appendix A. Consumer Endpoint Properties
	Appendix B. Provider Endpoint Properties
	Appendix C. Using the Maven JBI Tooling
	Setting Up a FUSE ESB JBI Project
	A Service Unit Project
	A Service Assembly Project

	Appendix D. Using the Maven OSGi Tooling
	Setting Up a FUSE ESB OSGi Project
	Configuring a Bundle Plug-in

	Index

