
FUSE™ ESB

Developing and Deploying JAX-WS Services
[DRAFT]

Version 4.1
April 2009

Developing and Deploying JAX-WS Services
Version 4.1

Publication date 22 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
1. Introduction ... 13
I. Developing JAX-WS Applications .. 15

2. Developing a Service Using Java as a Starting Point .. 17
Creating the SEI .. 18
Annotating the Code ... 21

Required Annotations ... 22
Optional Annotations .. 25

Defining the Binding Properties with Annotations ... 26
Defining Operation Properties with Annotations ... 29
Defining Parameter Properties with Annotations ... 33

3. Developing a Service Using WSDL as a Starting Point .. 37
II. Configuring Your Applications ... 41

4. Configuring Service Endpoints .. 43
Using the jaxws:endpoint Element ... 44
Using the jaxws:server Element ... 48
Adding Functionality to Service Providers ... 51

5. Configuring the HTTP Transport .. 53
Configuring a Consumer .. 54

Using Configuration .. 55
Using WSDL ... 60
Consumer Cache Control Directives .. 61

Configuring a Service Provider ... 62
Using Configuration .. 63
Using WSDL ... 66
Service Provider Cache Control Directives .. 67

Using the HTTP Transport in Decoupled Mode .. 68
6. Configuring the JMS Transport .. 73

Basic Endpoint Configuration .. 74
Using Configuration .. 75
Using WSDL ... 79
Using a Named Reply Destination .. 80

Consumer Endpoint Configuration .. 81
Using Configuration .. 82
Using WSDL ... 83

Provider Endpoint Configuration .. 84
Using Configuration .. 85
Using WSDL ... 87

JMS Runtime Configuration .. 88
JMS Session Pool Configuration ... 89
Consumer Specific Runtime Configuration .. 90
Provider Specific Runtime Configuration .. 91

3FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

7. FUSE Services Framework Logging .. 93
Overview of FUSE Services Framework Logging ... 94
Simple Example of Using Logging .. 96
Default logging.properties File .. 98

Configuring Logging Output .. 99
Configuring Logging Levels ... 101

Enabling Logging at the Command Line ... 102
Logging for Subsystems and Services .. 103
Logging Message Content ... 105

8. Deploying WS-Addressing .. 109
Introduction to WS-Addressing .. 110
WS-Addressing Interceptors .. 111
Enabling WS-Addressing .. 112
Configuring WS-Addressing Attributes ... 114

9. Enabling Reliable Messaging .. 117
Introduction to WS-RM .. 118
WS-RM Interceptors ... 120
Enabling WS-RM ... 122
Configuring WS-RM .. 126

Configuring FUSE Services Framework-Specific WS-RM Attributes 127
Configuring Standard WS-RM Policy Attributes .. 129
WS-RM Configuration Use Cases ... 133

Configuring WS-RM Persistence ... 137
10. Enabling High Availability .. 139

Introduction to High Availability ... 140
Enabling HA with Static Failover .. 141
Configuring HA with Static Failover ... 143

III. Packaging and Deploying Applications ... 145
11. Packaging an Application ... 147

A. Using the Maven OSGi Tooling .. 149
Setting Up a FUSE ESB OSGi Project .. 150
Configuring a Bundle Plug-in ... 155

B. FUSE Services Framework Binding IDs ... 163
Index .. 165

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.14

List of Figures
5.1. Message Flow in for a Decoupled HTTP Transport 71
9.1. Web Services Reliable Messaging .. 118

5FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.16

List of Tables
2.1. @WebService Properties ... 22

2.2. @SOAPBinding Properties ... 26

2.3. @WebMethod Properties .. 29

2.4. @RequestWrapper Properties .. 30

2.5. @ResponseWrapper Properties ... 31

2.6. @WebFault Properties .. 31

2.7. @WebParam Properties .. 33

2.8. @WebResult Properties .. 34

4.1. Attributes for Configuring a JAX-WS Service Provider Using the
jaxws:endpoint Element ... 45

4.2. Attributes for Configuring a JAX-WS Service Provider Using the
jaxws:server Element .. 49

4.3. Elements Used to Configure JAX-WS Service Providers 51
5.1. Elements Used to Configure an HTTP Consumer Endpoint 56
5.2. HTTP Consumer Configuration Attributes 56
5.3. http-conf:client Cache Control Directives 61

5.4. Elements Used to Configure an HTTP Service Provider
Endpoint ... 64
5.5. HTTP Service Provider Configuration Attributes 64
5.6. http-conf:server Cache Control Directives 67

6.1. JMS Endpoint Attributes ... 76
6.2. messageType Values ... 82

6.3. JMS Client WSDL Extensions ... 83
6.4. Provider Endpoint Configuration .. 85
6.5. JMS Provider Endpoint WSDL Extensions 87
6.6. Attributes for Configuring the JMS Session Pool 89
7.1. Java.util.logging Handler Classes .. 99
7.2. FUSE Services Framework Logging Subsystems 103
8.1. WS-Addressing Interceptors ... 111
8.2. WS-Addressing Attributes .. 114
9.1. FUSE Services Framework WS-ReliableMessaging
Interceptors .. 120
9.2. Children of the rmManager Spring Bean 127
9.3. Children of the WS-Policy RMAssertion Element 129
9.4. JDBC Store Properties .. 138
B.1. Binding IDs for Message Bindings 163

7FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.18

List of Examples
2.1. Simple SEI .. 19
2.2. Simple Implementation Class ... 20
2.3. Interface with the @WebService Annotation 23

2.4. Annotated Service Implementation Class 24
2.5. Specifying a Document Bare SOAP Binding with the SOAP Binding
Annotation ... 28
2.6. SEI with Annotated Methods .. 32
2.7. Fully Annotated SEI ... 34
3.1. FUSE Services Framework Code Generation Command 37
3.2. Maven Configuration for Generating Starting Point Code From
WSDL .. 38
4.1. Simple JAX-WS Endpoint Configuration 46
4.2. JAX-WS Endpoint Configuration with a Service Name 47
4.3. Simple JAX-WS Server Configuration 50
5.1. HTTP Consumer Configuration Namespace 55
5.2. http-conf:conduit Element ... 55

5.3. HTTP Consumer Endpoint Configuration 59
5.4. HTTP Consumer WSDL Element's Namespace 60
5.5. WSDL to Configure an HTTP Consumer Endpoint 60
5.6. HTTP Provider Configuration Namespace 63
5.7. http-conf:destination Element 63

5.8. HTTP Service Provider Endpoint Configuration 65
5.9. HTTP Provider WSDL Element's Namespace 66
5.10. WSDL to Configure an HTTP Service Provider Endpoint 66
5.11. Activating WS-Addressing using WSDL 69
5.12. Activating WS-Addressing using a Policy 69
5.13. Configuring a Consumer to Use a Decoupled HTTP
Endpoint ... 70
6.1. Addressing Information in a FUSE Services Framework
Configuration File .. 77
6.2. JMS WSDL Port Specification ... 79
6.3. JMS Consumer Specification Using a Named Reply Queue 80
6.4. Configuration for a JMS Consumer Endpoint 82
6.5. WSDL for a JMS Consumer Endpoint 83
6.6. Configuration for a Provider Endpoint 85
6.7. WSDL for a JMS Provider Endpoint .. 87
6.8. JMS Session Pool Configuration .. 89
6.9. JMS Consumer Endpoint Runtime Configuration 90
6.10. Provider Endpoint Runtime Configuration 91
7.1. Configuration for Enabling Logging ... 94

9FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

7.2. Configuring the Console Handler ... 99
7.3. Console Handler Properties .. 99
7.4. Configuring the File Handler ... 100
7.5. File Handler Configuration Properties 100
7.6. Configuring Both Console Logging and File Logging 100
7.7. Configuring Global Logging Levels .. 101
7.8. Configuring Logging at the Package Level 101
7.9. Flag to Start Logging on the Command Line 102
7.10. Configuring Logging for WS-Addressing 104
7.11. Adding Logging to Endpoint Configuration 105
7.12. Adding Logging to Client Configuration 105
7.13. Setting the Logging Level to INFO 106
7.14. Endpoint Configuration for Logging SOAP Messages 106
8.1. client.xml—Adding WS-Addressing Feature to Client
Configuration .. 112
8.2. server.xml—Adding WS-Addressing Feature to Server
Configuration .. 112
8.3. Using the Policies to Configure WS-Addressing 114
9.1. Enabling WS-RM Using Spring Beans 122
9.2. Configuring WS-RM using WS-Policy 124
9.3. Adding an RM Policy to Your WSDL File 125
9.4. Configuring FUSE Services Framework-Specific WS-RM
Attributes .. 127
9.5. Configuring WS-RM Attributes Using an RMAssertion in an
rmManager Spring Bean .. 130
9.6. Configuring WS-RM Attributes as a Policy within a Feature 131
9.7. Configuring WS-RM in an External Attachment 132
9.8. Setting the WS-RM Base Retransmission Interval 133
9.9. Setting the WS-RM Exponential Backoff Property 134
9.10. Setting the WS-RM Acknowledgement Interval 135
9.11. Setting the WS-RM Maximum Unacknowledged Message
Threshold .. 135
9.12. Setting the Maximum Length of a WS-RM Message
Sequence .. 135
9.13. Setting the WS-RM Message Delivery Assurance Policy 136
9.14. Configuration for the Default WS-RM Persistence Store 138
9.15. Configuring the JDBC Store for WS-RM Persistence 138
10.1. Enabling HA with Static Failover—WSDL File 141
10.2. Enabling HA with Static Failover—Client Configuration 142
10.3. Configuring a Random Strategy for Static Failover 143
11.1. FUSE Services Framework Application Manifest 148
A.1. Adding an OSGi Bundle Plug-in to a POM 151
A.2. Setting a Bundle's Symbolic Name 156
A.3. Setting a Bundle's Name ... 157

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.110

A.4. Setting a Bundle's Version .. 157
A.5. Including a Private Package in a Bundle 159
A.6. Specifying the Packages Imported by a Bundle 161

11FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.112

Chapter 1. Introduction
FUSE ESB provides a powerful environment for developing and deploying JAX-WS applications. Its JAX-WS
implementation is supplied by FUSE Services Framework. It supports both HTTP/SOAP and JMS/SOAP endpoints.
FUSE ESB's OSGi runtime makes packaging and deploying the applications easy.

Overview Developing new services is an integral part of most software projects. FUSE
ESB uses FUSE Services Framework to make it easy to develop and deploy
services using standard JAX-WS programming techniques.

Working with the FUSE Services Framework involves three steps:

1. Implementing your application as annotated POJOs.

2. Adding the needed configuration to your application.

3. Packaging the configuration and required jars into an OSGi bundle for
deployment.

Key features The FUSE Services Framework integration with FUSE ESB provides the
following features:

• automatic WSDL generation

• jsr181 support

• JAX-WS 2.1 Support

• JAXB 2.1 support

• MTOM support

• Java proxy support

Steps for working with the FUSE
Services Framework service
engine

Using the FUSE Services Framework service engine to develop a service
usually involves the following steps:

1. Implementing the service's functionality using an annotated POJO.

13FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

If you want to start with Java code see "Developing a Service Using Java
as a Starting Point" on page 17.

If you want to start with a WSDL contract see "Developing a Service
Using WSDL as a Starting Point" on page 37.

2. Configure the service.

See Part II on page 41.

3. Package the application as an OSGi bundle.

4. Deploying the application's bundle to the FUSE ESB container.

More information For more information about developing services using FUSE Services
Framework see the FUSE Services Framework library.1.

1 http://fusesource.com/documentation/fuse-service-framework-documentation

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.114

Chapter 1. Introduction

http://fusesource.com/documentation/fuse-service-framework-documentation
http://fusesource.com/documentation/fuse-service-framework-documentation

Part I. Developing JAX-WS Applications
JAX-WS provides a standardized programming model for developing applications using service oriented design.
You can start from Java or from WSDL.

2. Developing a Service Using Java as a Starting Point .. 17
Creating the SEI .. 18
Annotating the Code ... 21

Required Annotations ... 22
Optional Annotations .. 25

Defining the Binding Properties with Annotations ... 26
Defining Operation Properties with Annotations ... 29
Defining Parameter Properties with Annotations ... 33

3. Developing a Service Using WSDL as a Starting Point .. 37

Chapter 2. Developing a Service Using
Java as a Starting Point
Developing a service using a POJO is as simple as annotating your classes to add in the information needed to
generate a WSDL contract.

Creating the SEI .. 18
Annotating the Code ... 21

Required Annotations ... 22
Optional Annotations .. 25

Defining the Binding Properties with Annotations ... 26
Defining Operation Properties with Annotations ... 29
Defining Parameter Properties with Annotations ... 33

17FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Creating the SEI

Overview The service endpoint interface (SEI) is the piece of Java code that is shared
between a service implementation and the consumers that make requests on
that service. The SEI defines the methods implemented by the service and
provides details about how the service will be exposed as an endpoint. When
starting with a WSDL contract, the SEI is generated by the code generators.
However, when starting from Java, it is the developer's responsibility to create
the SEI.

There are two basic patterns for creating an SEI:

• Green field development — In this pattern, you are developing a new service
without any existing Java code or WSDL. It is best to start by creating the
SEI. You can then distribute the SEI to any developers that are responsible
for implementing the service providers and consumers that use the SEI.

Note
The recommended way to do green field service development is
to start by creating a WSDL contract that defines the service and
its interfaces. See : on page 37.

• Service enablement — In this pattern, you typically have an existing set of
functionality that is implemented as a Java class, and you want to service
enable it. This means that you must do two things:

1. Create an SEI that contains only the operations that are going to be
exposed as part of the service.

2. Modify the existing Java class so that it implements the SEI.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.118

Chapter 2. Developing a Service Using Java as a
Starting Point

Note
Although you can add the JAX-WS annotations to a Java class, it
is not recommended.

Writing the interface The SEI is a standard Java interface. It defines a set of methods that a class
implements. It can also define a number of member fields and constants to
which the implementing class has access.

In the case of an SEI the methods defined are intended to be mapped to
operations exposed by a service. The SEI corresponds to a wsdl:portType
element. The methods defined by the SEI correspond to wsdl:operation
elements in the wsdl:portType element.

Tip
JAX-WS defines an annotation that allows you to specify methods
that are not exposed as part of a service. However, the best practice
is to leave those methods out of the SEI.

Example 2.1 on page 19 shows a simple SEI for a stock updating service.

Example 2.1. Simple SEI

package com.fusesource.demo;

public interface quoteReporter
{
public Quote getQuote(String ticker);

}

Implementing the interface Because the SEI is a standard Java interface, the class that implements it is
a standard Java class. If you start with a Java class you must modify it to
implement the interface. If you start with the SEI, the implementation class
implements the SEI.

Example 2.2 on page 20 shows a class for implementing the interface in
Example 2.1 on page 19.

19FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Creating the SEI

Example 2.2. Simple Implementation Class

package com.fusesource.demo;

import java.util.*;

public class stockQuoteReporter implements quoteReporter
{
...

public Quote getQuote(String ticker)
{
Quote retVal = new Quote();
retVal.setID(ticker);
retVal.setVal(Board.check(ticker));1

Date retDate = new Date();
retVal.setTime(retDate.toString());
return(retVal);

}
}

1
Board is an assumed class whose implementation is left to the reader.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.120

Chapter 2. Developing a Service Using Java as a
Starting Point

Annotating the Code
Required Annotations ... 22
Optional Annotations .. 25

Defining the Binding Properties with Annotations ... 26
Defining Operation Properties with Annotations ... 29
Defining Parameter Properties with Annotations ... 33

JAX-WS relies on the annotation feature of Java 5. The JAX-WS annotations
specify the metadata used to map the SEI to a fully specified service definition.
Among the information provided in the annotations are the following:

• The target namespace for the service.

• The name of the class used to hold the request message

• The name of the class used to hold the response message

• If an operation is a one way operation

• The binding style the service uses

• The name of the class used for any custom exceptions

• The namespaces under which the types used by the service are defined

Tip
Most of the annotations have sensible defaults and it is not necessary
to provide values for them. However, the more information you
provide in the annotations, the better your service definition is
specified. A well-specified service definition increases the likelihood
that all parts of a distributed application will work together.

21FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Annotating the Code

Required Annotations

Overview In order to create a service from Java code you are only required to add one
annotation to your code. You must add the @WebService annotation on both
the SEI and the implementation class.

The @WebService annotation The @WebService annotation is defined by the javax.jws.WebService
interface and it is placed on an interface or a class that is intended to be used
as a service. @WebService has the properties described in
Table 2.1 on page 22

Table 2.1. @WebService Properties

DescriptionProperty

Specifies the name of the service interface. This property is mapped to the name attribute of

the wsdl:portType element that defines the service's interface in a WSDL contract. The

default is to append PortType to the name of the implementation class. a

name

Specifies the target namespace where the service is defined. If this property is not specified,
the target namespace is derived from the package name.

targetNamespace

Specifies the name of the published service. This property is mapped to the name attribute

of the wsdl:service element that defines the published service. The default is to use the

name of the service's implementation class. a

serviceName

Specifies the URL where the service's WSDL contract is stored. This must be specified using
a relative URL. The default is the URL where the service is deployed.

wsdlLocation

Specifies the full name of the SEI that the implementation class implements. This property
is only specified when the attribute is used on a service implementation class.

endpointInterface

Specifies the name of the endpoint at which the service is published. This property is mapped
to the name attribute of the wsdl:port element that specifies the endpoint details for a

portName

published service. The default is the append Port to the name of the service's implementation

class.a

aWhen you generate WSDL from an SEI the interface's name is used in place of the implementation class' name.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.122

Chapter 2. Developing a Service Using Java as a
Starting Point

Tip
It is not necessary to provide values for any of the @WebService
annotation's properties. However, it is recommended that you provide
as much information as you can.

Annotating the SEI The SEI requires that you add the @WebService annotation. Because the SEI
is the contract that defines the service, you should specify as much detail as
possible about the service in the @WebService annotation's properties.

Example 2.3 on page 23 shows the interface defined in
Example 2.1 on page 19 with the @WebService annotation.

Example 2.3. Interface with the @WebService Annotation

package com.fusesource.demo;

import javax.jws.*;

@WebService(name="quoteUpdater", ❶
targetNamespace="http:\\demos.fusesource.com", ❷

serviceName="updateQuoteService", ❸
wsdlLocation="http:\\demos.fusesource.com\quoteExampleService?wsdl", ❹
portName="updateQuotePort") ❺

public interface quoteReporter
{
public Quote getQuote(String ticker);

}

The @WebService annotation in Example 2.3 on page 23 does the following:

❶ Specifies that the value of the name attribute of the wsdl:portType

element defining the service interface is quoteUpdater.

❷ Specifies that the target namespace of the service is
http:\\demos.fusesource.com.

❸ Specifies that the value of the name of the wsdl:service element

defining the published service is updateQuoteService.

❹ Specifies that the service will publish its WSDL contract at
http:\\demos.fusesource.com\quoteExampleService?wsdl.

23FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Required Annotations

❺ Specifies that the value of the name attribute of the wsdl:port element

defining the endpoint exposing the service is updateQuotePort.

Annotating the service
implementation

In addition to annotating the SEI with the @WebService annotation, you also
must annotate the service implementation class with the @WebService
annotation. When adding the annotation to the service implementation class
you only need to specify the endpointInterface property. As shown in
Example 2.4 on page 24 the property must be set to the full name of the
SEI.

Example 2.4. Annotated Service Implementation Class

package org.eric.demo;

import javax.jws.*;

@WebService(endpointInterface="com.fusesource.demo.quoteReport
er")
public class stockQuoteReporter implements quoteReporter
{
public Quote getQuote(String ticker)
{
...
}

}

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.124

Chapter 2. Developing a Service Using Java as a
Starting Point

Optional Annotations
Defining the Binding Properties with Annotations ... 26
Defining Operation Properties with Annotations ... 29
Defining Parameter Properties with Annotations ... 33

While the @WebService annotation is sufficient for service enabling a Java
interface or a Java class, it does not fully describe how the service will be
exposed as a service provider. The JAX-WS programming model uses a number
of optional annotations for adding details about your service, such as the
binding it uses, to the Java code. You add these annotations to the service's
SEI.

Tip
The more details you provide in the SEI the easier it is for developers
to implement applications that can use the functionality it defines.
It also makes the WSDL documents generated by the tools more
specific.

25FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Optional Annotations

Defining the Binding Properties with Annotations

Overview If you are using a SOAP binding for your service, you can use JAX-WS
annotations to specify a number of the bindings properties. These properties
correspond directly to the properties you can specify in a service's WSDL
contract. Some of the settings, such as the parameter style, can restrict how
you implement a method. These settings can also effect which annotations
can be used when annotating method parameters.

The @SOAPBinding annotation The @SOAPBinding annotation is defined by the
javax.jws.soap.SOAPBinding interface. It provides details about the SOAP
binding used by the service when it is deployed. If the @SOAPBinding
annotation is not specified, a service is published using a wrapped doc/literal
SOAP binding.

You can put the @SOAPBinding annotation on the SEI and any of the SEI's
methods. When it is used on a method, setting of the method's @SOAPBinding
annotation take precedence.

Table 2.2 on page 26 shows the properties for the @SOAPBinding annotation.

Table 2.2. @SOAPBinding Properties

DescriptionValuesProperty

Specifies the style of the SOAP message. If RPC style is specified,

each message part within the SOAP body is a parameter or return

Style.DOCUMENT (default)

Style.RPC

style

value and appears inside a wrapper element within the soap:body

element. The message parts within the wrapper element correspond
to operation parameters and must appear in the same order as the
parameters in the operation. If DOCUMENT style is specified, the

contents of the SOAP body must be a valid XML document, but its
form is not as tightly constrained.

Specifies how the data of the SOAP message is streamed.Use.LITERAL (default)use

Use.ENCODED
a

Specifies how the method parameters, which correspond to message
parts in a WSDL contract, are placed into the SOAP message body.

ParameterStyle.BARE

ParameterStyle.WRAPPED
(default)

parameterStyle
b

If BARE is specified, each parameter is placed into the message body

as a child element of the message root. If WRAPPED is specified, all

of the input parameters are wrapped into a single element on a

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.126

Chapter 2. Developing a Service Using Java as a
Starting Point

DescriptionValuesProperty

request message and all of the output parameters are wrapped into
a single element in the response message.

a
Use.ENCODED is not currently supported.

bIf you set the style to RPC you must use the WRAPPED parameter style.

Document bare style parameters Document bare style is the most direct mapping between Java code and the
resulting XML representation of the service. When using this style, the schema
types are generated directly from the input and output parameters defined in
the operation's parameter list.

You specify you want to use bare document\literal style by using the
@SOAPBinding annotation with its style property set to Style.DOCUMENT,
and its parameterStyle property set to ParameterStyle.BARE.

To ensure that an operation does not violate the restrictions of using document
style when using bare parameters, your operations must adhere to the following
conditions:

• The operation must have no more than one input or input/output parameter.

• If the operation has a return type other than void, it must not have any
output or input/output parameters.

• If the operation has a return type of void, it must have no more than one
output or input/output parameter.

Note
Any parameters that are placed in the SOAP header using the
@WebParam annotation or the @WebResult annotation are not counted
against the number of allowed parameters.

Document wrapped parameters Document wrapped style allows a more RPC like mapping between the Java
code and the resulting XML representation of the service. When using this
style, the parameters in the method's parameter list are wrapped into a single
element by the binding. The disadvantage of this is that it introduces an
extra-layer of indirection between the Java implementation and how the
messages are placed on the wire.

27FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Optional Annotations

To specify that you want to use wrapped document\literal style use the
@SOAPBinding annotation with its style property set to Style.DOCUMENT,
and its parameterStyle property set to ParameterStyle.WRAPPED.

You have some control over how the wrappers are generated by using the
@RequestWrapper annotation and the @ResponseWrapper annotation.

Example Example 2.5 on page 28 shows an SEI that uses document bare SOAP
messages.

Example 2.5. Specifying a Document Bare SOAP Binding with the SOAP
Binding Annotation

package org.eric.demo;

import javax.jws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;

@WebService(name="quoteReporter")
@SOAPBinding(parameterStyle=ParameterStyle.BARE)
public interface quoteReporter
{
...

}

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.128

Chapter 2. Developing a Service Using Java as a
Starting Point

Defining Operation Properties with Annotations

Overview When the runtime maps your Java method definitions into XML operation
definitions it provides details such as:

• What the exchanged messages look like in XML

• If the message can be optimized as a one way message

• The namespaces where the messages are defined

The @WebMethod annotation The @WebMethod annotation is defined by the javax.jws.WebMethod
interface. It is placed on the methods in the SEI. The @WebMethod annotation
provides the information that is normally represented in the wsdl:operation
element describing the operation to which the method is associated.

Table 2.3 on page 29 describes the properties of the @WebMethod annotation.

Table 2.3. @WebMethod Properties

DescriptionProperty

Specifies the value of the associated wsdl:operation

element's name. The default value is the name of the

method.

operationName

Specifies the value of the soapAction attribute of the

soap:operation element generated for the method. The

default value is an empty string.

action

Specifies if the method should be excluded from the
service interface. The default is false.

exclude

The @RequestWrapper
annotation

The @RequestWrapper annotation is defined by the
javax.xml.ws.RequestWrapper interface. It is placed on the methods in
the SEI. The @RequestWrapper annotation specifies the Java class
implementing the wrapper bean for the method parameters of the request
message starting a message exchange. It also specifies the element names,
and namespaces, used by the runtime when marshalling and unmarshalling
the request messages.

29FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Optional Annotations

Table 2.4 on page 30 describes the properties of the @RequestWrapper
annotation.

Table 2.4. @RequestWrapper Properties

DescriptionProperty

Specifies the local name of the wrapper element in the
XML representation of the request message. The default

localName

value is either the name of the method, or the value of
the @WebMethod annotation's operationName property.

Specifies the namespace under which the XML wrapper
element is defined. The default value is the target
namespace of the SEI.

targetNamespace

Specifies the full name of the Java class that implements
the wrapper element.

className

Tip
Only the className property is required.

Important
If the method is also annotated with the @SOAPBinding annotation,
and its parameterStyle property is set to ParameterStyle.BARE,
this annotation is ignored.

The @ResponseWrapper
annotation

The @ResponseWrapper annotation is defined by the
javax.xml.ws.ResponseWrapper interface. It is placed on the methods in
the SEI. The @ResponseWrapper specifies the Java class implementing the
wrapper bean for the method parameters in the response message in the
message exchange. It also specifies the element names, and namespaces,
used by the runtime when marshaling and unmarshalling the response
messages.

Table 2.5 on page 31 describes the properties of the @ResponseWrapper
annotation.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.130

Chapter 2. Developing a Service Using Java as a
Starting Point

Table 2.5. @ResponseWrapper Properties

DescriptionProperty

Specifies the local name of the wrapper element in the
XML representation of the response message. The default

localName

value is either the name of the method with Response

appended, or the value of the @WebMethod annotation's

operationName property with Response appended.

Specifies the namespace where the XML wrapper element
is defined. The default value is the target namespace of
the SEI.

targetNamespace

Specifies the full name of the Java class that implements
the wrapper element.

className

Tip
Only the className property is required.

Important
If the method is also annotated with the @SOAPBinding annotation
and its parameterStyle property is set to ParameterStyle.BARE,
this annotation is ignored.

The @WebFault annotation The @WebFault annotation is defined by the javax.xml.ws.WebFault
interface. It is placed on exceptions that are thrown by your SEI. The
@WebFault annotation is used to map the Java exception to a wsdl:fault
element. This information is used to marshall the exceptions into a
representation that can be processed by both the service and its consumers.

Table 2.6 on page 31 describes the properties of the @WebFault annotation.

Table 2.6. @WebFault Properties

DescriptionProperty

Specifies the local name of the fault element.name

Specifies the namespace under which the fault element
is defined. The default value is the target namespace
of the SEI.

targetNamespace

31FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Optional Annotations

DescriptionProperty

Specifies the full name of the Java class that
implements the exception.

faultName

Important
The name property is required.

The @Oneway annotation The @Oneway annotation is defined by the javax.jws.Oneway interface. It
is placed on the methods in the SEI that will not require a response from the
service. The @Oneway annotation tells the run time that it can optimize the
execution of the method by not waiting for a response and by not reserving
any resources to process a response.

This annotation can only be used on methods that meet the following criteria:

• They return void

• They have no parameters that implement the Holder interface

• They do not throw any exceptions that can be passed back to a consumer

Example Example 2.6 on page 32 shows an SEI with its methods annotated.

Example 2.6. SEI with Annotated Methods

package com.fusesource.demo;

import javax.jws.*;
import javax.xml.ws.*;

@WebService(name="quoteReporter")
public interface quoteReporter
{
@WebMethod(operationName="getStockQuote")
@RequestWrapper(targetNamespace="http://demo.fusesource.com/types",

className="java.lang.String")
@ResponseWrapper(targetNamespace="http://demo.fusesource.com/types",

className="org.eric.demo.Quote")
public Quote getQuote(String ticker);

}

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.132

Chapter 2. Developing a Service Using Java as a
Starting Point

Defining Parameter Properties with Annotations

Overview The method parameters in the SEI correspond to the wsdl:message elements
and their wsdl:part elements. JAX-WS provides annotations that allow you
to describe the wsdl:part elements that are generated for the method
parameters.

The @WebParam annotation The @WebParam annotation is defined by the javax.jws.WebParam interface.
It is placed on the parameters of the methods defined in the SEI. The
@WebParam annotation allows you to specify the direction of the parameter,
if the parameter will be placed in the SOAP header, and other properties of
the generated wsdl:part.

Table 2.7 on page 33 describes the properties of the @WebParam annotation.

Table 2.7. @WebParam Properties

DescriptionValuesProperty

Specifies the name of the parameter as it appears in the generated WSDL
document. For RPC bindings, this is the name of the wsdl:part

name

representing the parameter. For document bindings, this is the local name
of the XML element representing the parameter. Per the JAX-WS
specification, the default is argN, where N is replaced with the zero-based

argument index (i.e., arg0, arg1, etc.).

Specifies the namespace for the parameter. It is only used with document
bindings where the parameter maps to an XML element. The default is
to use the service's namespace.

targetNamespace

Specifies the direction of the parameter.Mode.IN (default)amode

Mode.OUT

Mode.INOUT

Specifies if the parameter is passed as part of the SOAP header.false (default)header

true

33FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Optional Annotations

DescriptionValuesProperty

Specifies the value of the name attribute of the wsdl:part element for

the parameter. This property is used for document style SOAP bindings.

partName

aAny parameter that implements the Holder interface is mapped to Mode.INOUT by default.

The @WebResult annotation The @WebResult annotation is defined by the javax.jws.WebResult
interface. It is placed on the methods defined in the SEI. The @WebResult
annotation allows you to specify the properties of the wsdl:part that is
generated for the method's return value.

Table 2.8 on page 34 describes the properties of the @WebResult annotation.

Table 2.8. @WebResult Properties

DescriptionProperty

Specifies the name of the return value as it appears in the
generated WSDL document. For RPC bindings, this is the

name

name of the wsdl:part representing the return value.

For document bindings, this is the local name of the XML
element representing the return value. The default value
is return.

Specifies the namespace for the return value. It is only
used with document bindings where the return value maps

targetNamespace

to an XML element. The default is to use the service's
namespace.

Specifies if the return value is passed as part of the SOAP
header.

header

Specifies the value of the name attribute of the wsdl:part

element for the return value. This property is used for
document style SOAP bindings.

partName

Example Example 2.7 on page 34 shows an SEI that is fully annotated.

Example 2.7. Fully Annotated SEI

package com.fusesource.demo;

import javax.jws.*;

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.134

Chapter 2. Developing a Service Using Java as a
Starting Point

import javax.xml.ws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;
import javax.jws.WebParam.*;

@WebService(targetNamespace="http://demo.fusesource.com",
name="quoteReporter")

@SOAPBinding(style=Style.RPC, use=Use.LITERAL)
public interface quoteReporter
{
@WebMethod(operationName="getStockQuote")
@RequestWrapper(targetNamespace="http://demo.fusesource.com/types",

className="java.lang.String")
@ResponseWrapper(targetNamespace="http://demo.fusesource.com/types",

className="org.eric.demo.Quote")
@WebResult(targetNamespace="http://demo.fusesource.com/types",

name="updatedQuote")
public Quote getQuote(

@WebParam(targetNamespace="http://demo.fusesource.com/types",
name="stockTicker",
mode=Mode.IN)

String ticker
);

}

35FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Optional Annotations

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.136

Chapter 3. Developing a Service Using
WSDL as a Starting Point
FUSE ESB provides Maven tools that allow you to generate the required stub code from a WSDL file. You simply
need to provide the application logic to implement your service.

Overview When starting with a WSDL file, ,you need to generate the stub code for your
service. You may also need to generate the starting point code for your service.
To generate the required code you have two options:

• use the FUSE Services Framework wsdl2java tool

• use the wsdl2java goal of the Maven Apache CXF code generation plug-in

Once the stub code is generated, you can implement your service's logic and
deploy it.

Using the FUSE Services
Framework code generation tool

If you have a copy of FUSE Services Framework, or Apache CXF, installed on
your system, you can use the wsdl2java tool to generate the stub code and
the starting point code. Example 3.1 on page 37 shows the command and
the options to use.

Example 3.1. FUSE Services Framework Code Generation Command

wsdl2java -impl -d outDir myService.wsdl

The -impl flag tells the tool to generate the starting point code for your
implementation. The -d outDir flag tells the tool the name of the folder into
which the generated code is written.

Important
FUSE ESB 4.1 only supports FUSE Services Framework 2.1.x or
Apache CXF 2.1.x.

37FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

For more information about using the FUSE Services Framework tooling see
the FUSE Services Framework library.1.

Using the Maven tools Even if you do not have FUSE Services Framework or Apache CXF installed,
you can generate the required Java classes using the Maven tooling. You need
to include the Apache CXF code generation plug-in in your project file and
configure it to use the wsdl2java goal.

Example 3.2 on page 38 shows the XML needed to configure the Apache
CXF code generation plug-in to generate the stubs and starting point code.

Example 3.2. Maven Configuration for Generating Starting Point Code From WSDL

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">

...
<build>
<plugins>

...
<plugin>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-codegen-plugin</artifactId> ❶
<version>cxf-version</version> ❷
<executions>

<execution<
<phase>generate-sources</phase> ❸
<configuration>
<sourceRoot>sourceDir</sourceRoot> ❹
<wsdlOptions>
<wsdlOption>
<wsdl>myService.wsdl</wsdl> ❺
<extraargs>
<extraarg>-impl</extraarg> ❻

</extraargs>
</wsdlOption>

</wsdlOptions>
</configuration>
<goals>
<goal>wsdl2java</goal> ❼

</goals>
</execution>

1 http://fusesource.com/documentation/fuse-service-framework-documentation

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.138

Chapter 3. Developing a Service Using WSDL as a
Starting Point

http://fusesource.com/documentation/fuse-service-framework-documentation
http://fusesource.com/documentation/fuse-service-framework-documentation

</executions>
</plugin>
...

</plugins>
</build>

</project>

The Maven POM fragment shown in Example 3.2 on page 38 does the
following:

❶ Specifies that the Apache CXF code generation plug-in is to be loaded.

❷ Specifies the version of the Apache CXF code generation plug-in to use.

Important
FUSE ESB only supports version 2.1.x of Apache CXF.

❸ Specifies that the plug-in is run during the generate-sources phase of a
project build. You evoke the generate-sources phases using the mvn
generate-sources command.

❹ Specifies the directory into which the generated source files will be
placed.

❺ Specifies the path to the WSDL file from which the source code will be
generated.

❻ Specifies that a starting point implementation class is to be generated.

❼ Specifies that the Apache CXF code generation plug-in will use its
wsdl2java goal.

Generated code The implementation code consists of two files:

• portTypeName.java — The service interface(SEI) for the service.

• portTypeNameImpl.java — The class you will use to implement the

operations defined by the service.

Implement the operation's logic To provide the business logic for your service's operations complete the stub
methods in portTypeNameImpl.java. You usually use standard Java to
implement the business logic. If your service uses custom XML Schema types,
you must use the generated classes for each type to manipulate them. There
are also some FUSE Services Framework specific APIs that can be used to
access some advanced features.

39FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.140

Part II. Configuring Your Applications
FUSE ESB uses Spring-based configuration to deploy JAX-WS services. Using the configuration, you can control
the transport used by your application. You can also configure your application to take advantage of WS-Addressing,
WS-RM, and other enterprise features.

4. Configuring Service Endpoints .. 43
Using the jaxws:endpoint Element ... 44
Using the jaxws:server Element ... 48
Adding Functionality to Service Providers ... 51

5. Configuring the HTTP Transport .. 53
Configuring a Consumer .. 54

Using Configuration .. 55
Using WSDL ... 60
Consumer Cache Control Directives .. 61

Configuring a Service Provider ... 62
Using Configuration .. 63
Using WSDL ... 66
Service Provider Cache Control Directives .. 67

Using the HTTP Transport in Decoupled Mode .. 68
6. Configuring the JMS Transport .. 73

Basic Endpoint Configuration .. 74
Using Configuration .. 75
Using WSDL ... 79
Using a Named Reply Destination .. 80

Consumer Endpoint Configuration .. 81
Using Configuration .. 82
Using WSDL ... 83

Provider Endpoint Configuration .. 84
Using Configuration .. 85
Using WSDL ... 87

JMS Runtime Configuration .. 88
JMS Session Pool Configuration ... 89
Consumer Specific Runtime Configuration .. 90
Provider Specific Runtime Configuration .. 91

7. FUSE Services Framework Logging .. 93
Overview of FUSE Services Framework Logging ... 94
Simple Example of Using Logging .. 96
Default logging.properties File .. 98

Configuring Logging Output .. 99
Configuring Logging Levels ... 101

Enabling Logging at the Command Line ... 102

Logging for Subsystems and Services .. 103
Logging Message Content ... 105

8. Deploying WS-Addressing .. 109
Introduction to WS-Addressing .. 110
WS-Addressing Interceptors .. 111
Enabling WS-Addressing .. 112
Configuring WS-Addressing Attributes ... 114

9. Enabling Reliable Messaging .. 117
Introduction to WS-RM .. 118
WS-RM Interceptors ... 120
Enabling WS-RM ... 122
Configuring WS-RM .. 126

Configuring FUSE Services Framework-Specific WS-RM Attributes 127
Configuring Standard WS-RM Policy Attributes .. 129
WS-RM Configuration Use Cases ... 133

Configuring WS-RM Persistence ... 137
10. Enabling High Availability .. 139

Introduction to High Availability ... 140
Enabling HA with Static Failover .. 141
Configuring HA with Static Failover ... 143

Chapter 4. Configuring Service
Endpoints
FUSE Services Framework service endpoints can be configured using one of two Spring elements. Which one
you use depends on your use case.

Using the jaxws:endpoint Element ... 44
Using the jaxws:server Element ... 48
Adding Functionality to Service Providers ... 51

FUSE Services Framework has two elements that can be used to configure a
service endpoint:

• jaxws:endpoint

• jaxws:server

The differences between the two elements are largely internal to the runtime.
The jaxws:endpoint element injects properties into the
org.apache.cxf.jaxws.EndpointImpl object created to support a service
endpoint. The jaxws:server element injects properties into the
org.apache.cxf.jaxws.support.JaxWsServerFactoryBean object
created to support the endpoint. The EndpointImpl object passes the
configuration data to the JaxWsServerFactoryBean object. The
JaxWsServerFactoryBean object is used to create the actual service object.
So either configuration element will configure a service endpoint. You can
choose based on the syntax you prefer.

43FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using the jaxws:endpoint Element

Overview The jaxws:endpoint element is the default element for configuring JAX-WS
service providers. Its attributes and children specify all of the information
needed to instantiate a service provider. Many of the attributes map to
information in the service's contract. The children are used to configure
interceptors and other advanced features.

Identifying the endpoint being
configured

For the runtime to apply the configuration to the proper service provider, it
must be able to identify it. The basic means for identifying a service provider
is to specify the class that implements the endpoint. This is done using the
jaxws:endpoint element's implementor attribute.

For instances where different endpoint's share a common implementation, it
is possible to provide different configuration for each endpoint. There are two
approaches for distinguishing a specific endpoint in configuration:

• a combination of the serviceName attribute and the endpointName

attribute

The serviceName attribute specifies the wsdl:service element defining
the service's endpoint. The endpointName attribute specifies the specific
wsdl:port element defining the service's endpoint. Both attributes are
specified as QNames using the format ns:name. ns is the namespace of
the element and name is the value of the element's name attribute.

Tip
If the wsdl:service element only has one wsdl:port element,
the endpointName attribute can be omitted.

• the name attribute

The name attribute specifies the QName of the specific wsdl:port element
defining the service's endpoint. The QName is provided in the format

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.144

Chapter 4. Configuring Service Endpoints

{ns}localPart. ns is the namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's name attribute.

Attributes The attributes of the jaxws:endpoint element configure the basic properties
of the endpoint. These properties include the address of the endpoint, the
class that implements the endpoint, and the bus that hosts the endpoint.

Table 4.1 on page 45 describes the attribute of the jaxws:endpoint
element.

Table 4.1. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint Element

DescriptionAttribute

Specifies a unique identifier that other configuration elements can use to refer to the
endpoint.

id

Specifies the class implementing the service. You can specify the implementation class
using either the class name or an ID reference to a Spring bean configuring the
implementation class. This class must be on the classpath.

implementor

Specifies the class implementing the service. This attribute is useful when the value
provided to the implementor attribute is a reference to a bean that is wrapped using

Spring AOP.

implementorClass

Specifies the address of an HTTP endpoint. This value overrides the value specified in the
services contract.

address

Specifies the location of the endpoint's WSDL contract. The WSDL contract's location is
relative to the folder from which the service is deployed.

wsdlLocation

Specifies the value of the service's wsdl:port element's name attribute. It is specified as

a QName using the format ns:name where ns is the namespace of the wsdl:port element.

endpointName

Specifies the value of the service's wsdl:service element's name attribute. It is specified

as a QName using the format ns:name where ns is the namespace of the wsdl:service

element.

serviceName

Specifies if the service should be automatically published. If this is set to false, the

developer must explicitly publish the endpoint.

publish

Specifies the ID of the Spring bean configuring the bus used to manage the service endpoint.
This is useful when configuring several endpoints to use a common set of features.

bus

Specifies the ID of the message binding the service uses. A list of valid binding IDs is
provided in Appendix B on page 163.

bindingUri

45FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using the jaxws:endpoint Element

DescriptionAttribute

Specifies the stringified QName of the service's wsdl:port element. It is specified as a

QName using the format {ns}localPart. ns is the namespace of the wsdl:port element

and localPart is the value of the wsdl:port element's name attribute.

name

Specifies if the bean is an abstract bean. Abstract beans act as parents for concrete bean
definitions and are not instantiated. The default is false. Setting this to true instructs

the bean factory not to instantiate the bean.

abstract

Specifies a list of beans that the endpoint depends on being instantiated before it can be
instantiated.

depends-on

Specifies that the user created that bean using FUSE Services Framework APIs, such as
Endpoint.publish() or Service.getPort().

createdFromAPI

The default is false.

Setting this to true does the following:

• Changes the internal name of the bean by appending .jaxws-endpoint to its id

• Makes the bean abstract

In addition to the attributes listed in Table 4.1 on page 45, you might need
to use multiple xmlns:shortName attributes to declare the namespaces used
by the endpointName and serviceName attributes.

Example Example 4.1 on page 46 shows the configuration for a JAX-WS endpoint
that specifies the address where the endpoint is published. The example
assumes that you want to use the defaults for all other values or that the
implementation has specified values in the annotations.

Example 4.1. Simple JAX-WS Endpoint Configuration

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:endpoint id="example"
implementor="org.apache.cxf.example.DemoImpl"
address="http://localhost:8080/demo" />

</beans>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.146

Chapter 4. Configuring Service Endpoints

Example 4.2 on page 47 shows the configuration for a JAX-WS endpoint
whose contract contains two service definitions. In this case, you must specify
which service definition to instantiate using the serviceName attribute.

Example 4.2. JAX-WS Endpoint Configuration with a Service Name

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:endpoint id="example2"
implementor="org.apache.cxf.example.DemoImpl"
serviceName="samp:demoService2"
xmlns:samp="http://org.apache.cxf/wsdl/example" />
</beans>

The xmlns:samp attribute specifies the namespace in which the WSDL
service element is defined.

47FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using the jaxws:endpoint Element

Using the jaxws:server Element

Overview The jaxws:server element is an element for configuring JAX-WS service
providers. It injects the configuration information into the
org.apache.cxf.jaxws.support.JaxWsServerFactoryBean. This is a
FUSE Services Framework specific object. If you are using a pure Spring
approach to building your services, you will not be forced to use FUSE Services
Framework specific APIs to interact with the service.

The attributes and children of the jaxws:server element specify all of the
information needed to instantiate a service provider. The attributes specify
the information that is required to instantiate an endpoint. The children are
used to configure interceptors and other advanced features.

Identifying the endpoint being
configured

In order for the runtime to apply the configuration to the proper service
provider, it must be able to identify it. The basic means for identifying a service
provider is to specify the class that implements the endpoint. This is done
using the jaxws:server element's serviceBean attribute.

For instances where different endpoint's share a common implementation, it
is possible to provide different configuration for each endpoint. There are two
approaches for distinguishing a specific endpoint in configuration:

• a combination of the serviceName attribute and the endpointName

attribute

The serviceName attribute specifies the wsdl:service element defining
the service's endpoint. The endpointName attribute specifies the specific
wsdl:port element defining the service's endpoint. Both attributes are
specified as QNames using the format ns:name. ns is the namespace of
the element and name is the value of the element's name attribute.

Tip
If the wsdl:service element only has one wsdl:port element,
the endpointName attribute can be omitted.

• the name attribute

The name attribute specifies the QName of the specific wsdl:port element
defining the service's endpoint. The QName is provided in the format

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.148

Chapter 4. Configuring Service Endpoints

{ns}localPart. ns is the namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's name attribute.

Attributes The attributes of the jaxws:server element configure the basic properties
of the endpoint. These properties include the address of the endpoint, the
class that implements the endpoint, and the bus that hosts the endpoint.

Table 4.2 on page 49 describes the attribute of the jaxws:server element.

Table 4.2. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element

DescriptionAttribute

Specifies a unique identifier that other configuration elements can use to refer to the endpoint.id

Specifies the class implementing the service. You can specify the implementation class using
either the class name or an ID reference to a Spring bean configuring the implementation
class. This class must be on the classpath.

serviceBean

Specifies the class implementing the service. This attribute is useful when the value provided
to the implementor attribute is a reference to a bean that is wrapped using Spring AOP.

serviceClass

Specifies the address of an HTTP endpoint. This value will override the value specified in
the services contract.

address

Specifies the location of the endpoint's WSDL contract. The WSDL contract's location is
relative to the folder from which the service is deployed.

wsdlLocation

Specifies the value of the service's wsdl:port element's name attribute. It is specified as a

QName using the format ns:name, where ns is the namespace of the wsdl:port element.

endpointName

Specifies the value of the service's wsdl:service element's name attribute. It is specified

as a QName using the format ns:name, where ns is the namespace of the wsdl:service

element.

serviceName

Specifies if the service should be automatically published. If this is set to false, the developer

must explicitly publish the endpoint.

start

Specifies the ID of the Spring bean configuring the bus used to manage the service endpoint.
This is useful when configuring several endpoints to use a common set of features.

bus

Specifies the ID of the message binding the service uses. A list of valid binding IDs is provided
in Appendix B on page 163.

bindingId

49FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using the jaxws:server Element

DescriptionAttribute

Specifies the stringified QName of the service's wsdl:port element. It is specified as a

QName using the format {ns}localPart, where ns is the namespace of the wsdl:port

element and localPart is the value of the wsdl:port element's name attribute.

name

Specifies if the bean is an abstract bean. Abstract beans act as parents for concrete bean
definitions and are not instantiated. The default is false. Setting this to true instructs the

bean factory not to instantiate the bean.

abstract

Specifies a list of beans that the endpoint depends on being instantiated before the endpoint
can be instantiated.

depends-on

Specifies that the user created that bean using FUSE Services Framework APIs, such as
Endpoint.publish() or Service.getPort().

createdFromAPI

The default is false.

Setting this to true does the following:

• Changes the internal name of the bean by appending .jaxws-endpoint to its id

• Makes the bean abstract

In addition to the attributes listed in Table 4.2 on page 49, you might need
to use multiple xmlns:shortName attributes to declare the namespaces used
by the endpointName and serviceName attributes.

Example Example 4.3 on page 50 shows the configuration for a JAX-WS endpoint
that specifies the address where the endpoint is published.

Example 4.3. Simple JAX-WS Server Configuration

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:server id="exampleServer"
serviceBean="org.apache.cxf.example.DemoImpl"
address="http://localhost:8080/demo" />

</beans>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.150

Chapter 4. Configuring Service Endpoints

Adding Functionality to Service Providers

Overview The jaxws:endpoint and the jaxws:server elements provide the basic
configuration information needed to instantiate a service provider. To add
functionality to your service provider or to perform advanced configuration
you must add child elements to the configuration.

Child elements allow you to do the following:

• Change the endpoint's logging behavior

• Add interceptors to the endpoint's messaging chain

• Enable WS-Addressing features

• Enable reliable messaging

Elements Table 4.3 on page 51 describes the child elements that jaxws:endpoint
supports.

Table 4.3. Elements Used to Configure JAX-WS Service Providers

DescriptionElement

Specifies a list of JAX-WS Handler implementations for processing messages.jaxws:handlers

Specifies a list of interceptors that process inbound requests. For more
information see .

jaxws:inInterceptors

Specifies a list of interceptors that process inbound fault messages. For more
information see .

jaxws:inFaultInterceptors

Specifies a list of interceptors that process outbound replies. For more
information see .

jaxws:outInterceptors

Specifies a list of interceptors that process outbound fault messages. For more
information see .

jaxws:outFaultInterceptors

Specifies a bean configuring the message binding used by the endpoint. Message
bindings are configured using implementations of the
org.apache.cxf.binding.BindingFactory interface.a

jaxws:binding

Specifies the class implementing the data binding used by the endpoint. This
is specified using an embedded bean definition.

jaxws:dataBinding
b

51FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Adding Functionality to Service Providers

DescriptionElement

Specifies a Java executor that is used for the service. This is specified using
an embedded bean definition.

jaxws:executor

Specifies a list of beans that configure advanced features of FUSE Services
Framework. You can provide either a list of bean references or a list of
embedded beans.

jaxws:features

Specifies an implementation of the org.apache.cxf.service.Invoker

interface used by the service. c
jaxws:invoker

Specifies a Spring map of properties that are passed along to the endpoint.
These properties can be used to control features like enabling MTOM support.

jaxws:properties

Specifies a bean configuring the JaxWsServiceFactoryBean object used to

instantiate the service.

jaxws:serviceFactory

aThe SOAP binding is configured using the soap:soapBinding bean.
bThe jaxws:endpoint element does not support the jaxws:dataBinding element.
cThe Invoker implementation controls how a service is invoked. For example, it controls whether each request is handled by a new instance

of the service implementation or if state is preserved across invocations.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.152

Chapter 4. Configuring Service Endpoints

Chapter 5. Configuring the HTTP
Transport
The FUSE Services Framework HTTP transport is highly configurable.

Configuring a Consumer .. 54
Using Configuration .. 55
Using WSDL ... 60
Consumer Cache Control Directives .. 61

Configuring a Service Provider ... 62
Using Configuration .. 63
Using WSDL ... 66
Service Provider Cache Control Directives .. 67

Using the HTTP Transport in Decoupled Mode .. 68

53FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Configuring a Consumer
Using Configuration .. 55
Using WSDL ... 60
Consumer Cache Control Directives .. 61

HTTP consumer endpoints can specify a number of HTTP connection attributes
including whether the endpoint automatically accepts redirect responses,
whether the endpoint can use chunking, whether the endpoint will request a
keep-alive, and how the endpoint interacts with proxies. In addition to the
HTTP connection properties, an HTTP consumer endpoint can specify how
it is secured.

A consumer endpoint can be configured using two mechanisms:

• Configuration

• WSDL

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.154

Chapter 5. Configuring the HTTP Transport

Using Configuration

Namespace The elements used to configure an HTTP consumer endpoint are defined in
the namespace
http://cxf.apache.org/transports/http/configuration. It is
commonly referred to using the prefix http-conf. In order to use the HTTP
configuration elements you must add the lines shown in
Example 5.1 on page 55 to the beans element of your endpoint's
configuration file. In addition, you must add the configuration elements'
namespace to the xsi:schemaLocation attribute.

Example 5.1. HTTP Consumer Configuration Namespace

<beans ...
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration
...
xsi:schemaLocation="...

http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd

...>

The conduit element You configure an HTTP endpoint using the http-conf:conduit element
and its children. The http-conf:conduit element takes a single attribute,
name, that specifies the WSDL port element corresponding to the endpoint.
The value for the name attribute takes the form portQName.http-conduit.
Example 5.2 on page 55 shows the http-conf:conduit element that
would be used to add configuration for an endpoint that is specified by the
WSDL fragment <port binding="widgetSOAPBinding"
name="widgetSOAPPort> when the endpoint's target namespace is
http://widgets.widgetvendor.net.

Example 5.2. http-conf:conduit Element

...
<http-conf:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-conduit>
...

</http-conf:conduit>
...

The http-conf:conduit element has child elements that specify
configuration information. They are described in Table 5.1 on page 56.

55FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using Configuration

Table 5.1. Elements Used to Configure an HTTP Consumer Endpoint

DescriptionElement

Specifies the HTTP connection properties such as timeouts, keep-alive
requests, content types, etc. See "The client element" on page 56.

http-conf:client

Specifies the parameters for configuring the basic authentication method
that the endpoint uses preemptively.

http-conf:authorization

The preferred approach is to supply a Basic Authentication Supplier object.

Specifies the parameters for configuring basic authentication against outgoing
HTTP proxy servers.

http-conf:proxyAuthorization

Specifies the parameters used to configure SSL/TLS.http-conf:tlsClientParameters

Specifies the bean reference or class name of the object that supplies the
basic authentication information used by the endpoint, either preemptively
or in response to a 401 HTTP challenge.

http-conf:basicAuthSupplier

Specifies the bean reference or class name of the object that checks the
HTTP(S) URLConnection object to establish trust for a connection with an
HTTPS service provider before any information is transmitted.

http-conf:trustDecider

The client element The http-conf:client element is used to configure the non-security
properties of a consumer endpoint's HTTP connection. Its attributes, described
in Table 5.2 on page 56, specify the connection's properties.

Table 5.2. HTTP Consumer Configuration Attributes

DescriptionAttribute

Specifies the amount of time, in milliseconds, that the consumer attempts to establish a
connection before it times out. The default is 30000.

ConnectionTimeout

0 specifies that the consumer will continue to send the request indefinitely.

Specifies the amount of time, in milliseconds, that the consumer will wait for a response
before it times out. The default is 30000.

ReceiveTimeout

0 specifies that the consumer will wait indefinitely.

Specifies if the consumer will automatically follow a server issued redirection. The default
is false.

AutoRedirect

Specifies the maximum number of times a consumer will retransmit a request to satisfy a
redirect. The default is -1 which specifies that unlimited retransmissions are allowed.

MaxRetransmits

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.156

Chapter 5. Configuring the HTTP Transport

DescriptionAttribute

Specifies whether the consumer will send requests using chunking. The default is true
which specifies that the consumer will use chunking when sending requests.

AllowChunking

Chunking cannot be used if either of the following are true:

• http-conf:basicAuthSupplier is configured to provide credentials preemptively.

• AutoRedirect is set to true.

In both cases the value of AllowChunking is ignored and chunking is disallowed.

Specifies what media types the consumer is prepared to handle. The value is used as the
value of the HTTP Accept property. The value of the attribute is specified using multipurpose
internet mail extensions (MIME) types.

Accept

Specifies what language (for example, American English) the consumer prefers for the
purpose of receiving a response. The value is used as the value of the HTTP AcceptLanguage
property.

AcceptLanguage

Language tags are regulated by the International Organization for Standards (ISO) and are
typically formed by combining a language code, determined by the ISO-639 standard, and
country code, determined by the ISO-3166 standard, separated by a hyphen. For example,
en-US represents American English.

Specifies what content encodings the consumer is prepared to handle. Content encoding
labels are regulated by the Internet Assigned Numbers Authority (IANA). The value is used
as the value of the HTTP AcceptEncoding property.

AcceptEncoding

Specifies the media type of the data being sent in the body of a message. Media types are
specified using multipurpose internet mail extensions (MIME) types. The value is used as
the value of the HTTP ContentType property. The default is text/xml.

ContentType

For web services, this should be set to text/xml. If the client is sending HTML form data
to a CGI script, this should be set to application/x-www-form-urlencoded. If the HTTP
POST request is bound to a fixed payload format (as opposed to SOAP), the content type
is typically set to application/octet-stream.

Specifies the Internet host and port number of the resource on which the request is being
invoked. The value is used as the value of the HTTP Host property.

Host

This attribute is typically not required. It is only required by certain DNS scenarios or
application designs. For example, it indicates what host the client prefers for clusters (that
is, for virtual servers mapping to the same Internet protocol (IP) address).

Specifies whether a particular connection is to be kept open or closed after each
request/response dialog. There are two valid values:

Connection

57FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using Configuration

DescriptionAttribute

• Keep-Alive — Specifies that the consumer wants the connection kept open after the

initial request/response sequence. If the server honors it, the connection is kept open
until the consumer closes it.

• close(default) — Specifies that the connection to the server is closed after each

request/response sequence.

Specifies directives about the behavior that must be adhered to by caches involved in the
chain comprising a request from a consumer to a service provider. See "Consumer Cache
Control Directives" on page 61.

CacheControl

Specifies a static cookie to be sent with all requests.Cookie

Specifies information about the browser from which the request originates. In the HTTP
specification from the World Wide Web consortium (W3C) this is also known as the
user-agent. Some servers optimize based on the client that is sending the request.

BrowserType

Specifies the URL of the resource that directed the consumer to make requests on a
particular service. The value is used as the value of the HTTP Referer property.

Referer

This HTTP property is used when a request is the result of a browser user clicking on a
hyperlink rather than typing a URL. This can allow the server to optimize processing based
upon previous task flow, and to generate lists of back-links to resources for the purposes
of logging, optimized caching, tracing of obsolete or mistyped links, and so on. However,
it is typically not used in web services applications.

If the AutoRedirect attribute is set to true and the request is redirected, any value
specified in the Referer attribute is overridden. The value of the HTTP Referer property
is set to the URL of the service that redirected the consumer’s original request.

Specifies the URL of a decoupled endpoint for the receipt of responses over a separate
provider->consumer connection. For more information on using decoupled endpoints see,
"Using the HTTP Transport in Decoupled Mode" on page 68.

DecoupledEndpoint

You must configure both the consumer endpoint and the service provider endpoint to use
WS-Addressing for the decoupled endpoint to work.

Specifies the URL of the proxy server through which requests are routed.ProxyServer

Specifies the port number of the proxy server through which requests are routed.ProxyServerPort

Specifies the type of proxy server used to route requests. Valid values are:ProxyServerType

• HTTP(default)

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.158

Chapter 5. Configuring the HTTP Transport

DescriptionAttribute

• SOCKS

Example Example 5.3 on page 59 shows the configuration of an HTTP consumer
endpoint that wants to keep its connection to the provider open between
requests, that will only retransmit requests once per invocation, and that
cannot use chunking streams.

Example 5.3. HTTP Consumer Endpoint Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http-conf:conduit name="{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">

<http-conf:client Connection="Keep-Alive"
MaxRetransmits="1"
AllowChunking="false" />

</http-conf:conduit>
</beans>

59FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using Configuration

Using WSDL

Namespace The WSDL extension elements used to configure an HTTP consumer endpoint
are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is
commonly referred to using the prefix http-conf. In order to use the HTTP
configuration elements you must add the line shown in
Example 5.4 on page 60 to the definitions element of your endpoint's
WSDL document.

Example 5.4. HTTP Consumer WSDL Element's Namespace

<definitions ...
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration

The client element The http-conf:client element is used to specify the connection properties
of an HTTP consumer in a WSDL document. The http-conf:client element
is a child of the WSDL port element. It has the same attributes as the client
element used in the configuration file. The attributes are described in
Table 5.2 on page 56.

Example Example 5.5 on page 60 shows a WSDL fragment that configures an HTTP
consumer endpoint to specify that it does not interact with caches.

Example 5.5. WSDL to Configure an HTTP Consumer Endpoint

<service ...>
<port ...>
<soap:address ... />
<http-conf:client CacheControl="no-cache" />

</port>
</service>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.160

Chapter 5. Configuring the HTTP Transport

Consumer Cache Control Directives
Table 5.3 on page 61 lists the cache control directives supported by an HTTP
consumer.

Table 5.3. http-conf:client Cache Control Directives

BehaviorDirective

Caches cannot use a particular response to satisfy subsequent requests without first revalidating
that response with the server. If specific response header fields are specified with this value, the

no-cache

restriction applies only to those header fields within the response. If no response header fields
are specified, the restriction applies to the entire response.

Caches must not store either any part of a response or any part of the request that invoked it.no-store

The consumer can accept a response whose age is no greater than the specified time in seconds.max-age

The consumer can accept a response that has exceeded its expiration time. If a value is assigned
to max-stale, it represents the number of seconds beyond the expiration time of a response up

max-stale

to which the consumer can still accept that response. If no value is assigned, the consumer can
accept a stale response of any age.

The consumer wants a response that is still fresh for at least the specified number of seconds
indicated.

min-fresh

Caches must not modify media type or location of the content in a response between a provider
and a consumer.

no-transform

Caches should return only responses that are currently stored in the cache, and not responses
that need to be reloaded or revalidated.

only-if-cached

Specifies additional extensions to the other cache directives. Extensions can be informational or
behavioral. An extended directive is specified in the context of a standard directive, so that

cache-extension

applications not understanding the extended directive can adhere to the behavior mandated by
the standard directive.

61FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Consumer Cache Control Directives

Configuring a Service Provider
Using Configuration .. 63
Using WSDL ... 66
Service Provider Cache Control Directives .. 67

HTTP service provider endpoints can specify a number of HTTP connection
attributes including if it will honor keep alive requests, how it interacts with
caches, and how tolerant it is of errors in communicating with a consumer.

A service provider endpoint can be configured using two mechanisms:

• Configuration

• WSDL

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.162

Chapter 5. Configuring the HTTP Transport

Using Configuration

Namespace The elements used to configure an HTTP provider endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration.
It is commonly referred to using the prefix http-conf. In order to use the HTTP
configuration elements you must add the lines shown in
Example 5.6 on page 63 to the beans element of your endpoint's
configuration file. In addition, you must add the configuration elements'
namespace to the xsi:schemaLocation attribute.

Example 5.6. HTTP Provider Configuration Namespace

<beans ...
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration
...
xsi:schemaLocation="...

http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd

...>

The destination element You configure an HTTP service provider endpoint using the
http-conf:destination element and its children. The
http-conf:destination element takes a single attribute, name, that
specifies the WSDL port element that corresponds to the endpoint. The value
for the name attribute takes the form portQName.http-destination.
Example 5.7 on page 63 shows the http-conf:destination element that
is used to add configuration for an endpoint that is specified by the WSDL
fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort>
when the endpoint's target namespace is
http://widgets.widgetvendor.net.

Example 5.7. http-conf:destination Element

...
<http-conf:destination name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-destin

ation>
...

</http-conf:destination>
...

The http-conf:destination element has a number of child elements that
specify configuration information. They are described in Table 5.4 on page 64.

63FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using Configuration

Table 5.4. Elements Used to Configure an HTTP Service Provider Endpoint

DescriptionElement

Specifies the HTTP connection properties. See "The server element"
on page 64.

http-conf:server

Specifies the parameters that configure the context match strategy for
processing HTTP requests.

http-conf:contextMatchStrategy

Specifies whether the parameter order of an HTTP request handled by
this destination is fixed.

http-conf:fixedParameterOrder

The server element The http-conf:server element is used to configure the properties of a
service provider endpoint's HTTP connection. Its attributes, described in
Table 5.5 on page 64, specify the connection's properties.

Table 5.5. HTTP Service Provider Configuration Attributes

DescriptionAttribute

Sets the length of time, in milliseconds, the service provider attempts to receive
a request before the connection times out. The default is 30000.

ReceiveTimeout

0 specifies that the provider will not timeout.

Specifies whether exceptions are to be thrown when an error is encountered
on receiving a request. The default is false; exceptions are thrown on
encountering errors.

SuppressClientSendErrors

Specifies whether exceptions are to be thrown when an error is encountered
on sending a response to a consumer. The default is false; exceptions are
thrown on encountering errors.

SuppressClientReceiveErrors

Specifies whether the service provider honors requests for a connection to
remain open after a response has been sent. The default is false; keep-alive
requests are ignored.

HonorKeepAlive

Specifies the URL to which the client request should be redirected if the URL
specified in the client request is no longer appropriate for the requested

RedirectURL

resource. In this case, if a status code is not automatically set in the first line
of the server response, the status code is set to 302 and the status description
is set to Object Moved. The value is used as the value of the HTTP
RedirectURL property.

Specifies directives about the behavior that must be adhered to by caches
involved in the chain comprising a response from a service provider to a
consumer. See "Service Provider Cache Control Directives" on page 67.

CacheControl

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.164

Chapter 5. Configuring the HTTP Transport

DescriptionAttribute

Sets the URL where the resource being sent in a response is located.ContentLocation

Specifies the media type of the information being sent in a response. Media
types are specified using multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP ContentType location.

ContentType

Specifies any additional content encodings that have been applied to the
information being sent by the service provider. Content encoding labels are

ContentEncoding

regulated by the Internet Assigned Numbers Authority (IANA). Possible content
encoding values include zip, gzip, compress, deflate, and identity.
This value is used as the value of the HTTP ContentEncoding property.

The primary use of content encodings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. FUSE Services
Framework performs no validation on content codings. It is the user’s
responsibility to ensure that a specified content coding is supported at
application level.

Specifies what type of server is sending the response. Values take the form
program-name/version; for example, Apache/1.2.5.

ServerType

Example Example 5.8 on page 65 shows the configuration for an HTTP service provider
endpoint that honors keep-alive requests and suppresses all communication
errors.

Example 5.8. HTTP Service Provider Endpoint Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http-conf:destination name="{http://apache.org/hello_world_soap_http}SoapPort.http-des
tination">

<http-conf:server SuppressClientSendErrors="true"
SuppressClientReceiveErrors="true"
HonorKeepAlive="true" />

</http-conf:destination>
</beans>

65FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using Configuration

Using WSDL

Namespace The WSDL extension elements used to configure an HTTP provider endpoint
are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is
commonly referred to using the prefix http-conf. To use the HTTP configuration
elements you must add the line shown in Example 5.9 on page 66 to the
definitions element of your endpoint's WSDL document.

Example 5.9. HTTP Provider WSDL Element's Namespace

<definitions ...
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration

The server element The http-conf:server element is used to specify the connection properties
of an HTTP service provider in a WSDL document. The http-conf:server
element is a child of the WSDL port element. It has the same attributes as
the server element used in the configuration file. The attributes are described
in Table 5.5 on page 64.

Example Example 5.10 on page 66 shows a WSDL fragment that configures an HTTP
service provider endpoint specifying that it will not interact with caches.

Example 5.10. WSDL to Configure an HTTP Service Provider Endpoint

<service ...>
<port ...>
<soap:address ... />
<http-conf:server CacheControl="no-cache" />

</port>
</service>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.166

Chapter 5. Configuring the HTTP Transport

Service Provider Cache Control Directives
Table 5.6 on page 67 lists the cache control directives supported by an HTTP
service provider.

Table 5.6. http-conf:server Cache Control Directives

BehaviorDirective

Caches cannot use a particular response to satisfy subsequent requests without first revalidating
that response with the server. If specific response header fields are specified with this value, the

no-cache

restriction applies only to those header fields within the response. If no response header fields
are specified, the restriction applies to the entire response.

Any cache can store the response.public

Public (shared) caches cannot store the response because the response is intended for a single
user. If specific response header fields are specified with this value, the restriction applies only

private

to those header fields within the response. If no response header fields are specified, the restriction
applies to the entire response.

Caches must not store any part of the response or any part of the request that invoked it.no-store

Caches must not modify the media type or location of the content in a response between a server
and a client.

no-transform

Caches must revalidate expired entries that relate to a response before that entry can be used
in a subsequent response.

must-revalidate

Does the same as must-revalidate, except that it can only be enforced on shared caches and is
ignored by private unshared caches. When using this directive, the public cache directive must
also be used.

proxy-revalidate

Clients can accept a response whose age is no greater that the specified number of seconds.max-age

Does the same as max-age, except that it can only be enforced on shared caches and is ignored
by private unshared caches. The age specified by s-max-age overrides the age specified by
max-age. When using this directive, the proxy-revalidate directive must also be used.

s-max-age

Specifies additional extensions to the other cache directives. Extensions can be informational or
behavioral. An extended directive is specified in the context of a standard directive, so that

cache-extension

applications not understanding the extended directive can adhere to the behavior mandated by
the standard directive.

67FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Service Provider Cache Control Directives

Using the HTTP Transport in Decoupled Mode

Overview In normal HTTP request/response scenarios, the request and the response
are sent using the same HTTP connection. The service provider processes
the request and responds with a response containing the appropriate HTTP
status code and the contents of the response. In the case of a successful
request, the HTTP status code is set to 200.

In some instances, such as when using WS-RM or when requests take an
extended period of time to execute, it makes sense to decouple the request
and response message. In this case the service providers sends the consumer
a 202 Accepted response to the consumer over the back-channel of the
HTTP connection on which the request was received. It then processes the
request and sends the response back to the consumer using a new decoupled
server->client HTTP connection. The consumer runtime receives the incoming
response and correlates it with the appropriate request before returning to
the application code.

Configuring decoupled
interactions

Using the HTTP transport in decoupled mode requires that you do the
following:

1. Configure the consumer to use WS-Addressing.

See "Configuring an endpoint to use WS-Addressing" on page 68.

2. Configure the consumer to use a decoupled endpoint.

See "Configuring the consumer" on page 69.

3. Configure any service providers that the consumer interacts with to use
WS-Addressing.

See "Configuring an endpoint to use WS-Addressing" on page 68.

Configuring an endpoint to use
WS-Addressing

Specify that the consumer and any service provider with which the consumer
interacts use WS-Addressing.

You can specify that an endpoint uses WS-Addressing in one of two ways:

• Adding the wswa:UsingAddressing element to the endpoint's WSDL port

element as shown in Example 5.11 on page 69.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.168

Chapter 5. Configuring the HTTP Transport

Example 5.11. Activating WS-Addressing using WSDL

...
<service name="WidgetSOAPService">
<port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
<soap:address="http://widgetvendor.net/widgetSeller" />
<wswa:UsingAddressing xmlns:wswa="http://www.w3.org/2005/02/addressing/wsdl"/>

</port>
</service>
...

• Adding the WS-Addressing policy to the endpoint's WSDL port element

as shown in Example 5.12 on page 69.

Example 5.12. Activating WS-Addressing using a Policy

...
<service name="WidgetSOAPService">
<port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
<soap:address="http://widgetvendor.net/widgetSeller" />
<wsp:Policy xmlns:wsp="http://www.w3.org/2006/07/ws-policy">
<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
<wsp:Policy/>

</wsam:Addressing>
</wsp:Policy>

</port>
</service>
...

Note
The WS-Addressing policy supersedes the wswa:UsingAddressing
WSDL element.

Configuring the consumer Configure the consumer endpoint to use a decoupled endpoint using the
DecoupledEndpoint attribute of the http-conf:conduit element.

Example 5.13 on page 70 shows the configuration for setting up the endpoint
defined in Example 5.11 on page 69 to use use a decoupled endpoint. The
consumer now receives all responses at
http://widgetvendor.net/widgetSellerInbox.

69FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using the HTTP Transport in Decoupled Mode

Example 5.13. Configuring a Consumer to Use a Decoupled HTTP Endpoint

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http:conduit name="{http://widgetvendor.net/services}WidgetSOAPPort.http-conduit">
<http:client DecoupledEndpoint="http://widgetvendor.net:9999/decoupled_endpoint" />

</http:conduit>
</beans>

How messages are processed Using the HTTP transport in decoupled mode adds extra layers of complexity
to the processing of HTTP messages. While the added complexity is
transparent to the implementation level code in an application, it might be
important to understand what happens for debugging reasons.

Figure 5.1 on page 71 shows the flow of messages when using HTTP in
decoupled mode.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.170

Chapter 5. Configuring the HTTP Transport

Figure 5.1. Message Flow in for a Decoupled HTTP Transport

A request starts the following process:

1. The consumer implementation invokes an operation and a request
message is generated.

2. The WS-Addressing layer adds the WS-A headers to the message.

When a decoupled endpoint is specified in the consumer's configuration,
the address of the decoupled endpoint is placed in the WS-A ReplyTo
header.

3. The message is sent to the service provider.

71FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using the HTTP Transport in Decoupled Mode

4. The service provider receives the message.

5. The request message from the consumer is dispatched to the provider's
WS-A layer.

6. Because the WS-A ReplyTo header is not set to anonymous, the provider
sends back a message with the HTTP status code set to 202,

acknowledging that the request has been received.

7. The HTTP layer sends a 202 Accepted message back to the consumer

using the original connection's back-channel.

8. The consumer receives the 202 Accepted reply on the back-channel of

the HTTP connection used to send the original message.

When the consumer receives the 202 Accepted reply, the HTTP
connection closes.

9. The request is passed to the service provider's implementation where
the request is processed.

10. When the response is ready, it is dispatched to the WS-A layer.

11. The WS-A layer adds the WS-Addressing headers to the response
message.

12. The HTTP transport sends the response to the consumer's decoupled
endpoint.

13. The consumer's decoupled endpoint receives the response from the
service provider.

14. The response is dispatched to the consumer's WS-A layer where it is
correlated to the proper request using the WS-A RelatesTo header.

15. The correlated response is returned to the client implementation and the
invoking call is unblocked.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.172

Chapter 5. Configuring the HTTP Transport

Chapter 6. Configuring the JMS
Transport
The FUSE Services Framework JMS transport is highly configurable.

Basic Endpoint Configuration .. 74
Using Configuration .. 75
Using WSDL ... 79
Using a Named Reply Destination .. 80

Consumer Endpoint Configuration .. 81
Using Configuration .. 82
Using WSDL ... 83

Provider Endpoint Configuration .. 84
Using Configuration .. 85
Using WSDL ... 87

JMS Runtime Configuration .. 88
JMS Session Pool Configuration ... 89
Consumer Specific Runtime Configuration .. 90
Provider Specific Runtime Configuration .. 91

73FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Basic Endpoint Configuration
Using Configuration .. 75
Using WSDL ... 79
Using a Named Reply Destination .. 80

JMS endpoints need to know certain basic information about how to establish
a connection to the proper destination. This information can be provided in
one of two places:

• Configuration

• WSDL

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.174

Chapter 6. Configuring the JMS Transport

Using Configuration

Overview JMS endpoints are configured using Spring configuration. You can configure
the server-side and consumer-side transports independently.

The JMS address information is provided using the jms:address element
and its child, the jms:JMSNamingProperties element. The jms:address
element’s attributes specify the information needed to identify the JMS broker
and the destination. The jms:JMSNamingProperties element specifies the
Java properties used to connect to the JNDI service.

Note
Information in the configuration file will override the information in
the endpoint's WSDL file.

Configuration elements You configure a JMS endpoint using one of the following configuration
elements:

jms:conduit

The jms:conduit element contains the configuration for a consumer

endpoint. It has one attribute, name, whose value takes the form

{WSDLNamespace}WSDLPortName.jms-conduit.

jms:destination

The jms:destination element contains the configuration for a provider

endpoint. It has one attribute, name, whose value takes the form

{WSDLNamespace}WSDLPortName.jms-destination.

The address element JMS connection information is specified by adding a jms:address child to
the base configuration element. The jms:address element uses the attributes
described in Table 6.1 on page 76 to configure the connection to the JMS
broker.

75FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using Configuration

Table 6.1. JMS Endpoint Attributes

DescriptionAttribute

Specifies if the JMS destination is a JMS queue or a JMS topic.destinationStyle

Specifies the JNDI name bound to the JMS connection factory to use when
connecting to the JMS destination.

jndiConnectionFactoryName

Specifies the JMS name of the JMS destination to which requests are sent.jmsDestinationName

Specifies the JMS name of the JMS destinations where replies are sent. This
attribute allows you to use a user defined destination for replies. For more
details see "Using a Named Reply Destination" on page 80.

jmsReplyDestinationName

Specifies the JNDI name bound to the JMS destination to which requests are
sent.

jndiDestinationName

Specifies the JNDI name bound to the JMS destinations where replies are
sent. This attribute allows you to use a user defined destination for replies.
For more details see "Using a Named Reply Destination" on page 80.

jndiReplyDestinationName

Specifies the user name to use when connecting to a JMS broker.connectionUserName

Specifies the password to use when connecting to a JMS broker.connectionPassword

The JMSNamingProperties
element

To increase interoperability with JMS and JNDI providers, the jms:address
element has a child element, jms:JMSNamingProperties, that allows you
to specify the values used to populate the properties used when connecting
to the JNDI provider. The jms:JMSNamingProperties element has two
attributes: name and value. name specifies the name of the property to set.
value attribute specifies the value for the specified property.
jms:JMSNamingProperties element can also be used for specification of
provider specific properties.

The following is a list of common JNDI properties that can be set:

1. java.naming.factory.initial

2. java.naming.provider.url

3. java.naming.factory.object

4. java.naming.factory.state

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.176

Chapter 6. Configuring the JMS Transport

5. java.naming.factory.url.pkgs

6. java.naming.dns.url

7. java.naming.authoritative

8. java.naming.batchsize

9. java.naming.referral

10. java.naming.security.protocol

11. java.naming.security.authentication

12. java.naming.security.principal

13. java.naming.security.credentials

14. java.naming.language

15. java.naming.applet

For more details on what information to use in these attributes, check your
JNDI provider’s documentation and consult the Java API reference material.

Example Example 6.1 on page 77 shows a FUSE Services Framework configuration
entry for configuring the addressing information for a JMS consumer endpoint.

Example 6.1. Addressing Information in a FUSE Services Framework Configuration File

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ct="http://cxf.apache.org/configuration/types"
xmlns:jms="http://cxf.apache.org/transports/jms"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd"
http://cxf.apache.org/jaxws ht

tp://cxf.apache.org/schemas/jaxws.xsd
http://cxf.apache.org/transports/jms http://cxf.apache.org/schem

as/configuration/jms.xsd">
<jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
<jms:address destinationStyle="queue"

jndiConnectionFactoryName="myConnectionFactory"

77FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using Configuration

jndiDestinationName="myDestination"
jndiReplyDestinationName="myReplyDestination"
connectionUserName="testUser"
connectionPassword="testPassword">

<jms:JMSNamingProperty name="java.naming.factory.initial"
value="org.apache.cxf.transport.jms.MyInitialContextFactory"

/>
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>

</jms:conduit>
</beans>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.178

Chapter 6. Configuring the JMS Transport

Using WSDL

Overview If you prefer to configure your endpoint using WSDL, you can specify JMS
endpoints as a part of a WSDL service definition. The jms:address element
is a child of the WSDL port element.

Important
Information in the configuration file will override the information in
the endpoint's WSDL file.

The address element The basic configuration for a JMS endpoint is done by using a jms:address
element as the child of your service’s port element. The jms:address
element used in WSDL is identical to the one used in the configuration file.
Its attributes are listed in Table 6.1 on page 76. Like the jms:address
element in the configuration file, the jms:address WSDL element also uses
a jms:JMSNamingProperties child element to specify additional information
needed to connect to a JNDI provider.

Example Example 6.2 on page 79 shows an example of a JMS WSDL port
specification.

Example 6.2. JMS WSDL Port Specification

<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
<jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>

</port>
</service>

79FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using WSDL

Using a Named Reply Destination

Overview By default, FUSE Services Framework endpoints using JMS create a temporary
queue for sending replies back and forth. If you prefer to use named queues,
you can configure the queue used to send replies as part of an endpoint's
JMS configuration.

Setting the reply destination name You specify the reply destination using either the jmsReplyDestinationName
attribute or the jndiReplyDestinationName attribute in the endpoint's JMS
configuration. A client endpoint will listen for replies on the specified
destination and it will specify the value of the attribute in the ReplyTo field
of all outgoing requests. A service endpoint will use the value of the
jndiReplyDestinationName attribute as the location for placing replies if
there is no destination specified in the request’s ReplyTo field.

Example Example 6.3 on page 80 shows the configuration for a JMS client endpoint.

Example 6.3. JMS Consumer Specification Using a Named Reply Queue

<jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
<jms:address destinationStyle="queue"

jndiConnectionFactoryName="myConnectionFactory"
jndiDestinationName="myDestination"
jndiReplyDestinationName="myReplyDestination" >

<jms:JMSNamingProperty name="java.naming.factory.initial"
value="org.apache.cxf.transport.jms.MyInitialContextFactory"

/>
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>

</jms:conduit>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.180

Chapter 6. Configuring the JMS Transport

Consumer Endpoint Configuration
Using Configuration .. 82
Using WSDL ... 83

JMS consumer endpoints specify the type of messages they use. JMS
consumer endpoint can use either a JMS ByteMessage or a JMS
TextMessage. When using an ObjectMessage the consumer endpoint uses
a byte[] as the method for storing data into and retrieving data from the JMS
message body. When messages are sent, the message data, including any
formating information, is packaged into a byte[] and placed into the message
body before it is placed on the wire. When messages are received, the
consumer endpoint will attempt to unmarshall the data stored in the message
body as if it were packed in a byte[].

When using a TextMessage, the consumer endpoint uses a string as the
method for storing and retrieving data from the message body. When messages
are sent, the message information, including any format-specific information,
is converted into a string and placed into the JMS message body. When
messages are received the consumer endpoint will attempt to unmarshall the
data stored in the JMS message body as if it were packed into a string.

When native JMS applications interact with FUSE Services Framework
consumers, the JMS application is responsible for interpreting the message
and the formatting information. For example, if the FUSE Services Framework
contract specifies that the binding used for a JMS endpoint is SOAP, and the
messages are packaged as TextMessage, the receiving JMS application will
get a text message containing all of the SOAP envelope information.

A consumer endpoint can be configured in one of two ways:

• Configuration

• WSDL

Tip
The recommended method is to place the consumer endpoint specific
information into the FUSE Services Framework configuration file for
the endpoint.

81FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Consumer Endpoint Configuration

Using Configuration

Specifying the message type Consumer endpoint configuration is specified using the jms:conduit element.
Using this configuration element, you specify the message type supported by
the consumer endpoint using the jms:runtimePolicy child element. The
message type is specified using the messageType attribute. The messageType
attribute has two possible values:

Table 6.2. messageType Values

Specifies that the data will be packaged as a TextMessage.text

specifies that the data will be packaged as an ByteMessage.binary

Example Example 6.4 on page 82 shows a configuration entry for configuring a JMS
consumer endpoint.

Example 6.4. Configuration for a JMS Consumer Endpoint

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ct="http://cxf.apache.org/configuration/types"
xmlns:jms="http://cxf.apache.org/transports/jms"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd"

http://cxf.apache.org/jaxws ht
tp://cxf.apache.org/schemas/jaxws.xsd

http://cxf.apache.org/transports/jms http://cxf.apache.org/schem
as/configuration/jms.xsd">

...
<jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
<jms:address ... >

...
</jms:address>

...
<jms:runtimePolicy messageType="binary"/>
...

</jms:conduit>
...

</beans>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.182

Chapter 6. Configuring the JMS Transport

Using WSDL

Specifying the message type The type of messages accepted by a JMS consumer endpoint is configured
using the optional jms:client element. The jms:client element is a child
of the WSDL port element and has one attribute:

Table 6.3. JMS Client WSDL Extensions

Specifies how the message data will be packaged as a JMS message. text specifies that the

data will be packaged as a TextMessage. binary specifies that the data will be packaged as

an ByteMessage.

messageType

Example Example 6.5 on page 83 shows the WSDL for configuring a JMS consumer
endpoint.

Example 6.5. WSDL for a JMS Consumer Endpoint

<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
<jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>
<jms:client messageType="binary" />

</port>
</service>

83FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using WSDL

Provider Endpoint Configuration
Using Configuration .. 85
Using WSDL ... 87

JMS provider endpoints have a number of behaviors that are configurable.
These include:

• how messages are correlated

• the use of durable subscriptions

• if the service uses local JMS transactions

• the message selectors used by the endpoint

Service endpoints can be configure in one of two ways:

• Configuration

• WSDL

Tip
The recommended method is to place the provider endpoint specific
information into the FUSE Services Framework configuration file for
the endpoint.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.184

Chapter 6. Configuring the JMS Transport

Using Configuration

Specifying configuration data Provider endpoint configuration is specified using the jms:destination
configuration element. Using this configuration element, you can specify the
provider endpoint's behaviors using the jms:runtimePolicy element. When
configuring a provider endpoint you can use the following jms:runtimePolicy
attributes:

Table 6.4. Provider Endpoint Configuration

DescriptionAttribute

Specifies whether the JMS broker will use the message ID to correlate
messages. The default is false.

useMessageIDAsCorrealationID

Specifies the name used to register a durable subscription.durableSubscriberName

Specifies the string value of a message selector to use. For more information
on the syntax used to specify message selectors, see the JMS 1.1
specification.

messageSelector

Specifies whether the local JMS broker will create transactions around
message processing. The default is false.a

transactional

aCurrently,setting the transactional attribute to true is not supported by the runtime.

Example Example 6.6 on page 85 shows a FUSE Services Framework configuration
entry for configuring a provider endpoint.

Example 6.6. Configuration for a Provider Endpoint

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ct="http://cxf.apache.org/configuration/types"
xmlns:jms="http://cxf.apache.org/transports/jms"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd"
http://cxf.apache.org/jaxws ht

tp://cxf.apache.org/schemas/jaxws.xsd
http://cxf.apache.org/transports/jms http://cxf.apache.org/schem

as/configuration/jms.xsd">
...

<jms:destination name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-destination">

...

85FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using Configuration

<jms:runtimePolicy messageSelector="cxf_message_selector"
useMessageIDAsCorrelationID="true"
transactional="true"
durableSubscriberName="cxf_subscriber" />

...
</jms:destination>
...

</beans>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.186

Chapter 6. Configuring the JMS Transport

Using WSDL

Configuring the endpoint Provider endpoint behaviors are configured using the optional jms:server
element. The jms:server element is a child of the WSDL wsdl:port element
and has the following attributes:

Table 6.5. JMS Provider Endpoint WSDL Extensions

DescriptionAttribute

Specifies whether JMS will use the message ID to correlate messages. The
default is false.

useMessageIDAsCorrealationID

Specifies the name used to register a durable subscription.durableSubscriberName

Specifies the string value of a message selector to use. For more information
on the syntax used to specify message selectors, see the JMS 1.1
specification.

messageSelector

Specifies whether the local JMS broker will create transactions around
message processing. The default is false. a

transactional

aCurrently,setting the transactional attribute to true is not supported by the runtime.

Example Example 6.7 on page 87 shows the WSDL for configuring a JMS provider
endpoint.

Example 6.7. WSDL for a JMS Provider Endpoint

<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
<jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"

value="tcp://localhost:61616" />
</jms:address>
<jms:server messageSelector="cxf_message_selector"

useMessageIDAsCorrelationID="true"
transactional="true"
durableSubscriberName="cxf_subscriber" />

</port>
</service>

87FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Using WSDL

JMS Runtime Configuration
JMS Session Pool Configuration ... 89
Consumer Specific Runtime Configuration .. 90
Provider Specific Runtime Configuration .. 91

In addition to configuring the externally visible aspects of your JMS endpoint,
you can also configure aspects of its internal runtime behavior. There are
three types of runtime configuration:

• JMS session pool configuration on page 89

• Consumer specific configuration on page 90

• Provider specific configuration on page 91

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.188

Chapter 6. Configuring the JMS Transport

JMS Session Pool Configuration

Overview The JMS configuration allows you to specify the number of JMS sessions an
endpoint will keep in a pool.

Configuration element You use the jms:sessionPool element to specify the session pool
configuration for a JMS endpoint. The jms:sessionPool element is a child
of both the jms:conduit element and the jms:destination element.

The jms:sessionPool element's attributes, listed in Table 6.6 on page 89,
specify the high and low water marks for the endpoint's JMS session pool.

Table 6.6. Attributes for Configuring the JMS Session Pool

DescriptionAttribute

Specifies the minimum number of JMS sessions pooled
by the endpoint. The default is 20.

lowWaterMark

Specifies the maximum number of JMS sessions pooled
by the endpoint. The default is 500.

highWaterMark

Example Example 6.8 on page 89 shows an example of configuring the session pool
for a FUSE Services Framework JMS provider endpoint.

Example 6.8. JMS Session Pool Configuration

...
<jms:destination name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-destination>

<jms:address ... >
...

</jms:address>
...
<jms:sessionPool lowWaterMark="10"

highWaterMark="5000" />
...

</jms:destination>
...

89FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

JMS Session Pool Configuration

Consumer Specific Runtime Configuration

Overview The JMS consumer configuration allows you to specify two runtime behaviors:

• the number of milliseconds the consumer will wait for a response.

• the number of milliseconds a request will exist before the JMS broker can
remove it.

Configuration element You configure consumer runtime behavior using the jms:clientConfig
element. The jms:clientConfig element is a child of the jms:conduit
element. It has two attributes that are used to specify the configurable runtime
properties of a consumer endpoint.

Configuring the response timeout
interval

You specify the interval, in milliseconds, a consumer endpoint will wait for a
response before timing out using the jms:clientConfig element's
clientReceiveTimeout attribute. The default timeout interval is 2000.

Configure the request time to live You specify the interval, in milliseconds, that a request can remain unreceived
before the JMS broker can delete it using the jms:clientConfig element's
messageTimeToLive attribute. The default time to live interval is 0 which
specifies that the request has an infinite time to live.

Example Example 6.9 on page 90 shows a configuration fragment that sets the
consumer endpoint's request lifetime to 500 milliseconds and its timeout
value to 500 milliseconds.

Example 6.9. JMS Consumer Endpoint Runtime Configuration

...
<jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
<jms:address ... >
...

</jms:address>
...
<jms:clientConfig clientReceiveTimeout="500"

messageTimeToLive="500" />
...

</jms:conduit>
...

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.190

Chapter 6. Configuring the JMS Transport

Provider Specific Runtime Configuration

Overview The provider specific configuration allows you to specify to runtime behaviors:

• the amount of time a response message can remain unreceived before the
JMS broker can delete it.

• the client identifier used when creating and accessing durable subscriptions.

Configuration element You configure provider runtime behavior using the jms:serverConfig
element. The jms:serverConfig element is a child of the jms:destination
element. It has two attributes that are used to specify the configurable runtime
properties of a provider endpoint.

Configuring the response time to
live

The jms:serverConfig element's messageTimeToLive attribute specifies
the amount of time, in milliseconds, that a response can remain unread before
the JMS broker is allowed to delete it. The default is 0 which specifies that
the message can live forever.

Configuring the durable
subscriber identifier

The jms:serverConfig element's durableSubscriptionClientId attribute
specifies the client identifier the endpoint uses to create and access durable
subscriptions.

Example Example 6.10 on page 91 shows a configuration fragment that sets the
provider endpoint's response lifetime to 500 milliseconds and its durable
subscription client identifier to jms-test-id.

Example 6.10. Provider Endpoint Runtime Configuration

...
<jms:destination name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-destination">

<jms:address ... >
...

</jms:address>
...
<jms:serverConfig messageTimeToLive="500"

durableSubscriptionClientId="jms-test-id" />
...

</jms:destination>
...

91FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Provider Specific Runtime Configuration

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.192

Chapter 7. FUSE Services Framework
Logging
This chapter describes how to configure logging in the FUSE Services Framework runtime.

Overview of FUSE Services Framework Logging ... 94
Simple Example of Using Logging .. 96
Default logging.properties File .. 98

Configuring Logging Output .. 99
Configuring Logging Levels ... 101

Enabling Logging at the Command Line ... 102
Logging for Subsystems and Services .. 103
Logging Message Content ... 105

93FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Overview of FUSE Services Framework Logging

Overview FUSE Services Framework uses the Java logging utility, java.util.logging.
Logging is configured in a logging configuration file that is written using the
standard java.util.Properties format. To run logging on an application,
you can specify logging programmatically or by defining a property at the
command that points to the logging configuration file when you start the
application.

Default logging.properties file FUSE Services Framework comes with a default logging.properties file,
which is located in your InstallDir/etc directory. This file configures both
the output destination for the log messages and the message level that is
published. The default configuration sets the loggers to print message flagged
with the WARNING level to the console. You can either use the default file
without changing any of the configuration settings or you can change the
configuration settings to suit your specific application.

Logging feature FUSE Services Framework includes a logging feature that can be plugged into
your client or your service to enable logging. Example 7.1 on page 94 shows
the configuration to enable the logging feature.

Example 7.1. Configuration for Enabling Logging

<jaxws:endpoint...>
<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>

</jaxws:features>
</jaxws:endpoint>

For more information, see "Logging Message Content" on page 105.

Where to begin? To run a simple example of logging follow the instructions outlined in a
"Simple Example of Using Logging" on page 96.

For more information on how logging works in FUSE Services Framework,
read this entire chapter.

More information on
java.util.logging

The java.util.logging utility is one of the most widely used Java logging
frameworks. There is a lot of information available online that describes how
to use and extend this framework. As a starting point, however, the following
documents gives a good overview of java.util.logging:

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.194

Chapter 7. FUSE Services Framework Logging

• http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

• http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/
package-summary.html

95FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Overview of FUSE Services Framework Logging

http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.html

Simple Example of Using Logging

Changing the log levels and
output destination

To change the log level and output destination of the log messages in the
wsdl_first sample application, complete the following steps:

1. Run the sample server as described in the Running the demo using java
section of the README.txt file in the InstallDir/samples/wsdl_first

directory. Note that the server start command specifies the default
logging.properties file, as follows:

CommandPlatform

start java -Djava.util.logging.config.file=%CXF_HOME%\etc\logging.properties

demo.hw.server.Server

Windows

java -Djava.util.logging.config.file=$CXF_HOME/etc/logging.properties

demo.hw.server.Server &

UNIX

The default logging.properties file is located in the InstallDir/etc
directory. It configures the FUSE Services Framework loggers to print
WARNING level log messages to the console. As a result, you see very
little printed to the console.

2. Stop the server as described in the README.txt file.

3. Make a copy of the default logging.properties file, name it

mylogging.properties file, and save it in the same directory as the

default logging.properties file.

4. Change the global logging level and the console logging levels in your
mylogging.properties file to INFO by editing the following lines of

configuration:

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

5. Restart the server using the following command:

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.196

Chapter 7. FUSE Services Framework Logging

CommandPlatform

start java -Djava.util.logging.config.file=%CXF_HOME%\etc\mylogging.properties

demo.hw.server.Server

Windows

java -Djava.util.logging.config.file=$CXF_HOME/etc/mylogging.properties

demo.hw.server.Server &

UNIX

Because you configured the global logging and the console logger to log
messages of level INFO, you see a lot more log messages printed to the
console.

97FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Simple Example of Using Logging

Default logging.properties File

Configuring Logging Output .. 99
Configuring Logging Levels ... 101

The default logging configuration file, logging.properties, is located in
the InstallDir/etc directory. It configures the FUSE Services Framework
loggers to print WARNING level messages to the console. If this level of logging
is suitable for your application, you do not have to make any changes to the
file before using it. You can, however, change the level of detail in the log
messages. For example, you can change whether log messages are sent to
the console, to a file or to both. In addition, you can specify logging at the
level of individual packages.

Note
This section discusses the configuration properties that appear in
the default logging.properties file. There are, however, many
other java.util.logging configuration properties that you can
set. For more information on the java.util.logging API, see the
java.util.logging javadoc at: http://java.sun.com/j2se/1.5/docs/
api/java/util/logging/package-summary.html.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.198

Chapter 7. FUSE Services Framework Logging

http://java.sun.com/j2se/1.5/docs/api/java/util/logging/package-summary.html
http://java.sun.com/j2se/1.5/docs/api/java/util/logging/package-summary.html

Configuring Logging Output
The Java logging utility, java.util.logging, uses handler classes to output
log messages. Table 7.1 on page 99 shows the handlers that are configured
in the default logging.properties file.

Table 7.1. Java.util.logging Handler Classes

Outputs toHandler Class

Outputs log messages to the consoleConsoleHandler

Outputs log messages to a fileFileHandler

Important
The handler classes must be on the system classpath in order to be
installed by the Java VM when it starts. This is done when you set
the FUSE Services Framework environment.

Configuring the console handler Example 7.2 on page 99 shows the code for configuring the console logger.

Example 7.2. Configuring the Console Handler

handlers= java.util.logging.ConsoleHandler

The console handler also supports the configuration properties shown in
Example 7.3 on page 99.

Example 7.3. Console Handler Properties

java.util.logging.ConsoleHandler.level = WARNING ❶
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter ❷

The configuration properties shown in Example 7.3 on page 99 can be
explained as follows:

❶ The console handler supports a separate log level configuration property.
This allows you to limit the log messages printed to the console while
the global logging setting can be different (see "Configuring Logging
Levels" on page 101). The default setting is WARNING.

99FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Configuring Logging Output

❷ Specifies the java.util.logging formatter class that the console

handler class uses to format the log messages. The default setting is the
java.util.logging.SimpleFormatter.

Configuring the file handler Example 7.4 on page 100 shows code that configures the file handler.

Example 7.4. Configuring the File Handler

handlers= java.util.logging.FileHandler

The file handler also supports the configuration properties shown in
Example 7.5 on page 100.

Example 7.5. File Handler Configuration Properties

java.util.logging.FileHandler.pattern = %h/java%u.log ❶
java.util.logging.FileHandler.limit = 50000 ❷
java.util.logging.FileHandler.count = 1 ❸
java.util.logging.FileHandler.formatter = java.util.logging.XMLFormatter ❹

The configuration properties shown in Example 7.5 on page 100 can be
explained as follows:

❶ Specifies the location and pattern of the output file. The default setting
is your home directory.

❷ Specifies, in bytes, the maximum amount that the logger writes to any
one file. The default setting is 50000. If you set it to zero, there is no

limit on the amount that the logger writes to any one file.
❸ Specifies how many output files to cycle through. The default setting is

1.

❹ Specifies the java.util.logging formatter class that the file handler

class uses to format the log messages. The default setting is the
java.util.logging.XMLFormatter.

Configuring both the console
handler and the file handler

You can set the logging utility to output log messages to both the console and
to a file by specifying the console handler and the file handler, separated by
a comma, as shown in Example 7.6 on page 100.

Example 7.6. Configuring Both Console Logging and File Logging

handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1100

Chapter 7. FUSE Services Framework Logging

Configuring Logging Levels

Logging levels The java.util.logging framework supports the following levels of logging,
from the least verbose to the most verbose:

• SEVERE

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST

Configuring the global logging
level

To configure the types of event that are logged across all loggers, configure
the global logging level as shown in Example 7.7 on page 101.

Example 7.7. Configuring Global Logging Levels

.level= WARNING

Configuring logging at an
individual package level

The java.util.logging framework supports configuring logging at the level
of an individual package. For example, the line of code shown in
Example 7.8 on page 101 configures logging at a SEVERE level on classes in
the com.xyz.foo package.

Example 7.8. Configuring Logging at the Package Level

com.xyz.foo.level = SEVERE

101FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Configuring Logging Levels

Enabling Logging at the Command Line

Overview You can run the logging utility on an application by defining a
java.util.logging.config.file property when you start the application.
You can either specify the default logging.properties file or a
logging.properties file that is unique to that application.

Specifying the log configuration
file on application start-up

To specify logging on application start-up add the flag shown in
Example 7.9 on page 102 when starting the application.

Example 7.9. Flag to Start Logging on the Command Line

-Djava.util.logging.config.file=myfile

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1102

Chapter 7. FUSE Services Framework Logging

Logging for Subsystems and Services
You can use the com.xyz.foo.level configuration property described in
"Configuring logging at an individual package level" on page 101 to set
fine-grained logging for specified FUSE Services Framework logging
subsystems.

FUSE Services Framework logging
subsystems

Table 7.2 on page 103 shows a list of available FUSE Services Framework
logging subsystems.

Table 7.2. FUSE Services Framework Logging Subsystems

DescriptionSubsystem

FUSE Services Framework containercom.iona.cxf.container

Aegis bindingorg.apache.cxf.aegis

colocated bindingorg.apache.cxf.binding.coloc

HTTP bindingorg.apache.cxf.binding.http

JBI bindingorg.apache.cxf.binding.jbi

Java Object bindingorg.apache.cxf.binding.object

SOAP bindingorg.apache.cxf.binding.soap

XML bindingorg.apache.cxf.binding.xml

FUSE Services Framework busorg.apache.cxf.bus

configuration frameworkorg.apache.cxf.configuration

server and client endpointsorg.apache.cxf.endpoint

interceptorsorg.apache.cxf.interceptor

Front-end for JAX-WS style message exchange, JAX-WS handler
processing, and interceptors relating to JAX-WS and configuration

org.apache.cxf.jaxws

JBI container integration classesorg.apache.cxf.jbi

JCA container integration classesorg.apache.cxf.jca

JavaScript front-endorg.apache.cxf.js

103FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Logging for Subsystems and Services

DescriptionSubsystem

HTTP transportorg.apache.cxf.transport.http

secure version of HTTP transport, using HTTPSorg.apache.cxf.transport.https

JBI transportorg.apache.cxf.transport.jbi

JMS transportorg.apache.cxf.transport.jms

transport implementation using local file systemorg.apache.cxf.transport.local

HTTP transport and servlet implementation for loading JAX-WS
endpoints into a servlet container

org.apache.cxf.transport.servlet

WS-Addressing implementationorg.apache.cxf.ws.addressing

WS-Policy implementationorg.apache.cxf.ws.policy

WS-ReliableMessaging (WS-RM) implementationorg.apache.cxf.ws.rm

WSS4J security implementationorg.apache.cxf.ws.security.wss4j

Example The WS-Addressing sample is contained in the
InstallDir/samples/ws_addressing directory. Logging is configured in
the logging.properties file located in that directory. The relevant lines of
configuration are shown in Example 7.10 on page 104.

Example 7.10. Configuring Logging for WS-Addressing

java.util.logging.ConsoleHandler.formatter = demos.ws_addressing.common.ConciseFormatter
...
org.apache.cxf.ws.addressing.soap.MAPCodec.level = INFO

The configuration in Example 7.10 on page 104 enables the snooping of log
messages relating to WS-Addressing headers, and displays them to the console
in a concise form.

For information on running this sample, see the README.txt file located in
the InstallDir/samples/ws_addressing directory.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1104

Chapter 7. FUSE Services Framework Logging

Logging Message Content
You can log the content of the messages that are sent between a service and
a consumer. For example, you might want to log the contents of SOAP
messages that are being sent between a service and a consumer.

Configuring message content
logging

To log the messages that are sent between a service and a consumer, and
vice versa, complete the following steps:

1. Add the logging feature to your endpoint's configuration.

2. Add the logging feature to your consumer's configuration.

3. Configure the logging system log INFO level messages.

Adding the logging feature to an
endpoint

Add the logging feature your endpoint's configuration as shown in
Example 7.11 on page 105.

Example 7.11. Adding Logging to Endpoint Configuration

<jaxws:endpoint ...>
<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>

</jaxws:features>
</jaxws:endpoint>

The example XML shown in Example 7.11 on page 105 enables the logging
of SOAP messages.

Adding the logging feature to a
consumer

Add the logging feature your client's configuration as shown in
Example 7.12 on page 105.

Example 7.12. Adding Logging to Client Configuration

<jaxws:client ...>
<jaxws:features>

<bean class="org.apache.cxf.feature.LoggingFeature"/>
</jaxws:features>

</jaxws:client>

105FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Logging Message Content

The example XML shown in Example 7.12 on page 105 enables the logging
of SOAP messages.

Set logging to log INFO level
messages

Ensure that the logging.properties file associated with your service is
configured to log INFO level messages, as shown in
Example 7.13 on page 106.

Example 7.13. Setting the Logging Level to INFO

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

Logging SOAP messages To see the logging of SOAP messages modify the wsdl_first sample application
located in the InstallDir/samples/wsdl_first directory, as follows:

1. Add the jaxws:features element shown in Example 7.14 on page 106

to the cxf.xml configuration file located in the wsdl_first sample's

directory:

Example 7.14. Endpoint Configuration for Logging SOAP Messages

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI="true">

<jaxws:properties>
<entry key="schema-validation-enabled" value="true" />

</jaxws:properties>
<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>

</jaxws:features>
</jaxws:endpoint>

2. The sample uses the default logging.properties file, which is located

in the InstallDir/etc directory. Make a copy of this file and name it

mylogging.properties.

3. In the mylogging.properties file, change the logging levels to INFO

by editing the .level and the

java.util.logging.ConsoleHandler.level configuration properties

as follows:

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1106

Chapter 7. FUSE Services Framework Logging

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

4. Start the server using the new configuration settings in both the cxf.xml

file and the mylogging.properties file as follows:

CommandPlatform

start java -Djava.util.logging.config.file=%CXF_HOME%\etc\mylogging.properties

demo.hw.server.Server

Windows

java -Djava.util.logging.config.file=$CXF_HOME/etc/mylogging.properties

demo.hw.server.Server &

UNIX

5. Start the hello world client using the following command:

CommandPlatform

java -Djava.util.logging.config.file=%CXF_HOME%\etc\mylogging.properties

demo.hw.client.Client .\wsdl\hello_world.wsdl

Windows

java -Djava.util.logging.config.file=$CXF_HOME/etc/mylogging.properties

demo.hw.client.Client ./wsdl/hello_world.wsdl

UNIX

The SOAP messages are logged to the console.

107FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Logging Message Content

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1108

Chapter 8. Deploying WS-Addressing
FUSE Services Framework supports WS-Addressing for JAX-WS applications. This chapter explains how to deploy
WS-Addressing in the FUSE Services Framework runtime environment.

Introduction to WS-Addressing .. 110
WS-Addressing Interceptors .. 111
Enabling WS-Addressing .. 112
Configuring WS-Addressing Attributes ... 114

109FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Introduction to WS-Addressing

Overview WS-Addressing is a specification that allows services to communicate
addressing information in a transport neutral way. It consists of two parts:

• A structure for communicating a reference to a Web service endpoint

• A set of Message Addressing Properties (MAP) that associate addressing
information with a particular message

Supported specifications FUSE Services Framework supports both the WS-Addressing 2004/08
specification and the WS-Addressing 2005/03 specification.

Further information For detailed information on WS-Addressing, see the 2004/08 submission at
http://www.w3.org/Submission/ws-addressing/.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1110

Chapter 8. Deploying WS-Addressing

http://www.w3.org/Submission/ws-addressing/

WS-Addressing Interceptors

Overview In FUSE Services Framework, WS-Addressing functionality is implemented
as interceptors. The FUSE Services Framework runtime uses interceptors to
intercept and work with the raw messages that are being sent and received.
When a transport receives a message, it creates a message object and sends
that message through an interceptor chain. If the WS-Addressing interceptors
are added to the application's interceptor chain, any WS-Addressing
information included with a message is processed.

WS-Addressing Interceptors The WS-Addressing implementation consists of two interceptors, as described
in Table 8.1 on page 111.

Table 8.1. WS-Addressing Interceptors

DescriptionInterceptor

A logical interceptor responsible for aggregating the
Message Addressing Properties (MAPs) for outgoing
messages.

org.apache.cxf.ws.addressing.MAPAggregator

A protocol-specific interceptor responsible for encoding and
decoding the Message Addressing Properties (MAPs) as
SOAP headers.

org.apache.cxf.ws.addressing.soap.MAPCodec

111FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

WS-Addressing Interceptors

Enabling WS-Addressing

Overview To enable WS-Addressing the WS-Addressing interceptors must be added to
the inbound and outbound interceptor chains. This is done in one of the
following ways:

• FUSE Services Framework Features

• RMAssertion and WS-Policy Framework

• Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a
Feature

WS-Addressing can be enabled by adding the WS-Addressing feature to the
client and the server configuration as shown in Example 8.1 on page 112 and
Example 8.2 on page 112 respectively.

Example 8.1. client.xml—Adding WS-Addressing Feature to Client
Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemaLocation="
http://www.springframework.org/schema/beans ht

tp://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:client ...>
<jaxws:features>

<wsa:addressing/>
</jaxws:features>

</jaxws:client>
</beans>

Example 8.2. server.xml—Adding WS-Addressing Feature to Server
Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemaLocation="

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1112

Chapter 8. Deploying WS-Addressing

http://www.springframework.org/schema/beans http://www.spring
framework.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint ...>
<jaxws:features>

<wsa:addressing/>
</jaxws:features>

</jaxws:endpoint>
</beans>

113FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Enabling WS-Addressing

Configuring WS-Addressing Attributes

Overview The FUSE Services Framework WS-Addressing feature element is defined in
the namespace http://cxf.apache.org/ws/addressing. It supports the two
attributes described in Table 8.2 on page 114.

Table 8.2. WS-Addressing Attributes

ValueAttribute Name

A boolean that determines if duplicate MessageIDs are tolerated. The default
setting is true.

allowDuplicates

A boolean that indicates if the presence of the UsingAddressing element in the

WSDL is advisory only; that is, its absence does not prevent the encoding of
WS-Addressing headers.

usingAddressingAdvisory

Configuring WS-Addressing
attributes

Configure WS-Addressing attributes by adding the attribute and the value you
want to set it to the WS-Addressing feature in your server or client configuration
file. For example, the following configuration extract sets the
allowDublicates attribute to false on the server endpoint:

<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing"
...>

<jaxws:endpoint ...>
<jaxws:features>

<wsa:addressing allowDuplicates="false"/>
</jaxws:features>

</jaxws:endpoint>
</beans>

Using a WS-Policy assertion
embedded in a feature

In Example 8.3 on page 114 an addressing policy assertion to enable
non-anonymous responses is embedded in the policies element.

Example 8.3. Using the Policies to Configure WS-Addressing

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:policy="http://cxf.apache.org/policy-config"

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1114

Chapter 8. Deploying WS-Addressing

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort"
createdFromAPI="true">

<jaxws:features>
<policy:policies>

<wsp:Policy xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
<wsam:Addressing>

<wsp:Policy>
<wsam:NonAnonymousResponses/>

</wsp:Policy>
</wsam:Addressing>

</wsp:Policy>
<policy:policies>

</jaxws:features>
</jaxws:endpoint>

</beans>

115FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Configuring WS-Addressing Attributes

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1116

Chapter 9. Enabling Reliable Messaging
FUSE Services Framework supports WS-Reliable Messaging(WS-RM). This chapter explains how to enable and
configure WS-RM in FUSE Services Framework.

Introduction to WS-RM .. 118
WS-RM Interceptors ... 120
Enabling WS-RM ... 122
Configuring WS-RM .. 126

Configuring FUSE Services Framework-Specific WS-RM Attributes .. 127
Configuring Standard WS-RM Policy Attributes .. 129
WS-RM Configuration Use Cases ... 133

Configuring WS-RM Persistence ... 137

117FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Introduction to WS-RM

Overview WS-ReliableMessaging (WS-RM) is a protocol that ensures the reliable delivery
of messages in a distributed environment. It enables messages to be delivered
reliably between distributed applications in the presence of software, system,
or network failures.

For example, WS-RM can be used to ensure that the correct messages have
been delivered across a network exactly once, and in the correct order.

How WS-RM works WS-RM ensures the reliable delivery of messages between a source and a
destination endpoint. The source is the initial sender of the message and the
destination is the ultimate receiver, as shown in Figure 9.1 on page 118.

Figure 9.1. Web Services Reliable Messaging

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM
destination. This contains a reference for the endpoint that receives
acknowledgements (the wsrm:AcksTo endpoint).

2. The RM destination sends a CreateSequenceResponse protocol message
back to the RM source. This message contains the sequence ID for the
RM sequence session.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1118

Chapter 9. Enabling Reliable Messaging

3. The RM source adds an RM Sequence header to each message sent by
the application source. This header contains the sequence ID and a unique
message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the RM
source by sending messages that contain the RM
SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination in
an exactly-once-in-order fashion.

7. The RM source retransmits a message that it has not yet received an
acknowledgement.

The first retransmission attempt is made after a base retransmission
interval. Successive retransmission attempts are made, by default, at
exponential back-off intervals or, alternatively, at fixed intervals. For more
details, see "Configuring WS-RM" on page 126.

This entire process occurs symmetrically for both the request and the response
message; that is, in the case of the response message, the server acts as the
RM source and the client acts as the RM destination.

WS-RM delivery assurances WS-RM guarantees reliable message delivery in a distributed environment,
regardless of the transport protocol used. Either the source or the destination
endpoint logs an error if reliable delivery can not be assured.

Supported specifications FUSE Services Framework supports the 2005/02 version of the WS-RM
specification, which is based on the WS-Addressing 2004/08 specification.

Further information For detailed information on WS-RM, see the specification at http://
specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf.

119FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Introduction to WS-RM

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

WS-RM Interceptors

Overview In FUSE Services Framework, WS-RM functionality is implemented as
interceptors. The FUSE Services Framework runtime uses interceptors to
intercept and work with the raw messages that are being sent and received.
When a transport receives a message, it creates a message object and sends
that message through an interceptor chain. If the application's interceptor
chain includes the WS-RM interceptors, the application can participate in
reliable messaging sessions. The WS-RM interceptors handle the collection
and aggregation of the message chunks. They also handle all of the
acknowledgement and retransmission logic.

FUSE Services Framework
WS-RM Interceptors

The FUSE Services Framework WS-RM implementation consists of four
interceptors, which are described in Table 9.1 on page 120.

Table 9.1. FUSE Services Framework WS-ReliableMessaging Interceptors

DescriptionInterceptor

Deals with the logical aspects of providing reliability
guarantees for outgoing messages.

org.apache.cxf.ws.rm.RMOutInterceptor

Responsible for sending the CreateSequence
requests and waiting for their
CreateSequenceResponse responses.

Also responsible for aggregating the sequence
properties—ID and message number—for an
application message.

Responsible for intercepting and processing RM
protocol messages and SequenceAcknowledgement

org.apache.cxf.ws.rm.RMInInterceptor

messages that are piggybacked on application
messages.

Responsible for encoding and decoding the reliability
properties as SOAP headers.

org.apache.cxf.ws.rm.soap.RMSoapInterceptor

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1120

Chapter 9. Enabling Reliable Messaging

DescriptionInterceptor

Responsible for creating copies of application
messages for future resending.

org.apache.cxf.ws.rm.RetransmissionInterceptor

Enabling WS-RM The presence of the WS-RM interceptors on the interceptor chains ensures
that WS-RM protocol messages are exchanged when necessary. For example,
when intercepting the first application message on the outbound interceptor
chain, the RMOutInterceptor sends a CreateSequence request and waits
to process the original application message until it receives the
CreateSequenceResponse response. In addition, the WS-RM interceptors
add the sequence headers to the application messages and, on the destination
side, extract them from the messages. It is not necessary to make any changes
to your application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see "Enabling WS-RM"
on page 122.

Configuring WS-RM Attributes You control sequence demarcation and other aspects of the reliable exchange
through configuration. For example, by default FUSE Services Framework
attempts to maximize the lifetime of a sequence, thus reducing the overhead
incurred by the out-of-band WS-RM protocol messages. To enforce the use
of a separate sequence per application message configure the WS-RM source’s
sequence termination policy (setting the maximum sequence length to 1).

For more information on configuring WS-RM behavior, see "Configuring
WS-RM" on page 126.

121FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

WS-RM Interceptors

Enabling WS-RM

Overview To enable reliable messaging, the WS-RM interceptors must be added to the
interceptor chains for both inbound and outbound messages and faults.
Because the WS-RM interceptors use WS-Addressing, the WS-Addressing
interceptors must also be present on the interceptor chains.

You can ensure the presence of these interceptors in one of two ways:

• Explicitly, by adding them to the dispatch chains using Spring beans

• Implicitly, using WS-Policy assertions, which cause the FUSE Services
Framework runtime to transparently add the interceptors on your behalf.

Spring beans—explicitly adding
interceptors

To enable WS-RM add the WS-RM and WS-Addressing interceptors to the
FUSE Services Framework bus, or to a consumer or service endpoint using
Spring bean configuration. This is the approach taken in the WS-RM sample
that is found in the InstallDir/samples/ws_rm directory. The configuration
file, ws-rm.cxf, shows the WS-RM and WS-Addressing interceptors being
added one-by-one as Spring beans (see Example 9.1 on page 122).

Example 9.1. Enabling WS-RM Using Spring Beans

<?xml version="1.0" encoding="UTF-8"?>
❶<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/

beans http://www.springframework.org/schema/beans/spring-beans.xsd">
❷ <bean id="mapAggregator" class="org.apache.cxf.ws.addressing.MAPAggregator"/>

<bean id="mapCodec" class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>
❸ <bean id="rmLogicalOut" class="org.apache.cxf.ws.rm.RMOutInterceptor">

<property name="bus" ref="cxf"/>
</bean>
<bean id="rmLogicalIn" class="org.apache.cxf.ws.rm.RMInInterceptor">

<property name="bus" ref="cxf"/>
</bean>
<bean id="rmCodec" class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>
<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">

❹ <property name="inInterceptors">
<list>

<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalIn"/>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1122

Chapter 9. Enabling Reliable Messaging

<ref bean="rmCodec"/>
</list>

</property>
❺ <property name="inFaultInterceptors">

<list>
<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalIn"/>
<ref bean="rmCodec"/>

</list>
</property>

❻ <property name="outInterceptors">
<list>

<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>

</list>
</property>

❼ <property name="outFaultInterceptors">
<list>

<ref bean="mapAggregator">
<ref bean="mapCodec"/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>

</list>
</property>

</bean>
</beans>

The code shown in Example 9.1 on page 122 can be explained as follows:

❶ A FUSE Services Framework configuration file is a Spring XML file. You
must include an opening Spring beans element that declares the

namespaces and schema files for the child elements that are
encapsulated by the beans element.

❷ Configures each of the WS-Addressing interceptors—MAPAggregator

and MAPCodec. For more information on WS-Addressing, see "Deploying

WS-Addressing" on page 109.
❸ Configures each of the WS-RM interceptors—RMOutInterceptor,

RMInInterceptor, and RMSoapInterceptor.

❹ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for inbound messages.

❺ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for inbound faults.

123FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Enabling WS-RM

❻ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for outbound messages.

❼ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for outbound faults.

WS-Policy framework—implicitly
adding interceptors

The WS-Policy framework provides the infrastructure and APIs that allow you
to use WS-Policy. It is compliant with the November 2006 draft publications
of the Web Services Policy 1.5—Framework1 and Web Services Policy
1.5—Attachment2 specifications.

To enable WS-RM using the FUSE Services Framework WS-Policy framework,
do the following:

1. Add the policy feature to your client and server endpoint.
Example 9.2 on page 124 shows a reference bean nested within a
jaxws:feature element. The reference bean specifies the

AddressingPolicy, which is defined as a separate element within the

same configuration file.

Example 9.2. Configuring WS-RM using WS-Policy

<jaxws:client>
<jaxws:features>
<ref bean="AddressingPolicy"/>

</jaxws:features>
</jaxws:client>
<wsp:Policy wsu:Id="AddressingPolicy" xmlns:wsam="http://www.w3.org/2007/02/address
ing/metadata">

<wsam:Addressing>
<wsp:Policy>
<wsam:NonAnonymousResponses/>

</wsp:Policy>
</wsam:Addressing>

</wsp:Policy>

2. Add a reliable messaging policy to the wsdl:service element—or any

other WSDL element that can be used as an attachment point for policy
or policy reference elements—to your WSDL file, as shown in
Example 9.3 on page 125.

1 http://www.w3.org/TR/2006/WD-ws-policy-20061117/
2 http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1124

Chapter 9. Enabling Reliable Messaging

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

Example 9.3. Adding an RM Policy to Your WSDL File

<wsp:Policy wsu:Id="RM"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-

1.0.xsd">
<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

<wsp:Policy/>
</wsam:Addressing>
<wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">

<wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
</wsrmp:RMAssertion>

</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">

<wsdl:port binding="tns:GreeterSOAPBinding" name="GreeterPort">
<soap:address location="http://localhost:9020/SoapContext/GreeterPort"/>
<wsp:PolicyReference URI="#RM" xmlns:wsp="http://www.w3.org/2006/07/ws-policy"/>

</wsdl:port>
</wsdl:service>

125FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Enabling WS-RM

Configuring WS-RM
Configuring FUSE Services Framework-Specific WS-RM Attributes .. 127
Configuring Standard WS-RM Policy Attributes .. 129
WS-RM Configuration Use Cases ... 133

You can configure WS-RM by:

• Setting FUSE Services Framework-specific attributes that are defined in
the FUSE Services Framework WS-RM manager namespace,
http://cxf.apache.org/ws/rm/manager.

• Setting standard WS-RM policy attributes that are defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1126

Chapter 9. Enabling Reliable Messaging

Configuring FUSE Services Framework-Specific WS-RM Attributes

Overview To configure the FUSE Services Framework-specific attributes, use the
rmManager Spring bean. Add the following to your configuration file:

• The http://cxf.apache.org/ws/rm/manager namespace to your list of
namespaces.

• An rmManager Spring bean for the specific attribute that your want to

configure.

Example 9.4 on page 127 shows a simple example.

Example 9.4. Configuring FUSE Services Framework-Specific WS-RM Attributes

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"

xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/ws/rm/manager http://cxf.apache.org/schemas/configuration/wsrm-man
ager.xsd">
...
<wsrm-mgr:rmManager>
<!--
...Your configuration goes here

-->
</wsrm-mgr:rmManager>

Children of the rmManager Spring
bean

Table 9.2 on page 127 shows the child elements of the rmManager Spring
bean, defined in the http://cxf.apache.org/ws/rm/manager namespace.

Table 9.2. Children of the rmManager Spring Bean

DescriptionElement

An element of type RMAssertionRMAssertion

An element of type DeliveryAssuranceType that
describes the delivery assurance that should apply

deliveryAssurance

An element of type SourcePolicyType that allows you
to configure details of the RM source

sourcePolicy

127FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Configuring FUSE Services Framework-Specific WS-RM
Attributes

DescriptionElement

An element of type DestinationPolicyType that allows
you to configure details of the RM destination

destinationPolicy

Example For an example, see "Maximum unacknowledged messages threshold"
on page 135.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1128

Chapter 9. Enabling Reliable Messaging

Configuring Standard WS-RM Policy Attributes

Overview You can configure standard WS-RM policy attributes in one of the following
ways:

• "RMAssertion in rmManager Spring bean"

• "Policy within a feature"

• "WSDL file"

• "External attachment"

WS-Policy RMAssertion Children Table 9.3 on page 129 shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 9.3. Children of the WS-Policy RMAssertion Element

DescriptionName

Specifies the amount of time that must pass without receiving a message before
an endpoint can consider an RM sequence to have been terminated due to
inactivity.

InactivityTimeout

Sets the interval within which an acknowledgement must be received by the
RM Source for a given message. If an acknowledgement is not received within

BaseRetransmissionInterval

the time set by the BaseRetransmissionInterval, the RM Source will

retransmit the message.

Indicates the retransmission interval will be adjusted using the commonly known
exponential backoff algorithm (Tanenbaum).

ExponentialBackoff

For more information, see Computer Networks, Andrew S. Tanenbaum, Prentice
Hall PTR, 2003.

In WS-RM, acknowledgements are sent on return messages or sent stand-alone.
If a return message is not available to send an acknowledgement, an RM

AcknowledgementInterval

Destination can wait for up to the acknowledgement interval before sending a

129FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Configuring Standard WS-RM Policy Attributes

DescriptionName

stand-alone acknowledgement. If there are no unacknowledged messages, the
RM Destination can choose not to send an acknowledgement.

More detailed reference
information

For more detailed reference information, including descriptions of each
element’s sub-elements and attributes, please refer to http://
schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.

RMAssertion in rmManager
Spring bean

You can configure standard WS-RM policy attributes by adding an
RMAssertion within a FUSE Services Framework rmManager Spring bean.
This is the best approach if you want to keep all of your WS-RM configuration
in the same configuration file; that is, if you want to configure FUSE Services
Framework-specific attributes and standard WS-RM policy attributes in the
same file.

For example, the configuration in Example 9.5 on page 130 shows:

• A standard WS-RM policy attribute, BaseRetransmissionInterval,

configured using an RMAssertion within an rmManager Spring bean.

• An FUSE Services Framework-specific RM attribute,
intraMessageThreshold, configured in the same configuration file.

Example 9.5. Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring Bean

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"

...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>

</wsrm-policy:RMAssertion>
<wsrm-mgr:destinationPolicy>

<wsrm-mgr:acksPolicy intraMessageThreshold="0" />
</wsrm-mgr:destinationPolicy>

</wsrm-mgr:rmManager>
</beans>

Policy within a feature You can configure standard WS-RM policy attributes within features, as shown
in Example 9.6 on page 131.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1130

Chapter 9. Enabling Reliable Messaging

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

Example 9.6. Configuring WS-RM Attributes as a Policy within a Feature

<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-

utility-1.0.xsd"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort" created
FromAPI="true">

<jaxws:features>
<wsp:Policy>

<wsrm:RMAssertion xmlns:wsrm="http://schem
as.xmlsoap.org/ws/2005/02/rm/policy">

<wsrm:AcknowledgementInterval Milliseconds="200" />
</wsrm:RMAssertion>
<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/address

ing/metadata">
<wsp:Policy>

<wsam:NonAnonymousResponses/>
</wsp:Policy>

</wsam:Addressing>
</wsp:Policy>

</jaxws:features>
</jaxws:endpoint>

</beans>

WSDL file If you use the WS-Policy framework to enable WS-RM, you can configure
standard WS-RM policy attributes in a WSDL file. This is a good approach if
you want your service to interoperate and use WS-RM seamlessly with
consumers deployed to other policy-aware Web services stacks.

131FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Configuring Standard WS-RM Policy Attributes

For an example, see "WS-Policy framework—implicitly adding interceptors"
on page 124 where the base retransmission interval is configured in the WSDL
file.

External attachment You can configure standard WS-RM policy attributes in an external attachment
file. This is a good approach if you cannot, or do not want to, change your
WSDL file.

Example 9.7 on page 132 shows an external attachment that enables both
WS-A and WS-RM (base retransmission interval of 30 seconds) for a specific
EPR.

Example 9.7. Configuring WS-RM in an External Attachment

<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy" xmlns:wsa="ht
tp://www.w3.org/2005/08/addressing">

<wsp:PolicyAttachment>
<wsp:AppliesTo>

<wsa:EndpointReference>
<wsa:Address>http://localhost:9020/SoapContext/GreeterPort</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>
<wsp:Policy>

<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
<wsp:Policy/>

</wsam:Addressing>
<wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">

<wsrmp:BaseRetransmissionInterval Milliseconds="30000"/>
</wsrmp:RMAssertion>

</wsp:Policy>
</wsp:PolicyAttachment>

</attachments>/

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1132

Chapter 9. Enabling Reliable Messaging

WS-RM Configuration Use Cases

Overview This subsection focuses on configuring WS-RM attributes from a use case
point of view. Where an attribute is a standard WS-RM policy attribute, defined
in the http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace, only
the example of setting it in an RMAssertion within an rmManager Spring
bean is shown. For details of how to set such attributes as a policy within a
feature; in a WSDL file, or in an external attachment, see "Configuring
Standard WS-RM Policy Attributes" on page 129.

The following use cases are covered:

• "Base retransmission interval"

• "Exponential backoff for retransmission"

• "Acknowledgement interval"

• "Maximum unacknowledged messages threshold"

• "Maximum length of an RM sequence"

• "Message delivery assurance policies"

Base retransmission interval The BaseRetransmissionInterval element specifies the interval at which
an RM source retransmits a message that has not yet been acknowledged. It
is defined in the http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
schema file. The default value is 3000 milliseconds.

Example 9.8 on page 133 shows how to set the WS-RM base retransmission
interval.

Example 9.8. Setting the WS-RM Base Retransmission Interval

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>

</wsrm-policy:RMAssertion>

133FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

WS-RM Configuration Use Cases

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

</wsrm-mgr:rmManager>
</beans>

Exponential backoff for
retransmission

The ExponentialBackoff element determines if successive retransmission
attempts for an unacknowledged message are performed at exponential
intervals.

The presence of the ExponentialBackoff element enables this feature. An
exponential backoff ratio of 2 is used by default.

Example 9.9 on page 134 shows how to set the WS-RM exponential backoff
for retransmission.

Example 9.9. Setting the WS-RM Exponential Backoff Property

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:ExponentialBackoff="4"/>

</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Acknowledgement interval The AcknowledgementInterval element specifies the interval at which the
WS-RM destination sends asynchronous acknowledgements. These are in
addition to the synchronous acknowledgements that it sends on receipt of an
incoming message. The default asynchronous acknowledgement interval is 0
milliseconds. This means that if the AcknowledgementInterval is not
configured to a specific value, acknowledgements are sent immediately (that
is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM destination only if both
of the following conditions are met:

• The RM destination is using a non-anonymous wsrm:acksTo endpoint.

• The opportunity to piggyback an acknowledgement on a response message
does not occur before the expiry of the acknowledgement interval.

Example 9.10 on page 135 shows how to set the WS-RM acknowledgement
interval.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1134

Chapter 9. Enabling Reliable Messaging

Example 9.10. Setting the WS-RM Acknowledgement Interval

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:AcknowledgementInterval Milliseconds="2000"/>

</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Maximum unacknowledged
messages threshold

The maxUnacknowledged attribute sets the maximum number of
unacknowledged messages that can accrue per sequence before the sequence
is terminated.

Example 9.11 on page 135 shows how to set the WS-RM maximum
unacknowledged messages threshold.

Example 9.11. Setting the WS-RM Maximum Unacknowledged Message Threshold

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>

<wsrm-mgr:sourcePolicy>
<wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />

</wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

Maximum length of an RM
sequence

The maxLength attribute sets the maximum length of a WS-RM sequence.
The default value is 0, which means that the length of a WS-RM sequence
is unbound.

When this attribute is set, the RM endpoint creates a new RM sequence when
the limit is reached, and after receiving all of the acknowledgements for the
previously sent messages. The new message is sent using a newsequence.

Example 9.12 on page 135 shows how to set the maximum length of an RM
sequence.

Example 9.12. Setting the Maximum Length of a WS-RM Message Sequence

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>

135FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

WS-RM Configuration Use Cases

<wsrm-mgr:reliableMessaging>
<wsrm-mgr:sourcePolicy>

<wsrm-mgr:sequenceTerminationPolicy maxLength="100" />
</wsrm-mgr:sourcePolicy>

</wsrm-mgr:reliableMessaging>
</beans>

Message delivery assurance
policies

You can configure the RM destination to use the following delivery assurance
policies:

• AtMostOnce — The RM destination delivers the messages to the application
destination only once. If a message is delivered more than once an error is
raised. It is possible that some messages in a sequence may not be
delivered.

• AtLeastOnce — The RM destination delivers the messages to the
application destination at least once. Every message sent will be delivered
or an error will be raised. Some messages might be delivered more than
once.

• InOrder — The RM destination delivers the messages to the application
destination in the order that they are sent. This delivery assurance can be
combined with the AtMostOnce or AtLeastOnce assurances.

Example 9.13 on page 136 shows how to set the WS-RM message delivery
assurance.

Example 9.13. Setting the WS-RM Message Delivery Assurance Policy

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>

<wsrm-mgr:deliveryAssurance>
<wsrm-mgr:AtLeastOnce />

</wsrm-mgr:deliveryAssurance>
</wsrm-mgr:reliableMessaging>
</beans>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1136

Chapter 9. Enabling Reliable Messaging

Configuring WS-RM Persistence

Overview The FUSE Services Framework WS-RM features already described in this
chapter provide reliability for cases such as network failures. WS-RM
persistence provides reliability across other types of failure such as an RM
source or an RM destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in
persistent storage. This enables the endpoints to continue sending and
receiving messages when they are reincarnated.

FUSE Services Framework enables WS-RM persistence in a configuration file.
The default WS-RM persistence store is JDBC-based. For convenience, FUSE
Services Framework includes Derby for out-of-the-box deployment. In addition,
the persistent store is also exposed using a Java API.

Important
WS-RM persistence is supported for oneway calls only, and it is
disabled by default.

How it works FUSE Services Framework WS-RM persistence works as follows:

• At the RM source endpoint, an outgoing message is persisted before
transmission. It is evicted from the persistent store after the
acknowledgement is received.

• After a recovery from crash, it recovers the persisted messages and
retransmits until all the messages have been acknowledged. At that point,
the RM sequence is closed.

• At the RM destination endpoint, an incoming message is persisted, and
upon a successful store, the acknowledgement is sent. When a message
is successfully dispatched, it is evicted from the persistent store.

137FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Configuring WS-RM Persistence

• After a recovery from a crash, it recovers the persisted messages and
dispatches them. It also brings the RM sequence to a state where new
messages are accepted, acknowledged, and delivered.

Enabling WS-persistence To enable WS-RM persistence, you must specify the object implementing the
persistent store for WS-RM. You can develop your own or you can use the
JDBC based store that comes with FUSE Services Framework.

The configuration shown in Example 9.14 on page 138 enables the
JDBC-based store that comes with FUSE Services Framework.

Example 9.14. Configuration for the Default WS-RM Persistence Store

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

Configuring WS-persistence The JDBC-based store that comes with FUSE Services Framework supports
the properties shown in Table 9.4 on page 138.

Table 9.4. JDBC Store Properties

Default SettingTypeAttribute Name

org.apache.derby.jdbc.EmbeddedDriverStringdriverClassName

nullStringuserName

nullStringpassWord

jdbc:derby:rmdb;create=trueStringurl

The configuration shown in Example 9.15 on page 138 enables the
JDBC-based store that comes with FUSE Services Framework, while setting
the driverClassName and url to non-default values.

Example 9.15. Configuring the JDBC Store for WS-RM Persistence

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
<property name="driverClassName" value="com.acme.jdbc.Driver"/>
<property name="url" value="jdbc:acme:rmdb;create=true"/>

</bean>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1138

Chapter 9. Enabling Reliable Messaging

Chapter 10. Enabling High Availability
This chapter explains how to enable and configure high availability in the FUSE Services Framework runtime.

Introduction to High Availability ... 140
Enabling HA with Static Failover .. 141
Configuring HA with Static Failover ... 143

139FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Introduction to High Availability

Overview Scalable and reliable applications require high availability to avoid any single
point of failure in a distributed system. You can protect your system from
single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the
same service. Together these act as a single logical service. Clients invoke
requests on the replicated service, and FUSE Services Framework delivers
the requests to one of the member replicas. The routing to a replica is
transparent to the client.

HA with static failover FUSE Services Framework supports high availability (HA) with static failover
in which replica details are encoded in the service WSDL file. The WSDL file
contains multiple ports, and can contain multiple hosts, for the same service.
The number of replicas in the cluster remains static as long as the WSDL file
remains unchanged. Changing the cluster size involves editing the WSDL file.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1140

Chapter 10. Enabling High Availability

Enabling HA with Static Failover

Overview To enable HA with static failover, you must do the following:

1. "Encode replica details in your service WSDL file"

2. "Add the clustering feature to your client configuration"

Encode replica details in your
service WSDL file

You must encode the details of the replicas in your cluster in your service
WSDL file. Example 10.1 on page 141 shows a WSDL file extract that defines
a service cluster of three replicas.

Example 10.1. Enabling HA with Static Failover—WSDL File

❶<wsdl:service name="ClusteredService">
❷ <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica1">

<soap:address location="http://localhost:9001/SoapContext/Replica1"/>
</wsdl:port>

❸ <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica2">
<soap:address location="http://localhost:9002/SoapContext/Replica2"/>

</wsdl:port>

❹ <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica3">
<soap:address location="http://localhost:9003/SoapContext/Replica3"/>

</wsdl:port>

</wsdl:service>

The WSDL extract shown in Example 10.1 on page 141 can be explained as
follows:

❶ Defines a service, ClusterService, which is exposed on three ports:

1. Replica1

2. Replica2

3. Replica3

141FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Enabling HA with Static Failover

❷ Defines Replica1 to expose the ClusterService as a SOAP over HTTP

endpoint on port 9001.

❸ Defines Replica2 to expose the ClusterService as a SOAP over HTTP

endpoint on port 9002.

❹ Defines Replica3 to expose the ClusterService as a SOAP over HTTP

endpoint on port 9003.

Add the clustering feature to your
client configuration

In your client configuration file, add the clustering feature as shown in
Example 10.2 on page 142.

Example 10.2. Enabling HA with Static Failover—Client Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:clustering="http://cxf.apache.org/clustering"
xsi:schemaLocation="http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica1"
createdFromAPI="true">

<jaxws:features>
<clustering:failover/>

</jaxws:features>
</jaxws:client>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica2"
createdFromAPI="true">

<jaxws:features>
<clustering:failover/>

</jaxws:features>
</jaxws:client>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"
createdFromAPI="true">

<jaxws:features>
<clustering:failover/>

</jaxws:features>
</jaxws:client>

</beans>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1142

Chapter 10. Enabling High Availability

Configuring HA with Static Failover

Overview By default, HA with static failover uses a sequential strategy when selecting
a replica service if the original service with which a client is communicating
becomes unavailable, or fails. The sequential strategy selects a replica service
in the same sequential order every time it is used. Selection is determined by
FUSE Services Framework’s internal service model and results in a
deterministic failover pattern.

Configuring a random strategy You can configure HA with static failover to use a random strategy instead of
the sequential strategy when selecting a replica. The random strategy selects
a random replica service each time a service becomes unavailable, or fails.
The choice of failover target from the surviving members in a cluster is entirely
random.

To configure the random strategy, add the configuration shown in
Example 10.3 on page 143 to your client configuration file.

Example 10.3. Configuring a Random Strategy for Static Failover

<beans ...>
❶ <bean id="Random" class="org.apache.cxf.clustering.RandomStrategy"/>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"
createdFromAPI="true">

<jaxws:features>
<clustering:failover>

❷ <clustering:strategy>
<ref bean="Random"/>

</clustering:strategy>
</clustering:failover>

</jaxws:features>
</jaxws:client>

</beans>

The configuration shown in Example 10.3 on page 143 can be explained as
follows:

❶ Defines a Random bean and implementation class that implements the

random strategy.
❷ Specifies that the random strategy is used when selecting a replica.

143FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Configuring HA with Static Failover

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1144

Part III. Packaging and Deploying
Applications
FUSE Services Framework applications are packaged into OSGi bundles for deployment into the FUSE ESB
runtime. Once an application is packaged it can easily be deployed into the FUSE ESB runtime. Applications
deployed in FUSE ESB are easily managed and updated.

11. Packaging an Application ... 147

Chapter 11. Packaging an Application
Applications must be packed as an OSGi bundle before they can be deployed into FUSE ESB. You will not need
to include any FUSE Services Framework specific packages in your bundle. The FUSE Services Framework
packages are included in FUSE ESB. You need to ensure you import the required packages when building your
bundle.

Creating a bundle To deploy a FUSE Services Framework application into FUSE ESB, you need
to package it as an OSGi bundle. There are several tools available for assisting
in the process. FUSE ESB uses the Maven bundle plug-in whose use is
described in Appendix A on page 149.

Required bundle The FUSE Services Framework runtime components are included in FUSE
ESB as an OSGi bundle called org.apache.cxf.cxf-bundle. This bundle
needs to be installed in the FUSE ESB container before your application's
bundle can be started.

To inform the container of this dependency, you use the OSGi manifest's
Required-Bundle property.

Required packages In order for your application to use the FUSE Services Framework components,
you need to import their packages into the application's bundle. Because of
the complex nature of the dependencies in FUSE Services Framework, you
cannot rely on the Maven bundle plug-in, or the bnd tool, to automatically
determine the needed imports. You will need to explicitly declare them.

You need to import the following packages into your bundle:

• javax.jws

• javax.wsdl

• META-INF.cxf

• META-INF.cxf.osgi

• org.apache.cxf.bus

• org.apache.cxf.bus.spring

147FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

• org.apache.cxf.bus.resource

• org.apache.cxf.configuration.spring

• org.apache.cxf.resource

• org.apache.servicemix.cxf.transport.http_osgi

• org.springframework.beans.factory.config

Example Example 11.1 on page 148 shows a manifest for a FUSE Services Framework
application's OSGi bundle.

Example 11.1. FUSE Services Framework Application Manifest

Manifest-Version: 1.0
Built-By: FinnMcCumial
Created-By: Apache Maven Bundle Plugin
Bundle-License: http://www.apache.org/licenses/LICENSE-2.0.txt
Import-Package: javax.jws,javax.wsdl,META-INF.cxf,META-
INF.cxf.osgi,
org.apache.cxf.bus,org.apache.cxf.bus.spring,org.apache.bus.re
source,
org.apache.cxf.configuration.spring, org.apache.cxf.resource,
org.apache.servicemix.cxf.transport.http_cxf,
org.springframework.beans.factory.config
Bnd-LastModified: 1222079507224
Bundle-Version: 4.0.0.fuse
Bundle-Name: FUSE CXF Example
Bundle-Description: This is a sample CXF manifest.
Build-Jdk: 1.5.0_08
Private-Package: org.apache.servicemix.examples.cxf
Required-Bundle: org.apache.cxf.cxf-bundle
Bundle-ManifestVersion: 2
Bundle-SymbolicName: cxf-wsdl-first-osgi
Tool: Bnd-0.0.255

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1148

Chapter 11. Packaging an Application

Appendix A. Using the Maven OSGi
Tooling
Manually creating a bundle, or a collection of bundles, for a large project can be cumbersome. The Maven bundle
plug-in makes the job easier by automating the process and providing a number of shortcuts for specifying the
contents of the bundle manifest.

Setting Up a FUSE ESB OSGi Project .. 150
Configuring a Bundle Plug-in ... 155

The FUSE ESB OSGi tooling uses the Maven bundle plug-in1 from Apache
Felix. The bundle plug-in is based on the bnd2 tool from Peter Kriens. It
automates the construction of OSGi bundle manifests by introspecting the
contents of the classes being packaged in the bundle. Using the knowledge
of the classes contained in the bundle, the plug-in can calculate the proper
values to populate the Import-Packages and the Export-Package properties
in the bundle manifest. The plug-in also has default values that are used for
other required properties in the bundle manifest.

To use the bundle plug-in you will need to do the following:

1. Add the bundle plug-in to your project's POM file.

2. Configure the plug-in to correctly populate your bundle's manifest.

1 http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
2 http://www.aqute.biz/Code/Bnd

149FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd
http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

Setting Up a FUSE ESB OSGi Project

Overview A Maven project for building an OSGi bundle can be a simple single level
project. It does not require any sub-projects. It does, however, require that
you do the following:

1. Add the bundle plug-in to your POM.

2. Instruct Maven to package the results as an OSGi bundle.

Tip
There are several Maven archetypes to set up your project with the
appropriate settings.

Directory structure A project that constructs an OSGi bundle can be a single level project. It only
requires that you have a top-level POM file and a src folder. As in all Maven
projects, you place all Java source code in the src/java folder. You place
any non-Java resources into the src/resources folder.

Non-Java resources include Spring configuration files, JBI endpoint
configuration files, WSDL contracts, etc.

Note
FUSE ESB OSGi projects that use FUSE Services Framework, FUSE
Mediation Router, or another Spring configured bean also include a
beans.xml file located in the src/resources/META-INF/spring
folder.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1150

Adding a bundle plug-in Before you can use the bundle plug-in you must add a dependency on Apache
Felix. After you add the dependency, you can add the bundle plug-in to the
plug-in portion of the POM.

Example A.1 on page 151 shows the POM entries required to add the bundle
plug-in to your project.

Example A.1. Adding an OSGi Bundle Plug-in to a POM

...
<dependencies>
<dependency> ❶
<groupId>org.apache.felix</groupId>
<artifactId>org.osgi.core</artifactId>
<version>1.0.0</version>

</dependency>
...
</dependencies>
...
<build>
<plugins>
<plugin> ❷
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName> ❸
<Import-Package>*,org.apache.camel.osgi</Import-Package> ❹
<Private-Package>org.apache.servicemix.examples.camel</Private-Package> ❺

</instructions>
</configuration>

</plugin>
</plugins>

</build>
...

151FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

The entries in Example A.1 on page 151 do the following:

❶ Adds the dependency on Apache Felix.

❷ Adds the bundle plug-in to your project.

❸ Configures the plug-in to use the project's artifact ID as the bundle's
symbolic name.

❹ Configures the plug-in to include all Java packages imported by the
bundled classes and also import the org.apache.camel.osgi package.

❺ Configures the plug-in to bundle the listed class, but not include them
in the list of exported packages.

Note
You should edit the configuration to meet the requirements of your
project.

For more information on configuring the bundle plug-in, see "Configuring a
Bundle Plug-in" on page 155.

Activating a bundle plug-in To instruct Maven to use the bundle plug-in, you instruct it to package the
results of the project as a bundle. You do this by setting the POM file's
packaging element to bundle.

Useful Maven archetypes There are several Maven archetypes to generate a project that is preconfigured
to use the bundle plug-in:

• "Spring OSGi archetype"

• "FUSE Services Framework code-first archetype"

• "FUSE Services Framework wsdl-first archetype"

• "FUSE Mediation Router archetype"

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1152

Spring OSGi archetype The Spring OSGi archetype creates a generic project for building an OSGi
project using Spring DM:

org.springframework.osgi/spring-bundle-osgi-archetype/1.1.2

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.springframework.osgi
-DarchetypeArtifactId=spring-osgi-bundle-archetype
-DarchetypeVersion=1.12
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSE Services Framework
code-first archetype

The FUSE Services Framework code-first archetype creates a project for
building a service from Java:

org.apache.servicemix.tooling/servicemix-osgi-cxf-code-first-archetype/2008.01.0.3-fuse

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=spring-osgi-bundle-archetype
-DarchetypeVersion=2008.01.0.3-fuse
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSE Services Framework
wsdl-first archetype

The FUSE Services Framework wsdl-first archetype creates a project for
creating a service from WSDL:

org.apache.servicemix.tooling/servicemix-osgi-cxf-wsdl-first-archetype/2008.01.0.3-fuse

153FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=servicemix-osgi-cxf-wsdl-first-archetype
-DarchetypeVersion=2008.01.0.3-fuse
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSEMediation Router archetype The FUSE Mediation Router archetype creates a project for building a route
that is deployed into FUSE ESB:

org.apache.servicemix.tooling/servicemix-osgi-camel-archetype/2008.01.0.3-fuse

You invoke the archetype using the following command:

mvn archetype:create
-DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=servicemix-osgi-camel-archetype
-DarchetypeVersion=2008.01.0.3-fuse
-DgroupId=groupId
-DartifactId=artifactId
-Dversion=version

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1154

Configuring a Bundle Plug-in

Overview A bundle plug-in requires very little information to function. All of the required
properties have default settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will
likely want to modify some of the values. You can specify most of the
properties inside the plug-in's instructions element.

Configuration properties Some of the commonly used configuration properties are:

• Bundle-SymbolicName

• Bundle-Name

• Bundle-Version

• Export-Package

• Private-Package

• Import-Package

155FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Setting a bundle's symbolic name By default, the bundle plug-in sets the value for the Bundle-SymbolicName
property to groupId+ "." + artifactId, with the following exceptions:

• If groupId has only one section (no dots), the first package name with

classes is returned.

For example, if the groupId is commons-logging:commons-logging, the
bundle's symbolic name is org.apache.commons.logging.

• If artifactId is equal to the last section of groupId, then groupId is

used.

For example, if the POM specifies the group ID and artifact ID as
org.apache.maven:maven, the bundle's symbolic name is
org.apache.maven.

• If artifactId starts with the last section of groupId, that portion is

removed.

For example, if the POM specifies the group ID and artifact ID as
org.apache.maven:maven-core, the bundle's symbolic name is
org.apache.maven.core.

To specify your own value for the bundle's symbolic name, add a
Bundle-SymbolicName child in the plug-in's instructions element, as
shown in Example A.2.

Example A.2. Setting a Bundle's Symbolic Name

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName>
...
</instructions>

</configuration>
</plugin>

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1156

Setting a bundle's name By default, a bundle's name is set to ${pom.name}.

To specify your own value for the bundle's name, add a Bundle-Name child
to the plug-in's instructions element, as shown in Example A.3.

Example A.3. Setting a Bundle's Name

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-Name>JoeFred</Bundle-Name>
...
</instructions>

</configuration>
</plugin>

Setting a bundle's version By default, a bundle's version is set to ${pom.version}. Any dashes (-) are
replaced with dots (.).

To specify your own value for the bundle's version, add a Bundle-Version
child to the plug-in's instructions element, as shown in Example A.4.

Example A.4. Setting a Bundle's Version

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-Version>1.0.3.1</Bundle-Version>
...
</instructions>

</configuration>
</plugin>

157FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Specifying exported packages By default, the OSGi manifest's Export-Package list is populated by all of
the packages in your project's class path that match the pattern
Bundle-SymbolicName.*. These packages are also included in the bundle.

Important
If you use a Private-Package element in your plug-in configuration
and do not specify a list of packages to export, the default behavior
is to assume that no packages are exported. Only the packages listed
in the Private-Package element are included in the bundle and
none of them are exported.

The default behavior can result in very large packages as well as exporting
packages that should be kept private. To change the list of exported packages
you can add a Export-Package child to the plug-in's instructions element.

The Export-Package element specifies a list of packages that are to be
included in the bundle and be exported. The package names can be specified
using the * wildcard. For example, the entry com.fuse.demo.*, includes all
packages on the project's classpath that start with com.fuse.demo.

You can specify packages to be excluded be prefixing the entry with !. For
example, the entry, !com.fuse.demo.private, excludes the package
com.fuse.demo.private.

When attempting to exclude packages, the order of entries in the list is
important. The list is processed in order from the start and subsequent
contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except
the package com.fuse.demo.private, list the packages in the following
way:

!com.fuse.demo.private,com.fuse.demo.*

However, if you list the packages as:

com.fuse.demo.*,!com.fuse.demo.private

Then com.fuse.demo.private is included in the bundle because it matches
the first pattern.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1158

Specifying private packages By default, all packages included in a bundle are exported. You can include
packages in the bundle without exporting them. To specify a list of packages
to be included in a bundle, but not exported, add a Private-Package child
to the plug-in's instructions element.

The Private-Package element works similarly to the Export-Package
element. You specify a list of packages to be included in the bundle. The
bundle plug-in uses the list to find all classes on the project's classpath to be
included in the bundle. These packages are packaged in the bundle, but not
exported.

Important
If a package matches an entry in both the Private-Package element
and the Export-Package element, the Export-Package element
takes precedent. The package is added to the bundle and exported.

Example A.5 shows the configuration for including a private package in a
bundle

Example A.5. Including a Private Package in a Bundle

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>
...
</instructions>

</configuration>
</plugin>

159FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

Specifying imported packages By default, the bundle plug-in populates the OSGi manifest's Import-Package
property with a list of all the packages referred to by the contents of the bundle
and not included in the bundle.

While the default behavior is typically sufficient for most projects, you might
find instances where you want to import packages that are not automatically
added to the list. The default behavior can also result in unwanted packages
being imported.

To specify a list of packages to be imported by the bundle, add a
Import-Package child to the plug-in's instructions element. The syntax
for the package list is the same as for both the Export-Package and
Private-Package elements.

Important
When you use the Import-Package element, the plug-in does not
automatically scan the bundle's contents to determine if there are
any required imports. To ensure that the contents of the bundle are
scanned, you must place * as the last entry in the package list.

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1160

Example A.6 shows the configuration for including a private package in a
bundle

Example A.6. Specifying the Packages Imported by a Bundle

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Import-Package>javax.jws,

javax.wsdl,
org.apache.cxf.bus,
org.apache.cxf.bus.spring,
org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring,
org.apache.cxf.resource,
org.springframework.beans.factory.config,
*

</Import-Package>
...

</instructions>
</configuration>

</plugin>

More information For more information on configuring a bundle plug-in, see:

• Apache Felix documentation3

• Peter Kriens' aQute Software Consultancy web site4

3 http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
4 http://www.aqute.biz/Code/Bnd

161FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd
http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1162

Appendix B. FUSE Services Framework
Binding IDs
Table B.1. Binding IDs for Message Bindings

IDBinding

http://cxf.apache.org/bindings/corbaCORBA

http://apache.org/cxf/binding/httpHTTP/REST

http://schemas.xmlsoap.org/wsdl/soap/httpSOAP 1.1

http://schemas.xmlsoap.org/wsdl/soap/http?mtom=trueSOAP 1.1 w/ MTOM

http://www.w3.org/2003/05/soap/bindings/HTTP/SOAP 1.2

http://www.w3.org/2003/05/soap/bindings/HTTP/?mtom=trueSOAP 1.2 w/ MTOM

http://cxf.apache.org/bindings/xformatXML

163FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1164

Index
Symbols
@Oneway, 32
@RequestWrapper, 29

className property, 30
localName property, 30
targetNamespace property, 30

@ResponseWrapper, 30
className property, 31
localName property, 31
targetNamespace property, 31

@SOAPBinding, 26
parameterStyle property, 26
style property, 26
use property, 26

@WebFault, 31
faultName property, 32
name property, 31
targetNamespace property, 31

@WebMethod, 29
action property, 29
exclude property, 29
operationName property, 29

@WebParam, 33
header property, 33
mode property, 33
name property, 33
partName property, 34
targetNamespace property, 33

@WebResult, 34
header property, 34
name property, 34
partName property, 34
targetNamespace property, 34

@WebService, 22
endpointInterface property, 22
name property, 22
portName property, 22
serviceName property, 22
targetNamespace property, 22

wsdlLocation property, 22

A
AcknowledgementInterval, 134
annotations

@Oneway (see @Oneway)
@RequestWrapper (see @RequestWrapper)
@ResponseWrapper (see @ResponseWrapper)
@SOAPBinding (see @SOAPBinding)
@WebFault (see @WebFault)
@WebMethod (see @WebMethod)
@WebParam (see @WebParam)
@WebResult (see @WebResult)
@WebService (see @WebService)

application source, 119
AtLeastOnce, 136
AtMostOnce, 136

B
BaseRetransmissionInterval, 133
Bundle-Name, 157
Bundle-SymbolicName, 156
Bundle-Version, 157
bundles

exporting packages, 158
importing packages, 160
name, 157
private packages, 159
symbolic name, 156
version, 157

C
code generation

Apache CXF tools, 37
FUSE Services Framework tools, 37
Maven tools, 38

configuration
consumer endpoint (see jms:conduit)
consumer runtime, 90
HTTP consumer connection properties, 56
HTTP consumer endpoint, 55
HTTP service provider connection properties, 64

165FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

HTTP service provider endpoint, 63
JMS session pool (see jms:sessionPool)
jms:address (see jms:address)
provider endpoint (see jms:destination)
provider endpoint properties, 85
provider runtime, 91
specifying the message type, 82

(see also jms:runtimePolicy)
consumer endpoint configuration

specifying the message type, 82
(see also jms:runtimePolicy)

consumer runtime configuration, 90
request time to live, 90
response timeout, 90

CreateSequence, 118
CreateSequenceResponse, 118

D
driverClassName, 138

E
endpoint address configuration (see jms:address)
ExponentialBackoff, 134
Export-Package, 158

G
generated code

service implementation, 39

H
high availability

client configuration, 142
configuring random strategy, 143
configuring static failover, 143
enabling static failover, 141
static failover, 140

http-conf:authorization, 56
http-conf:basicAuthSupplier, 56
http-conf:client, 56

Accept, 57
AcceptEncoding, 57
AcceptLanguage, 57

AllowChunking, 57
AutoRedirect, 56
BrowserType, 58
CacheControl, 58, 61
Connection, 57
ConnectionTimeout, 56
ContentType, 57
Cookie, 58
DecoupledEndpoint, 58, 69
Host, 57
MaxRetransmits, 56
ProxyServer, 58
ProxyServerPort, 58
ProxyServerType, 58
ReceiveTimeout, 56
Referer, 58

http-conf:conduit, 55
name attribute, 55

http-conf:contextMatchStrategy, 64
http-conf:destination, 63

name attribute, 63
http-conf:fixedParameterOrder, 64
http-conf:proxyAuthorization, 56
http-conf:server, 64

CacheControl, 64, 67
ContentEncoding, 65
ContentLocation, 65
ContentType, 65
HonorKeepAlive, 64
ReceiveTimeout, 64
RedirectURL, 64
ServerType, 65
SuppressClientReceiveErrors, 64
SuppressClientSendErrors, 64

http-conf:tlsClientParameters, 56
http-conf:trustDecider, 56

I
implementation

SEI, 19
service operations, 19, 39

Import-Package, 160
InOrder, 136

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1166

J
jaxws:binding, 51
jaxws:dataBinding, 51
jaxws:endpoint

abstract, 46
address, 45
bindingUri, 45
bus, 45
createdFromAPI, 46
depends-on, 46
endpointName, 45
id, 45
implementor, 45
implementorClass, 45
name, 46
publish, 45
serviceName, 45
wsdlLocation, 45

jaxws:exector, 52
jaxws:features, 52
jaxws:handlers, 51
jaxws:inFaultInterceptors, 51
jaxws:inInterceptors, 51
jaxws:invoker, 52
jaxws:outFaultInterceptors, 51
jaxws:outInterceptors, 51
jaxws:properties, 52
jaxws:server

abstract, 50
address, 49
bindingId, 49
bus, 49
createdFromAPI, 50
depends-on, 50
endpointName, 49
id, 49
name, 50
publish, 49
serviceBean, 49
serviceClass, 49
serviceName, 49
wsdlLocation, 49

jaxws:serviceFactory, 52

JMS
specifying the message type, 83

JMS destination
specifying, 76

jms:address, 79
connectionPassword attribute, 76
connectionUserName attribute, 76
destinationStyle attribute, 76
jmsDestinationName attribute, 76
jmsiReplyDestinationName attribute, 80
jmsReplyDestinationName attribute, 76
jndiConnectionFactoryName attribute, 76
jndiDestinationName attribute, 76
jndiReplyDestinationName attribute, 76, 80

jms:client, 83
messageType attribute, 83

jms:clientConfig, 90
clientReceiveTimeout, 90
messageTimeToLive, 90

jms:conduit, 75
jms:destination, 75
jms:JMSNamingProperties, 76
jms:runtimePolicy

consumer endpoint properties, 82
durableSubscriberName, 85
messageSelector, 85
messageType attribute, 82
provider configuration, 85
transactional, 85
useMessageIDAsCorrealationID, 85

jms:server, 87
durableSubscriberName, 87
messageSelector, 87
transactional, 87
useMessageIDAsCorrealationID, 87

jms:serverConfig, 91
durableSubscriptionClientId, 91
messageTimeToLive, 91

jms:sessionPool, 89
highWaterMark, 89
lowWaterMark, 89

JNDI
specifying the connection factory, 76

167FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

M
Maven archetypes, 152
Maven tooling

adding the bundle plug-in, 151
maxLength, 135
maxUnacknowledged, 135

N
named reply destination

specifying in WSDL, 76
using, 80

P
passWord, 138
Private-Package, 159
provider endpoint configuration, 85
provider runtime configuration, 91

durable subscriber identification, 91
response time to live, 91

R
random strategy, 143
replicated services, 140
RMAssertion, 129

S
SEI, 18

annotating, 21
creating, 19
creation patterns, 18
relationship to wsdl:portType, 19
required annotations, 23

Sequence, 119
SequenceAcknowledgment, 119
service

implementing the operations, 39
service enablement, 18
service endpoint interface (see SEI)
service implementation

operations, 19
required annotations, 24

session pool configuration (see jms:sessionPool)
static failover, 140

configuring, 143
enabling, 141

U
userName, 138

W
WS-Addressing

using, 68
WS-RM

AcknowledgementInterval, 134
AtLeastOnce, 136
AtMostOnce, 136
BaseRetransmissionInterval, 133
configuring, 126
destination, 118
driverClassName, 138
enabling, 122
ExponentialBackoff, 134
externaL attachment, 132
initial sender, 118
InOrder, 136
interceptors, 120
maxLength, 135
maxUnacknowledged, 135
passWord, 138
rmManager, 127
source, 118
ultimate receiver, 118
url, 138
userName, 138

wsam:Addressing, 68
WSDL extensors

jms:address (see jms:address)
jms:client (see jms:client)
jms:JMSNamingProperties (see
jms:JMSNamingProperties)
jms:server (see jms:server)

wsdl2java, 37
wsdl:portType, 19
wsrm:AcksTo, 118

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1168

wswa:UsingAddressing, 68

169FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1

FUSE™ ESB Developing and Deploying JAX-WS Services Version 4.1170

	Developing and Deploying JAX-WS Services
	Table of Contents
	Chapter 1. Introduction
	Part I. Developing JAX-WS Applications
	Chapter 2. Developing a Service Using Java as a Starting Point
	Creating the SEI
	Annotating the Code
	Required Annotations
	Optional Annotations
	Defining the Binding Properties with Annotations
	Defining Operation Properties with Annotations
	Defining Parameter Properties with Annotations

	Chapter 3. Developing a Service Using WSDL as a Starting Point

	Part II. Configuring Your Applications
	Chapter 4. Configuring Service Endpoints
	Using the jaxws:endpoint Element
	Using the jaxws:server Element
	Adding Functionality to Service Providers

	Chapter 5. Configuring the HTTP Transport
	Configuring a Consumer
	Using Configuration
	Using WSDL
	Consumer Cache Control Directives

	Configuring a Service Provider
	Using Configuration
	Using WSDL
	Service Provider Cache Control Directives

	Using the HTTP Transport in Decoupled Mode

	Chapter 6. Configuring the JMS Transport
	Basic Endpoint Configuration
	Using Configuration
	Using WSDL
	Using a Named Reply Destination

	Consumer Endpoint Configuration
	Using Configuration
	Using WSDL

	Provider Endpoint Configuration
	Using Configuration
	Using WSDL

	JMS Runtime Configuration
	JMS Session Pool Configuration
	Consumer Specific Runtime Configuration
	Provider Specific Runtime Configuration

	Chapter 7. FUSE Services Framework Logging
	Overview of FUSE Services Framework Logging
	Simple Example of Using Logging
	Default logging.properties File
	Configuring Logging Output
	Configuring Logging Levels

	Enabling Logging at the Command Line
	Logging for Subsystems and Services
	Logging Message Content

	Chapter 8. Deploying WS-Addressing
	Introduction to WS-Addressing
	WS-Addressing Interceptors
	Enabling WS-Addressing
	Configuring WS-Addressing Attributes

	Chapter 9. Enabling Reliable Messaging
	Introduction to WS-RM
	WS-RM Interceptors
	Enabling WS-RM
	Configuring WS-RM
	Configuring FUSE Services Framework-Specific WS-RM Attributes
	Configuring Standard WS-RM Policy Attributes
	WS-RM Configuration Use Cases

	Configuring WS-RM Persistence

	Chapter 10. Enabling High Availability
	Introduction to High Availability
	Enabling HA with Static Failover
	Configuring HA with Static Failover

	Part III. Packaging and Deploying Applications
	Chapter 11. Packaging an Application

	Appendix A. Using the Maven OSGi Tooling
	Setting Up a FUSE ESB OSGi Project
	Configuring a Bundle Plug-in

	Appendix B. FUSE Services Framework Binding IDs
	Index

