Progress

FUSE

FUSE" ESB
Getting Started with FUSE ESB

Version 4.1
April 2009

SOFTWARE

Getting Started with FUSE ESB
Version 4.1

Publication date 22 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

1. Introduction t0 FUSE ESBccoiuiuiiiiiiiiiii s s s s s s s s s s s s a s s n s s s s s s sannnsn 9
2. USING FUSE ESBciiiiiiiiiiiiiiiii it r s s s s s s s e e e s st s s s s sasasasasasasnsnsnsnsnsnnnnsnnnnnnns 13
The RUNEIME CONTAINEEeiie e et e e e e e es 14
The Command CONSOIEuieie ettt e e e e et e et e e e eees 16
The Standardized MESSAEE BUSuiuiiiiei i e 17
3. Deploying a Service into FUSE ESBciiiiiii it s s s s s s s s s s s a s n s n s e s e n e e e en 19
RUNNING the EXAMIPIE .o e 20
Understanding the EXample ... e 23
T 1< PPN 27

FUSE" ESB Getting Started with FUSE ESB Version 4.1 3

FUSE " ESB Getting Started with FUSE ESB Version 4.1

List of Figures

3.1. Example HTML Screen

FUSE" ESB Getting Started with FUSE ESB Version 4.1

FUSE " ESB Getting Started with FUSE ESB Version 4.1

List of Examples

3.1. OSGi Example WSDL ..ot 21
3.2. POM Elements for Using FUSE ESB OSGi Tooling 23
3.3. 0SGi Example Spring Configurationccocoveviviiiiiiiiiininenns 24
3.4, 0SGi POM o e 25

FUSE" ESB Getting Started with FUSE ESB Version 4.1

FUSE " ESB Getting Started with FUSE ESB Version 4.1

Chapter 1. Introduction to FUSE ESB

FUSE ESB is an open, standards based integration platform. It reduces the complexity of integrating disparate
applications by leveraging the service oriented architecture principles and standardized packaging frameworks.

Overview

Integration problems

The ESB approach

One of the biggest challenges facing modern enterprises is IT system
integration. FUSE ESB tackles this problem using a lightweight standards
based, loosely coupled approach. By relying on standards, FUSE ESB reduces
the chances of vendor lock-in. By advocating loose coupling, FUSE ESB
reduces the complexity of integration.

Enterprise networks commonly deploy disparate applications, platforms, and
business processes that need to communicate or exchange data with each
other. The applications, platforms and processes have non-compatible data
formats and non-compatible communications protocols. If an enterprise needs
to interface with external systems, the integration problem extends outside
of a company and encompasses its business partners' IT systems and
processes as well.

In recent years, there have been several technologies attempting to solve
these problems such as Enterprise Application Integration (EAI),
Business-to-Business (B2B). These solutions addressed some of the integration
problems, but were proprietary, expensive, and time-consuming to implement.
These solutions range from expensive vendor solutions (high cost, vendor
lock-in) to home-grown custom solutions (high maintenance, high cost). The
overwhelming disadvantages of these solutions are high cost and low flexibility
due to non-standard implementations.

Most recently, Service Oriented Architecture(SOA) has become the hot
integration methodology. SOA attempts to address the shortcomings of the
other approaches by advocating the use of standards and the use of loosely
coupled interfaces. While, SOA, theoretically, improves the solution, it can
be difficult to implement because vendors are offering tools using proprietary
technologies and attempting to wrap old solutions in SOA clothing.

An Enterprise Service Bus(ESB) is the back bone of a SOA implementation.
There is no canonical definition of an ESB. Wikipedia opens its entry on ESBs
(http://en.wikipedia.org/wiki/Enterprise_service _bus) by stating:

An ESB generally provides an abstraction layer on top of
an implementation of an enterprise messaging system,

FUSE" ESB Getting Started with FUSE ESB Version 4.1 9

http://en.wikipedia.org/wiki/Enterprise_service_bus

Chapter 1. Introduction to FUSE ESB

10

which allows integration architects to exploit the value of
messaging without writing code. Contrary to the more
classical enterprise application integration (EAI) approach
of a monolithic stack in a hub and spoke architecture, the
foundation of an enterprise service bus is built of base
functions broken up into their constituent parts, with
distributed deployment where needed, working in harmony
as necessary.

—Wikipedia

LooselyCoupled defines an ESB as follows:

An ESB acts as a shared messaging layer for connecting
applications and other services throughout an enterprise
computing infrastructure. It supplements its core
asynchronous messaging backbone with intelligent
transformation and routing to ensure messages are passed
reliably. Services participate in the ESB using either web
services messaging standards or the Java Message System
(JMS). Originally defined by analysts at Gartner, ESB is
increasingly seen as a core component in a service-oriented
infrastructure.

—looselycoupled.com

The most common way of defining an ESB is by listing the services it provides.
These services include:

* transport mediation - not all services that need to be integrated use HTTP
or JMS

* dynamic message transformation - not all services are going to use SOAP
and are unlikely to require the same message structures

* intelligent routing
* security

An ESB simplifies the complexity of integration by providing a single, standards
based infrastructure into which applications can be plugged. Once plugged
into the ESB, an application or service has access to all of the infrastructure
services provided by the ESB and can access any other applications that are
also plugged into the ESB. For example, you could plug a billing system based
on JMS into an ESB and use the ESBs transport mediation features to expose
the billing system over the Web using SOAP/HTTP. You could also route

FUSE " ESB Getting Started with FUSE ESB Version 4.1

Differentiating between ESB
implementations

internal POs directly into the billing system by plugging the your PO system
into the ESB.

Most ESB implementations provide all of the services that are used to define
an ESB, so it is hard to differentiate ESB implementations based on features.
A better way to differentiate between them is to use the following four
measures:

» Supported deployment / runtime environments

Many ESB solutions are designed to be deployed into application servers,
other heavy weight containers, or proprietary runtime environments. These
types of ESB solution is ideal for distributed computing. They also contribute
to vendor lock-in.

Ideally, an ESB solution should have flexible deployment requirements so
that it can be distributed through out an enterprise.

» Container / component model

Does the ESB solution use a standardized container model, such as J2EE,
JBI, or OSGi, for managing deployed services? Or does it use a proprietary
model?

Ideally, an ESB solution should use a standardized container model.
Standard models ensure maximum compatibility and lessen the learning
curve needed for adoption.

* Coupling to other infrastructure components

ESB solutions often leave out infrastructure components like orchestration
engines and advanced transports like CORBA. Instead they rely on plug-ins
or other components to provided the functionality.

Many ESB solutions require a tight coupling between the ESB and the
added components. This means that you are limited to only using the added
components supplied by the ESB vendor or must learn complex APIs to
extend the ESB yourself.

Ideally, an ESB solution would provide a loose coupling or provide a
standardized interface between the ESB and any added components. This
allows the ESB to be extended easily and in a flexible manner.

* Dependencies

FUSE" ESB Getting Started with FUSE ESB Version 4.1 11

Chapter 1. Introduction to FUSE ESB

The FUSE ESB approach

12

ESB solutions have a lot of moving parts and complex dependencies. Some
ESB solutions handle these dependencies by locking themselves into using
proprietary solutions for things like security or JMS implementations. Others
rely on standardized implementations as much as possible.

Ideally, an ESB solution would only depend on widely available standardized
libraries to make dependencies easy to manage.

Based on Apache ServiceMix, FUSE ESB reduces complexity and eliminates
vendor lock in because it is standards based and built using best in breed
open source technology. It differentiates itself in the following ways:

The FUSE ESB kernel is lightweight and can run on most platforms.

The FUSE ESB kernel uses the OSGi framework to simplify componentization
of applications.

The OSGi framework is a newly emerging standard for managing the
dependencies between application components. It also provides a standard
mechanism for controlling the life-cycle of components.

FUSE ESB supports the Java Business Integration(JBI) specification (JSR
208).

JBI is a well defined standard for packaging, deploying, and managing
components deployed to the ESB.

FUSE ESB can be coupled to other infrastructure services over a variety of
transport protocols and message formats.

Out of the box, the FUSE ESB supports JMS, HTTP, HTTPS, FTP, XMPP,
Web services, and a number of other bindings. In addition, you can easily
extend its connectivity options using other components that conform to
either the OSGi or JBI specification.

FUSE ESB employs standards as much as possible to limit dependencies.

In addition, FUSE ESB supports event driven architectures. Services deployed
into the FUSE ESB container can be fully decoupled and will simply listen on
the bus until an appropriate service request arrives. FUSE ESB also supports
events that occur outside of the bus. For example, a JMS service can listen
on a topic that is hosted outside of the bus and only act when an appropriate
message arrives.

FUSE " ESB Getting Started with FUSE ESB Version 4.1

Chapter 2. Using FUSE ESB

FUSE ESB can be seen as having three main parts: a command console, a runtime container, and a standardized
message bus. The command console allows the user to manage the container and the applications deployed into
it. The container provides the runtime functionality required by your services. The standardized message bus
gives the endpoints running in the container a means for communicating with each other.

Bl LSRN ¥ L g TT e 1 =Y =Y 14
B I LT O o0 Y0 = T o] 0 Yo 1N 16
The Standardized MESSAEE BUS ...t e 17

FUSE" ESB Getting Started with FUSE ESB Version 4.1 13

Chapter 2. Using FUSE ESB

The Runtime Container

Overview

0SGi in a nutshell

JBI

14

The runtime container, based on the Apache ServiceMix kernel, is an OSGi
based environment for deploying and managing bundles. It provides facilities
for logging, dynamic configuration, and provisioning.

The runtime container also has a JBI adapter layer. This layer allows JBI
components, shared libraries, and service assemblies to run inside the OSGi
based container.

OSGi is set of open specifications aimed at making it easier to build and
deploy complex software applications. The key piece of OSGi technology is
the OSGi Framework. The framework manages the loading and management
of dynamic modules of functionality.

In an OSGi environment applications are packaged into bundles. A bundle is
a jar that contains extra information about the classes and resources included
in the bundle. The information supplied in the bundle includes:

* packages required by classes in the bundle
* packages being exported by the bundle
* version information for the bundle

Using the information in the bundle, the OSGi framework ensures that all of
the dependencies required by the bundle are present. If it is, the bundle is
activated and made available. The information in the bundle also allows the
framework to manage multiple versions of a bundle.

The OSGi specifications are maintained by the OSGi Alliance. See http://
WWW.0sgi.org.

Java Business Integration (JBI) is a specification developed by the Java
Community Process. It defines a packaging, deployment, and runtime model
based on service-oriented principles. Functionality can be packaged in a
number of different types of packages depending on the scope of functionality
they expose. The most common packaging unit used by an application
developer is the service assembly.

FUSE " ESB Getting Started with FUSE ESB Version 4.1

http://www.osgi.org
http://www.osgi.org

The Runtime Container

A service assembly consists of one or more service units. Each service unit
defines an endpoint that exposes or consumes a service. Applications typically
consist of multiple service units.

The endpoints in a JBI environment communicate using a normalized message
bus (NMR). The NMR ensures that endpoints are loosely coupled by shielding
them from the physical details of the communication process.

For more information about JBI and using JBI with FUSE ESB see Using JBI
to Develop Applications.

Benefits of the FUSE ESB OSGi offers a number of benefits over other container and packaging models
container including:

* hot deployment of artifacts
* management of multiple versions of a package, class, or bundle
* dynamic loading of code

¢ lightweight footprint

multiple packaging options

FUSE" ESB Getting Started with FUSE ESB Version 4.1 15

http://fusesource.com/docs/esb/4.1/jbi/jbi.pdf
http://fusesource.com/docs/esb/4.1/jbi/jbi.pdf

Chapter 2. Using FUSE ESB

The Command Console

Overview

Features

16

The command console is a shell environment that enables you to control the
FUSE ESB runtime container. The console is GShell-based, and includes
subshells that provide commands for specific sets of functionality. The
command console can be used to control local runtime instances and to
securely manage remote containers.

The Console Reference Guide provides information about using the console
and includes descriptions of the available commands and subshells.

The FUSE ESB command console provides the following features:

Modular — The command console includes modular subshells that provide
commands for a specific set of functionality. You can also expand the
functionality by writing custom modules.

See "FUSE ESB Console Root Commands and Subshells" in Console
Reference Guide for information about using the subshells.

Artifact Management — One of the most important uses of the command
console is managing the artifacts deployed into the container. The command
console provides subshells to manage artifacts, including OSGi bundles,

collections of bundles, JBI artifacts, and OSGi bundle repositories (OBRs).

See the Console Reference Guide for information about the FUSE ESB
console subshells available for artifact management.

Remote Management — You will likely have many instances of the FUSE
ESB runtime distributed throughout your organization. To address this
requirement, the command console includes the commands ssh and sshd,

which enable you to connect to and start a remote secure shell server.

See the "FUSE ESB Console Root Commands and Subshells" in Console
Reference Guide for information about the console commands available
for remote management.

See "Managing Remote Instances" in Managing the Container for more
information about remote connections.

FUSE " ESB Getting Started with FUSE ESB Version 4.1

http://fusesource.com/docs/esb/4.1/command_ref/command_ref.pdf
http://fusesource.com/docs/esb/4.1/command_ref/command_ref.pdf
http://fusesource.com/docs/esb/4.1/command_ref/command_ref.pdf
http://fusesource.com/docs/esb/4.1/command_ref/command_ref.pdf
http://fusesource.com/docs/esb/4.1/runtime/runtime.pdf

The Standardized Message Bus

The Standardized Message Bus

Overview

Message exchange patterns

The standardized message bus is analogous to the NMR in JBI. It provides a
standard interface by which all services deployed into FUSE ESB interact. It
normalizes messages and ensures they are delivered to the proper locations.

The message bus uses a WSDL-based messaging model to mediate the
message exchanges between endpoints. Using a WSDL-based model provides
the needed level of abstraction to ensure that the endpoints are fully
decoupled. The WSDL-based model defines operations as a message exchange
between a service provider and a service consumer. The message exchanges
are defined from the point of view of the service provider and fit one of four
message exchange patterns:

in-out

In this pattern a consumer sends a request message to a provider. The

provider responds to the request with a response message. The provider
may also respond with a fault message indicating that an error occurred
during processing.

in-optional-out

In this pattern a consumer sends a request message to a provider. The

provider may send a response message back to the consumer, but the

consumer does not require a response. The provider may also respond

with a fault message. In addition, the consumer can send a fault message
to the provider.

in-only

In this pattern a consumer sends a message to a provider, but the provider
does not send a response. The provider does not even send fault messages
back to the consumer.

FUSE" ESB Getting Started with FUSE ESB Version 4.1 17

Chapter 2. Using FUSE ESB

Normalized messages

robust-in-only

In this pattern a consumer sends a message to a provider. The provider
may send a fault message back to the consumer to signal an error
condition, but otherwise does not respond to the consumer.

In order to fully decouple the entities involved in message exchanges the bus
uses normalized messages. A normalized message is a genericized format
used to represent all of message data passed through the bus. It consists of
three parts:

meta-data, properties
The meta-data holds information about the message. This information
can include transaction contexts, security information, or other QoS
information. The meta-data can also hold transport headers.

payload
The payload of a message is an XML document that conforms to the
XML Schema definition in the WSDL document defining the message
exchange. The XML document holds the substance of the message.

attachments
Attachments hold any binary data associated with the message. For
example, an attachment could be an image file sent as an attachment
to SOAP message.

security subject
The security subject holds security information, such as authentication

credentials, associated with the message. For more information of the
security subject, see Sun's API documentation®.

JBI binding components automatically normalizing all of the messages placed
onto the bus. Binding components normalize messages received from external
sources before passing them to the NMR, The binding component will also
denormalize the message so that it is in the appropriate format for the external
source. Non-JBI endpoints are responsible for normalizing and denormalizing
messages on their own.

! http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/Subject.html

18

FUSE " ESB Getting Started with FUSE ESB Version 4.1

http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/Subject.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/Subject.html

Chapter 3. Deploying a Service into
FUSE ESB

You are going to build and deploy simple services using both the native FUSE Services Framework integration.

RUNNING e EXAMIDIE et e ettt 20
Understanding the EXamIPIeo 23

You are going to build and deploy a simple service that is based on a WSDL
document. The source for this example can be found in the
InstallDir/examples/cxf-osgi folder of your FUSE ESB installation.

The example uses the FUSE ESB Maven tooling to build a bundle that contains
the service implementation and all of the metadata needed to deploy it into
the FUSE ESB container.

The sample code includes a web page, client.html, that will allow you to
access the service once it is exposed.

FUSE" ESB Getting Started with FUSE ESB Version 4.1 19

Chapter 3. Deploying a Service into FUSE ESB

Running the Example

Before running the example

Running the example

Testing the example

20

To run this example you will need to do the following:

1.

Make sure that you have Maven 2.0.6 or greater installed on your system.
You can download Maven from http://maven.apache.org/.
Start an instance of the FUSE ESB.

You can start an instance of the FUSE ESB container by doing the
following:

1. Change to the root folder of your installation.

2. Run .\bin\servicemix.bat or ./bin/servicemix.sh depending on your
platform.

To build and deploy the example do the following:

1.

Change to the root folder of the example.

cd InstallDir/examples/cxf-osgi

Enter the following command:

mvn install

This command will build a bundle called cxf-osgi-4.0.0-fuse.jarand
place it into the target folder of the example.

Copy the bundle to Tnstallpir/deploy to deploy it to the container.

To see if the example is running you can visit http://localhost:8080/cxf/
HelloWorld?wsdl in your Web browser. You should see the WSDL shown in
Example 3.1 on page 21.

FUSE " ESB Getting Started with FUSE ESB Version 4.1

http://maven.apache.org/
http://localhost:8080/cxf/HelloWorld?wsdl
http://localhost:8080/cxf/HelloWorld?wsdl

Running the Example

Example 3.1. OSGi Example WSDL

<wsdl:definitions name="HelloWorldImplService"
targetNamespace="http://cxf.examples.servicemix.apache.org/">
<wsdl:types>
<xs:schema attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://cxf.examples.servicemix.apache.org/">
<xs:complexType name="sayHi">
<xs:sequence>
<xs:element minOccurs="0" name="arg0" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="sayHiResponse">
<xs:sequence>
<xs:element minOccurs="0" name="return" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:element name="sayHi" nillable="true" type="sayHi"/>
<xs:element name="sayHiResponse" nillable="true" type="sayHiResponse"/>
</xs:schema>
</wsdl:types>
<wsdl:message name="sayHiResponse'">
<wsdl:part element="tns:sayHiResponse" name="parameters">
</wsdl:part>
</wsdl:message>
<wsdl:message name="sayHi">
<wsdl:part element="tns:sayHi" name="parameters">
</wsdl:part>
</wsdl:message>
<wsdl:portType name="HelloWorld">
<wsdl:operation name="sayHi">
<wsdl:input message="tns:sayHi" name="sayHi">
</wsdl:input>
<wsdl:output message="tns:sayHiResponse" name="sayHiResponse'">
</wsdl:output>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="HelloWorldImplServiceSoapBinding" type="tns:HelloWorld">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="sayHi">
<soap:operation soapAction="" style="document"/>
<wsdl:input name="sayHi">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="sayHiResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>

FUSE" ESB Getting Started with FUSE ESB Version 4.1 21

Chapter 3. Deploying a Service into FUSE ESB

</wsdl:binding>
<wsdl:service name="HelloWorldImplService">
<wsdl:port binding="tns:HelloWorldImplServiceSoapBinding" name="HelloWorldImplPort">

<soap:address location="http://localhost:8080/cxf/HelloWorld"/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

You can also open client.html in your browser. Figure 3.1 on page 22
shows what the screen should look like.

Figure 3.1. Example HTML Screen

Servicelisz 4 CF-OSGi Example

et

T

s

FUSE " ESB Getting Started with FUSE ESB Version 4.1

Understanding the Example

Understanding the Example

Overview The example builds a simple HelloWorld service and packages it for
deployment into FUSE ESB. The service is written using standard JAX-WS
APlIs. It implements a single operation sayHi (). Once deployed, the service
is exposed as a SOAP/HTTP endpoint. The most interesting parts of the
example are the Spring configuration used to configure the endpoint and the
Maven POM used to build the bundle.

The Spring configuration provides the details needed to expose the service
using SOAP/HTTP It can also contain details used to configure advanced
FUSE Services Framework functionality.

The Maven POM, in addition to compiling the code, uses the bundle generation
plug-in to package the resulting classes into an OSGi bundle. It contains all
of the details needed by the FUSE ESB container to activate the bundle and
deploy the packaged service.

Using the Maven tools The FUSE ESB Maven tooling automates a number of the steps in packaging
functionality for deployment into FUSE ESB. In order to use the Maven OSGi
tooling, you add the elements shown in Example 3.2 on page 23 to your
POM file.

Example 3.2. POM Elements for Using FUSE ESB OSGi Tooling

<pluginRepositories>
<pluginRepository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</pluginRepository>
</pluginRepositories>

<build>
<plugins>
<plugin>
<groupId>org.apache.felix</groupIld>

FUSE" ESB Getting Started with FUSE ESB Version 4.1 23

Chapter 3. Deploying a Service into FUSE ESB

<artifactId>maven-bundle-plugin</artifactId>

</plugin>

</plugins>
</build>
These elements point Maven to the correct repositories to download the FUSE
ESB Maven tooling and load the plug-in that implements the OSGi tooling.
The Spring configuration The FUSE ESB container needs some details about a service before it can

instantiate and endpoint for it. FUSE Services Framework uses Spring based
configuration to define endpoints for services. The configuration shown in
Example 3.3 on page 24 is stored in the example's
\src\main\resources\META-INF\spring\beans.xml file

Example 3.3. OSGi Example Spring Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframe

work.org/schema/beans/spring-beans.xsd

http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<import resource="classpath:META-INF/cxf/cxf.xml" /> @

<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-http.xml" />
<import resource="classpath:META-INF/cxf/osgi/cxf-extension-osgi.xml" />

<jaxws:endpoint id="helloWorld" ©
implementor="org.apache.servicemix.examples.cxf.HelloWorldImpl"

address="/HelloWorld"/>

</beans>
The configuration shown in Example 3.3 on page 24 does the following:
©® Imports the required configuration to load the required parts of the FUSE
Services Framework runtime.

® Configures the endpoint that exposes the service using the
jaxws:endpoint element and its attributes.

* id is an identifier used by the configuration mechanism.

24 FUSE " ESB Getting Started with FUSE ESB Version 4.1

Understanding the Example

* implementor Specifies the class that implements the service. It must
be on the classpath.

* address specifies the address at which the service will be exposed.
This address is relative to the containers HTTP address with cxf
appended to it.

For more information on the FUSE Services Framework Spring configuration
see Developing and Deploying JAX-WS Services.

The POM Example 3.4. 0SGi POM

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
tp://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven—
v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>org.apache.servicemix.examples</groupId>
<artifactId>examples</artifactId>
<version>4.0.0-fuse-SNAPSHOT</version>

</parent>

<groupId>org.apache.servicemix.examples</groupId>
<artifactId>cxf-osgi</artifactId>
<packaging>bundle</packaging>
<version>4.0.0-fuse-SNAPSHOT</version>

<name>Apache ServiceMix Example :: CXF 0SGi</name>
<!-- Add ServiceMix repositories for snaphots and releases -->
<dependencies>
<dependency>

<groupId>org.apache.geronimo.specs</groupId>
<artifactId>geronimo-ws-metadata 2.0 spec</artifactId>
<version>${geronimo.wsmetadata.version}</version>
</dependency>
</dependencies>

<build>

<plugins>
<plugin>

FUSE" ESB Getting Started with FUSE ESB Version 4.1 25

http://fusesource.com/docs/esb/4.1/fsf_osgi/fsf_osgi.pdf

Chapter 3. Deploying a Service into FUSE ESB

<groupId>org.apache.felix</groupIld>
<artifactId>maven-bundle-plugin</artifactId>

<configuration>
<instruction

s>

<Bundle-SymbolicName>$ {pom.artifactId}</Bundle-SymbolicName>
<Import-Package>

java

javax.wsdl,

X.Jjws,

META-INF.cxf,
META-INF.cxf.osgi,

org.
org.
org.
org.
org
org.
org

apache.
apache.
apache.
apache.
.apache.
apache.
.springframework.beans.factory.config

cxf.
cxf.
cxf.
cxf.
cxf.

bus,

bus.spring,
bus.resource,
configuration.spring,
resource,

servicemix.cxf.transport.http osgi,

</Import-Package>
<Private-Package>org.apache.servicemix.examples.cxf</Private-Package>

<Require-Bundle>org.apache.cxf.cxf-bundle</Require-Bundle>

</instructio
</configuration>
</plugin>
</plugins>
</build>

</project>

26

ns>

FUSE " ESB Getting Started with FUSE ESB Version 4.1

Index
M

Maven tooling, 23
message exchange patterns, 17
in-only, 17
in-optional-out, 17
in-out, 17
robust-in-only, 18

FUSE" ESB Getting Started with FUSE ESB Version 4.1

27

28

FUSE " ESB Getting Started with FUSE ESB Version 4.1

	Getting Started with FUSE ESB
	Table of Contents
	Chapter 1. Introduction to FUSE ESB
	Chapter 2. Using FUSE ESB
	The Runtime Container
	The Command Console
	The Standardized Message Bus

	Chapter 3. Deploying a Service into FUSE ESB
	Running the Example
	Understanding the Example

	Index

