
FUSE™ ESB

Using JBI to Develop Applications

Version 4.1
April 2009

Using JBI to Develop Applications
Version 4.1

Publication date 22 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
I. Overview of Java Business Integration(JBI) .. 11

1. Introduction to JBI ... 13
2. The Component Framework ... 15
3. The Normalized Message Router ... 19
4. Management Structure ... 23

II. Deploying JBI Artifacts into the FUSE ESB Runtime .. 27
5. Using the JBI Ant Tasks .. 29

Using the Tasks as Commands .. 30
Using the Tasks in Build Files ... 36

6. Building JBI Components using Maven ... 43
7. Deploying JBI Endpoints Using Maven ... 49

Setting Up a FUSE ESB JBI Project .. 50
A Service Unit Project ... 55
A Service Assembly Project .. 61

A. Using the JBI Console Commands ... 65
Index .. 67

3FUSE™ ESB Using JBI to Develop Applications Version 4.1

FUSE™ ESB Using JBI to Develop Applications Version 4.14

List of Figures
1.1. The JBI Architecture .. 14
4.1. JBI Component Life-cycle .. 24
4.2. Service Unit Life-cycle .. 25

5FUSE™ ESB Using JBI to Develop Applications Version 4.1

FUSE™ ESB Using JBI to Develop Applications Version 4.16

List of Tables
5.1. Options for Installing a JBI Component with an Ant
Command ... 30
5.2. Options for Removing a JBI Component with an Ant
Command ... 31
5.3. Options for Starting a JBI Component with an Ant Command 32
5.4. Options for Stopping a JBI Component with an Ant
Command ... 33
5.5. Options for Shutting down a JBI Component with an Ant
Command ... 34
5.6. Options for Installing a Shared Library with an Ant
Command ... 34
5.7. Options for Removing a Shared Library with an Ant
Command ... 35
5.8. Attributes for Installing a JBI Component Using an Ant Task 36
5.9. Attributes for Removing a JBI Component Using an Ant Task 37
5.10. Attributes for Starting a JBI Component Using an Ant Task 38
5.11. Attributes for Stopping a JBI Component Using an Ant
Task ... 39
5.12. Attributes for Shutting Down a JBI Component Using an Ant
Task ... 39
5.13. Attributes for Installing a Shared Library Using an Ant Task 40
5.14. Attributes for Removing a Shared Library Using an Ant
Task ... 41
7.1. Service Unit Archetypes .. 55
A.1. JBI Shell Commands .. 65

7FUSE™ ESB Using JBI to Develop Applications Version 4.1

FUSE™ ESB Using JBI to Develop Applications Version 4.18

List of Examples
5.1. JBI Ant Task Command Line Usage 30
5.2. Installing a Component Using an Ant Command 30
5.3. Removing a Component Using an Ant Command 31
5.4. Starting a Component Using an Ant Command 32
5.5. Stopping a Component Using an Ant Command 33
5.6. Adding the JBI Tasks to an Ant Build File 36
5.7. Ant Target that Installs a JBI Component 37
5.8. Ant Target that Removes a JBI Component 38
5.9. Ant Target that Starts a JBI Component 38
5.10. Ant Target that Stops a JBI Component 39
5.11. Ant Target that Shuts Down a JBI Component 40
6.1. POM Elements for Using FUSE ESB Tooling 43
6.2. Command for JBI Maven Archetypes 44
6.3. Specifying that a Maven Project Results in a JBI Component 45
6.4. Plugin Specification for Packaging a JBI Component 45
6.5. Specifying that a Maven Project Results in a JBI Component 46
7.1. POM Elements for Using FUSE ESB Tooling 50
7.2. Top-Level POM for a FUSE ESB JBI Project 52
7.3. Maven Archetype Command for Service Units 55
7.4. Configuring the Maven Plug-in to Build a Service Unit 57
7.5. Specifying the Target Components for a Service Unit 58
7.6. Specifying the Target Components for a Service Unit 59
7.7. POM for a Service Unit Project ... 59
7.8. Maven Archetype Command for Service Assemblies 61
7.9. Configuring the Maven Plug-in to Build a Service Assembly 61
7.10. Specifying the Target Components for a Service Unit 62
7.11. POM for a Service Assembly Project 62

9FUSE™ ESB Using JBI to Develop Applications Version 4.1

FUSE™ ESB Using JBI to Develop Applications Version 4.110

Part I. Overview of Java Business
Integration(JBI)
1. Introduction to JBI ... 13
2. The Component Framework ... 15
3. The Normalized Message Router ... 19
4. Management Structure ... 23

Chapter 1. Introduction to JBI
Java Business Integration(JBI) defines an architecture for integrating systems through components that interoperate
by exchanging normalized messages through a router.

The Java Business Integration(JBI) specification defines an integration
architecture based on service oriented concepts. Applications are broken up
into decoupled functional units. The functional units are deployed into JBI
components that are hosted within the JBI environment. The JBI environment
provides message normalization and message mediation between the JBI
components.

As shown in Figure 1.1 on page 14,the JBI environment is made up of the
following parts:

13FUSE™ ESB Using JBI to Develop Applications Version 4.1

Figure 1.1. The JBI Architecture

• The JBI component framework hosts and manages the JBI components.
For more information see on page 15.

• The normalized message router provides message mediation between the
JBI components. For more information see on page 19.

• The management structure controls the life-cycle of the JBI components
and the functional units deployed into the JBI components. It also provides
mechanisms for monitoring the artifacts deployed into the JBI environment.
For more information see on page 23.

FUSE™ ESB Using JBI to Develop Applications Version 4.114

Chapter 1. Introduction to JBI

Chapter 2. The Component Framework
The JBI component framework is the structure into which JBI components plug into the ESB.

Overview The JBI component framework provides a pluggable interface between the
functional units installed into the JBI environment and the infrastructure
services offered by the JBI environment. The framework divides JBI
components into two types based on their functionality. The framework also
defines a packaging mechanism for deploying functional units into JBI
components.

Component types JBI defines two types of components:

Service Engines

Service engines are components that provide some of the logic needed
to provide services, like message transformation, orchestration, or
advanced message routing, inside of the JBI environment. They can only
communicate with other components inside of the JBI environment.
Service engines act as containers for the functional units deployed into
the FUSE ESB.

Binding Components

Binding components provide access to services outside the JBI
environment via a particular protocol. They implement the logic needed
to connect to a transport and consume the messages received over that
transport. Binding components are also responsible for the normalization
of messages as they enter the JBI environment.

The distinction between the two types of component is purely a matter of
convention. The distinction makes the decoupling of business logic and
integration logic more explicit.

Packaging JBI defines a common packaging model for all of the artifacts that can be
deployed into the JBI environment. Each type of package is a ZIP archive that
includes a JBI descriptor in the file META-INF/jbi.xml. The packages differ
based on root element of the JBI descriptor and the contents of the package.
The JBI environment uses four types of packaging to install and deploy
functionality. The two most common types of packages encountered by an
application developer are:

15FUSE™ ESB Using JBI to Develop Applications Version 4.1

service assembly

Service assemblies are a collection of service units. The root element of
the JBI descriptor is a service-assembly element. The contents of the
package is a collection of ZIP archives containing service units. The JBI
descriptor specifies the target JBI component for each of the bundled
service units.

service unit

Service units are packages that contain functionality to be deployed into
a JBI component. For example a service unit intended for a routing service
engine would contain the definition for one or more routes. Service units
are packaged as a ZIP file. The root element of the JBI descriptor is a
service-unit element. The contents of the package are specific to the
service engine for which the service unit is intended.

Important
Service units cannot be installed without being bundled into a
service assembly.

Component roles Once configured by one or more service units a JBI component implements
the functionality described in the service unit. In doing so, the JBI component
takes on one of the following roles:

service provider

Service providers receive request messages and return response messages
if required.

service consumer

Service consumers initiate message exchanges by sending requests to a
service provider.

Depending on the number and type of service units deployed into a JBI
component, a single component can play one or both roles. For example, the
HTTP binding component could host a service unit that acts as a proxy to
consumers running outside of the FUSE ESB. In this instance the HTTP
component is playing the role of a service provider because it is receiving
requests from the external consumer and passing the responses back to the
external consumer. If the service unit also configures the HTTP component

FUSE™ ESB Using JBI to Develop Applications Version 4.116

Chapter 2. The Component Framework

to forward the requests to another process running inside of the JBI
environment, the HTTP component also plays the role of a service consumer
because it is making requests on another service unit.

17FUSE™ ESB Using JBI to Develop Applications Version 4.1

FUSE™ ESB Using JBI to Develop Applications Version 4.118

Chapter 3. The Normalized Message
Router
The normalized message router is a bus that shuttles messages between the endpoints deployed into the ESB.

Overview The normalized message router(NMR) is the part of the JBI environment that
is responsible for mediating messages between JBI components. The JBI
components never send messages directly between each other. Instead, they
pass messages to the NMR. The NMR is responsible for delivering the
messages to the correct JBI endpoints. This allows the JBI components, and
the functionality they expose, to be location independent. It also frees the
application developer from worrying about the connection details between
the different parts of an application.

Message exchange patterns The NMR uses a WSDL-based messaging model to mediate the message
exchanges between JBI components. Using a WSDL-based model provides
the needed level of abstraction to ensure that the JBI components are fully
decoupled. The WSDL-based model defines operations as a message exchange
between a service provider and a service consumer. The message exchanges
are defined from the point of view of the service provider and fit one of four
message exchange patterns:

in-out

In this pattern a consumer sends a request message to a provider. The
provider responds to the request with a response message. The provider
may also respond with a fault message indicating that an error occured
during processing.

in-optional-out

In this pattern a consumer sends a request message to a provider. The
provider may send a response message back to the consumer, but the
consumer does not require a response. The provider may also respond
with a fault message. In addition, the consumer can send a fault message
to the provider.

19FUSE™ ESB Using JBI to Develop Applications Version 4.1

in-only

In this pattern a consumer sends a message to a provider, but the provider
does not send a response. The provider does not even send fault messages
back to the consumer.

robust-in-only

In this pattern a consumer sends a message to a provider. The provider
may send a fault message back to the consumer to signal an error
condition, but otherwise does not respond to the consumer.

Normalized messages In order to fully decouple the entities involved in message exchanges JBI uses
normalized messages. A normalized message is a genericized format used
to represent all of message data passed through the NMR. It consists of three
parts:

meta-data, properties
The meta-data holds information about the message. This information
can include transaction contexts, security information, or other QoS
information. The meta-data can also hold transport headers.

payload
The payload of a message is an XML document that conforms to the
XML Schema definition in the WSDL document defining the message
exchange. The XML document holds the substance of the message.

attachments
Attachments hold any binary data associated with the message. For
example, an attachment could be an image file sent as an attachment
to SOAP message.

security Subject

The security Subject holds security information, such as authentication

credentials, associated with the message. For more information of the
security Sublect, see Sun's API documentation1.

JBI binding components are responsible for normalizing all of the messages
placed onto the NMR. Binding components normalize messages received
from external sources before passing them to the NMR, The binding component

1 http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/Subject.html

FUSE™ ESB Using JBI to Develop Applications Version 4.120

Chapter 3. The Normalized Message Router

http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/Subject.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/Subject.html

will also denormalize the message so that it is in the appropriate format for
the external source.

21FUSE™ ESB Using JBI to Develop Applications Version 4.1

FUSE™ ESB Using JBI to Develop Applications Version 4.122

Chapter 4. Management Structure
The JBI specification mandates that most parts of the environment are managed through JMX.

Overview The JBI environment is managed using JMX. The internal components of the
JBI environment provides a set of MBeans to facilitate the management of
the JBI environment and the deployed components. In addition, the JBI
environment also supplies a number of Apache Ant tasks managing the JBI
environment.

The management of the JBI environment largely consists of the following:

• Installing and uninstalling artifacts into the JBI container

• Managing the life-cycle of JBI components

• Managing the life-cycle of service units

In addition to the JMX interface, all JBI environments provide a number of
Ant tasks. The Ant tasks make it possible to automate many of the common
management tasks.

JMX Java Management Extensions (JMX) is a standard technology for monitoring
and managing Java applications. The foundations for using JMX are provided
as part of the standard Java 5 JVM and can be used by any Java application.
It provides a lightweight way of providing monitoring and management
capabilities to any Java application that implements the MBean interface.

JBI implementations provide MBeans that can be used to manage the
components installed into the container and the service units deployed into
the components. In addition, application developers can add MBeans to their
service units to add additional management touch points.

The MBeans can be accessed using any management console that uses JMX.
JConsole, the JMX console provided with the Java 5 JRE, is an easy to use,
and free, tool for managing a JBI environment. FUSE HQ(http://
fusesource.com/products/fuse-hq/) is a more robust management console.

Installing and uninstalling
artifacts into the JBI Environment

There are four basic types of artifacts that can be installed into a JBI
environment:

23FUSE™ ESB Using JBI to Develop Applications Version 4.1

http://fusesource.com/products/fuse-hq/
http://fusesource.com/products/fuse-hq/

• JBI components

• shared libraries

• service assemblies

• service units

JBI components and shared libraries are installed using the
InstallationService MBean that is exposed through the JMX console. In
addition, the following Ant tasks are provided for installing and uninstalling
JBI components and shared libraries;

• InstallComponentTask

• UninstallComponentTask

• InstallSharedLibraryTask

• UninstallSharedLibraryTask

When a service assembly is installed into a JBI environment all of the service
units contained within the assembly are deployed to their respective JBI
components. Service assemblies and service units are installed using the
DeploymentService MBean that is exposed through the JMX console. In
addition to the MBean the following Ant tasks are provided for installing
service assemblies and service units:

• DeployServiceAssemblyTask

• UndeployServiceAssemblyTask

Managing JBI components Figure 4.1 on page 24 shows the life-cycle of a JBI component.

Figure 4.1. JBI Component Life-cycle

Components start life in a empty state. The component and the JBI
environment have no knowledge of each other. Once the component is installed
into the JBI environment, the component enters the shutdown state. In this
state, the JBI environment initializes any resources needed by the component.

FUSE™ ESB Using JBI to Develop Applications Version 4.124

Chapter 4. Management Structure

From the shutdown state a component can be initialized and moved into the
stopped state. In the stopped state, a component is fully initialized and all of
its resources are loaded into the JBI environment. When a component is ready
to process messages, it is moved into the started state. In this state the
component, and any service units deployed into the component, can participate
in message exchanges.

Components can be moved back and forth through the shutdown, stopped,
and started states without being uninstalled. You can manage the lifecycle
of an installed JBI component using the InstallationService MBean and
the component's ComponentLifeCycle MBean. In addition, you can manage
a component's lifecycle using the following Ant tasks:

• StartComponentTask

• StopComponentTask

• ShutDownComponentTask

Managing service units Figure 4.2 on page 25 shows the life-cycle of a service unit.

Figure 4.2. Service Unit Life-cycle

Service units must first be deployed into the appropriate JBI component. The
JBI component is the container that will provide the runtime resources needed
to implement the functionality defined by the service unit. When a service
unit is in the shutdown state, the JBI component has not provisioned any
resources for the service unit. When a service unit is moved into the stopped
state, the JBI component has provisioned the resources for the service unit
but the service unit cannot use any of the provisioned resources. When a
service unti is in the started state, the service unit is using the resources
provisioned for it by the JBI container. In the started state, the functionality
defined by the service unit is accessible.

A service can be moved through the different states without being undeployed.
You manage the lifecycle of a service unit using the JBI environment's
DeploymentService MBean. In addition, you can manage service units
using the following Ant tasks:

25FUSE™ ESB Using JBI to Develop Applications Version 4.1

• DeployServiceAssemblyTask

• UndeployServiceAssemblyTask

• StartServiceAssemblyTask

• StopServiceAssemblyTask

• ShutDownServiceAssemblyTask

• ListServiceAssembliesTask

FUSE™ ESB Using JBI to Develop Applications Version 4.126

Chapter 4. Management Structure

Part II. Deploying JBI Artifacts into the
FUSE ESB Runtime
The FUSE ESB runtime is a container into which you deploy services. You also need to deploy components to
the container to support your services. FUSE ESB supports the JBI packaging and deployment model for deploying
functionality into the runtime.

5. Using the JBI Ant Tasks .. 29
Using the Tasks as Commands .. 30
Using the Tasks in Build Files ... 36

6. Building JBI Components using Maven ... 43
7. Deploying JBI Endpoints Using Maven ... 49

Setting Up a FUSE ESB JBI Project .. 50
A Service Unit Project ... 55
A Service Assembly Project .. 61

Chapter 5. Using the JBI Ant Tasks
Using the Tasks as Commands .. 30
Using the Tasks in Build Files ... 36

The JBI specification defines a number of Ant tasks that can be used to
manage JBI components. These tasks allow you to install, start, stop, and
uninstall components into the FUSE ESB container. You can use the JBI Ant
tasks as either command line commands or as part of an Ant build file.

29FUSE™ ESB Using JBI to Develop Applications Version 4.1

Using the Tasks as Commands

Usage Example 5.1 on page 30 shows the basic usage statement for the FUSE ESB
Ant tasks when used from the command line.

Example 5.1. JBI Ant Task Command Line Usage

ant -f InstallDir/ant/servicemix-ant-tasks.xml [-Doption=value...] task

The task argument is the name of the Ant task you are calling. Each task
supports a number of options that are specified using the -Doption=value
flag.

Installing a component The Ant task used to install a component to the FUSE ESB container is
install-component. Its options are described in Table 5.1 on page 30.

Table 5.1. Options for Installing a JBI Component with an Ant Command

DescriptionRequiredOption

Specifies the username used to access the FUSE ESB container's management
features.

nosm.username

Specifies the password used to access the FUSE ESB container's management
features.

nosm.password

Specifies the host name where the container is running. The default value is
localhost.

nosm.host

Specifies the port where the container's RMI registry is listening. The default
value is 1099.

nosm.port

Specifies the name of the component's installer file.yessm.install.file

Example 5.2 on page 30 shows an example of using install-component to
install the Camel component to a container listening on port 1000.

Example 5.2. Installing a Component Using an Ant Command

>ant -f ant/servicemix-ant-task.xml -Dsm.port=1000 -Dsm.in
stall.file=servicemix-camel-3.3.0.6-fuse-installer.zip install-com
ponent
Buildfile: ant\servicemix-ant-task.xml

install-component:

FUSE™ ESB Using JBI to Develop Applications Version 4.130

Chapter 5. Using the JBI Ant Tasks

[echo] install-component
[echo] Installing a service engine or binding component.
[echo] host=localhost
[echo] port=1000
[echo] file=hotdeploy\servicemix-camel-3.3.0.6-fuse-installer.zip

BUILD SUCCESSFUL
Total time: 7 seconds

Removing a component The Ant task used to remove a component from the FUSE ESB container is
uninstall-component. Its options are described in Table 5.2 on page 31.

Table 5.2. Options for Removing a JBI Component with an Ant Command

DescriptionRequiredOption

Specifies the username used to access the FUSE ESB container's management
features.

nosm.username

Specifies the password used to access the FUSE ESB container's management
features.

nosm.password

Specifies the host name where the container is running. The default value is
localhost.

nosm.host

Specifies the port where the container's RMI registry is listening. The default
value is 1099.

nosm.port

Specifies the name of the JBI component.yessm.component.name

Example 5.3 on page 31 shows an example of using uninstall-component
to remove the drools component from a container listening on port 1000.

Example 5.3. Removing a Component Using an Ant Command

>ant -f ant\servicemix-ant-task.xml -Dsm.port=1000 -Dsm.compon
ent.name=servicemix-drools uninstall-component
Buildfile: ant\servicemix-ant-task.xml

uninstall-component:
[echo] uninstall-component
[echo] Uninstalling a Service Engine or Binding Component.
[echo] host=localhost
[echo] port=1000
[echo] name=servicemix-drools

31FUSE™ ESB Using JBI to Develop Applications Version 4.1

Using the Tasks as Commands

BUILD SUCCESSFUL
Total time: 1 second

Starting a component The Ant task used to start a component is start-component. Its options are
described in Table 5.3 on page 32.

Table 5.3. Options for Starting a JBI Component with an Ant Command

DescriptionRequiredOption

Specifies the username used to access the FUSE ESB container's management
features.

sm.username

Specifies the password used to access the FUSE ESB container's management
features.

nosm.password

Specifies the host name where the container is running. The default value is
localhost.

nosm.host

Specifies the port where the container's RMI registry is listening. The default
value is 1099.

nosm.port

Specifies the name of the JBI component.yessm.component.name

Example 5.4 on page 32 shows an example of using start-component to
start the cxf-se component in a container listening on port 1000.

Example 5.4. Starting a Component Using an Ant Command

>ant -f ant\servicemix-ant-task.xml -Dsm.port=1000 -Dsm.compon
ent.name=servicemix-cxf-se start-component
Buildfile: ant\servicemix-ant-task.xml

start-component:
[echo] start-component
[echo] starts a particular component (service engine or binding
component) in Servicemix
[echo] host=localhost
[echo] port=1000
[echo] name=servicemix-cxf-se

FUSE™ ESB Using JBI to Develop Applications Version 4.132

Chapter 5. Using the JBI Ant Tasks

BUILD SUCCESSFUL
Total time: 1 second

Stopping a component The Ant task used to stop a component is stop-component. Its options are
described in Table 5.4 on page 33.

Table 5.4. Options for Stopping a JBI Component with an Ant Command

DescriptionRequiredOption

Specifies the username used to access the FUSE ESB container's management
features.

nosm.username

Specifies the password used to access the FUSE ESB container's management
features.

nosm.password

Specifies the host name where the container is running. The default value is
localhost.

nosm.host

Specifies the port where the container's RMI registry is listening. The default
value is 1099.

nosm.port

Specifies the name of the JBI component.yessm.component.name

Example 5.5 on page 33 shows an example of using stop-component to stop
the cxf-se component in a container listening on port 1000.

Example 5.5. Stopping a Component Using an Ant Command

>ant -f ant\servicemix-ant-task.xml -Dsm.port=1000 -Dsm.compon
ent.name=servicemix-cxf-se stop-component

Buildfile: ant\servicemix-ant-task.xml

stop-component:
[echo] stop-component
[echo] stops a particular component (service engine or binding
component) in Servicemix
[echo] host=localhost
[echo] port=1000
[echo] name=servicemix-cxf-se

33FUSE™ ESB Using JBI to Develop Applications Version 4.1

Using the Tasks as Commands

BUILD SUCCESSFUL
Total time: 1 second

Shutting down a component The Ant task used to shutdown a component is shutdown-component. Its
options are described in Table 5.5 on page 34.

Table 5.5. Options for Shutting down a JBI Component with an Ant Command

DescriptionRequiredOption

Specifies the username used to access the FUSE ESB container's management
features.

nosm.username

Specifies the password used to access the FUSE ESB container's management
features.

nosm.password

Specifies the host name where the container is running. The default value is
localhost.

nosm.host

Specifies the port where the container's RMI registry is listening. The default
value is 1099.

nosm.port

Specifies the name of the JBI component.yessm.component.name

Installing a shared library The Ant task used to install a shared library to the FUSE ESB container is
install-shared-library. Its options are described in Table 5.6 on page 34.

Table 5.6. Options for Installing a Shared Library with an Ant Command

DescriptionRequiredOption

Specifies the username used to access the FUSE ESB container's management
features.

nosm.username

Specifies the password used to access the FUSE ESB container's management
features.

nosm.password

Specifies the host name where the container is running. The default value is
localhost.

nosm.host

Specifies the port where the container's RMI registry is listening. The default
value is 1099.

nosm.port

FUSE™ ESB Using JBI to Develop Applications Version 4.134

Chapter 5. Using the JBI Ant Tasks

DescriptionRequiredOption

Specifies the name of the library's installer file.yessm.install.file

Removing a shared library The Ant task used to remove a shared library from the FUSE ESB container
is uninstall-shared-library. Its options are described in Table 5.7 on page 35.

Table 5.7. Options for Removing a Shared Library with an Ant Command

DescriptionRequiredOption

Specifies the username used to access the FUSE ESB container's
management features.

nosm.username

Specifies the password used to access the FUSE ESB container's
management features.

nosm.password

Specifies the host name where the container is running. The default
value is localhost.

nosm.host

Specifies the port where the container's RMI registry is listening. The
default value is 1099.

nosm.port

Specifies the name of the shared library.yessm.shared.library.name

35FUSE™ ESB Using JBI to Develop Applications Version 4.1

Using the Tasks as Commands

Using the Tasks in Build Files

Adding the JBI tasks to a build
file

Before you can use the JBI tasks in an Ant build file, you must add the tasks
using a taskdef element as shown in Example 5.6 on page 36.

Example 5.6. Adding the JBI Tasks to an Ant Build File

...
<property name="fuseesb.install_dir" value="/home/fuse_esb"/> ❶

<taskdef file="${fuseesb.install_dir}/ant/servicemix_ant_taskdef.properties"> ❷
<classpath id="fuseesb.classpath"> ❸
<fileset dir="${fuseesb.install_dir}">

<include name="*.jar"/>
</fileset>
<fileset dir="${fuseesb.install_dir}/lib">

<include name="*.jar"/>
</fileset>

</classpath>
</taskdef>
...

The build file fragment in Example 5.6 on page 36 does the following:

❶ Sets a property, fuseesb.install_dir, the FUSE ESB's installation directory.

❷ Loads the tasks using the ant/servicemix_ant_taskdef.properties.

❸ Sets the classpath so that all of the required jars from the FUSE ESB
installation are available.

Installing a component The Ant task used to install a JBI component is jbi-install-component.
Its attributes are listed in Table 5.8 on page 36.

Table 5.8. Attributes for Installing a JBI Component Using an Ant Task

DescriptionRequiredAttribute

Specifies the host name where the container is running. The default value is
localhost.

nohost

Specifies the port where the container's RMI registry is listening. The default value is
1099.

noport

Specifies the username used to access the container's management features.nousername

FUSE™ ESB Using JBI to Develop Applications Version 4.136

Chapter 5. Using the JBI Ant Tasks

DescriptionRequiredAttribute

Specifies the password used to access the container's management features.nopassword

Specifies if an error will cause the entire build to fail.nofailOnError

Specifies the name of the component's installer file.yesfile

Example 5.7 on page 37 shows an Ant target that installs the drools
component.

Example 5.7. Ant Target that Installs a JBI Component

...
<target name="installDrools" description="Installs the drools engine.">
<jbi-install-component port="1099"

file="servicemix-drools-3.3.0.6-fuse-installer.zip" />
</target>
...

Removing a component The Ant task used to remove a JBI component is jbi-uninstall-component.
Its attributes are listed in Table 5.9 on page 37.

Table 5.9. Attributes for Removing a JBI Component Using an Ant Task

DescriptionRequiredAttribute

Specifies the host name where the container is running. The default value is
localhost.

nohost

Specifies the port where the container's RMI registry is listening. The default value is
1099.

noport

Specifies the username used to access the container's management features.nousername

Specifies the password used to access the container's management features.nopassword

Specifies if an error will cause the entire build to fail.nofailOnError

Specifies the component's name.yesname

Example 5.8 on page 38 shows an Ant target that removes the drools
component.

37FUSE™ ESB Using JBI to Develop Applications Version 4.1

Using the Tasks in Build Files

Example 5.8. Ant Target that Removes a JBI Component

...
<target name="removeDrools" description="Removes the drools engine.">
<jbi-uninstall-component port="1099"

name="servicemix-drools" />
</target>
...

Starting a component The Ant task used to start a JBI component is jbi-start-component. Its
attributes are listed in Table 5.10 on page 38.

Table 5.10. Attributes for Starting a JBI Component Using an Ant Task

DescriptionRequiredAttribute

Specifies the host name where the container is running. The default value is
localhost.

nohost

Specifies the port where the container's RMI registry is listening. The default value is
1099.

noport

Specifies the username used to access the container's management features.nousername

Specifies the password used to access the container's management features.nopassword

Specifies if an error will cause the entire build to fail.nofailOnError

Specifies the component's name.yesname

Example 5.9 on page 38 shows an Ant target that starts the drools
component.

Example 5.9. Ant Target that Starts a JBI Component

...
<target name="startDrools" description="Starts the drools engine.">
<jbi-start-component port="1099" name="servicemix-drools" />

</target>
...

Stopping a component The Ant task used to stop a JBI component is jbi-start-component. Its
attributes are listed in Table 5.11 on page 39.

FUSE™ ESB Using JBI to Develop Applications Version 4.138

Chapter 5. Using the JBI Ant Tasks

Table 5.11. Attributes for Stopping a JBI Component Using an Ant Task

DescriptionRequiredAttribute

Specifies the host name where the container is running. The default value is
localhost.

nohost

Specifies the port where the container's RMI registry is listening. The default value is
1099.

noport

Specifies the username used to access the container's management features.nousername

Specifies the password used to access the container's management features.nopassword

Specifies if an error will cause the entire build to fail.nofailOnError

Specifies the component's name.yesname

Example 5.10 on page 39 shows an Ant target that stops the drools
component.

Example 5.10. Ant Target that Stops a JBI Component

...
<target name="stopDrools" description="Stops the drools engine.">
<jbi-stop-component port="1099" name="servicemix-drools" />

</target>
...

Shutting down a component The Ant task used to shut down a JBI component is
jbi-shut-down-component. Its attributes are listed in
Table 5.12 on page 39.

Table 5.12. Attributes for Shutting Down a JBI Component Using an Ant Task

DescriptionRequiredAttribute

Specifies the host name where the container is running. The default value is
localhost.

nohost

Specifies the port where the container's RMI registry is listening. The default value is
1099.

noport

Specifies the username used to access the container's management features.nousername

Specifies the password used to access the container's management features.nopassword

39FUSE™ ESB Using JBI to Develop Applications Version 4.1

Using the Tasks in Build Files

DescriptionRequiredAttribute

Specifies if an error will cause the entire build to fail.nofailOnError

Specifies the component's name.yesname

Example 5.11 on page 40 shows an Ant target that shuts down the drools
component.

Example 5.11. Ant Target that Shuts Down a JBI Component

...
<target name="shutdownDrools" description="Stops the drools engine.">
<jbi-shut-down-component port="1099" name="servicemix-drools" />

</target>
...

Installing a shared library The Ant task used to install a shared library is
jbi-install-shared-library. Its attributes are listed in
Table 5.13 on page 40.

Table 5.13. Attributes for Installing a Shared Library Using an Ant Task

DescriptionRequiredAttribute

Specifies the host name where the container is running. The default value is
localhost.

nohost

Specifies the port where the container's RMI registry is listening. The default value is
1099.

noport

Specifies the username used to access the container's management features.nousername

Specifies the password used to access the container's management features.nopassword

Specifies if an error will cause the entire build to fail.nofailOnError

Specifies the name of the library's installer file.yesfile

Removing a shared library The Ant task used to remove a shared library is
jbi-uninstall-shared-library. Its attributes are listed in
Table 5.14 on page 41.

FUSE™ ESB Using JBI to Develop Applications Version 4.140

Chapter 5. Using the JBI Ant Tasks

Table 5.14. Attributes for Removing a Shared Library Using an Ant Task

DescriptionRequiredAttribute

Specifies the host name where the container is running. The default value is
localhost.

nohost

Specifies the port where the container's RMI registry is listening. The default value is
1099.

noport

Specifies the username used to access the container's management features.nousername

Specifies the password used to access the container's management features.nopassword

Specifies if an error will cause the entire build to fail.nofailOnError

Specifies the library's name.yesname

41FUSE™ ESB Using JBI to Develop Applications Version 4.1

Using the Tasks in Build Files

FUSE™ ESB Using JBI to Develop Applications Version 4.142

Chapter 6. Building JBI Components
using Maven
Overview FUSE ESB provides Maven tooling that simplifies the creation and deployment

of JBI artifacts. Among the tools provided are:

• plug-ins for packaging JBI components

• a plug-in for packaging shared libraries

• archetypes that create starting point projects for JBI artifacts

The FUSE ESB Maven tooling also includes plug-ins for creating service units
and service assemblies. However, those plug-ins are outside of the scope of
this book.

Setting up the Maven tools In order to use the FUSE ESB Maven tooling, you add the elements shown
in Example 6.1 on page 43 to your POM file.

Example 6.1. POM Elements for Using FUSE ESB Tooling

...
<pluginRepositories>
<pluginRepository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>
<enabled>false</enabled>

</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</pluginRepository>

</pluginRepositories>
<repositories>
<repository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>

<enabled>false</enabled>

43FUSE™ ESB Using JBI to Develop Applications Version 4.1

</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</repository>
<repository>
<id>fusesource.m2-snapshot</id>
<name>FUSE Open Source Community Snapshot Repository</name>
<url>http://repo.fusesource.com/maven2-snapshot</url>
<snapshots>
<enabled>true</enabled>

</snapshots>
<releases>
<enabled>false</enabled>

</releases>
</repository>

</repositories>
...

<build>
<plugins>
<plugin>
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<version>${servicemix-version}</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
...

These elements point Maven to the correct repositories to download the FUSE
ESB Maven tooling and load the plug-in that implements the tooling.

Creating a JBI Maven project The FUSE ESB Maven tooling provides a number of archetypes that can be
used to seed a JBI project. The archetype will generate the proper file structure
for the project and a POM file containing the essential metadata required for
the specified project type.

Example 6.2 on page 44 shows the command for using the JBI archetypes.

Example 6.2. Command for JBI Maven Archetypes

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=servicemix-archetype-name
-DarchetypeVersion=fuse-4.0.0.0
[-DgroupId=org.apache.servicemix.samples.embedded]
[-DartifactId=servicemix-embedded-example]

FUSE™ ESB Using JBI to Develop Applications Version 4.144

Chapter 6. Building JBI Components using Maven

The value passed to the -DarchetypeArtifactId argument specifies the
type of project you wist to create.

JBI components As shown in Example 6.3 on page 45, you instruct the FUSE ESB Maven
tooling that the project is for a JBI component by specifying a value of
jbi-component for the project's packaging element.

Example 6.3. Specifying that a Maven Project Results in a JBI Component

<project ...>
...
<groupId>org.apache.servicemix</groupId>
<artifactId>MyBindingComponent</artifactId>
<packaging>jbi-component</packaging>
...

</project>

The plugin element responsible for packaging the JBI component is shown
in Example 6.4 on page 45. The groupId element, the artifactId element,
the version element, and the extensions element are common to all
instances of the FUSE ESB Maven plugin. If you used the Maven archetypes
to generate the project, you should not have to change them.

Example 6.4. Plugin Specification for Packaging a JBI Component

...
<plugin>
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<version>${servicemix-version}</version>
<extensions>true</extensions>
<configuration>
<type>service-engine</type>
<bootstrap>org.apache.servicemix.samples.MyBootstrap</bootstrap>
<component>org.apache.servicemix.samples.MyComponent</component>

</configuration>
</plugin>
...

The configuration element and its children provides the FUSE ESB tooling
with the metadata needed to construct the jbi.xml file required by the
component.

45FUSE™ ESB Using JBI to Develop Applications Version 4.1

type

The type element specifies the type of JBI component the project is
building. Valid values are:

• service-engine for creating a service engine

• binding-component for creating a binding component

bootstrap

The bootstrap element specifies the name of the class that implements
the JBI Bootstrap interface for the component.

Tip
If you intend to use the default Bootstrap implementation
provided with FUSE ESB you can omit this element.

component

The component element specifies the name of the class that implement
the JBI Component interface for the component.

Once the project is properly configured, you can build the JBI component by
using the mvn install command. The FUSE ESB Maven tooling will generate
a standard jar containing the component and an installable JBI package for
the component.

Shared libraries As shown in Example 6.5 on page 46, you instruct the FUSE ESB Maven
tooling that the project is for a shared library by specifying a value of
jbi-shared-library for the project's packaging element.

Example 6.5. Specifying that a Maven Project Results in a JBI Component

<project ...>
...
<groupId>org.apache.servicemix</groupId>
<artifactId>MyBindingComponent</artifactId>
<packaging>jbi-shared-library</packaging>
...

</project>

FUSE™ ESB Using JBI to Develop Applications Version 4.146

Chapter 6. Building JBI Components using Maven

You build the shared library using the mvn install command. The FUSE ESB
Maven tooling will generate a standard jar containing the shared library and
an installable JBI package for the shared library.

47FUSE™ ESB Using JBI to Develop Applications Version 4.1

FUSE™ ESB Using JBI to Develop Applications Version 4.148

Chapter 7. Deploying JBI Endpoints
Using Maven
FUSE ESB provides a Maven plug-in and a number of Maven archetypes that make developing, packaging, and
deploying applications easier.

Setting Up a FUSE ESB JBI Project .. 50
A Service Unit Project ... 55
A Service Assembly Project .. 61

The tooling provides you with a number of benefits. These benefits include:

• automatic generation of JBI descriptors

• dependency checking

• service assembly deployment

Because FUSE ESB only allows you to deploy service assemblies, you will
need to do at least the following when using the Maven tooling:

1. Set up a top-level project on page 50 to build all of the service units and
the final service assembly.

2. Create a project for each of your service units. on page 55.

3. Create a project for the service assembly on page 61.

49FUSE™ ESB Using JBI to Develop Applications Version 4.1

Setting Up a FUSE ESB JBI Project

Overview When working with the FUSE ESB JBI Maven tooling, you will want to create
a top-level project that can build all of the service units and package them
into a service assembly. Using a top-level project for this purpose has several
advantages. It allows you to control the dependencies for all of the parts of
an application in a central location. It limits the number of times you need
to specify the proper repositories to load. It also gives you a central location
from which to build and deploy the application.

The top-level project is responsible for assembling the application. It will use
the Maven assembly plug-in and list your service units and the service
assembly as modules of the project.

Directory structure Your top-level project will contain the following directories:

• a source directory containing the information needed by the Maven assembly
plug-in

• a directory to hold the service assembly project

• at least one directory containing a service unit project

Tip
You will need a project folder for each service unit that is to be
included in the generated service assembly.

Setting up the Maven tools In order to use the FUSE ESB JBI Maven tooling, you add the elements shown
in Example 7.1 on page 50 to your top-level POM file.

Example 7.1. POM Elements for Using FUSE ESB Tooling

...
<pluginRepositories>
<pluginRepository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>
<enabled>false</enabled>

FUSE™ ESB Using JBI to Develop Applications Version 4.150

Chapter 7. Deploying JBI Endpoints Using Maven

</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</pluginRepository>

</pluginRepositories>
<repositories>
<repository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>

<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</repository>
<repository>
<id>fusesource.m2-snapshot</id>
<name>FUSE Open Source Community Snapshot Repository</name>
<url>http://repo.fusesource.com/maven2-snapshot</url>
<snapshots>
<enabled>true</enabled>

</snapshots>
<releases>
<enabled>false</enabled>

</releases>
</repository>

</repositories>
...

<build>
<plugins>
<plugin>
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<version>servicemix-version</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
...

These elements point Maven to the correct repositories to download the FUSE
ESB Maven tooling and load the plug-in that implements the tooling.

Listing the subprojects Your top-level POM lists all of the service units and the service assembly that
will be generated as modules. The modules are contained in a modules

51FUSE™ ESB Using JBI to Develop Applications Version 4.1

Setting Up a FUSE ESB JBI Project

element. The modules element contains one module element for each service
unit in the assembly. You will also need a module element for the service
assembly.

The modules should be listed in the order in which they are built. This means
that the service assembly module should be listed after all of the service unit
modules.

Example JBI Project POM Example 7.2 on page 52 shows a top-level pom for a project that contains
a single service unit.

Example 7.2. Top-Level POM for a FUSE ESB JBI Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.widgets</groupId>
<artifactId>demos</artifactId>
<version>1.0</version>

</parent>

<groupId>com.widgets.demo</groupId>
<artifactId>cxf-wsdl-first</artifactId>
<name>CXF WSDL Fisrt Demo</name>
<packaging>pom</packaging>

<pluginRepositories> ❶
<pluginRepository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>
<url>http://repo.fusesource.com/maven2</url>
<snapshots>
<enabled>false</enabled>

</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</pluginRepository>

</pluginRepositories>
<repositories>
<repository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Repository</name>

FUSE™ ESB Using JBI to Develop Applications Version 4.152

Chapter 7. Deploying JBI Endpoints Using Maven

<url>http://repo.fusesource.com/maven2</url>
<snapshots>

<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</repository>
<repository>
<id>fusesource.m2-snapshot</id>
<name>FUSE Open Source Community Snapshot Repository</name>
<url>http://repo.fusesource.com/maven2-snapshot</url>
<snapshots>
<enabled>true</enabled>

</snapshots>
<releases>
<enabled>false</enabled>

</releases>
</repository>

</repositories>

<modules> ❷
<module>wsdl-first-cxfse-su</module>
<module>wsdl-first-cxf-sa</module>

</modules>

<build>
<plugins>
<plugin> ❸
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.1</version>
<inherited>false</inherited>
<executions>
<execution>

<id>src</id>
<phase>package</phase>
<goals>
<goal>single</goal>

</goals>
<configuration>
<descriptors>
<descriptor>src/main/assembly/src.xml</descriptor>

</descriptors>
</configuration>

</execution>
</executions>

</plugin>
<plugin> ❹

53FUSE™ ESB Using JBI to Develop Applications Version 4.1

Setting Up a FUSE ESB JBI Project

<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

The POM shown in Example 7.2 on page 52 does the following:

❶ Configures Maven to use the FUSE repositories for loading the FUSE
ESB plug-ins.

❷ Lists the sub-projects used for this application. The
wsdl-first-cxfse-su module is the module for the service unit. The

wsdl-first-cxf-sa module is the module for the service assembly

❸ Configures the Maven assembly plug-in.

❹ Loads the FUSE ESB JBI plug-in.

FUSE™ ESB Using JBI to Develop Applications Version 4.154

Chapter 7. Deploying JBI Endpoints Using Maven

A Service Unit Project

Overview Each service unit in the service assembly needs to be its own project. These
projects are placed at the same level as the service assembly project. The
contents of a service unit's project depends on the component at which the
service unit is targeted. At a minimum, a service unit project will contain a
POM and an XML configuration file.

Seeding a project using a Maven
artifact

FUSE ESB provides Maven artifacts for a number of service unit types. You
can use them to seed a project with the smx-arch command. As shown in
Example 7.3 on page 55, the smx-arch command takes three arguments.
The groupId value and the artifactId values correspond to the project's
group ID and artifact ID.

Example 7.3. Maven Archetype Command for Service Units

smx-arch su suArchetypeName ["-DgroupId=my.group.id"]
["-DartifactId=my.artifact.id"]

Important
The double quotes(") are required when using the -DgroupId
argument and the -DartifactId argument.

The suArchetypeName specifies the type of service unit to seed.
Table 7.1 on page 55 lists the possible values and describes what type of
project will be seeded.

Table 7.1. Service Unit Archetypes

DescriptionName

Creates a project for using the FUSE Mediation Router
service engine.

camel

Creates a project for developing a Java-first service using
the FUSE Services Framework service engine.

cxf-se

Creates a project for developing a WSDL-first service using
the FUSE Services Framework service engine.

cxf-se-wsdl-first

Creates an endpoint project targeted at the FUSE Services
Framework binding component.

cxf-bc

55FUSE™ ESB Using JBI to Develop Applications Version 4.1

A Service Unit Project

DescriptionName

Creates a consumer endpoint project targeted at the HTTP
binding component.

http-consumer

Creates a provider endpoint project targeted at the HTTP
binding component.

http-provider

Creates a consumer endpoint project targeted at the JMS
binding component. See Using the JMS Binding
Component.

jms-consumer

Creates a provider endpoint project targeted at the JMS
binding component. See Using the JMS Binding
Component.

jms-provider

Creates a polling (consumer) endpoint project targeted at
the file binding component. See "Using Poller Endpoints"
in Using the File Binding Component.

file-poller

Creates a sender (provider) endpoint project targeted at
the file binding component. See "Using Sender Endpoints"
in Using the File Binding Component.

file-sender

Creates a polling (consumer) endpoint project targeted at
the FTP binding component.

ftp-poller

Creates a sender (provider) endpoint project targeted at
the FTP binding component.

ftp-sender

Creates a project for developing an annotated Java service
to be run by the JSR181 service engine. a

jsr181-annotated

Creates a project for developing a WSDL generated Java
service to be run by the JSR181 service engine.a

jsr181-wsdl-first

Create a project for executing xquery statements using the
Saxon service engine.

saxon-xquery

Create a project for executing XSLT scripts using the Saxon
service engine.

saxon-xslt

Creates a project for using the EIP service engine. beip

Create a project for deploying functionality into the
lightweight container. c

lwcontainer

Creates a project for deploying a POJO to be executed by
the bean service engine.

bean

FUSE™ ESB Using JBI to Develop Applications Version 4.156

Chapter 7. Deploying JBI Endpoints Using Maven

http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/jms/jms.pdf
http://fusesource.com/docs/esb/4.1/file/file.pdf
http://fusesource.com/docs/esb/4.1/file/file.pdf

DescriptionName

Create a project for deploying a BPEL process into the
ODE service engine.

ode

aThe JSR181 has been deprecated. The FUSE Services Framework service engine has superseded
it.
bThe EIP service engine has been deprecated. The FUSE Mediation Router service engine has
superseded it.
cThe lightweight container has been deprecated.

Contents of a project The contents of your service unit project change from service unit to service
unit. Different components require different configuration. Some components,
such as the FUSE Services Framework service engine, require that you include
Java classes.

At a minimum, a service unit project will contain two things:

• a POM file that configures the JBI plug-in to create a service unit

• an XML configuration file stored in src/main/resources

For many of the components the XML configuration file is called xbean.xml.
The FUSE Mediation Router component uses a file called
camel-context.xml.

Configuring the Maven plug-in You configure the Maven plug-in to package the results of the project build
as a service unit by changing the value of the project's packaging element
to jbi-service-unit as shown in Example 7.4 on page 57.

Example 7.4. Configuring the Maven Plug-in to Build a Service Unit

<project ...>
<modelVersion>4.0.0</modelVersion>

...
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<name>CXF WSDL Fisrt Demo :: SE Service Unit</name>
<packaging>jbi-service-unit</packaging>

57FUSE™ ESB Using JBI to Develop Applications Version 4.1

A Service Unit Project

...
</project>

Specifying the target components In order to properly fill in the metadata required for packaging a service unit,
the Maven plug-in needs to be told what component, or components, the
service unit is targeting. If your service unit only has a single component
dependency, you can specify it in one of two ways:

• list the targeted component as a dependency

• add a componentName property specifying the targeted component

If your service unit has more than one component dependency you need to
configure the project as follows:

1. Add a componentName property specifying the targeted component.

2. Add the remaining components to the list dependencies.

Example 7.5 on page 58 shows configuration for a service unit targeting the
FUSE Services Framework binding component.

Example 7.5. Specifying the Target Components for a Service Unit

...
<dependencies>
<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-cxf-bc</artifactId>
<version>3.3.1.0-fuse</version>1

</dependency>
>/dependencies>
...

The advantage of using the Maven dependency mechanism is that it allows
Maven to check if the targeted component is deployed in the container. If one
of the components is not deployed, FUSE ESB will not hold off deploying the
service unit until all of the required components are deployed.

1You replace this with the version of FUSE Services Framework you are using.

FUSE™ ESB Using JBI to Develop Applications Version 4.158

Chapter 7. Deploying JBI Endpoints Using Maven

Tip
A message identifying the missing component(s) is typically written
to the log.

If your service unit targets is not available as a Maven artifact, you can specify
the targeted component using the componentName element. This element is
added to the standard Maven properties block and specifies the name of a
targeted component. Example 7.6 on page 59 shows how to use the
componentName element to specify the target component.

Example 7.6. Specifying the Target Components for a Service Unit

...
<properties>
<componentName>servicemix-bean</componentName>

>/properties>
...

When you use the componentName element Maven does not check to see if
the component is installed. Maven also cannot download the required
component.

Example Example 7.7 on page 59 shows the POM file for a project building a service
unit targeted to the FUSE Services Framework binding component.

Example 7.7. POM for a Service Unit Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent> ❶
<groupId>com.widgets.demo</groupId>
<artifactId>cxf-wsdl-first</artifactId>
<version>1.0</version>

</parent>

<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<name>CXF WSDL Fisrt Demo :: SE Service Unit</name>
<packaging>jbi-service-unit</packaging> ❷

59FUSE™ ESB Using JBI to Develop Applications Version 4.1

A Service Unit Project

<dependencies> ❸
<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-cxf-bc</artifactId>
<version>3.3.1.0-fuse</version>

</dependency>
>/dependencies>

<build>
<plugins>
<plugin> ❹
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

The POM in Example 7.7 on page 59 does the following:

❶ Specifies that it is a part of the top-level project described in
Example 7.2 on page 52.

❷ Specifies that this project builds a service unit.

❸ Specifies that the service unit targets the FUSE Services Framework
binding component.

❹ Specifies that the FUSE ESB Maven plug-in is to be used.

FUSE™ ESB Using JBI to Develop Applications Version 4.160

Chapter 7. Deploying JBI Endpoints Using Maven

A Service Assembly Project

Overview FUSE ESB requires that all service units be bundled into a service assembly
before they can be deployed into a container. The FUSE ESB Maven plug-in
will collect all of the service units to be bundled and the metadata needed
for packaging. It will then build a service assembly containing the service
units.

Seeding a project using a Maven
artifact

FUSE ESB provides a Maven artifact for seeding a service assembly project.
You can seed a project with the smx-arch command. As shown in
Example 7.8 on page 61, the smx-arch command takes two arguments. The
groupId value and the artifactId values correspond to the project's group
ID and artifact ID.

Example 7.8. Maven Archetype Command for Service Assemblies

smx-arch sa ["-DgroupId=my.group.id"] ["-DartifactId=my.artifact.id"]

Important
The double quotes(") are required when using the -DgroupId
argument and the -DartifactId argument.

Contents of a project A service assembly project typically only contains the POM file used by Maven.

Configuring the Maven plug-in You configure the Maven plug-in to package the results of the project build
as a service assembly by changing the value of the project's packaging
element to jbi-service-assembly as shown in Example 7.9 on page 61.

Example 7.9. Configuring the Maven Plug-in to Build a Service Assembly

<project ...>
<modelVersion>4.0.0</modelVersion>

...
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxf-wsdl-first-sa</artifactId>
<name>CXF WSDL Fisrt Demo :: Service Assembly</name>
<packaging>jbi-service-assembly</packaging>

61FUSE™ ESB Using JBI to Develop Applications Version 4.1

A Service Assembly Project

...
</project>

Specifying the target components The Maven plug-in needs to be told what service units are being bundled into
the service assembly. You do this by specifying the service units as a
dependencies using the standard Maven dependencies element. You add a
dependency child element for each service unit. Example 7.10 on page 62
shows configuration for a service assembly that bundles two service units.

Example 7.10. Specifying the Target Components for a Service Unit

...
<dependencies>
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfbc-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
</dependencies>
...

Example Example 7.11 on page 62 shows the POM file for a project building a service
assembly.

Example 7.11. POM for a Service Assembly Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent> ❶
<groupId>com.widgets.demo</groupId>
<artifactId>cxf-wsdl-first</artifactId>
<version>1.0</version>

</parent>

<groupId>com.widgets.demo.cxf-wsdl-first</groupId>

FUSE™ ESB Using JBI to Develop Applications Version 4.162

Chapter 7. Deploying JBI Endpoints Using Maven

<artifactId>cxf-wsdl-first-sa</artifactId>
<name>CXF WSDL Fisrt Demo :: Service Assemby</name>
<packaging>jbi-service-assembly</packaging> ❷

<dependencies> ❸
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfse-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>com.widgets.demo.cxf-wsdl-first</groupId>
<artifactId>cxfbc-wsdl-first-su</artifactId>
<version>1.0</version>

</dependency>
</dependencies>

<build>
<plugins>
<plugin> ❹
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

The POM in Example 7.11 on page 62 does the following:

❶ Specifies that it is a part of the top-level project described in
Example 7.2 on page 52.

❷ Specifies that this project builds a service assembly.

❸ Specifies the service units the service assembly bundles.

❹ Specifies that the FUSE ESB Maven plug-in is to be used.

63FUSE™ ESB Using JBI to Develop Applications Version 4.1

A Service Assembly Project

FUSE™ ESB Using JBI to Develop Applications Version 4.164

Appendix A. Using the JBI Console
Commands
Accessing the JBI shell The FUSE ESB console provides a shell to manage JBI artifacts that are

deployed in the container. You access the JBI shell by typing jbi at the
servicemix> prompt.

You can also access the JBI shell commands by prefixing the command with
jbi.

Commands Table A.1 on page 65 describes the commands available from the JBI shell.

Table A.1. JBI Shell Commands

DescriptionCommand

Lists all of the JBI artifacts deployed into the FUSE
ESB container. The list is separated into JBI

list

components and JBI service assemblies. It displays
the name of the artifact and its life-cycle state.

Performs the same action as list.ls

Moves the specified artifact from the stopped state to
the shutdown state.

shutdown artifact

Moves the specified artifact into the stopped state.stop artifact

Moves the specified artifact into the started state.start artifact

65FUSE™ ESB Using JBI to Develop Applications Version 4.1

FUSE™ ESB Using JBI to Develop Applications Version 4.166

Index
A
Ant task

install-component, 30
install-shared-library, 34
installing components, 30, 36
installing shared libraries, 34, 40
jbi-install-component, 36
jbi-install-shared-library, 40
jbi-shut-down-component, 39
jbi-start-component, 38
jbi-stop-component, 38
jbi-uninstall-component, 37
jbi-uninstall-shared-library, 40
removing components, 31, 35, 37
removing shared libraries, 40
shutdown-component, 34
shutting down components, 34, 39
start-component, 32
starting components, 32, 38
stop-component, 33
stopping components, 33, 38
uninstall-component, 31
uninstall-shared-library, 35
uninstalling components, 31, 35, 37

B
binding component, 15

C
component life-cycle, 24
componentName, 58
consumer, 16

I
install-component, 30

sm.host, 30
sm.install.file, 30
sm.password, 30

sm.port, 30
sm.username, 30

install-shared-library, 34
sm.host, 34
sm.install.file, 35
sm.password, 34
sm.port, 34
sm.username, 34

installing components, 30, 36

J
Java Management Extenstions, 23
jbi-install-component, 36

failOnError, 37
file, 37
host, 36
password, 37
port, 36
username, 36

jbi-install-shared-library, 40
failOnError, 40
file, 40
host, 40
password, 40
port, 40
username, 40

jbi-shut-down-component, 39
failOnError, 40
host, 39
name, 40
password, 39
port, 39
username, 39

jbi-start-component, 38
failOnError, 38
host, 38
name, 38
password, 38
port, 38
username, 38

jbi-stop-component, 38
failOnError, 39
host, 39

67FUSE™ ESB Using JBI to Develop Applications Version 4.1

name, 39
password, 39
port, 39
username, 39

jbi-uninstall-component, 37
failOnError, 37
host, 37
name, 37
password, 37
port, 37
username, 37

jbi-uninstall-shared-library, 40
failOnError, 41
host, 41
name, 41
password, 41
port, 41
username, 41

JMX, 23

M
Maven tooling

binding component, 45
component bootstrap class, 46
component implementation class, 46
component type, 46
JBI component, 45
project creation, 44
service engine, 45
set up, 43, 50
shared libraries, 46

message exchange patterns, 19
in-only, 20
in-optional-out, 19
in-out, 19
robust-in-only, 20

P
provider, 16

S
service assembly, 16

seeding, 61
specifying the service units, 62

service consumer, 16
service engine, 15
service provider, 16
service unit, 16

seeding, 55
specifying the target component, 58

service unit life-cycle, 25
shutdown-component, 34

sm.component.name, 34
sm.host, 34
sm.password, 34
sm.port, 34
sm.username, 34

sm.component.name, 31, 32, 33, 34
sm.host, 30, 31, 32, 33, 34, 35
sm.install.file, 30, 35
sm.password, 30, 31, 32, 33, 34, 35
sm.port, 30, 31, 32, 33, 34, 35
sm.shared.library.name, 35
sm.username, 30, 31, 32, 33, 34, 35
smx-arch, 55, 61
start-component, 32

sm.component.name, 32
sm.host, 32
sm.password, 32
sm.port, 32
sm.username, 32

stop-component, 33
sm.component.name, 33
sm.host, 33
sm.password, 33
sm.port, 33
sm.username, 33

U
uninstall-component, 31

sm.component.name, 31
sm.host, 31
sm.password, 31
sm.port, 31
sm.username, 31

FUSE™ ESB Using JBI to Develop Applications Version 4.168

uninstall-shared-library, 35
sm.host, 35
sm.password, 35
sm.port, 35
sm.shared.library.name, 35
sm.username, 35

69FUSE™ ESB Using JBI to Develop Applications Version 4.1

FUSE™ ESB Using JBI to Develop Applications Version 4.170

	Using JBI to Develop Applications
	Table of Contents
	Part I. Overview of Java Business Integration(JBI)
	Chapter 1. Introduction to JBI
	Chapter 2. The Component Framework
	Chapter 3. The Normalized Message Router
	Chapter 4. Management Structure

	Part II. Deploying JBI Artifacts into the FUSE ESB Runtime
	Chapter 5. Using the JBI Ant Tasks
	Using the Tasks as Commands
	Using the Tasks in Build Files

	Chapter 6. Building JBI Components using Maven
	Chapter 7. Deploying JBI Endpoints Using Maven
	Setting Up a FUSE ESB JBI Project
	A Service Unit Project
	A Service Assembly Project

	Appendix A. Using the JBI Console Commands
	Index

