
FUSE™ Mediation Router

Deployment Guide

Version 1.6
April 2009

Deployment Guide
Version 1.6

Publication date 17 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
1. Deploying a Standalone Router ... 9

Introduction to Standalone Deployment ... 10
Defining a Standalone Main Method ... 12
Adding Components to the Camel Context .. 14
Adding RouteBuilders to the CamelContext ... 16
Running a Standalone Application .. 18

2. Deploying into a Spring Container ... 19
Introduction to Spring Deployment ... 20
Defining a Spring Main Method ... 22
Spring Configuration ... 23
Running a Spring Application .. 26

3FUSE™ Mediation Router Deployment Guide Version 1.6

FUSE™ Mediation Router Deployment Guide Version 1.64

List of Figures
1.1. Standalone Router ... 10
2.1. Router Deployed in a Spring Container 20

5FUSE™ Mediation Router Deployment Guide Version 1.6

FUSE™ Mediation Router Deployment Guide Version 1.66

List of Examples
1.1. Standalone Main Method .. 12
1.2. Adding a Component to the CamelContext 14
1.3. Adding a RouteBuilder to the CamelContext 16
2.1. Spring Main Method .. 22
2.2. Basic Spring XML Configuration .. 23
2.3. Configuring Components in Spring ... 24

7FUSE™ Mediation Router Deployment Guide Version 1.6

FUSE™ Mediation Router Deployment Guide Version 1.68

Chapter 1. Deploying a Standalone
Router
This chapter describes how to deploy FUSE Mediation Router in standalone mode. Standalone mode indicates
the router can be deployed independent of any container. However, some extra programming steps are required.

Introduction to Standalone Deployment ... 10
Defining a Standalone Main Method ... 12
Adding Components to the Camel Context .. 14
Adding RouteBuilders to the CamelContext ... 16
Running a Standalone Application .. 18

9FUSE™ Mediation Router Deployment Guide Version 1.6

Introduction to Standalone Deployment

Overview Figure 1.1 on page 10 shows an overview of the architecture for a router
deployed in standalone mode.

Figure 1.1. Standalone Router

CamelContext The CamelContext represents the router service itself. In contrast to most
container deployment modes (where the CamelContext instance is normally
hidden), the standalone deployment requires you to explicitly create and
initialize the CamelContext in your application code. As part of the initialization
procedure, you explicitly create components and route builders and add them
to the CamelContext.

Components Components represent connections to particular kinds of destination—for
example, a file system, a Web service, a JMS broker, or a CORBA service. In

FUSE™ Mediation Router Deployment Guide Version 1.610

Chapter 1. Deploying a Standalone Router

order to read and write messages to and from various destinations, you must
configure and register components by adding them to the CamelContext.

RouteBuilder The RouteBuilder classes represent the core of a router application, because
they define the routing rules. In a standalone deployment, the developer is
responsible for managing the lifecycle of RouteBuilder objects. In particular,
the developer must create instances of the RouteBuilder objects and register
them by adding them to the CamelContext.

11FUSE™ Mediation Router Deployment Guide Version 1.6

Introduction to Standalone Deployment

Defining a Standalone Main Method

Overview In the case of a standalone deployment, the application developer to creates,
configures and starts a CamelContext instance (which encapsulates the core
of the router functionality). For this purpose, you should define a main()
method that performs the following key tasks:

1. Create a CamelContext instance.

2. Add components to the CamelContext instance.

3. Add RouteBuilder objects to the CamelContext instance.

4. Start the CamelContext instance, so that it activates the routing rules

you defined.

Example of a standalone main
method

Example 1.1 on page 12 shows the standard outline of a standalone main()
method, which is defined in an example class, CamelJmsToFileExample.
This example shows how to initialize and activate a CamelContext instance.

Example 1.1. Standalone Main Method

package org.apache.camel.example.jmstofile;

import javax.jms.ConnectionFactory;

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.camel.CamelContext;
import org.apache.camel.CamelTemplate;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.jms.JmsComponent;
import org.apache.camel.impl.DefaultCamelContext;

public final class CamelJmsToFileExample {

private CamelJmsToFileExample() {
}

public static void main(String args[]) throws Exception
{ ❶

FUSE™ Mediation Router Deployment Guide Version 1.612

Chapter 1. Deploying a Standalone Router

CamelContext context = new DefaultCamelContext(); ❷

// Add components to the CamelContext. ❸
// ... (not shown)

// Add routes to the CamelContext. ❹
// ... (not shown)

// Start the context.
context.start(); ❺

// End of main thread.
}

}

The code in Example 1.1 on page 12 does the following:

❶ Define a static main() method to serve as the entry point for running

the standalone router.
❷ Instantiates a CamelContext instance explicitly. There is just one

implementation of CamelContext currently available, the

DefaultCamelContext class.

❸ Adds any components that are required to the CamelContext (see

"Adding Components to the Camel Context" on page 14).
❹ Adds the RouteBuilder objects to the CamelContext (see "Adding

RouteBuilders to the CamelContext" on page 16).
❺ The CamelContext.start() method creates a new thread and starts

to process incoming messages using the registered routing rules. If the
main thread now exits, the CamelContext sub-thread remains active

and continues to process messages. Typically, you can stop the router
by typing Ctrl+C in the window where you launched the router
application (or by sending a kill signal in UNIX). If you want more

control over stopping the router process, you can use the
CamelContext.stop()method in combination with an instrumentation

library (such as JMX).

13FUSE™ Mediation Router Deployment Guide Version 1.6

Defining a Standalone Main Method

Adding Components to the Camel Context

Relationship between components
and endpoints

The essential difference between components and endpoints is that, when
configuring a component, you provide concrete connection details (for example,
hostname and IP port), whereas, when specifying an endpoint URI, you
provide abstract identifiers (for example, queue name and service name). It
is also possible to definemultiple endpoints for each component. For example,
a single message broker (represented by a component) can support
connections to multiple different queues (represented by endpoints).

The relationship between an endpoint and a component is established through
a URI prefix. Whenever you add a component to a CamelContext instance,
the component gets associated with a particular URI prefix (specified as the
first argument to the CamelContext.addComponent() method). Endpoint
URIs that start with that prefix are then automatically parsed by the associated
component.

Example of adding a component Example 1.2 on page 14 shows the outline of the standalone main()method,
highlighting the details of how to add a JMS component to the CamelContext
instance.

Example 1.2. Adding a Component to the CamelContext

public final class CamelJmsToFileExample {
...
public static void main(String args[]) throws Exception {

CamelContext context = new DefaultCamelContext();

// Add components to the CamelContext.
ConnectionFactory connectionFactory = new ActiveMQConnectionFactory("vm://local

host?broker.persistent=false"); ❶
context.addComponent("test-jms", JmsComponent.jmsComponentAutoAcknowledge(connec

tionFactory)); ❷

// Add routes to the CamelContext.
// ... (not shown)

// Start the context.
context.start();

// End of main thread.
}

}

FUSE™ Mediation Router Deployment Guide Version 1.614

Chapter 1. Deploying a Standalone Router

Where the preceding code can be explained as follows:

❶ Before you can add a JMS component to the CamelContext instance,

you must create a JMS connection factory (an implementation of
javax.jms.ConnectionFactory). In this example, the JMS connection

factory is implemented by the FUSE Message Broker class,
ActiveMQConnectionFactory. The broker URL, vm://localhost,

specifies a broker that is co-located in the same Java Virtual Machine
(JVM) as the router. The broker library automatically instantiates the
new broker when you try to send it a message.

❷ Add a JMS component named test-jms to the CamelContext instance.

This example uses a JMS componenet with the auto-acknowledge option
set to true. This implies that messages received from a JMS queue will
automatically be acknowledged (receipt confirmed) by the JMS
component.

15FUSE™ Mediation Router Deployment Guide Version 1.6

Adding Components to the Camel Context

Adding RouteBuilders to the CamelContext

Overview RouteBuilder objects represent the core of a router application, because
they embody the routing rules you want to implement. In the case of a
standalone deployment, you must manage the lifecycle of your RouteBuilder
objects explicitly, which involves instantiating the RouteBuilder classes and
adding them to the CamelContext instance.

Example of adding a RouteBuilder Example 1.3 on page 16 shows the outline of the standalone main()method,
highlighting details of how to add a RouteBuilder object to a CamelContext
instance.

Example 1.3. Adding a RouteBuilder to the CamelContext

package org.apache.camel.example.jmstofile;
...
public class JmsToFileRoute extends RouteBuilder { ❶

public void configure() {
from("test-jms:queue:test.queue").to("file://test"); ❷
// set up a listener on the file component
from("file://test").process(new Processor() { ❸

public void process(Exchange e) {
System.out.println("Received exchange: " + e.getIn());

}
});

}
}

public final class CamelJmsToFileExample {
...
public static void main(String args[]) throws Exception {

CamelContext context = new DefaultCamelContext();

// Add components to the CamelContext.
// ... (not shown)

// Add routes to the CamelContext.
context.addRoutes(new JmsToFileRoute()); ❹

// Start the context.
context.start();

// End of main thread.
}

}

FUSE™ Mediation Router Deployment Guide Version 1.616

Chapter 1. Deploying a Standalone Router

Where the preceding code can be explained as follows:

❶ Define a class that extends
org.apache.camel.builder.RouteBuilder to define the routing

rules. If required, you can define multiple RouteBuilder classes.

Note
When defining routes that include transactional components,
you must extend
org.apache.camel.spring.SpringRouteBuilder instead
of RouteBuilder. See "Transactional Client" in Implementing
Enterprise Integration Patterns.

❷ The first route implements a hop from a JMS queue to the file system.
That is, messages are read from the JMS queue, test.queue, and then

written to files in the test directory. The JMS endpoint, which has a

URI prefixed by test-jms, uses the JMS component registered in

Example 1.2 on page 14.
❸ The second route reads (and deletes) the messages from the test

directory and displays the messages in the console window. To display
the messages, the route implements a custom processor (implemented
inline).

❹ Call the CamelContext.addRoutes()method to add a RouteBuilder

object to the CamelContext instance.

17FUSE™ Mediation Router Deployment Guide Version 1.6

Adding RouteBuilders to the CamelContext

http://fusesource.com/docs/router/1.6/eip/eip.pdf

Running a Standalone Application

Setting the environment You configure your application's environment by adding all of the JAR files in
RouterRoot/lib and RouterRoot/lib/optional to your CLASSPATH. This
step can be simplified if you use a general-purpose build tool such as Apache
Maven1 or Apache Ant2 to build your application.

Running the application Assuming that you have coded a main() method, as described in "Defining
a Standalone Main Method" on page 12, you can run your application using
Sun's J2SE interpreter with the following command:

java org.apache.camel.example.jmstofile.CamelJmsToFileExample

If you are developing the application using a Java IDE (for example, Eclipse3

or IntelliJ4), you can typically run your application by selecting the
CamelJmsToFileExample class and directing the IDE to run the class.
Normally, an IDE automatically chooses the static main() method as the
entry point to run the class.

1 http://maven.apache.org/
2 http://ant.apache.org/
3 http://www.eclipse.org/
4 http://www.jetbrains.com/idea/

FUSE™ Mediation Router Deployment Guide Version 1.618

Chapter 1. Deploying a Standalone Router

http://maven.apache.org/
http://maven.apache.org/
http://ant.apache.org/
http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://maven.apache.org/
http://ant.apache.org/
http://www.eclipse.org/
http://www.jetbrains.com/idea/

Chapter 2. Deploying into a Spring
Container
This chapter describes how to deploy the FUSE Mediation Router into a Spring container. A notable feature of
the Spring container deployment is that it enables you to specify routing rules in an XML configuration file.

Introduction to Spring Deployment ... 20
Defining a Spring Main Method ... 22
Spring Configuration ... 23
Running a Spring Application .. 26

19FUSE™ Mediation Router Deployment Guide Version 1.6

Introduction to Spring Deployment

Overview Figure 2.1 on page 20 shows an overview of the architecture for a router
deployed into a Spring container.

Figure 2.1. Router Deployed in a Spring Container

Spring wrapper class To instantiate a Spring container, FUSE Mediation Router provides the Spring
wrapper class, org.apache.camel.spring.Main, which exposes methods
for creating a Spring container. The wrapper class simplifies the procedure
for creating a Spring container because it includes a lot of boilerplate code
required for the router. For example, the wrapper class specifies a default
location for the Spring configuration file and adds the Camel context schema
to the Spring configuration, enabling you to specify routes using the
camelContext XML element.

Lifecycle of RouteBuilder objects The Spring container is responsible for managing the lifecycle of
RouteBuilder objects. In practice, this means that the router developer only
defines the RouteBuilder classes. The Spring container finds and instantiates

FUSE™ Mediation Router Deployment Guide Version 1.620

Chapter 2. Deploying into a Spring Container

the RouteBuilder objects after it starts (see "Spring Configuration"
on page 23).

Spring configuration file The Spring configuration file is a key feature of the Spring container. Through
the Spring configuration file you can instantiate and link together Java objects.
You can also configure any Java object using the dependency injection feature.

In addition to these generic features of the Spring configuration file, FUSE
Mediation Router defines an extension schema that enables you to define
routing rules in XML.

Component configuration In order to use certain transport protocols in your routes, you must configure
the corresponding component and add it to the Camel context. You can add
components to the Camel context by defining bean elements in the Spring
configuration file (see "Configuring components" on page 24).

21FUSE™ Mediation Router Deployment Guide Version 1.6

Introduction to Spring Deployment

Defining a Spring Main Method

Overview FUSE Mediation Router defines a convenient wrapper class for the Spring
container. To instantiate a Spring container instance, you simply write a short
main()method that delegates creation of the container to the wrapper class.

Example of a Spring main method Example 2.1 on page 22 shows how to define a Spring main() method for
your router application.

Example 2.1. Spring Main Method

package my.package.name;

public class Main {
public static void main(String[] args) {

org.apache.camel.spring.Main.main(args);
}

}

Where org.apache.camel.spring.Main is the Spring wrapper class, which
defines a static main() method that instantiates the Spring container.

FUSE™ Mediation Router Deployment Guide Version 1.622

Chapter 2. Deploying into a Spring Container

Spring Configuration

Overview You can use a Spring configuration file to configure the following basic aspects
of a router application:

• Specify the Java packages that contain RouteBuilder classes

• Define routing rules in XML

• Configure components

In addition to these core aspects of router configuration you can take advantage
of the generic Spring mechanisms for configuring and linking together Java
objects within the Spring container.

Location of the Spring
configuration file

The Spring configuration file for your router application must be stored in the
following directory, relative to your CLASSPATH (that is, the parent of META-INF
must appear on your CLASSPATH):

META-INF/spring/

The Spring container reads any file that matches the pattern
META-INF/spring/*.xml and, there can be more than one such file. For
the examples discussed here, the Spring configuration is stored in a single
file, which is called camel-context.xml.

Basic Spring configuration Example 2.2 on page 23 shows a basic Spring XML configuration file that
instantiates and activates RouteBuilder objects defined in the
my.package.name Java package.

Example 2.2. Basic Spring XML Configuration

<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframe

work.org/schema/beans/spring-beans-2.0.xsd ❶
http://activemq.apache.org/camel/schema/spring http://act

ivemq.apache.org/camel/schema/spring/camel-spring.xsd"> ❷

23FUSE™ Mediation Router Deployment Guide Version 1.6

Spring Configuration

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring"> ❸
<package>my.package.name</package> ❹

</camelContext>
</beans>

Where the preceding configuration can be explained as follows:

❶ This line specifies the location of the Spring framework schema. The
URL should represent a real, physical location from where you can
download the schema. The version of the Spring schema currenlty
supported by FUSE Mediation Router is Spring 2.0.

❷ This line specifies the location of the Camel context schema. The URL
shown in this example always points to the latest version of the schema.

❸ Define a camelContext element, which belongs to the namespace,

http://activemq.apache.org/camel/schema/spring.
❹ Use the package element to specify one or more Java package names.

As it starts up, the Spring wrapper automatically instantiates and
activates any RouteBuilder classes that it finds in the specified

packages.

Configuring components To configure router components, use the generic Spring bean configuration
mechanism (which implements a dependency injection configuration pattern).
That is, you define a Spring bean element to create a component instance,
where the class attribute specifies the full class name of the relevant FUSE
Mediation Router component, and the properties element is used to set
Bean properties on the component class.

Example 2.3 on page 24 shows how to configure a JMS component using
Spring configuration. This component configuration enables you to access
endpoints of the format jms:[queue|topic]:QueueOrTopicName in your
routing rules.

Example 2.3. Configuring Components in Spring

<?xml version="1.0" encoding="UTF-8"?>

<beans ... >

<camelContext useJmx="true" xmlns="http://activemq.apache.org/camel/schema/spring">
<!-- Java packages (not shown) ... -->

</camelContext>

<!-- Configure the default ActiveMQ broker URL -->
<bean id="jms" class="org.apache.camel.component.jms.JmsComponent"> ❶

FUSE™ Mediation Router Deployment Guide Version 1.624

Chapter 2. Deploying into a Spring Container

<property name="connectionFactory"> ❷
<bean class="org.apache.activemq.ActiveMQConnectionFactory"> ❸
<property name="brokerURL" value="vm://localhost?broker.persist

ent=false&broker.useJmx=false"/> ❹
</bean>

</property>
</bean>

</beans>

Where the preceding configuration can be explained as follows:

❶ Use the class attribute to specify the name of the component class—in

this example, the JMS component class is being used. The id attribute

specifies the prefix to use for JMS endpoint URIs. For example, with the
id equal to jms you can connect to an endpoint like

jms:queue:FOO.BAR in your application code.

❷ When you set the property named, connectionFactory, Spring implicitly
calls the JmsComponent.setConnectionFactory()method to initialize

the JMS component at run time.
❸ The connection factory property is initialized to be an instance of

ActiveMQConnectionFactory (that is, an instance of a FUSE Message

Broker message queue).
❹ When you set the brokerURL property on

ActiveMQConnectionFactory, Spring implicitly calls the

setBrokerURL() method on the connection factory instance. In this

example the broker URL, vm://localhost, specifies a broker that is

co-located in the same Java Virtual Machine (JVM) as the router. The
broker library automatically instantiates the new broker when you try to
send it a message.

For more details about configuring components in Spring, see "List of
Components" in Component Reference.

25FUSE™ Mediation Router Deployment Guide Version 1.6

Spring Configuration

http://fusesource.com/docs/router/1.6/component_ref/component_ref.pdf
http://fusesource.com/docs/router/1.6/component_ref/component_ref.pdf

Running a Spring Application

Setting the CLASSPATH Configure your application's CLASSPATH as follows:

1. Add all of the JAR files in RouterRoot/lib and

RouterRoot/lib/optional to your CLASSPATH. This step can be

simplified if you use a general-purpose build tool such as Apache Maven1

or Apache Ant2 to build your application.

2. Add the directory containing META-INF/spring/*.xml to your CLASSPATH.

Running the application If you coded a main() method, as described in "Defining a Spring Main
Method" on page 22, you can run your application using Sun's J2SE
interpreter with the following command:

java my.package.name.Main

If you are developing the application using a Java IDE (for example, Eclipse3

or IntelliJ4), you can typically run your application by selecting the
my.package.name.Main class and directing the IDE to run the class. Normally,
an IDE automatically chooses the static main() method as the entry point
to run the class.

1 http://maven.apache.org/
2 http://ant.apache.org/
3 http://www.eclipse.org/
4 http://www.jetbrains.com/idea/

FUSE™ Mediation Router Deployment Guide Version 1.626

Chapter 2. Deploying into a Spring Container

http://maven.apache.org/
http://ant.apache.org/
http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://maven.apache.org/
http://ant.apache.org/
http://www.eclipse.org/
http://www.jetbrains.com/idea/

	Deployment Guide
	Table of Contents
	Chapter 1. Deploying a Standalone Router
	Introduction to Standalone Deployment
	Defining a Standalone Main Method
	Adding Components to the Camel Context
	Adding RouteBuilders to the CamelContext
	Running a Standalone Application

	Chapter 2. Deploying into a Spring Container
	Introduction to Spring Deployment
	Defining a Spring Main Method
	Spring Configuration
	Running a Spring Application

