
FUSE™ Mediation Router

Implementing Enterprise Integration Patterns

Version 1.6
April 2009

Implementing Enterprise Integration Patterns
Version 1.6

Publication date 17 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
1. Introducing Enterprise Integration Patterns ... 9

Overview of the Patterns .. 10
2. Messaging Systems .. 17

Message .. 18
Message Channel ... 21
Message Endpoint .. 24
Pipes and Filters .. 26
Message Router ... 29
Message Translator ... 31

3. Messaging Channels ... 33
Point-to-Point Channel .. 34
Publish-Subscribe Channel ... 36
Dead Letter Channel ... 39
Guaranteed Delivery ... 43
Message Bus .. 47

4. Message Construction ... 49
5. Message Routing ... 51

Content-based Router ... 52
Message Filter ... 54
Recipient List .. 56
Splitter .. 59
Aggregator ... 61
Resequencer ... 66
Routing Slip ... 70
Throttler .. 72
Delayer ... 73
Load Balancer ... 75
Multicast ... 79

6. Message Transformation .. 83
Content Enricher .. 84
Content Filter .. 86
Normalizer ... 88

7. Messaging Endpoints .. 89
Messaging Mapper ... 90
Event Driven Consumer ... 92
Polling Consumer ... 93
Competing Consumers .. 95
Message Dispatcher ... 98
Selective Consumer .. 101
Durable Subscriber ... 104
Idempotent Consumer ... 107

3FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Transactional Client .. 110
Messaging Gateway .. 114
Service Activator .. 115

8. System Management .. 119
Wire Tap .. 120

A. Migrating from ServiceMix EIP .. 121
Migrating Endpoints .. 122
Common Elements ... 125
ServiceMix EIP Patterns ... 127
Content-Based Router ... 129
Content Enricher .. 131
Message Filter ... 133
Pipeline ... 135
Resequencer ... 137
Static Recipient List .. 139
Static Routing Slip ... 141
Wire Tap .. 143
XPath Splitter .. 145

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.64

List of Figures
2.1. Message Pattern ... 18
2.2. Message Channel Pattern .. 21
2.3. Message Endpoint Pattern ... 24
2.4. Pipes and Filters Pattern ... 26
2.5. Pipeline for InOut Exchanges .. 26
2.6. Pipeline for InOnly Exchanges ... 27
2.7. Message Router Pattern .. 29
2.8. Message Translator Pattern .. 31
3.1. Point to Point Channel Pattern .. 34
3.2. Publish Subscribe Channel Pattern .. 36
3.3. Dead Letter Channel Pattern .. 39
3.4. Guaranteed Delivery Pattern ... 43
3.5. Message Bus Pattern .. 47
4.1. Correlation Identifier Pattern .. 49
5.1. Content-Based Router Pattern .. 52
5.2. Message Filter Pattern .. 54
5.3. Recipient List Pattern ... 56
5.4. Splitter Pattern ... 59
5.5. Aggregator Pattern ... 61
5.6. Resequencer Pattern .. 66
5.7. Routing Slip Pattern ... 70
5.8. Multicast Pattern ... 79
6.1. Content Enricher Pattern ... 84
6.2. Content Filter Pattern ... 86
6.3. Normalizer Pattern .. 88
7.1. Event Driven Consumer Pattern .. 92
7.2. Polling Consumer Pattern .. 93
7.3. Competing Consumers Pattern .. 95
7.4. Message Dispatcher Pattern ... 98
7.5. Selective Consumer Pattern .. 101
7.6. Durable Subscriber Pattern .. 105
7.7. Transactional Client Pattern .. 110
7.8. Messaging Gateway Pattern ... 114
7.9. Service Activator Pattern ... 115
8.1. Wire Tap Pattern ... 120
A.1. Content-Based Router Pattern ... 129
A.2. Content Enricher Pattern ... 131
A.3. Message Filter Pattern .. 133
A.4. Pipes and Filters Pattern ... 135
A.5. Resequencer Pattern .. 137
A.6. Static Recipient List Pattern ... 139

5FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

A.7. Wire Tap Pattern ... 143
A.8. XPath Splitter Pattern ... 145

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.66

List of Tables
1.1. Messaging Systems ... 10
1.2. Messaging Channels .. 11
1.3. Message Construction .. 12
1.4. Message Routing ... 12
1.5. Message Transformation ... 13
1.6. Messaging Endpoints ... 14
1.7. System Management .. 15
3.1. Redelivery Policy Settings .. 40
3.2. Dead Letter Redelivery Headers .. 41
5.1. Splitter Headers .. 59
A.1. Mapping the Exchange Target Element 125
A.2. ServiceMix EIP Patterns .. 127

7FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.68

Chapter 1. Introducing Enterprise
Integration Patterns
The FUSE Mediation Router's Enterprise Integration Patterns are inspired by a book of the same name written
by Gregor Hohpe and Bobby Woolf. The patterns described by these authors provide an excellent toolbox for
developing enterprise integration projects. In addition to providing a common language for discussing integration
architectures, many of the patterns can be implemented directly using FUSE Mediation Router's programming
interfaces and XML configuration.

Overview of the Patterns .. 10

9FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Overview of the Patterns

Enterprise Integration Patterns
book

FUSE Mediation Router supports most of the patterns from the book,
Enterprise Integration Patterns1 by Gregor Hohpe and Bobby Woolf.

Messaging systems The messaging systems patterns, shown in Table 1.1 on page 10, introduce
the fundamental concepts and components that make up a messaging system.

Table 1.1. Messaging Systems

Use CaseNameIcon

How can two applications connected by a
message channel exchange a piece of
information?

Message

How does one application communicate
with another application using messaging?

Message Channel

How does an application connect to a
messaging channel to send and receive
messages?

Message
Endpoint

How can we perform complex processing
on a message while still maintaining
independence and flexibility?

Pipes and Filters

How can you decouple individual
processing steps so that messages can be

Message Router

passed to different filters depending on a
set of defined conditions?

1 http://www.enterpriseintegrationpatterns.com/toc.html

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.610

Chapter 1. Introducing Enterprise Integration Patterns

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/toc.html

Use CaseNameIcon

How do systems using different data
formats communicate with each other using
messaging?

Message
Translator

Messaging channels A messaging channel is the basic component used for connecting the
participants in a messaging system. The patterns in Table 1.2 on page 11
describe the different kinds of messaging channels available.

Table 1.2. Messaging Channels

Use CaseNameIcon

How can the caller be sure that exactly
one receiver will receive the document or
will perform the call?

Point to Point
Channel

How can the sender broadcast an event
to all interested receivers?

Publish Subscribe
Channel

What will the messaging system do with
a message it cannot deliver?

Dead Letter
Channel

How does the sender make sure that a
message will be delivered, even if the
messaging system fails?

Guaranteed
Delivery

What is an architecture that enables
separate, decoupled applications to work

Message Bus

together, such that one or more of the
applications can be added or removed
without affecting the others?

Message construction The message construction patterns, shown in Table 1.3 on page 12, describe
the various forms and functions of the messages that pass through the system.

11FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Overview of the Patterns

Table 1.3. Message Construction

Use CaseNameIcon

How does a requestor identify the
request that generated the received
reply?

Correlation Identifier

Message routing The message routing patterns, shown in Table 1.4 on page 12, describe
various ways of linking message channels together, including various
algorithms that can be applied to the message stream (without modifying the
body of the message).

Table 1.4. Message Routing

Use CaseNameIcon

How do we handle a situation where the
implementation of a single logical function

Content
Based
Router (e.g., inventory check) is spread across

multiple physical systems?

How does a component avoid receiving
uninteresting messages?

Message
Filter

How do we route a message to a list of
dynamically specified recipients?

Recipient
List

How can we process a message if it contains
multiple elements, each of which might have
to be processed in a different way?

Splitter

How do we combine the results of individual,
but related messages so that they can be
processed as a whole?

Aggregator

How can we get a stream of related, but
out-of-sequence, messages back into the
correct order?

Resequencer

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.612

Chapter 1. Introducing Enterprise Integration Patterns

Use CaseNameIcon

How do we route a message consecutively
through a series of processing steps when the

Routing Slip

sequence of steps is not known at design-time,
and might vary for each message?

How can I throttle messages to ensure that a
specific endpoint does not get overloaded, or

Throttler

that we don't exceed an agreed SLA with some
external service?

How can I delay the sending of a message?Delayer

How can I balance load across a number of
endpoints?

Load
Balancer

How can I route a message to a number of
endpoints at the same time?

Multicast

Message transformation The message transformation patterns, shown in Table 1.5 on page 13,
describe how to modify the contents of messages for various purposes.

Table 1.5. Message Transformation

Use CaseNameIcon

How do we communicate with another
system if the message originator does not
have all the required data items available?

Content
Enricher

How do you simplify dealing with a large
message, when you are interested in only a
few data items?

Content Filter

How do you process messages that are
semantically equivalent, but arrive in a
different format?

Normalizer

Messaging endpoints A messaging endpoint denotes the point of contact between a messaging
channel and an application. The messaging endpoint patterns, shown in
Table 1.6 on page 14, describe various features and qualities of service that
can be configured on an endpoint.

13FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Overview of the Patterns

Table 1.6. Messaging Endpoints

Use CaseNameIcon

How do you move data between
domain objects and the messaging

Messaging
Mapper on page 90

infrastructure while keeping the two
independent of each other?

How can an application automatically
consume messages as they become
available?

Event Driven Consumer

How can an application consume a
message when the application is
ready?

Polling Consumer

How can a messaging client process
multiple messages concurrently?

Competing
Consumers on page 95

How can multiple consumers on a
single channel coordinate their
message processing?

Message Dispatcher

How can a message consumer select
which messages it wants to receive?

Selective Consumer

How can a subscriber avoid missing
messages when it's not listening for
them?

Durable Subscriber

How can a message receiver deal with
duplicate messages?

Idempotent Consumer

How can a client control its
transactions with the messaging
system?

Transactional Client

How do you encapsulate access to
the messaging system from the rest
of the application?

Messaging Gateway

How can an application design a
service to be invoked both via various

Service Activator

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.614

Chapter 1. Introducing Enterprise Integration Patterns

Use CaseNameIcon

messaging technologies and via
non-messaging techniques?

System management The system management patterns, shown in Table 1.7 on page 15, describe
how to monitor, test, and administer a messaging system.

Table 1.7. System Management

Use CaseNameIcon

How do you inspect messages that travel on a
point-to-point channel?

Wire Tap

15FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Overview of the Patterns

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.616

Chapter 2. Messaging Systems
This chapter introduces the fundamental building blocks of a messaging system, such as endpoints, messaging
channels, and message routers.

Message .. 18
Message Channel ... 21
Message Endpoint .. 24
Pipes and Filters .. 26
Message Router ... 29
Message Translator ... 31

17FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Message

Overview A message is the smallest unit for transmitting data in a messaging system
(represented by the grey dot in the figure below). The message itself might
have some internal structure—for example, a message containing multiple
parts—which is represented by geometrical figures attached to the grey dot
in Figure 2.1 on page 18.

Figure 2.1. Message Pattern

Types of message FUSE Mediation Router defines the following distinct message types:

• In message — A message that travels through a route from a consumer
endpoint to a producer endpoint (typically, initiating a message exchange).

• Out message — A message that travels through a route from a producer
endpoint back to a consumer endpoint (usually, in response to an In
message).

• Fault message (deprecated) — A message that travels through a route
from a producer endpoint back to a consumer endpoint, for the purpose of
indicating an exception or an error condition (usually in response to an In
message).

Note
The fault message type is deprecated and will be replaced by a
different mechanism in a future release of FUSE Mediation Router.

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.618

Chapter 2. Messaging Systems

All of these message types are represented internally by the
org.apache.camel.Message interface.

Message structure By default, FUSE Mediation Router applies the following structure to all
message types:

• Headers—Contains metadata or header data extracted from the message.

• Body — Usually contains the entire message in its original form.

• Attachments—Message attachments (required for integrating with certain
messaging systems, such as JBI1).

It is important to remember that this division into headers, body, and
attachments is an abstract model of the message. FUSE Mediation Router
supports many different components, that generate a wide variety of message
formats. Ultimately, it is the underlying component implementation that
decides what gets placed into the headers and body of a message.

Correlating messages Internally, FUSE Mediation Router remembers the message IDs, which are
used to correlate individual messages. In practice, however, the most important
way that FUSE Mediation Router correlates messages is through exchange
objects.

Exchange objects An exchange object is an entity that encapsulates related messages, where
the collection of related messages is referred to as a message exchange and
the rules governing the sequence of messages are referred to as an exchange
pattern. For example, two common exchange patterns are: one-way event
messages (consisting of an In message), and request-reply exchanges
(consisting of an In message, followed by an Out message).

Accessing messages When defining a routing rule in the Java DSL, you can access the headers
and body of a message using the following DSL builder methods:

• header(String name), body() — Returns the named header and the

body of the current In message.

• outBody() — Returns the body of the current Out message.

1 http://java.sun.com/integration/

19FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Message

http://java.sun.com/integration/
http://java.sun.com/integration/

For example, to populate the In message's username header, you can use
the following Java DSL route:

from(SourceURL).setHeader("username", "John.Doe").to(TargetURL);

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.620

Chapter 2. Messaging Systems

Message Channel

Overview A message channel is a logical channel in a messaging system. That is,
sending messages to different message channels provides an elementary way
of sorting messages into different message types. Message queues and
message topics are examples of message channels. You should remember
that a logical channel is not the same as a physical channel. There can be
several different ways of physically realizing a logical channel.

In FUSE Mediation Router, a message channel is represented by an endpoint
URI of a message-oriented component as shown in Figure 2.2 on page 21.

Figure 2.2. Message Channel Pattern

Message-oriented components The following message-oriented components in FUSE Mediation Router support
the notion of a message channel:

• "ActiveMQ"

• "JMS"

• "MSMQ"

• "AMQP"

ActiveMQ In ActiveMQ, message channels are represented by queues or topics. The
endpoint URI for a specific queue, QueueName, has the following format:

activemq:QueueName

21FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Message Channel

The endpoint URI for a specific topic, TopicName, has the following format:

activemq:topic:TopicName

For example, to send messages to the queue, Foo.Bar, use the following
endpoint URI:

activemq:Foo.Bar

See ???? for more details and instructions on setting up the ActiveMQ
component.

JMS The Java Messaging Service (JMS) is a generic wrapper layer that is used to
access many different kinds of message systems (for example, you can use
it to wrap ActiveMQ, MQSeries, Tibco, BEA, Sonic, and others). In JMS,
message channels are represented by queues, or topics. The endpoint URI
for a specific queue, QueueName, has the following format:

jms:QueueName

The endpoint URI for a specific topic, TopicName, has the following format:

jms:topic:TopicName

See ???? for more details and instructions on setting up the JMS component.

MSMQ The Microsoft Message Queuing (MSMQ) technology is a queuing system that
runs on Windows Server machines (see Microsoft Message Queuing2). In
MSMQ, you can access queues using an endpoint URI with the following
format:

msmq:MSMQueueName

Where the MSMQueueName is a queue reference, defined according to the rules
of MSMQ. You can reference a queue using any of the approaches described
in Referencing a Queue3.

See ???? for more details.

AMQP In AMQP, message channels are represented by queues, or topics. The
endpoint URI for a specific queue, QueueName, has the following format:

2 http://www.microsoft.com/windowsserver2003/technologies/msmq/default.mspx#ECC
3 http://msdn2.microsoft.com/en-us/library/ms704998%28VS.85%29.aspx

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.622

Chapter 2. Messaging Systems

http://www.microsoft.com/windowsserver2003/technologies/msmq/default.mspx#ECC
http://msdn2.microsoft.com/en-us/library/ms704998%28VS.85%29.aspx
http://www.microsoft.com/windowsserver2003/technologies/msmq/default.mspx#ECC
http://msdn2.microsoft.com/en-us/library/ms704998%28VS.85%29.aspx

amqp:QueueName

The endpoint URI for a specific topic, TopicName, has the following format:

amqp:topic:TopicName

See ???? for more details and instructions on setting up the AMQP component.

23FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Message Channel

Message Endpoint

Overview Amessage endpoint is the interface between an application and a messaging
system. As shown in Figure 2.3 on page 24, you can have a sender endpoint,
sometimes called a proxy or a service consumer, which is responsible for
sending In messages, and a receiver endpoint, sometimes called an endpoint
or a service, which is responsible for receiving In messages.

Figure 2.3. Message Endpoint Pattern

Types of endpoint FUSE Mediation Router defines two basic types of endpoint:

• Consumer endpoint — Appears at the start of a FUSE Mediation Router
route and reads In messages from an incoming channel (equivalent to a
receiver endpoint).

• Producer endpoint—Appears at the end of a FUSE Mediation Router route
and writes In messages to an outgoing channel (equivalent to a sender
endpoint). It is possible to define a route with multiple producer endpoints.

Endpoint URIs In FUSE Mediation Router, an endpoint is represented by an endpoint URI,
which typically encapsulates the following kinds of data:

• Endpoint URI for a consumer endpoint — Advertises a specific location
(for example, to expose a service to which senders can connect).
Alternatively, the URI can specify a message source, such as a message
queue. The endpoint URI can include settings to configure the endpoint.

• Endpoint URI for a producer endpoint—Contains details of where to send
messages and includes the settings to configure the endpoint. In some

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.624

Chapter 2. Messaging Systems

cases, the URI specifies the location of a remote receiver endpoint; in other
cases, the destination can have an abstract form, such as a queue name.

An endpoint URI in FUSE Mediation Router has the following general form:

ComponentPrefix:ComponentSpecificURI

Where ComponentPrefix is a URI prefix that identifies a particular FUSE
Mediation Router component (see ???? for details of all the supported
components). The remaining part of the URI, ComponentSpecificURI, has
a syntax defined by the particular component. For example, to connect to the
JMS queue, Foo.Bar, you can define an endpoint URI like the following:

jms:Foo.Bar

To define a route that connects the consumer endpoint,
file://local/router/messages/foo, directly to the producer endpoint,
jms:Foo.Bar, you can use the following Java DSL fragment:

from("file://local/router/messages/foo").to("jms:Foo.Bar");

Alternatively, you can define the same route in XML, as follows:

<camelContext id="CamelContextID" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="file://local/router/messages/foo"/>
<to uri="jms:Foo.Bar"/>

</route>
</camelContext>

25FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Message Endpoint

Pipes and Filters

Overview The pipes and filters pattern, shown in Figure 2.4 on page 26, describes a
way of constructing a route by creating a chain of filters, where the output of
one filter is fed into the input of the next filter in the pipeline (analogous to
the UNIX pipe command). The advantage of the pipeline approach is that it
enables you to compose services (some of which can be external to the FUSE
Mediation Router application) to create more complex forms of message
processing.

Figure 2.4. Pipes and Filters Pattern

Pipeline for the InOut exchange
pattern

Normally, all of the endpoints in a pipeline have an input (In message) and
an output (Out message), which implies that they are compatible with the
InOut message exchange pattern. A typical message flow through an InOut
pipeline is shown in Figure 2.5 on page 26.

Figure 2.5. Pipeline for InOut Exchanges

Where the pipeline connects the output of each endpoint to the input of the
next one. The Out message from the final endpoint gets sent back to the
original caller. You can define a route for this pipeline, as follows:

from("jms:RawOrders").pipeline("cxf:bean:decrypt",
"cxf:bean:authenticate", "cxf:bean:dedup", "jms:CleanOrders");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.626

Chapter 2. Messaging Systems

The same route can be configured in XML, as follows:

<camelContext id="buildPipeline" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="jms:RawOrders"/>
<to uri="cxf:bean:decrypt"/>
<to uri="cxf:bean:authenticate"/>
<to uri="cxf:bean:dedup"/>
<to uri="jms:CleanOrders"/>

</route>
</camelContext>

There is no dedicated pipeline element in XML. The preceding combination
of from and to elements is semantically equivalent to a pipeline. See
"Comparison of pipeline() and to() DSL commands" on page 27.

Pipeline for the InOnly and
RobustInOnly exchange patterns

When there are no Outmessages available from the endpoints in the pipeline
(as is the case for the InOnly and RobustInOnly exchange patterns), a
pipeline cannot be connected in the normal way. In this special case, the
pipeline is constructed by passing a copy of the original In message to each
of the endpoints in the pipeline, as shown in Figure 2.6 on page 27. This
type of pipeline is equivalent to a recipient list with fixed destinations(see
"Recipient List" on page 56).

Figure 2.6. Pipeline for InOnly Exchanges

The route for this pipeline is defined using the same syntax as an InOut
pipeline (either in Java DSL or in XML).

Comparison of pipeline() and to()
DSL commands

In the Java DSL, you can define a pipeline route using either of the following
syntaxes:

• Using the pipeline() processor command — Use the pipeline processor to
construct a pipeline route as follows:

27FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Pipes and Filters

from(SourceURI).pipeline(FilterA, FilterB, TargetURI);

• Using the to() command—Use the to() command to construct a pipeline

route as follows:

from(SourceURI).to(FilterA, FilterB, TargetURI);

Alternatively, you can use the equivalent syntax:

from(SourceURI).to(FilterA).to(FilterB).to(TargetURI);

Exercise caution when using the to() command syntax, because it is not
always equivalent to a pipeline processor. In Java DSL, the meaning of to()
can be modified by the preceding command in the route. For example, when
the multicast() command precedes the to() command, it binds the listed
endpoints into a multicast pattern, instead of a pipeline pattern(see "Multicast"
on page 79).

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.628

Chapter 2. Messaging Systems

Message Router

Overview A message router, shown in Figure 2.7 on page 29, is a type of filter that
consumes messages from a single consumer endpoint and redirects them to
the appropriate target endpoint, based on a particular decision criterion. A
message router is concerned only with redirecting messages; it does not modify
the message content.

Figure 2.7. Message Router Pattern

A message router can easily be implemented in FUSE Mediation Router using
the choice() processor, where each of the alternative target endpoints can
be selected using a when() subclause (for details of the choice processor,
see "Processors" in Defining Routes and "Processors" in Defining Routes)

Java DSL example The following Java DSL example shows how to route messages to three
alternative destinations (either seda:a, seda:b, or seda:c) depending on
the contents of the foo header:

from("seda:a").choice()
.when(header("foo").isEqualTo("bar")).to("seda:b")
.when(header("foo").isEqualTo("cheese")).to("seda:c")
.otherwise().to("seda:d");

XML configuration example The following example shows how to configure the same route in XML:

<camelContext id="buildSimpleRouteWithChoice" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<choice>
<when>
<xpath>$foo = 'bar'</xpath>

29FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Message Router

http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf
http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf

<to uri="seda:b"/>
</when>
<when>
<xpath>$foo = 'cheese'</xpath>
<to uri="seda:c"/>

</when>
<otherwise>
<to uri="seda:d"/>

</otherwise>
</choice>

</route>
</camelContext>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.630

Chapter 2. Messaging Systems

Message Translator

Overview The message translator pattern, shown in Figure 2.8 on page 31 describes
a component that modifies the contents of a message, translating it to a
different format. You can use FUSE Mediation Router's bean integration feature
to perform the message translation.

Figure 2.8. Message Translator Pattern

Bean integration You can transform a message using bean integration, which enables you to
call a method on any registered bean. For example, to call the method,
myMethodName(), on the bean with ID, myTransformerBean:

from("activemq:SomeQueue")
.beanRef("myTransformerBean", "myMethodName")
.to("mqseries:AnotherQueue");

Where the myTransformerBean bean is defined in either a Spring XML file
or in JNDI. If, you omit the method name parameter from beanRef(), the
bean integration will try to deduce the method name to invoke by examining
the message exchange.

You can also add your own explicit Processor instance to perform the
transformation, as follows:

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

Or, you can use the DSL to explicitly configure the transformation, as follows:

31FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Message Translator

from("direct:start").setBody(body().append("
World!")).to("mock:result");

You can also use templating to consume a message from one destination,
transform it with something like Velocity or XQuery and then send it on to
another destination. For example, using the InOnly exchange pattern (one-way
messaging) :

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the
My.Queue queue on ActiveMQ with a template generated response, then you
could use a route like the following to send responses back to the JMSReplyTo
destination:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.632

Chapter 2. Messaging Systems

Chapter 3. Messaging Channels
Messaging channels provide the plumbing for a messaging application. This chapter describes the different kinds
of messaging channels available in a messaging system, and the roles that they play.

Point-to-Point Channel .. 34
Publish-Subscribe Channel ... 36
Dead Letter Channel ... 39
Guaranteed Delivery ... 43
Message Bus .. 47

33FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Point-to-Point Channel

Overview A point-to-point channel, shown in Figure 3.1 on page 34 is a message
channel on page 21 that guarantees that only one receiver consumes any
given message. This is in contrast with a publish-subscribe
channel on page 36, which allows multiple receivers to consume the same
message. In particular, with a point-to-point channel, it is possible for multiple
receivers to subscribe to the same channel. If more than one receiver competes
to consume a message, it is up to the message channel to ensure that only
one receiver actually consumes the message.

Figure 3.1. Point to Point Channel Pattern

Components that support
point-to-point channel

The following FUSE Mediation Router components support the point-to-point
channel pattern:

• "JMS"

• "ActiveMQ"

• "SEDA"

• "JPA"

• "XMPP"

JMS In JMS, a point-to-point channel is represented by a queue. For example, you
can specify the endpoint URI for a JMS queue called Foo.Bar as follows:

jms:queue:Foo.Bar

The qualifier, queue:, is optional, because the JMS component creates a
queue endpoint by default. Therefore, you can also specify the following
equivalent endpoint URI:

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.634

Chapter 3. Messaging Channels

jms:Foo.Bar

See ???? for more details.

ActiveMQ In ActiveMQ, a point-to-point channel is represented by a queue. For example,
you can specify the endpoint URI for an ActiveMQ queue called Foo.Bar as
follows:

activemq:queue:Foo.Bar

See ???? for more details.

SEDA The FUSE Mediation Router Staged Event-Driven Architecture (SEDA)
component is implemented using a blocking queue. Use the SEDA component
if you want to create a lightweight point-to-point channel that is internal to
the FUSE Mediation Router application. For example, you can specify an
endpoint URI for a SEDA queue called SedaQueue as follows:

seda:SedaQueue

JPA The Java Persistence API (JPA) component is an EJB 3 persistence standard
that is used to write entity beans out to a database. See ???? for more details.

XMPP The XMPP (Jabber) component supports the point-to-point channel pattern
when it is used in the person-to-person mode of communication. See ???? for
more details.

35FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Point-to-Point Channel

Publish-Subscribe Channel

Overview A publish-subscribe channel, shown in Figure 3.2 on page 36, is a message
channel on page 21 that enables multiple subscribers to consume any given
message. This is in contrast with a point-to-point channel on page 34.
Publish-subscribe channels are frequently used as a means of broadcasting
events or notifications to multiple subscribers.

Figure 3.2. Publish Subscribe Channel Pattern

Components that support
publish-subscribe channel

The following FUSE Mediation Router components support the
publish-subscribe channel pattern:

• "JMS"

• "ActiveMQ"

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.636

Chapter 3. Messaging Channels

• "XMPP"

JMS In JMS, a publish-subscribe channel is represented by a topic. For example,
you can specify the endpoint URI for a JMS topic called StockQuotes as
follows:

jms:topic:StockQuotes

See ???? for more details.

ActiveMQ In ActiveMQ, a publish-subscribe channel is represented by a topic. For
example, you can specify the endpoint URI for an ActiveMQ topic called
StockQuotes, as follows:

activemq:topic:StockQuotes

See ???? for more details.

XMPP The XMPP (Jabber) component supports the publish-subscribe channel pattern
when it is used in the group communication mode. See ???? for more details.

Static subscription lists If you prefer, you can also implement publish-subscribe logic within the FUSE
Mediation Router application itself. A simple approach is to define a static
subscription list, where the target endpoints are all explicitly listed at the end
of the route. However, this approach is not as flexible as a JMS or ActiveMQ
topic.

Java DSL example The following Java DSL example shows how to simulate a publish-subscribe
channel with a single publisher, seda:a, and three subscribers, seda:b,
seda:c, and seda:d:

from("seda:a").to("seda:b", "seda:c", "seda:d");

Note
This only works for the InOnly message exchange pattern.

XML configuration example The following example shows how to configure the same route in XML:

37FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Publish-Subscribe Channel

<camelContext id="buildStaticRecipientList" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>

</route>
</camelContext>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.638

Chapter 3. Messaging Channels

Dead Letter Channel

Overview The dead letter channel pattern, shown in Figure 3.3 on page 39, describes
the actions to take when the messaging system fails to deliver a message to
the intended recipient. This includes such features as retrying delivery and,
if delivery ultimately fails, sending the message to a dead letter channel,
which archives the undelivered messages.

Figure 3.3. Dead Letter Channel Pattern

Creating a dead letter channel in
Java DSL

The following example shows how to create a dead letter channel using Java
DSL:

errorHandler(deadLetterChannel("seda:errors"));
from("seda:a").to("seda:b");

Where the errorHandler()method is a Java DSL interceptor, which implies
that all of the routes defined in the current route builder are affected by this
setting. The deadLetterChannel() method is a Java DSL command that
creates a new dead letter channel with the specified destination endpoint,
seda:errors.

The errorHandler() interceptor provides a catch-all mechanism for handling
all error types. If you want to apply a more fine-grained approach to exception

39FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Dead Letter Channel

handling, you can use the onException clauses instead(see "onException
clause" on page 41).

Redelivery policy Normally, you do not send a message straight to the dead letter channel, if
a delivery attempt fails. Instead, you re-attempt delivery up to some maximum
limit, and after all redelivery attempts fail you would send the message to the
dead letter channel. To customize message redelivery, you can configure the
dead letter channel to have a redelivery policy. For example, to specify a
maximum of two redelivery attempts, and to apply an exponential backoff
algorithm to the time delay between delivery attempts, you can configure the
dead letter channel as follows:

errorHandler(deadLetterChannel("seda:errors").maximumRedeliv
eries(2).useExponentialBackOff());
from("seda:a").to("seda:b");

Where you set the redelivery options on the dead letter channel by invoking
the relevant methods in a chain (each method in the chain returns a reference
to the current RedeliveryPolicy object). Table 3.1 on page 40 summarizes
the methods that you can use to set redelivery policies.

Table 3.1. Redelivery Policy Settings

DescriptionDefaultMethod Signature

If exponential backoff is enabled, let m be the backoff multiplier
and let d be the initial delay. The sequence of redelivery
attempts are then timed as follows:

2backOffMultiplier(double

multiplier)

d, m*d, m*m*d, m*m*m*d, ...

If collision avoidance is enabled, let p be the collision avoidance

percent. The collision avoidance policy then tweaks the next

15collisionAvoidancePercent(double

collisionAvoidancePercent)
delay by a random amount, up to plus/minus p% of its current

value.

Specifies the delay (in milliseconds) before attempting the first
redelivery.

1000initialRedeliveryDelay(long

initialRedeliveryDelay)

Maximum number of delivery attempts.6maximumRedeliveries(int

maximumRedeliveries)

Enables collision avoidence, which adds some randomization
to the backoff timings to reduce contention probability.

falseuseCollisionAvoidance()

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.640

Chapter 3. Messaging Channels

DescriptionDefaultMethod Signature

Enables exponential backoff.falseuseExponentialBackOff()

Redelivery headers If FUSE Mediation Router attempts to redeliver a message, it automatically
sets the headers described in Table 3.2 on page 41 on the In message.

Table 3.2. Dead Letter Redelivery Headers

DescriptionTypeHeader Name

Counts the number of unsuccessful delivery attempts.Integerorg.apache.camel.RedeliveryCounter

True, if one or more redelivery attempts have been made.Booleanorg.apache.camel.Redelivered

onException clause Instead of using the errorHandler() interceptor in your route builder, you
can define a series of onException() clauses that define different redelivery
policies and different dead letter channels for various exception types. For
example, to define distinct behavior for each of the NullPointerException,
IOException, and Exception types, you can define the following rules in
your route builder using Java DSL:

onException(NullPointerException.class)
.maximumRedeliveries(1)
.setHeader("messageInfo", "Oh dear! An NPE.")
.to("mock:npe_error");

onException(IOException.class)
.initialRedeliveryDelay(5000L)
.maximumRedeliveries(3)
.backOffMultiplier(1.0)
.useExponentialBackOff()
.setHeader("messageInfo", "Oh dear! Some kind of I/O ex

ception.")
.to("mock:io_error");

onException(Exception.class)
.initialRedeliveryDelay(1000L)
.maximumRedeliveries(2)
.setHeader("messageInfo", "Oh dear! An exception.")
.to("mock:error");

from("seda:a").to("seda:b");

41FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Dead Letter Channel

Where the redelivery options are specified by chaining the redelivery policy
methods (as listed in Table 3.1 on page 40), and you specify the dead letter
channel's endpoint using the to() DSL command. You can also call other
Java DSL commands in the onException() clauses. For example, the
preceding example calls setHeader() to record some error details in a
message header named, messageInfo.

In this example, the NullPointerException and the IOException exception
types are configured specially. All other exception types are handled by the
generic Exception exception interceptor. By default, FUSE Mediation Router
applies the exception interceptor that most closely matches the thrown
exception. If it fails to find an exact match, it tries to match the closest base
type, and so on. Finally, if no other interceptor matches, the interceptor for
the Exception type matches all remaining exceptions.

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.642

Chapter 3. Messaging Channels

Guaranteed Delivery

Overview Guaranteed delivery means that once a message is placed into a message
channel, the messaging system guarantees that the message will reach its
destination, even if parts of the application should fail. In general, messaging
systems implement the guaranteed delivery pattern, shown in
Figure 3.4 on page 43, by writing messages to persistent storage before
attempting to deliver them to their destination.

Figure 3.4. Guaranteed Delivery Pattern

Components that support
guaranteed delivery

The following FUSE Mediation Router components support the guaranteed
delivery pattern:

• "JMS"

• "ActiveMQ"

• "ActiveMQ Journal"

JMS In JMS, the deliveryPersistent query option indicates whether or not
persistent storage of messages is enabled. Usually it is unnecessary to set
this option, because the default behavior is to enable persistent delivery. To
configure all the details of guaranteed delivery, it is necessary to set
configuration options on the JMS provider. These details vary, depending on
what JMS provider you are using. For example, MQSeries, TibCo, BEA, Sonic,
and others, all provide various qualities of service to support guaranteed
delivery.

43FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Guaranteed Delivery

See ???? for more details.

ActiveMQ In ActiveMQ, message persistence is enabled by default. From version 5
onwards, ActiveMQ uses the AMQ message store as the default persistence
mechanism. There are several different approaches you can use to enabe
message persistence in ActiveMQ.

The simplest option (different from Figure 3.4 on page 43) is to enable
persistence in a central broker and then connect to that broker using a reliable
protocol. After a message is been sent to the central broker, delivery to
consumers is guaranteed. For example, in the FUSE Mediation Router
configuration file, META-INF/spring/camel-context.xml, you can configure
the ActiveMQ component to connect to the central broker using the
OpenWire/TCP protocol as follows:

<beans ... >
...
<bean id="activemq" class="org.apache.activemq.camel.compon

ent.ActiveMQComponent">
<property name="brokerURL" value="tcp://somehost:61616"/>

</bean>
...

</beans>

If you prefer to implement an architecture where messages are stored locally
before being sent to a remote endpoint (similar to Figure 3.4 on page 43),
you do this by instantiating an embedded broker in your FUSE Mediation
Router application. A simple way to achieve this is to use the ActiveMQ
Peer-to-Peer protocol, which implicitly creates an embedded broker to
communicate with other peer endpoints. For example, in the
camel-context.xml configuration file, you can configure the ActiveMQ
component to connect to all of the peers in group, GroupA, as follows:

<beans ... >
...
<bean id="activemq" class="org.apache.activemq.camel.compon

ent.ActiveMQComponent">
<property name="brokerURL" value="peer://GroupA/broker1"/>

</bean>
...

</beans>

Where broker1 is the broker name of the embedded broker (other peers in
the group should use different broker names). One limiting feature of the

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.644

Chapter 3. Messaging Channels

Peer-to-Peer protocol is that it relies on IP multicast to locate the other peers
in its group. This makes it unsuitable for use in wide area networks (and in
some local area networks that do not have IP multicast enabled).

A more flexible way to create an embedded broker in the ActiveMQ component
is to exploit ActiveMQ's VM protocol, which connects to an embedded broker
instance. If a broker of the required name does not already exist, the VM
protocol automatically creates one. You can use this mechanism to create an
embedded broker with custom configuration. For example:

<beans ... >
...
<bean id="activemq" class="org.apache.activemq.camel.compon

ent.ActiveMQComponent">
<property name="brokerURL" value="vm://broker1?brokerCon

fig=xbean:activemq.xml"/>
</bean>
...

</beans>

Where activemq.xml is an ActiveMQ file which configures the embedded
broker instance. Within the ActiveMQ configuration file, you can choose to
enable one of the following persistence mechanisms:

• AMQ persistence(the default) — A fast and reliable message store that is
native to ActiveMQ. For details, see amqPersistenceAdapter1 and AMQ
Message Store2.

• JDBC persistence—Uses JDBC to store messages in any JDBC-compatible
database. For details, see jdbcPersistenceAdapter3 and ActiveMQ
Persistence4.

• Journal persistence—A fast persistence mechanism that stores messages
in a rolling log file. For details, see journalPersistenceAdapter5 and ActiveMQ
Persistence6.

1 http://tinyurl.com/activemq-amqPersistenceAdapter
2 http://activemq.apache.org/amq-message-store.html
3 http://tinyurl.com/activemq-jdbPersistenceAdapter
4 http://activemq.apache.org/persistence.html
5 http://tinyurl.com/activemq-journalPA
6 http://activemq.apache.org/persistence.html

45FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Guaranteed Delivery

http://tinyurl.com/activemq-amqPersistenceAdapter
http://activemq.apache.org/amq-message-store.html
http://activemq.apache.org/amq-message-store.html
http://tinyurl.com/activemq-jdbPersistenceAdapter
http://activemq.apache.org/persistence.html
http://activemq.apache.org/persistence.html
http://tinyurl.com/activemq-journalPA
http://activemq.apache.org/persistence.html
http://activemq.apache.org/persistence.html
http://tinyurl.com/activemq-amqPersistenceAdapter
http://activemq.apache.org/amq-message-store.html
http://tinyurl.com/activemq-jdbPersistenceAdapter
http://activemq.apache.org/persistence.html
http://tinyurl.com/activemq-journalPA
http://activemq.apache.org/persistence.html

• Kaha persistence — A persistence mechanism developed specifically for
ActiveMQ. For details, see kahaPersistenceAdapter7 and ActiveMQ
Persistence8.

See ???? for more details.

ActiveMQ Journal The ActiveMQ Journal component is optimized for a special use case where
multiple, concurrent producers write messages to queues, but there is only
one active consumer. Messages are stored in rolling log files and concurrent
writes are aggregated to boost efficiency.

See ???? for more details.

7 http://tinyurl.com/activemq-kahaPA
8 http://activemq.apache.org/persistence.html

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.646

Chapter 3. Messaging Channels

http://tinyurl.com/activemq-kahaPA
http://activemq.apache.org/persistence.html
http://activemq.apache.org/persistence.html
http://tinyurl.com/activemq-kahaPA
http://activemq.apache.org/persistence.html

Message Bus

Overview Message bus refers to a messaging architecture, shown in
Figure 3.5 on page 47, that enables you to connect diverse applications
running on diverse computing platforms. In effect, the FUSE Mediation Router
and its components constitute a message bus.

Figure 3.5. Message Bus Pattern

The following features of the message bus pattern are reflected in FUSE
Mediation Router:

• Common communication infrastructure — The router itself provides the
core of the common communication infrastructure in FUSE Mediation
Router. However, in contrast to some message bus architectures, FUSE
Mediation Router provides a heterogeneous infrastructure: messages can
be sent into the bus using a wide variety of different transports and using
a wide variety of different message formats.

• Adapters — Where necessary, the FUSE Mediation Router can translate
message formats and propagate messages using different transports. In
effect, the FUSE Mediation Router is capable of behaving like an adapter,
so that external applications can hook into the message bus without
refactoring their messaging protocols.

In some cases, it is also possible to integrate an adapter directly into an
external application. For example, if you develop an application using FUSE
Services Framework, where the service is implemented using JAX-WS and
JAXB mappings, it is possible to bind a variety of different transports to the
service. These transport bindings function as adapters.

47FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Message Bus

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.648

Chapter 4. Message Construction
The message construction patterns describe the various forms and functions of the messages that pass through
the system.

Overview Message construction patterns describe the possible actions that can be
performed on messages as they pass through a system. The only formally
defined pattern supported by FUSE Mediation Router is the correlation
identifier pattern.

Correlation Identifier The correlation identifier pattern, shown in Figure 4.1 on page 49, describes
how to match reply messages with request messages, given that an
asynchronous messaging system is used to implement a request-reply protocol.
The essence of this idea is that request messages should be generated with
a unique token, the request ID, that identifies the request message and reply
messages should include a token, the correlation ID, that contains the
matching request ID.

FUSE Mediation Router supports the Correlation Identifier from the EIP
patterns by getting or setting a header on a Message.

When working with the ActiveMQ or JMS components, the correlation identifier
header is called JMSCorrelationID. You can add your own correlation
identifier to any message exchange to help correlate messages together in a
single conversation (or business process). A correlation identifier is usually
stored in a FUSE Mediation Router message header.

Figure 4.1. Correlation Identifier Pattern

49FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.650

Chapter 5. Message Routing
The message routing patterns describe various ways of linking message channels together. This includes various
algorithms that can be applied to the message stream (without modifying the body of the message).

Content-based Router ... 52
Message Filter ... 54
Recipient List .. 56
Splitter .. 59
Aggregator ... 61
Resequencer ... 66
Routing Slip ... 70
Throttler .. 72
Delayer ... 73
Load Balancer ... 75
Multicast ... 79

51FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Content-based Router

Overview A content-based router, shown in Figure 5.1 on page 52, enables you to
route messages to the appropriate destination based on the message contents.

Figure 5.1. Content-Based Router Pattern

Java DSL example The following example shows how to route a request from an input, seda:a,
endpoint to either seda:b, queue:c, or seda:d depending on the evaluation
of various predicate expressions:

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").choice()
.when(header("foo").isEqualTo("bar")).to("seda:b")

.when(header("foo").isEqualTo("cheese")).to("seda:c")

.otherwise().to("seda:d");
}

};

XML configuration example The following example shows how to configure the same route in XML:

<camelContext id="buildSimpleRouteWithChoice" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<choice>
<when>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>

</when>
<when>
<xpath>$foo = 'cheese'</xpath>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.652

Chapter 5. Message Routing

<to uri="seda:c"/>
</when>
<otherwise>
<to uri="seda:d"/>

</otherwise>
</choice>

</route>
</camelContext>

53FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Content-based Router

Message Filter

Overview A message filter is a processor that eliminates undesired messages based on
specific criteria. In FUSE Mediation Router, the message filter pattern, shown
in Figure 5.2 on page 54, is implemented by the filter() Java DSL
command. The filter() command takes a single predicate argument, which
controls the filter. When the predicate is true, the incoming message is
allowed to proceed, and when the predicate is false, the incoming message
is blocked.

Figure 5.2. Message Filter Pattern

Java DSL example The following example shows how to create a route from endpoint, seda:a,
to endpoint, seda:b, that blocks all messages except for those messages
whose foo header have the value, bar:

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").filter(head
er("foo").isEqualTo("bar")).to("seda:b");

}
};

To evaluate more complex filter predicates, you can invoke one of the
supported scripting languages, such as XPath, XQuery, or SQL (see "Languages
for Expressions and Predicates" in Defining Routes). The following example
defines a route that blocks all messages except for those containing a person
element whose name attribute is equal to James:

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.654

Chapter 5. Message Routing

http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf
http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf

from("direct:start").
filter().xpath("/person[@name='James']").
to("mock:result");

XML configuration example The following example shows how to configure the route with an XPath
predicate in XML (see "Languages for Expressions and Predicates" in Defining
Routes):

<camelContext id="simpleFilterRoute" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<filter>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>

</filter>
</route>

</camelContext>

55FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Message Filter

http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf

Recipient List

Overview A recipient list, shown in Figure 5.3 on page 56, is a type of router that
sends each incoming message to multiple different destinations. In addition,
a recipient list typically requires that the list of recipients be calculated at run
time.

Figure 5.3. Recipient List Pattern

Recipient list with fixed
destinations

The simplest kind of recipient list is where the list of destinations is fixed and
known in advance, and the exchange pattern is InOnly. In this case, you can
hardwire the list of destinations into the to() Java DSL command.

Note
The examples given here, for the recipient list with fixed destinations,
work only with the InOnly exchange pattern (similar to a
pipeline on page 26). If you want to create a recipient list for
exchange patterns with Out messages, use the multicast pattern
instead.

Java DSL example The following example shows how to route an InOnly exchange from a
consumer endpoint, queue:a, to a fixed list of destinations:

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.656

Chapter 5. Message Routing

from("seda:a").to("seda:b", "seda:c", "seda:d");

XML configuration example The following example shows how to configure the same route in XML:

<camelContext id="buildStaticRecipientList" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>

</route>
</camelContext>

Recipient list calculated at run
time

In most cases, when you use the recipient list pattern, the list of recipients
should be calculated at runtime. To do this use the recipientList()
processor, which takes a list of destinations as its sole argument. Because
FUSE Mediation Router applies a type converter to the list argument, it should
be possible to use most standard Java list types (for example, a collection, a
list, or an array). For more details about type converters, see "Built-In Type
Converters" in Programmer's Guide.

Java DSL example The following example shows how to extract the list of destinations from a
message header called recipientListHeader, where the header value is
a comma-separated list of endpoint URIs:

from("direct:a").recipientList(header("recipientListHead
er").tokenize(","));

In some cases, if the header value is a list type, you might be able to use it
directly as the argument to recipientList(). For example:

from("seda:a").recipientList(header("recipientListHeader"));

However, this example is entirely dependent on how the underlying component
parses this particular header. If the component parses the header as a simple
string, this example will not work. You must know how the underlying
component parses its header data (see ????).

XML configuration example The following example shows how to configure the preceding route in XML,
where it is assumed that the underlying component parses the foo header
as a list type:

57FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Recipient List

http://fusesource.com/docs/router/1.6/prog_guide/prog_guide.pdf
http://fusesource.com/docs/router/1.6/prog_guide/prog_guide.pdf

<camelContext id="buildDynamicRecipientList" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<recipientList>
<header>recipientListHeader</header>

</recipientList>
</route>

</camelContext>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.658

Chapter 5. Message Routing

Splitter

Overview A splitter is a type of router that splits an incoming message into a series of
outgoing messages. Each of the outgoing messages contains a piece of the
original message. In FUSE Mediation Router, the splitter pattern, shown in
Figure 5.4 on page 59, is implemented by the splitter() Java DSL
command, which takes a list of message pieces as its sole argument.

Figure 5.4. Splitter Pattern

Header data Each outgoing message includes a copy of all of the original headers from
the incoming message. In addition, the splitter processor adds the headers
descibed in Table 5.1 on page 59 to each outgoing message.

Table 5.1. Splitter Headers

DescriptionTypeHeader Name

The total number of parts into which the original message is split.Integerorg.apache.camel.splitSize

Index of the current message part (starting at 0).Integerorg.apache.camel.splitCounter

Java DSL example The following example defines a route from seda:a to seda:b that splits
messages by converting each line of an incoming message into a separate
outgoing message:

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").splitter(bodyAs(String.class).token
ize("\n")).to("seda:b");

}
};

59FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Splitter

The splitter can use any expression language, so you can split messages using
any of the supported scripting languages, such as XPath, XQuery, or SQL (see
"Languages for Expressions and Predicates" in Defining Routes). The following
example extracts bar elements from an incoming message and insert them
into separate outgoing messages:

from("activemq:my.queue").split
ter(xpath("//foo/bar")).to("file://some/directory")

XML configuration example The following example shows how to configure a splitter route in XML, using
the XPath scripting language:

<camelContext id="buildSplitter" xmlns="http://act
ivemq.apache.org/camel/schema/spring">

<route>
<from uri="seda:a"/>
<splitter>
<xpath>//foo/bar</xpath>
<to uri="seda:b"/>

</splitter>
</route>

</camelContext>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.660

Chapter 5. Message Routing

http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf
http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf

Aggregator

Overview The aggregator pattern, shown in Figure 5.5 on page 61, enables you to
combine a batch of related messages into a single message.

Figure 5.5. Aggregator Pattern

To control the aggregator's behavior, FUSE Mediation Router allows you to
specify the properties described in Enterprise Integration Patterns, as follows:

• Correlation expression—Determines which messages should be aggregated
together. The correlation expression is evaluated on each incoming message
to produce a correlation key. Incoming messages with the same correlation
key are then grouped into the same batch. For example, if you want to
aggregate all incoming messages into a single message, you can use a
constant expression.

• Completeness condition — Determines when a batch of messages is
complete. You can specify this either as a simple size limit or, more
generally, you can specify a predicate condition that flags when the batch
is complete.

• Aggregation algorithm — Combines the message exchanges for a single
correlation key into a single message exchange. The default strategy simply
chooses the latest message, which makes it ideal for throttling message
flows.

For example, consider a stock market data system that receives 30,000
messages per second. You might want to throttle down the message flow if
your GUI tool cannot cope with such a massive update rate. The incoming
stock quotes can be aggregated together simply by choosing the latest quote

61FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Aggregator

and discarding the older prices. (You can apply a delta processing algorithm,
if you prefer to capture some of the history.)

Simple aggregator You can define a simple aggregator by calling the aggregator() DSL
command with a correlation expression as its sole argument (default limits
are applied to the batch size—see "Specifying the batch size" on page 62).
The following example shows how to aggregate stock quotes, so that only the
latest quote is propagated for the symbol contained in the StockSymbol
header:

from("direct:start").aggregator(header("StockSym
bol")).to("mock:result");

The following example shows how to configure the same route using XML
configuration:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator>
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

Specifying the batch size Normally, you also specify how many messages should be collected (the
batch size) before the aggregate message gets propagated to the target
endpoint. FUSE Mediation Router provides the following settings for controlling
the batch size:

• Batch size — Specifies an upper limit to the number of messages in a
batch (default is 100). For example, the following Java DSL route sets an
upper limit of 10 messages in a batch:

from("direct:start").aggregator(header("StockSymbol")).batch
Size(10).to("mock:result");

The following example shows how to configure the same route using XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.662

Chapter 5. Message Routing

<aggregator batchSize="10">
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

• Batch timeout — Specifies a time interval, in units of milliseconds, during
which messages are collected (default is 1000 ms). If no messages are
received during the given time interval, no aggregate message is propagated.
For example, the following Java DSL route aggregates the messages that
arrive during each ten second window:

from("direct:start").aggregator(header("StockSymbol")).batch
Timeout(10000).to("mock:result");

The following example shows how to configure the same route using XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator batchTimeout="10000">
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

• Completed predicate — Specifies an arbitrary predicate expression that
determines when the current batch is complete. If the predicate resolves
to true, the current message becomes the last message of the batch. For

example, if you want to terminate a batch of stock quotes every time you
receive an ALERTmessage (as indicated by the value of a MsgType header),

you can define a route like the following:

from("direct:start").aggregator(header("StockSymbol")).
completedPredicate(header("Ms

gType").isEqualTo("ALERT")).to("mock:result");

The following example shows how to configure the same route using XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>

63FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Aggregator

<aggregator>
<simple>header.StockSymbol</simple>
<completedPredicate>

<xpath>$MsgType = 'ALERT'</xpath>
</completedPredicate>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

You can also combine batch limiting mechanisms, in which case a batch is
completed whenever the first of the limits is reached. The following example
shows how to specify all three limits simultaneously:

from("direct:start").aggregator(header("StockSymbol")).
batchSize(10).
batchTimeout(10000).
completedPredicate(header("MsgType").isEqualTo("ALERT")).

to("mock:result");

Custom aggregation strategy The default aggregation strategy is to select the most recent message in a
batch and discard all the others. If you want to apply a different aggregation
strategy, you can implement a custom version of the
org.apache.camel.processor.aggregate.AggregationStrategy
interface, and pass it as the second argument to the aggregator() DSL
command. For example, to aggregate messages using the custom strategy
class, MyAggregationStrategy, you can define a route like the following:

from("direct:start").aggregator(header("StockSymbol"), new
MyAggregationStrategy()).to("mock:result");

The following code implements a custom aggregation strategy,
MyAggregationStrategy, that concatenates all of the batch messages into
a single, large message:

// Java
package com.my_package_name

import org.apache.camel.processor.aggregate.Aggregation
Strategy;
import org.apache.camel.Exchange;

public class MyAggregationStrategy implements Aggregation
Strategy {

public Exchange aggregate(Exchange oldExchange, Exchange

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.664

Chapter 5. Message Routing

newExchange) {
String oldBody = oldExchange.getIn().get

Body(String.class);
String newBody = newExchange.getIn().get

Body(String.class);
String concatBody = oldBody.concat(newBody);
// Set the body equal to a concatenation of old and

new.
oldExchange.getIn().setBody(concatBody);
// Ignore the message headers!
// (in a real application, you would probably want to

do
// something more sophisticated with the header data).

return oldExchange;
}

}

You can also configure a route with a custom aggregation strategy in XML,
as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator strategyRef="aggregatorStrategy">
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

<bean id="aggregatorStrategy" class="com.my_package_name.MyAg
gregationStrategy"/>

65FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Aggregator

Resequencer

Overview The resequencer pattern, shown in Figure 5.6 on page 66, enables you to
resequence messages according to a sequencing expression. Messages that
generate a low value for the sequencing expression are moved to the front of
the batch and messages that generate a high value are moved to the back.

Figure 5.6. Resequencer Pattern

FUSE Mediation Router supports two resequencing algorithms:

• Batch resequencing—Collects messages into a batch, sorts the messages
and sends them to their output.

• Stream resequencing — Re-orders (continuous) message streams based
on the detection of gaps between messages.

Batch resequencing The batch resequencing algorithm is enabled by default. For example, to
resequence a batch of incoming messages based on the value of a timestamp
contained in the TimeStamp header, you can define the following route in
Java DSL:

from("direct:start").resequencer(head
er("TimeStamp")).to("mock:result");

By default, the batch is obtained by collecting all of the incoming messages
that arrive in a time interval of 1000 milliseconds (default batch timeout),
up to a maximum of 100 messages (default batch size). You can customize
the values of the batch timeout and the batch size by appending a batch()
DSL command, which takes a BatchResequencerConfig instance as its
sole argument. For example, to modify the preceding route so that the batch
consists of messages collected in a 4000 millisecond time window, up to a
maximum of 300 messages, you can define the Java DSL route as follows:

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.666

Chapter 5. Message Routing

import org.apache.camel.model.config.BatchResequencerConfig;

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("direct:start").resequencer(head
er("TimeStamp")).batch(new BatchResequencerCon
fig(300,4000L)).to("mock:result");

}
};

You can also use multiple expressions to sort messages in a batch. For
example, if you want to sort incoming messages, first, according to their JMS
priority (as recorded in the JMSPriority header) and second, according to
the value of their time stamp (as recorded in the TimeStamp header), you
can define a route like the following:

from("direct:start").resequencer(header("JMSPriority"), head
er("TimeStamp")).to("mock:result");

In this case, messages with the highest priority (that is, low JMS priority
number) are moved to the front of the batch. If more than one message has
the highest priority, the highest priority messages are put in order according
to the value of the TimeStamp header.

You can also specify a batch resequencer pattern using XML configuration.
The following example defines a batch resequencer with a batch size of 300
and a batch timeout of 4000 milliseconds:

<camelContext id="resequencerBatch" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start" />
<resequencer>
<simple>header.TimeStamp</simple>
<to uri="mock:result" />
<!--
batch-config can be omitted for default (batch)

resequencer settings
-->
<batch-config batchSize="300" batchTimeout="4000" />

</resequencer>
</route>

</camelContext>

Stream resequencing To enable the stream resequencing algorithm, you must append stream()
to the resequencer() DSL command. For example, to resequence incoming

67FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Resequencer

messages based on the value of a sequence number in the seqnum header,
you define a DSL route as follows:

from("direct:start").resequencer(header("se
qnum")).stream().to("mock:result");

The stream-processing resequencer algorithm is based on the detection of
gaps in a message stream, rather than on a fixed batch size. Gap detection,
in combination with timeouts, removes the constraint of needing to know the
number of messages of a sequence (that is, the batch size) in advance.
Messages must contain a unique sequence number for which a predecessor
and a successor is known. For example a message with the sequence number
3 has a predecessor message with the sequence number 2 and a successor
message with the sequence number 4. The message sequence 2,3,5 has a
gap because the successor of 3 is missing. The resequencer therefore must
retain message 5 until message 4 arrives (or a timeout occurs).

By default, the stream resequencer is configured with a timeout of 1000
milliseconds, and a maximum message capacity of 100. To customize the
stream's timeout and message capacity, you can pass a
StreamResequencerConfig object as an argument to stream(). For
example, to configure a stream resequencer with a message capacity of 5000
and a timeout of 4000 milliseconds, you define a route as follows:

// Java
import org.apache.camel.model.config.StreamResequencerConfig;

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("direct:start").resequencer(header("seqnum")).
stream(new StreamResequencerConfig(5000, 4000L)).

to("mock:result");
}

};

If the maximum time delay between successive messages (that is, messages
with adjacent sequence numbers) in a message stream is known, the
resequencer's timeout parameter should be set to this value. In this case, you
can guarantee that all messages in the stream are delivered in the correct
order to the next processor. The lower the timeout value that is compared to
the out-of-sequence time difference, the more likely it is that the resequencer
will deliver messages out of sequence. Large timeout values should be
supported by sufficiently high capacity values, where the capacity parameter
is used to prevent the resequencer from running out of memory.

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.668

Chapter 5. Message Routing

If you want to use sequence numbers of some type other than long, you
would must define a custom comparator, as follows:

// Java
ExpressionResultComparator<Exchange> comparator = new MyCompar
ator();
StreamResequencerConfig config = new StreamResequencerCon
fig(5000, 4000L, comparator);
from("direct:start").resequencer(header("seqnum")).stream(con
fig).to("mock:result");

You can also specify a stream resequencer pattern using XML configuration.
The following example defines a stream resequencer with a message capacity
of 5000 and a timeout of 4000 milliseconds:

<camelContext id="resequencerStream" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<resequencer>
<simple>header.seqnum</simple>
<to uri="mock:result" />
<stream-config capacity="5000" timeout="4000"/>

</resequencer>
</route>

</camelContext>

69FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Resequencer

Routing Slip

Overview The routing slip pattern, shown in Figure 5.7 on page 70, enables you to
route a message consecutively through a series of processing steps, where
the sequence of steps is not known at design time and can vary for each
message. The list of endpoints through which the message should pass is
stored in a header field (the slip), which FUSE Mediation Router reads at run
time to construct a pipeline on the fly.

Figure 5.7. Routing Slip Pattern

The slip header By default, the routing slip appears in a header named routingSlipHeader,
where the header value is a comma-separated list of endpoint URIs. For
example, a routing slip that specifies a sequence of security tasks—decrypting,
authenticating, and de-duplicating a message—might look like the following:

cxf:bean:decrypt,cxf:bean:authenticate,cxf:bean:dedup

Java DSL example The following route takes messages from the direct:a endpoint and passes
them into the routing slip pattern:

from("direct:a").routingSlip();

You can customize the name of the routing slip header by passing a string
argument to the routingSlip() command, as follows:

from("direct:b").routingSlip("aRoutingSlipHeader");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.670

Chapter 5. Message Routing

You can also customize the URI delimiter using the two-argument form of
routingSlip(). The following example defines a route that customizes the
routing slip header to be aRoutingSlipHeader and, to specify # as the URI
delimiter:

from("direct:c").routingSlip("aRoutingSlipHeader", "#");

XML configuration example The following example shows how to configure the same route in XML:

<camelContext id="buildRoutingSlip" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:c"/>
<routingSlip headerName="aRoutingSlipHeader" uriDelim

iter="#"/>
</route>

</camelContext>

71FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Routing Slip

Throttler

Overview A throttler is a processor that limits the flow rate of incoming messages. You
can use this pattern to protect a target endpoint from getting overloaded. In
FUSE Mediation Router, you can implement the throttler pattern using the
throttler() Java DSL command.

Java DSL example To limit the flow rate to 100 messages per second, define a route as follows:

from("seda:a").throttler(100).to("seda:b");

If necessary, you can customize the time period that governs the flow rate
using the timePeriodMillis() DSL command. For example, to limit the
flow rate to 3 messages per 30000 milliseconds, define a route as follows:

from("seda:a").throttler(3).timePeriodMil
lis(30000).to("mock:result");

XML configuration example The following example shows how to configure the preceding route in XML:

<camelContext id="throttlerRoute" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<throttler maximumRequestsPerPeriod="3" timePeriodMil

lis="30000">
<to uri="mock:result"/>

</throttler>
</route>

</camelContext>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.672

Chapter 5. Message Routing

Delayer

Overview A delayer is a processor that enables you to apply either a relative time delay
or an absolute time delay to incoming messages.

Java DSL example You can use the delayer() command to add a relative time delay, in units
of milliseconds, to incoming messages. For example, the following route delays
all incoming messages by 2 seconds:

from("seda:a").delayer(2000).to("mock:result");

Alternatively, you can specify the absolute time when a message should be
dispatched. The absolute time value must be expressed in coordinated
universal time (UTC), which is defined as the number of milliseconds that
have elapsed since midnight, January 1, 1970. For example, to dispatch a
message at the absolute time specified by the contents of the JMSTimestamp
header, you can define a route like the following:

from("seda:a").delayer(header("JMSTimestamp")).to("mock:res
ult");

You can also combine an absolute time with a relative time delay. For example,
to delay an incoming message until the time specified in the JMSTimestamp
header plus an additional 3 seconds, you define a route as follows:

from("seda:a").delayer(header("JMSTimestamp"),
3000).to("mock:result");

The preceding examples assume that delivery order is maintained. However,
this could result in messages being delivered later than their specified time
stamp. To avoid this, you can reorder the messages based on their delivery
time, by combining the delayer pattern with the resequencer pattern. For
example:

from("activemq:someQueue").
resequencer(header("JMSTimestamp")).
delayer(header("JMSTimestamp")).to("activemq:aD

elayedQueue");

XML configuration example To delay an incoming message until the time specified in the JMSTimestamp
header plus an additional 3 seconds, define a route using the following XML
configuration:

73FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Delayer

<camelContext id="delayerRoute" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<delayer>
<simple>header.JMSTimestamp</simple>
<delay>3000</delay>

</delayer>
<to uri="mock:result"/>

</route>
</camelContext>

If you want to specify a relative time delay only, you must insert a dummy
expression, <expression/>, in place of the absolute time expression. For
example, to delay incoming messages by a relative time delay of 2 seconds,
define a route as follows:

<camelContext id="delayerRoute2" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<delayer>
<expression/>
<delay>2000</delay>

</delayer>
<to uri="mock:result"/>

</route>
</camelContext>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.674

Chapter 5. Message Routing

Load Balancer

Overview The load balancer pattern allows you to delegate message processing to one
of several endpoints, using a variety of different load-balancing policies.

Java DSL example The following route distributes incoming messages between the target
endpoints, mock:x, mock:y, mock:z, using a round robin load-balancing
policy:

from("direct:start").loadBalance().roundRobin().to("mock:x",
"mock:y", "mock:z");

XML configuration example The following example shows how to configure the same route in XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>

<roundRobin/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

Note
In versions of FUSE Mediation Router earlier than 1.4.2.0, the
<roundRobin/> tag must appear as the last tag inside the
loadBalance element.

Load-balancing policies The FUSE Mediation Router load balancer supports the following
load-balancing policies:

• "Round robin"

• "Random"

• "Sticky"

75FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Load Balancer

• "Topic"

Round robin The round robin load-balancing policy cycles through all of the target
endpoints, sending each incoming message to the next endpoint in the cycle.
For example, if the list of target endpoints is, mock:x, mock:y, mock:z, then
the incoming messages are sent to the following sequence of endpoints:
mock:x, mock:y, mock:z, mock:x, mock:y, mock:z, and so on.

You can specify the round robin load-balancing policy in Java DSL, as follows:

from("direct:start").loadBalance().roundRobin().to("mock:x",
"mock:y", "mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>

<roundRobin/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

Random The random load-balancing policy chooses the target endpoint randomly from
the specified list.

You can specify the random load-balancing policy in Java DSL, as follows:

from("direct:start").loadBalance().random().to("mock:x",
"mock:y", "mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>

<random/>
<to uri="mock:x"/>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.676

Chapter 5. Message Routing

<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

Sticky The sticky load-balancing policy directs the In message to an endpoint that
is chosen by calculating a hash value from a specified expression. The
advantage of this load-balancing policy is that expressions of the same value
are always sent to the same server. For example, by calculating the hash
value from a header that contains a username, you ensure that messages
from a particular user are always sent to the same target endpoint. Another
useful approach is to specify an expression that extracts the session ID from
an incoming message. This ensures that all messages belonging to the same
session are sent to the same target endpoint.

You can specify the sticky load-balancing policy in Java DSL, as follows:

from("direct:start").loadBalance().sticky(header("user
name")).to("mock:x", "mock:y", "mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>
<sticky>
<expression>
<simple>header.username</simple>

</expression>
</sticky>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

Topic The topic load-balancing policy sends a copy of each In message to all of the
listed destination endpoints (effectively broadcasting the message to all of
the destinations, like a JMS topic).

77FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Load Balancer

You can use the Java DSL to specify the topic load-balancing policy, as follows:

from("direct:start").loadBalance().topic().to("mock:x",
"mock:y", "mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>

<topic/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.678

Chapter 5. Message Routing

Multicast

Overview The multicast pattern, shown in Figure 5.8 on page 79, is a variation of the
recipient list with a fixed destination pattern, which is compatible with the
InOut message exchange pattern. This is in contrast to recipient list, which
is only compatible with the InOnly exchange pattern.

Figure 5.8. Multicast Pattern

Multicast with a custom
aggregation strategy

Whereas the multicast processor receives multiple Out messages in response
to the original request (one from each of the recipients), the original caller is
only expecting to receive a single reply. Thus, there is an inherent mismatch
on the reply leg of the message exchange, and to overcome this mismatch,
you must provide a custom aggregation strategy to the multicast processor.
The aggregation strategy class is responsible for aggregating all of the Out
messages into a single reply message.

Consider the example of an electronic auction service, where a seller offers
an item for sale to a list of buyers. The buyers each put in a bid for the item,
and the seller automatically selects the bid with the highest price. You can
implement the logic for distributing an offer to a fixed list of buyers using the
multicast() DSL command, as follows:

from("cxf:bean:offer").multicast(new HighestBidAggregation
Strategy()).

to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buy
er3");

Where the seller is represented by the endpoint, cxf:bean:offer, and the
buyers are represented by the endpoints, cxf:bean:Buyer1,

79FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Multicast

cxf:bean:Buyer2, cxf:bean:Buyer3. To consolidate the bids received
from the various buyers, the multicast processor uses the aggregation strategy,
HighestBidAggregationStrategy. You can implement the
HighestBidAggregationStrategy in Java, as follows:

// Java
import org.apache.camel.processor.aggregate.Aggregation
Strategy;
import org.apache.camel.Exchange;

public class HighestBidAggregationStrategy implements Aggreg
ationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange
newExchange) {

float oldBid = oldExchange.getOut().getHeader("Bid",
Float.class);

float newBid = newExchange.getOut().getHeader("Bid",
Float.class);

return (newBid > oldBid) ? newExchange : oldExchange;

}
}

Where it is assumed that the buyers insert the bid price into a header named,
Bid. For more details about custom aggregation strategies, see "Aggregator"
on page 61.

Parallel processing By default, the multicast processor invokes each of the recipient endpoints
one after another (in the order listed in the to() command). In some cases,
this might cause unacceptably long latency. To avoid these long latency times,
you have the option of enabling parallel processing in the multicast processor
by passing the value true as the second argument. For example, to enable
parallel processing in the electronic auction example, define the route as
follows:

from("cxf:bean:offer")
.multicast(new HighestBidAggregationStrategy(), true)
.to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buy

er3");

Where the multicast processor now invokes the buyer endpoints, using a
thread pool that has one thread for each of the endpoints.

If you want to customize the size of the thread pool that invokes the buyer
endpoints, you can invoke the setThreadPoolExecutor()method to specify
your own custom thread pool executor. For example:

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.680

Chapter 5. Message Routing

from("cxf:bean:offer")
.multicast(new HighestBidAggregationStrategy(), true)
.setThreadPoolExecutor(MyExecutor)
.to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buy

er3");

Where MyExecutor is an instance of java.util.concurrent.ThreadPoolExecutor1

type.

XML configuration example The following example shows how to configure a similar route in XML, where
the route uses a custom aggregation strategy and a custom thread executor:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans ht

tp://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring ht
tp://activemq.apache.org/camel/schema/spring/camel-spring.xsd

">

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">

<route>
<from uri="cxf:bean:offer"/>
<multicast strategyRef="highestBidAggregationStrategy"

parallelProcessing="true"
threadPoolRef="myThreadExcutor">

<to uri="cxf:bean:Buyer1"/>
<to uri="cxf:bean:Buyer2"/>
<to uri="cxf:bean:Buyer3"/>

</multicast>
</route>

</camelContext>

<bean id="highestBidAggregationStrategy"
class="com.acme.example.HighestBidAggregationStrategy"/>
<bean id="myThreadExcutor" class="com.acme.example.MyThreadEx

cutor"/>

</beans>

1 http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html

81FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Multicast

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html

Where both the parallelProcessing attribute and the threadPoolRef
attribute are optional. It is only necessary to set them if you want to customize
the threading behavior of the multicast processor.

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.682

Chapter 5. Message Routing

Chapter 6. Message Transformation
The message transformation patterns describe how to modify the contents of messages for various purposes.

Content Enricher .. 84
Content Filter .. 86
Normalizer ... 88

83FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Content Enricher

Overview The content enricher pattern describes a scenario where the message
destination requires more data than is present in the original message. In this
case, you would use a content enricher to pull in the extra data from an
external resource.

Figure 6.1. Content Enricher Pattern

Implementing a content enricher You can use one of the following approaches to implement a content enricher:

• Templating — A scripting technique that involves extracting portions of a
message and inserting them into a given template. FUSE Mediation Router
supports templating with several different scripting languages and
components. See Templating1 for details.

• Bean integration — Enables you to call any method on a registered bean.
The bean method can modify the message to enrich the content. See Bean
integration2 for details.

Java DSL example You can use templating to consume a message from one destination, transform
it with a scripting language, like Velocity or XQuery, and then send it on to
another destination. For example, using the InOnly exchange pattern (one
way messaging):

1 http://activemq.apache.org/camel/templating.html
2 http://activemq.apache.org/camel/bean-integration.html

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.684

Chapter 6. Message Transformation

http://activemq.apache.org/camel/templating.html
http://activemq.apache.org/camel/bean-integration.html
http://activemq.apache.org/camel/bean-integration.html
http://activemq.apache.org/camel/templating.html
http://activemq.apache.org/camel/bean-integration.html

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the
My.Queue queue in ActiveMQ with a template-generated response and then
send responses back to the JMSReplyTo destination, you could define a route
like the following:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

For more details about the Velocity component, see ????.

XML configuration example The following example shows how to configure the same route in XML:

<camelContext xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="activemq:My.Queue"/>
<to uri="velocity:com/acme/MyResponse.vm"/>
<to uri="activemq:Another.Queue"/>

</route>
</camelContext>

85FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Content Enricher

Content Filter

Overview The content filter pattern describes a scenario where you need to filter out
extraneous content from a message before delivering it to its intended recipient.
For example, you might employ a content filter to strip out confidential
information from a message.

Figure 6.2. Content Filter Pattern

A common way to filter messages is to use an expression in the DSL, written
in one of the supported scripting languages (for example, XSLT, XQuery or
JoSQL).

Implementing a content filter A content filter is essentially an application of a message processing technique
for a particular purpose. To implement a content filter, you can employ any
of the following message processing techniques:

• Message translator—see message translators on page 31.

• Processors—see "Implementing a Processor" in Programmer's Guide.

• Bean integration3.

XML configuration example The following example shows how to configure the same route in XML:

<camelContext xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="activemq:My.Queue"/>
<to uri="xslt:classpath:com/acme/content_filter.xsl"/>
<to uri="activemq:Another.Queue"/>

3 http://activemq.apache.org/camel/bean-integration.html

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.686

Chapter 6. Message Transformation

http://fusesource.com/docs/router/1.6/prog_guide/prog_guide.pdf
http://activemq.apache.org/camel/bean-integration.html
http://activemq.apache.org/camel/bean-integration.html

</route>
</camelContext>

87FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Content Filter

Normalizer

Overview The normalizer pattern is used to process messages that are semantically
equivalent, but arrive in different formats. The normalizer transforms the
incoming messages into a common format.

In FUSE Mediation Router, you can implement the normalizer pattern by
combining a content-based router on page 52, which detects the incoming
message's format, with a collection of different message
translators on page 31, which transform the different incoming formats into
a common format.

Figure 6.3. Normalizer Pattern

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.688

Chapter 6. Message Transformation

Chapter 7. Messaging Endpoints
Messaging Mapper ... 90
Event Driven Consumer ... 92
Polling Consumer ... 93
Competing Consumers .. 95
Message Dispatcher ... 98
Selective Consumer .. 101
Durable Subscriber ... 104
Idempotent Consumer ... 107
Transactional Client .. 110
Messaging Gateway .. 114
Service Activator .. 115

89FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Messaging Mapper

Overview Themessaging mapper pattern describes how to map domain objects cleanly
to and from a canonical message format.

The purpose of the messaging mapper pattern is to create a clean mapping
from domain objects to a canonical message format, where the message
format is chosen to be as platform neutral as possible. In other words, the
chosen message format should be suitable for transmission through a message
bus on page 47, where the message bus is the backbone for integrating a
variety of different systems, some of which might not be object-oriented.

Many different approaches are possible, but not all of them are clean enough
to fulfill the requirements of a messaging mapper. For example, an obvious
way to transmit an object would be to use object serialization, which enables
you to write an object to a data stream using an unambiguous encoding
(supported natively in Java). This would not be a suitable approach to use
for the messaging mapper pattern, however, because the serialization format
is understood only by Java applications. Java object serialization would create
an impedance mismatch between the original application and the other
applications in the messaging system.

The requirements on a messaging mapper can be summarized as follows:

• The canonical message format used to transmit domain objects should be
suitable for consumption by non-object oriented applications.

• The mapper code should be implemented separately from the domain object
code and separately from the messaging infrastructure. FUSE Mediation
Router helps you to fulfill this requirement by providing hooks that can be
used to insert mapper code into a route.

• The mapper might need to find an effective way of dealing with certain
object-oriented concepts such as inheritance, object references, and object
trees. The complexity of these issues will vary from application to
application, but the aim of the mapper implementation must always be to
create messages that can be processed effectively by non-object-oriented
applications.

Finding objects to map You could use one of the following mechanisms to find the objects to map:

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.690

Chapter 7. Messaging Endpoints

• Find a registered bean — For singleton objects and small numbers of
objects, you could use the CamelContext registry to store references to

beans. For example, if a bean instance is instantiated using Spring XML,
it is automatically entered into the registry, where the bean is identified by
the value of its id attribute.

• Select objects using the JoSQL language — If all of the objects you want
to access are already instantiated at runtime, you could use the JoSQL
language to locate a specific object (or objects). For example, if you have
a class, org.apache.camel.builder.sql.Person, with a name bean

property and the incoming message has a UserName header, you could

select the object whose name property equals the value of the UserName

header using the following code:

// Java
import static org.apache.camel.builder.sql.SqlBuilder.sql;
import org.apache.camel.Expression;
...
Expression expression = sql("SELECT * FROM
org.apache.camel.builder.sql.Person where name = :UserName");
Object value = expression.evaluate(exchange);

Where the syntax, :HeaderName, is used to substitute the value of a header
in a JoSQL expression.

• Dynamic — For a more scalable solution, it might be necessary to read
object data from a database. In some cases, the existing object-oriented
application might already provide a finder object that can load objects from
the database. In other cases, you might have to write some custom code
to extract objects from a database: the JDBC component and the SQL
component might be useful in these cases.

91FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Messaging Mapper

Event Driven Consumer

Overview The event-driven consumer pattern is a pattern for implementing the consumer
endpoint in a FUSE Mediation Router component and is thus only relevant
to programmers who need to develop a custom component in FUSE Mediation
Router. Existing components already have a consumer implementation pattern
hard-wired into them.

Consumers that conform to this pattern provide an event method that is
automatically called by the messaging channel or transport layer whenever
an incoming message is received. One of the characteristics of the event-driven
consumer pattern is that the consumer endpoint itself does not provide any
threads to process the incoming messages. Instead, the underlying transport
or messaging channel implicitly provides a processor thread when it invokes
the exposed event method (which blocks for the duration of the message
processing).

For more details about this implementation pattern, see "Consumer Patterns
and Threading" in Programmer's Guide and "Consumer Interface" in
Programmer's Guide.

Figure 7.1. Event Driven Consumer Pattern

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.692

Chapter 7. Messaging Endpoints

http://fusesource.com/docs/router/1.6/prog_guide/prog_guide.pdf
http://fusesource.com/docs/router/1.6/prog_guide/prog_guide.pdf
http://fusesource.com/docs/router/1.6/prog_guide/prog_guide.pdf

Polling Consumer

Overview The polling consumer pattern is a pattern for implementing the consumer
endpoint in a FUSE Mediation Router component and is thus only relevant
to programmers who need to develop a custom component in FUSE Mediation
Router. Existing components already have a consumer implementation pattern
hard-wired into them.

Consumers that conform to this pattern expose polling methods, receive(),
receive(long timeout), and receiveNoWait() that return a new
exchange object, if one is available from the monitored resource. A polling
consumer implementation must provide its own thread pool to perform the
polling.

For more details about this implementation pattern, see "Consumer Patterns
and Threading" in Programmer's Guide and "Consumer Interface" in
Programmer's Guide.

Figure 7.2. Polling Consumer Pattern

Scheduled poll consumer Many of the FUSE Mediation Router consumer endpoints employ a scheduled
poll pattern to receive messages at the start of a route. That is, the endpoint
appears to implement an event-driven consumer interface, but internally a
scheduled poll is used to monitor a resource that provides the incoming
messages for the endpoint.

93FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Polling Consumer

http://fusesource.com/docs/router/1.6/prog_guide/prog_guide.pdf
http://fusesource.com/docs/router/1.6/prog_guide/prog_guide.pdf
http://fusesource.com/docs/router/1.6/prog_guide/prog_guide.pdf

See "Implementing the Consumer Interface" in Programmer's Guide for
details of how to implement this pattern.

Quartz component You can use the quartz component to provide scheduled delivery of messages
using the Quartz enterprise scheduler. See ???? and Quartz Component1 for
details.

1 http://activemq.apache.org/camel/quartz.html

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.694

Chapter 7. Messaging Endpoints

http://fusesource.com/docs/router/1.6/prog_guide/prog_guide.pdf
http://activemq.apache.org/camel/quartz.html
http://activemq.apache.org/camel/quartz.html

Competing Consumers

Overview The competing consumers pattern enables multiple consumers to pull
messages off the same queue, with the guarantee that each message is
consumed once only. This pattern can therefore be used to replace serial
message processing with concurrent message processing (bringing a
corresponding reduction in response latency).

Figure 7.3. Competing Consumers Pattern

The following components demonstrate the competing consumers pattern:

• "JMS based competing consumers" on page 95

• "SEDA based competing consumers" on page 96

JMS based competing consumers A regular JMS queue implicitly guarantees that each message can be
consumed at most once. Hence, a JMS queue automatically supports the
competing consumers pattern. For example, you could define three competing
consumers that pull messages from the JMS queue, HighVolumeQ, as follows:

95FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Competing Consumers

from("jms:HighVolumeQ").to("cxf:bean:replica01");
from("jms:HighVolumeQ").to("cxf:bean:replica02");
from("jms:HighVolumeQ").to("cxf:bean:replica03");

Where the CXF (Web services) endpoints, replica01, replica02, and
replica03, process messages from the HighVolumeQ queue in parallel.

Alternatively, you can set the JMS query option, concurrentConsumers, in
order to create a thread pool of competing consumers. For example, the
following route creates a pool of three competing threads that pick messages
off the specified queue:

from("jms:HighVolumeQ?concurrentConsumers=3").to("cxf:bean:rep
lica01");

Note
JMS topics cannot support the competing consumers pattern. By
definition, a JMS topic is intended to send multiple copies of the
same message to different consumers. It is, therefore, incompatible
with the competing consumers pattern.

SEDA based competing
consumers

The purpose of the SEDA component to simplify concurrent processing by
breaking the computation up into stages. A SEDA endpoint essentially
encapsulates an in-memory blocking queue (implemented by
java.util.concurrent.BlockingQueue). You can, therefore, use a SEDA
endpoint to break a route up into stages, where each stage might use multiple
threads. For example, you can define a SEDA route consisting of two stages,
as follows:

// Stage 1: Read messages from file system.
from("file://var/messages").to("seda:fanout");

// Stage 2: Perform concurrent processing (3 threads).
from("seda:fanout").to("cxf:bean:replica01");
from("seda:fanout").to("cxf:bean:replica02");
from("seda:fanout").to("cxf:bean:replica03");

Where the first stage contains a single thread that consumes message from
a file endpoint, file://var/messages, and routes them to a SEDA endpoint,
seda:fanout. The second stage contains three threads: a thread that routes
exchanges to cxf:bean:replica01, a thread that routes exchanges to
cxf:bean:replica02, and a thread that routes exchanges to
cxf:bean:replica03. These three threads compete to take exchange

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.696

Chapter 7. Messaging Endpoints

instances from the SEDA endpoint, which is implemented using a blocking
queue. Because the blocking queue uses locking to prevent more than one
thread accessing the queue at a time, you are guaranteed that each exchange
instance is consumed at most once.

For a discussion of the differences between a SEDA endpoint and a thread
pool created by thread(), see ????.

97FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Competing Consumers

Message Dispatcher

Overview Themessage dispatcher pattern is used to consume messages from a channel
and distribute them locally to performers, which are responsible for processing
the messages. In a FUSE Mediation Router application, performers are usually
represented by in-process endpoints, which are used to transfer messages to
another section of the route.

Figure 7.4. Message Dispatcher Pattern

You can implement the message dispatcher pattern in FUSE Mediation Router
using one of the following approaches:

• "JMS selectors" on page 98.

• "JMS selectors in ActiveMQ" on page 100.

• "Content-based router" on page 100.

JMS selectors If your application consumes messages from a JMS queue, you can implement
the message dispatcher pattern using JMS selectors. A JMS selector is a
predicate expression involving JMS headers and JMS properties: if the selector

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.698

Chapter 7. Messaging Endpoints

evaluates to true, the JMS message is allowed to reach the consumer; if the
selector evaluates to false, the JMS message is blocked. In many respects,
a JMS selector is like a filter processor on page 54, but it has the added
advantage that the filtering is implemented inside the JMS provider. This
means that a JMS selector can block messages before they are transmitted
to the FUSE Mediation Router application, giving a significant efficiency
advantage.

In FUSE Mediation Router, you can define a JMS selector on a consumer
endpoint by setting the selector query option on a JMS endpoint URI. For
example:

from("jms:dispatcher?selector=Country
Code='US'").to("cxf:bean:replica01");
from("jms:dispatcher?selector=Country
Code='IE'").to("cxf:bean:replica02");
from("jms:dispatcher?selector=Country
Code='DE'").to("cxf:bean:replica03");

Where the predicates that appear in a selector string are based on a subset
of the SQL92 conditional expression syntax (for full details, see the JMS
specification2). The identifiers appearing in a selector string can refer either
to JMS headers or to JMS properties. For example, in the preceding routes,
we presume that the sender has set a JMS property called CountryCode.

If you want to add a JMS property to a message from within your FUSE
Mediation Router application, you can do so by setting a message header
(either on In message or on Out messages). When reading or writing to JMS
endpoints, FUSE Mediation Router maps JMS headers and JMS properties
to and from its native message headers.

Technically, the selector strings must be URL encoded according to the
application/x-www-form-urlencoded MIME format (see the HTML
specification3). In practice, however, the only character that might cause
difficulties is & (ampersand), because this character is used to delimit each
query option in the URI. For more complex selector strings that might need
to embed the & character, you can encode the strings using the
java.net.URLEncoder utility class. For example:

from("jms:dispatcher?selector=" + java.net.URLEncoder.en
code("CountryCode='US'","UTF-8")).

to("cxf:bean:replica01");

2 http://java.sun.com/products/jms/docs.html
3 http://www.w3.org/TR/html4/

99FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Message Dispatcher

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/
http://java.sun.com/products/jms/docs.html
http://www.w3.org/TR/html4/

Where the UTF-8 encoding must be used.

JMS selectors in ActiveMQ You can also define JMS selectors on ActiveMQ endpoints. For example:

from("activemq:dispatcher?selector=Country
Code='US'").to("cxf:bean:replica01");
from("activemq:dispatcher?selector=Country
Code='IE'").to("cxf:bean:replica02");
from("activemq:dispatcher?selector=Country
Code='DE'").to("cxf:bean:replica03");

For more details, see ActiveMQ: JMS Selectors4 and ActiveMQ Message
Properties5.

Content-based router The essential difference between the content-based router pattern and the
message dispatcher pattern is that a content-based router dispatches messages
to physically separate destinations (remote endpoints), whereas a message
dispatcher dispatches messages locally, within the same process space. In
FUSE Mediation Router, the distinction between these two patterns is not
very great, because the same router logic can be used to implement both of
them. The only distinction is whether the target endpoints are remote
(content-based router) or in-process (message dispatcher).

For details and examples of how to use the content-based router pattern see
"Content-based Router" on page 52.

4 http://activemq.apache.org/selectors.html
5 http://activemq.apache.org/activemq-message-properties.html

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6100

Chapter 7. Messaging Endpoints

http://activemq.apache.org/selectors.html
http://activemq.apache.org/activemq-message-properties.html
http://activemq.apache.org/activemq-message-properties.html
http://activemq.apache.org/selectors.html
http://activemq.apache.org/activemq-message-properties.html

Selective Consumer

Overview The selective consumer pattern describes a consumer that applies a filter to
incoming messages, so that only messages meeting a specific selection
criterion are processed.

Figure 7.5. Selective Consumer Pattern

You can implement the selective consumer pattern in FUSE Mediation Router
using one of the following approaches:

• "JMS selector" on page 101.

• "JMS selector in ActiveMQ" on page 102

• "Message filter" on page 102.

JMS selector A JMS selector is a predicate expression involving JMS headers and JMS
properties: if the selector evaluates to true, the JMS message is allowed to
reach the consumer; if the selector evaluates to false, the JMS message is
blocked. For example, to consume messages from the queue, selective,
and select only those messages whose country code property is equal to US,
you could use the following Java DSL route:

from("jms:selective?selector=" + java.net.URLEncoder.en
code("CountryCode='US'","UTF-8")).

to("cxf:bean:replica01");

Where the selector string, CountryCode='US', must be URL encoded (using
UTF-8 characters) in order to avoid trouble with parsing the query options.
This example presumes that the JMS property, CountryCode, was set by the
sender. For more details about JMS selectors, see "JMS selectors"
on page 98.

101FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Selective Consumer

Note
If a selector is applied to a JMS queue, messages that are not selected
remain on the queue (and are thus potentially available to other
consumers attached to the same queue).

JMS selector in ActiveMQ You can also define JMS selectors on ActiveMQ endpoints. For example:

from("acivemq:selective?selector=" + java.net.URLEncoder.en
code("CountryCode='US'","UTF-8")).

to("cxf:bean:replica01");

For more details, see ActiveMQ: JMS Selectors6 and ActiveMQ Message
Properties7.

Message filter If it is not possible to set a selector on the consumer endpoint, you can insert
a filter processor into your route instead. For example, you could define a
selective consumer that processes only messages with a US country code
using Java DSL, as follows:

from("seda:a").filter(header("Country
Code").isEqualTo("US")).process(myProcessor);

The same route can be defined using XML configuration, as follows:

<camelContext id="buildCustomProcessorWithFilter" xmlns="ht
tp://activemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<filter>
<xpath>$CountryCode = 'US'</xpath>
<process ref="#myProcessor"/>

</filter>
</route>

</camelContext>

For more information about the FUSE Mediation Router filter processor, see
Message Filter on page 54.

6 http://activemq.apache.org/selectors.html
7 http://activemq.apache.org/activemq-message-properties.html

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6102

Chapter 7. Messaging Endpoints

http://activemq.apache.org/selectors.html
http://activemq.apache.org/activemq-message-properties.html
http://activemq.apache.org/activemq-message-properties.html
http://activemq.apache.org/selectors.html
http://activemq.apache.org/activemq-message-properties.html

Warning
Be careful about using a message filter to select messages from a
JMS queue. When using a filter processor, blocked messages are
simply discarded. Hence, if the messages are consumed from a queue
(which allows each message to be consumed only once—see
"Competing Consumers" on page 95), blocked messages would not
be processed at all. This might not be the behavior you want.

103FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Selective Consumer

Durable Subscriber

Overview A durable subscriber is a consumer that wants to receive all of the messages
sent over a particular publish-subscribe on page 36 channel, including
messages sent while the consumer is disconnected from the messaging system.
This requires the messaging system to store messages for later replay to the
disconnected consumer. There also has to be a mechanism for a consumer
to indicate that it wants to establish a durable subscription. Generally, a
publish-subscribe channel (or topic) can have both durable and non-durable
subscribers, which behave as follows:

• A non-durable subscriber can have two states: connected and
disconnected. While a non-durable subscriber is connected to a topic, it
receives all of the topic's messages in real time. While a non-durable
subscriber is disconnected from a topic, however, it misses all of the
message sent during the period of disconnection.

• A durable subscriber can have the following states: connected and inactive.
The inactive state means that the durable subscriber is disconnected from
the topic, but wants to receive the messages that arrive in the interim.
When the durable subscriber reconnects to the topic, it receives a replay
of all the messages sent while it was inactive.

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6104

Chapter 7. Messaging Endpoints

Figure 7.6. Durable Subscriber Pattern

JMS durable subscriber The JMS component implements the durable subscriber pattern. In order to
set up a durable subscription on a JMS endpoint, you need to specify a client
ID, which identifies this particular connection, and a durable subscription
name, which identifies the durable subscriber. For example, the following
route sets up a durable subscription to the JMS topic, news, with a client ID
of conn01 and a durable subscription name of John.Doe:

from("jms:topic:news?clientId=conn01&durableSubscription
Name=John.Doe").

to("cxf:bean:newsprocessor");

You can also set up a durable subscription using the ActiveMQ endpoint:

from("activemq:topic:news?clientId=conn01&durableSubscription
Name=John.Doe").

to("cxf:bean:newsprocessor");

If you want to process the incoming messages concurrently, you could use a
SEDA endpoint to fan out the route into multiple, parallel segments, as follows:

from("jms:topic:news?clientId=conn01&durableSubscription
Name=John.Doe").

to("seda:fanout");

from("seda:fanout").to("cxf:bean:newsproc01");
from("seda:fanout").to("cxf:bean:newsproc02");
from("seda:fanout").to("cxf:bean:newsproc03");

105FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Durable Subscriber

Where each message is processed only once, because the SEDA component
supports the competing consumers pattern.

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6106

Chapter 7. Messaging Endpoints

Idempotent Consumer

Overview The idempotent consumer pattern is used to filter out duplicate messages.
For example, consider a scenario where the connection between a messaging
system and a consumer endpoint is abruptly lost due to some fault in the
system. If the messaging system was in the middle of transmitting a message,
it might be unclear whether or not the consumer received the last message.
To improve delivery reliability, the messaging system might decide to redeliver
such messages as soon as the connection is re-established. Unfortunately,
this entails the risk that the consumer might receive duplicate messages and,
in some cases, the effect of duplicating a message may have undesirable
consequences (such as debiting a sum of money twice from your account).
In this scenario, an idempotent consumer could be used to weed out undesired
duplicates from the message stream.

Idempotent consumer with
in-memory cache

In FUSE Mediation Router, the idempotent consumer pattern is implemented
by the idempotentConsumer() processor, which takes two arguments:

• messageIdExpression— An expression that returns a message ID string

for the current message; and

• messageIdRepository — A reference to a message ID repository, which

stores the IDs of the messages received so far.

As each message comes in, the idempotent consumer processor looks up the
current message ID in the repository to see if this message has been seen
before. If yes, the message is discarded; if no, the message is allowed to pass
and its ID is added to the repository.

For example, the following example uses the TransactionID header to filter
out duplicates:

import static org.apache.camel.processor.idempotent.MemoryMes
sageIdRepository.memoryMessageIdRepository;
...
RouteBuilder builder = new RouteBuilder() {

public void configure() {
from("seda:a")
.idempotentConsumer(

header("TransactionID"),
memoryMessageIdRepository(200)

).to("seda:b");

107FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Idempotent Consumer

}
};

Where the call to memoryMessageIdRepository(200) creates an in-memory
cache that can hold up to 200 message IDs.

You can also define an idempotent consumer using XML configuration. For
example, you can define the preceding route in XML, as follows:

<camelContext id="buildIdempotentConsumer" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<idempotentConsumer messageIdRepositoryRef="MsgIDRepos">
<simple>header.TransactionID</simple>
<to uri="seda:b"/>

</idempotentConsumer>
</route>

</camelContext>

<bean id="MsgIDRepos" class="org.apache.camel.processor.idem
potent.MemoryMessageIdRepository">

<!-- Specify the in-memory cache size. -->
<constructor-arg type="int" value="200"/>

</bean>

Idempotent consumer with JPA
repository

The in-memory cache suffers from the disadvantage that it can easily run out
of memory and it does not work in a clustered environment. To avoid these
shortcomings, you could use a Java Persistent API (JPA) based repository
instead. The JPA message ID repository uses an object-oriented database to
store the message IDs. For example, you can define a route that uses a JPA
repository for the idempotent consumer, as follows:

import org.springframework.orm.jpa.JpaTemplate;

import org.apache.camel.spring.SpringRouteBuilder;
import static org.apache.camel.processor.idempotent.jpa.JpaMes
sageIdRepository.jpaMessageIdRepository;
...
RouteBuilder builder = new SpringRouteBuilder() {

public void configure() {
from("seda:a").idempotentConsumer(
header("TransactionID"),
jpaMessageIdRepository(bean(JpaTemplate.class),

"myProcessorName")
).to("seda:b");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6108

Chapter 7. Messaging Endpoints

}
};

Where the JPA message ID repository is initialized with two arguments: a
JpaTemplate instance, which provides the handle for the JPA database, and
a processor name, which uniquely identifies the current idempotent consumer
processor. The SpringRouteBuilder.bean() method is a shortcut that
references a bean defined in the Spring XML file. The JpaTemplate bean
provides a handle to the underlying JPA database. See the JPA documentation
for details of how to configure this bean.

For more details about setting up a JPA repository, see JPA Component8

documentation, the Spring JPA9 documentation, and the sample code in the
Camel JPA unit test10.

8 http://activemq.apache.org/camel/jpa.html
9 http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpa
10 https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jpa/src/test

109FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Idempotent Consumer

http://activemq.apache.org/camel/jpa.html
http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpa
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jpa/src/test
http://activemq.apache.org/camel/jpa.html
http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpa
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jpa/src/test

Transactional Client

Overview The transactional client pattern refers to messaging endpoints that can
participate in a transaction. FUSE Mediation Router supports transactions
using Spring transaction management11.

Figure 7.7. Transactional Client Pattern

Transaction oriented endpoints Not all FUSE Mediation Router endpoints support transactions. Those that
do are called transaction oriented endpoints (or TOEs). For example, both
the JMS component and the ActiveMQ component support transactions.

In order to enable transactions on a component, you need to perform the
appropriate initialization before adding the component to the CamelContext.
For this reason, you need to write some code to initialize your transactional
components explicitly.

For example, consider a JMS component that is layered over ActiveMQ. To
initialize this as a transactional component, you need to define an instance
of JmsTransactionManager and an instance of
ActiveMQConnectionFactory, using the following Spring XML configuration:

<bean id="jmsTransactionManager" class="org.springframe
work.jms.connection.JmsTransactionManager">

<property name="connectionFactory" ref="jmsConnectionFact
ory" />
</bean>

<bean id="jmsConnectionFactory" class="org.apache.activemq.Act
iveMQConnectionFactory">

11 http://static.springframework.org/spring/docs/2.5.x/reference/transaction.html

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6110

Chapter 7. Messaging Endpoints

http://static.springframework.org/spring/docs/2.5.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.5.x/reference/transaction.html

<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

You can then initialize the JMS/ActiveMQ component using the following
code:

// Java
import org.apache.camel.CamelContext;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.spring.SpringRouteBuilder;
import org.apache.camel.spring.SpringCamelContext;
import org.apache.camel.component.jms.JmsComponent;

import javax.jms.ConnectionFactory;

import org.springframework.context.support.ClassPathXmlApplic
ationContext;
import org.springframework.context.ApplicationContext;
import org.springframework.transaction.PlatformTransactionMan
ager;
...
ApplicationContext spring = new ClassPathXmlApplicationCon
text("org/apache/camel/transaction/spring.xml");
CamelContext camelContext = SpringCamelContext.springCamelCon
text(spring);

PlatformTransactionManager transactionManager = (PlatformTrans
actionManager) spring.getBean("jmsTransactionManager");
ConnectionFactory connectionFactory = (ConnectionFactory)
spring.getBean("jmsConnectionFactory");
JmsComponent component = JmsComponent.jmsComponentTrans
acted(connectionFactory, transactionManager);
component.getConfiguration().setConcurrentConsumers(1);
camelContext.addComponent("activemq", component);

Transaction propagation policies Outbound endpoints will automatically enlist in the current transaction context.
But what if you do not want your outbound endpoint to enlist in the same
transaction as your inbound endpoint? The solution is to add a transaction
policy to the processing route. First, define the transaction policies in your
XML configuration. For example, you can define the transaction policies,
PROPAGATION_REQUIRED, PROPAGATION_NOT_SUPPORTED, and
PROPAGATION_REQUIRES_NEW, as follows:

<bean id="PROPAGATION_REQUIRED" class="org.springframe
work.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransaction
Manager"/>

111FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Transactional Client

</bean>

<bean id="PROPAGATION_NOT_SUPPORTED" class="org.springframe
work.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransaction
Manager"/>

<property name="propagationBehaviorName" value="PROPAGA
TION_NOT_SUPPORTED"/>
</bean>

<bean id="PROPAGATION_REQUIRES_NEW" class="org.springframe
work.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransaction
Manager"/>

<property name="propagationBehaviorName" value="PROPAGA
TION_REQUIRES_NEW"/>
</bean>

In your SpringRouteBuilder class, you need to create new
SpringTransactionPolicy objects for each of the templates. For example:

// Java
public MyRouteBuilder extends SpringRouteBuilder {
public void configure() {
...
Policy required = new SpringTransactionPolicy(bean(Trans

actionTemplate.class, "PROPAGATION_REQUIRED"));
Policy notsupported = new SpringTransaction

Policy(bean(TransactionTemplate.class, "PROPAGATION_NOT_SUP
PORTED"));

Policy requirenew = new SpringTransactionPolicy(bean(Trans
actionTemplate.class, "PROPAGATION_REQUIRES_NEW"));

...
}

}

Note
The org.apache.camel.spring.SpringRouteBuilder class is
a special implementation of the RouteBuilder class provided by
the FUSE Mediation Router Spring component. It is required for any
routes that use Spring transactions. The
SpringRouteBuilder.bean() method provides a shortcut for
looking up bean references in the Spring configuration file.

You can then use the transaction policy objects in your route definitions, as
follows:

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6112

Chapter 7. Messaging Endpoints

// Send to bar in a new transaction
from("activemq:queue:foo").policy(requirenew).to("act
ivemq:queue:bar");

// Send to bar without a transaction.
from("activemq:queue:foo").policy(notsupported).to("act
ivemq:queue:bar");

113FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Transactional Client

Messaging Gateway

Overview The messaging gateway pattern describes an approach to integrating with a
messaging system, where the messaging system's API remains hidden from
the programmer at the application level. In particular, the most common
example is where you want to translate synchronous method calls into
request/reply message exchanges, without the programmer being aware of
this.

Figure 7.8. Messaging Gateway Pattern

The following FUSE Mediation Router components provide this kind of
integration with the messaging system:

• ????.

• ????.

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6114

Chapter 7. Messaging Endpoints

Service Activator

Overview The service activator pattern describes the scenario where a service's
operations are invoked in response to an incoming request message. The
service activator is responsible for identifying which operation to call and for
extracting the data to use as the operation's parameters. Finally, the service
activator invokes an operation using the data extracted from the message.
The operation invocation can either be oneway (request only) or two-way
(request/reply).

Figure 7.9. Service Activator Pattern

In many respects, a service activator resembles a conventional remote
procedure call (RPC), where operation invocations are encoded as messages.
The main difference is that a service activator needs to be more flexible.
Whereas an RPC framework standardises the request and reply message
encodings (for example, Web service operations are encoded as SOAP
messages), a service activator typically needs to improvise the mapping
between the messaging system and the service's operations.

Bean integration The main mechanism that FUSE Mediation Router provides to support the
service activator pattern is bean integration. Bean integration12 provides a
general framework for mapping incoming messages to method invocations
on Java objects. For example, the Java fluent DSL provides the processors,
bean() and beanRef(), that you can insert into a route in order to invoke
methods on a registered Java bean. The detailed mapping of message data

12 http://activemq.apache.org/camel/bean-integration.html

115FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Service Activator

http://activemq.apache.org/camel/bean-integration.html
http://activemq.apache.org/camel/bean-integration.html

to Java method parameters is determined by the bean binding, which can
be implemented by adding annotations to the bean class.

For example, consider the following route which calls the Java method,
BankBean.getUserAccBalance(), in order to service requests incoming on
a JMS/ActiveMQ queue:

from("activemq:BalanceQueries")
.setProperty("userid", xpath("/Account/Bal

anceQuery/UserID").stringResult())
.beanRef("bankBean", "getUserAccBalance")
.to("velocity:file:src/scripts/acc_balance.vm")
.to("activemq:BalanceResults");

The messages pulled from the ActiveMQ endpoint,
activemq:BalanceQueries, have a simple XML format that provides the
user ID of a bank account—for example:

<?xml version='1.0' encoding='UTF-8'?>
<Account>
<BalanceQuery>
<UserID>James.Strachan</UserID>

</BalanceQuery>
</Account>

The first processor in the route, setProperty(), extracts the user ID from
the In message and stores it in the userid exchange property, (this is
preferable to storing it in a header, because the In headers cease to be
available after invoking the bean).

The service activation step is performed by the beanRef() processor, which
binds the incoming message to the getUserAccBalance() method on the
Java object identified by the bankBean bean ID. The following code shows
a sample implementation of the BankBean class:

// Java
package tutorial;

import org.apache.camel.language.XPath;

public class BankBean {
public int getUserAccBalance(@XPath("/Account/Bal

anceQuery/UserID") String user) {
if (user.equals("James.Strachan")) {

return 1200;
}
else {

return 0;

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6116

Chapter 7. Messaging Endpoints

}
}

}

Where the binding of message data to method parameter is enabled by the
@XPath annotation, which injects the content of the UserID XML element
into the user method parameter. On completion of the call, the return value
is inserted into the body of the Out message (which is then copied into the
In message for the next step in the route). In order for the bean to be
accessible to the beanRef() processor, you must instantiate an instance in
Spring XML. For example, you can add the following lines to
META-INF/spring/camel-context.xml configuration file to instantiate the
bean:

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
...
<bean id="bankBean" class="tutorial.BankBean"/>

</beans>

Where the bean ID, bankBean, identifes this bean instance in the registry.

The output of the bean invocation is fed into a Velocity template, in order to
produce a properly formatted result message. The Velocity endpoint,
velocity:file:src/scripts/acc_balance.vm, specifies the location of
a velocity script, which has the following contents:

<?xml version='1.0' encoding='UTF-8'?>
<Account>
<BalanceResult>
<UserID>${exchange.getProperty("userid")}</UserID>
<Balance>${body}</Balance>

</BalanceResult>
</Account>

The exchange instance is available as the Velocity variable, exchange, which
enables you to retrieve the userid exchange property, using
${exchange.getProperty("userid")}. The body of the current Inmessage,
${body}, contains the result of the getUserAccBalance() method
invocation.

117FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Service Activator

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6118

Chapter 8. System Management
The system management patterns describe how to monitor, test, and administer a messaging system.

Wire Tap .. 120

119FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Wire Tap

Overview The wire tap pattern enables you to monitor the messages passing through
a channel by duplicating the message stream: one copy of the stream is
forwarded to the main channel and another copy of the stream is forwarded
to the tap endpoint, which monitors the stream.

Figure 8.1. Wire Tap Pattern

Java DSL example The following example shows how to route a request from an input queue:a
endpoint to the wire tap location queue:tap before it is received by queue:b.

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").to("seda:tap", "seda:b");
}

};

XML configuration example The following example shows how to configure the same route in XML:

<camelContext id="buildWireTap" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<to uri="seda:tap"/>
<to uri="seda:b"/>

</route>
</camelContext>

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6120

Chapter 8. System Management

Appendix A. Migrating from ServiceMix
EIP
If you are currently an Apache ServiceMix user, you might already have implemented some Enterprise Integration
Patterns using the ServiceMix EIP module. It is recommended that you migrate these legacy patterns to FUSE
Mediation Router, which has more extensive support for Enterprise Integration Patterns. After migrating, you can
deploy your patterns either into a FUSE ESB container or into a ServiceMix container.

Migrating Endpoints .. 122
Common Elements ... 125
ServiceMix EIP Patterns ... 127
Content-Based Router ... 129
Content Enricher .. 131
Message Filter ... 133
Pipeline ... 135
Resequencer ... 137
Static Recipient List .. 139
Static Routing Slip ... 141
Wire Tap .. 143
XPath Splitter .. 145

121FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Migrating Endpoints

Overview A typical ServiceMix EIP route exposes a service that consumes exchanges
from the NMR. The route also defines one or more target destinations, to
which exchanges are sent. In the FUSE Mediation Router environment, the
exposed ServiceMix service maps to a consumer endpoint and the ServiceMix
target destinations map to producer endpoints. The FUSE Mediation Router
consumer endpoints and producer endpoints are both defined using endpoint
URIs (see ????).

When migrating endpoints from ServiceMix EIP to FUSE Mediation Router,
you will need to express the ServiceMix services/endpoints as FUSE Mediation
Router endpoint URIs. You can adopt one of the following approaches:

• Connect to an existing ServiceMix service/endpoint through the ServiceMix
Camel module (which integrates FUSE Mediation Router with the NMR).

• Alternatively, if the existing ServiceMix service/endpoint represents a
ServiceMix binding component, you could replace the ServiceMix binding
component with an equivalent FUSE Mediation Router component (thus
bypassing the NMR).

The ServiceMix Camel module The integration between FUSE Mediation Router and ServiceMix is provided
by the servicemix-camelmodule. This module is provided with ServiceMix,
but actually implements a plug-in for the FUSE Mediation Router product:
the JBI component (see ???? and JBI Component1).

To access the JBI component from FUSE Mediation Router, make sure that
the servicemix-camel JAR file is included on your Classpath or, if you are
using Maven, include a dependency on the servicemix-camel artifact in
your project POM. You can then access the JBI component by defining FUSE
Mediation Router endpoint URIs with the jbi: component prefix.

Translating ServiceMix URIs into
FUSE Mediation Router endpoint
URIs

ServiceMix defines a flexible format for defining URIs, which is described in
detail in ServiceMix URIs2. To translate a ServiceMix URI into a FUSE
Mediation Router endpoint URI, perform the following steps:

1 http://activemq.apache.org/camel/jbi.html
2 http://servicemix.apache.org/uris.html

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6122

http://activemq.apache.org/camel/jbi.html
http://servicemix.apache.org/uris.html
http://activemq.apache.org/camel/jbi.html
http://servicemix.apache.org/uris.html

1. If the ServiceMix URI contains a namespace prefix, replace the prefix by
its corresponding namespace.

For example, after modifying the ServiceMix URI,
service:test:messageFilter, where test corresponds to the
namespace, http://progress.com/demos/test, you get
service:http://progress.com/demos/test:messageFilter.

2. Modify the separator character, depending on what kind of namespace
appears in the URI:

• If the namespace starts with http://, use the / character as the

separator between namespace, service name, and endpoint name (if
present).

For example, the URI,
service:http://progress.com/demos/test:messageFilter,
would be modified to
service:http://progress.com/demos/test/messageFilter.

• If the namespace starts with urn:, use the : character as the separator

between namespace, service name, and endpoint name (if present).

For example,
service:urn:progress:com:demos:test:messageFilter.

3. To create a JBI endpoint URI, add the jbi: prefix.

For example,
jbi:service:http://progress.com/demos/test/messageFilter.

Example of mapping ServiceMix
URIs

For example, consider the following configuration of the static recipient list
pattern in ServiceMix EIP. The eip:exchange-target elements define some
targets using the ServiceMix URI format.

<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
xmlns:eip="http://servicemix.apache.org/eip/1.0"
xmlns:test="http://progress.com/demos/test" >

...
<eip:static-recipient-list service="test:recipients" end

point="endpoint">
<eip:recipients>
<eip:exchange-target uri="service:test:messageFilter"

/>

123FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

<eip:exchange-target uri="service:test:trace4" />
</eip:recipients>

</eip:static-recipient-list>
...

</beans>

When the preceding ServiceMix configuration is mapped to an equivalent
FUSE Mediation Router configuration, you get the following route:

<route>
<from uri="jbi:endpoint:http://progress.com/demos/test/re

cipients/endpoint"/>
<to uri="jbi:service:http://progress.com/demos/test/message

Filter"/>
<to uri="jbi:service:http://progress.com/demos/test/trace4"/>

</route>

Replacing ServiceMix bindings
with FUSE Mediation Router
components

Instead of using the FUSE Mediation Router JBI component to route all your
messages through the ServiceMix NMR, you could use one of the many
supported FUSE Mediation Router components to connect directly to a
consumer or producer endpoint. In particular, when sending messages to an
external endpoint, it is frequently more efficient to send the messages directly
through a FUSE Mediation Router component rather than sending them
through the NMR and a ServiceMix binding.

For details of all the FUSE Mediation Router components that are available,
see ???? and FUSE Mediation Router Components3.

3 http://activemq.apache.org/camel/components.html

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6124

http://activemq.apache.org/camel/components.html
http://activemq.apache.org/camel/components.html

Common Elements

Overview When configuring ServiceMix EIP patterns in a ServiceMix configuration file,
there are some common elements that recur in many of the pattern schemas.
This section provides a brief overview of these common elements and explains
how they can be mapped to equivalent constructs in FUSE Mediation Router.

Exchange target All of the patterns supported by ServiceMix EIP use the
eip:exchange-target element to specify JBI target endpoints.
Table A.1 on page 125 shows some examples of how to map some sample
eip:exchange-target elements to FUSE Mediation Router endpoint URIs,
where it is assumed that the test prefix maps to the
http://progress.com/demos/test namespace.

Table A.1. Mapping the Exchange Target Element

FUSE Mediation Router Endpoint URIServiceMix EIP Target

jbi:interface:HelloWorld<eip:exchange-target

interface="HelloWorld" />

jbi:service:http://progress.com/demos/test/HelloWorldService<eip:exchange-target

service="test:HelloWorldService" />

jbi:service:http://progress.com/demos/test/HelloWorldService/secure<eip:exchange-target

service="test:HelloWorldService"

endpoint="secure" />

jbi:service:http://progress.com/demos/test/HelloWorldService<eip:exchange-target

uri="service:test:HelloWorldService"

/>

Predicates The ServiceMix EIP component lets you define predicate expressions in the
XPath language (for example, XPath predicates can appear in
eip:xpath-predicate elements or in eip:xpath-splitter elements,
where the XPath predicate is specified using an xpath attribute).

ServiceMix XPath predicates can easily be migrated to equivalent constructs
in FUSE Mediation Router: that is, either the xpath element (in XML

125FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

configuration) or the xpath() command (in Java DSL). For example, the
message filter pattern in FUSE Mediation Router can incorporate an XPath
predicate as follows:

<route>
<from uri="jbi:endpoint:http://progress.com/demos/test/mes

sageFilter/endpoint">
<filter>
<xpath>count(/test:world) = 1</xpath>
<to uri="jbi:service:http://pro

gress.com/demos/test/trace3"/>
</filter>

</route>

Where the xpath element specifies that only messages containing the
test:world element will pass through the filter.

Note
FUSE Mediation Router also supports a wide range of other scripting
languages (such as XQuery, PHP, Python, Ruby, and so on), which
can be used to define predicates. For details of all the supported
predicate languages, see "Languages for Expressions and Predicates"
in Defining Routes and "Languages for Expressions and Predicates"
in Defining Routes.

Namespace contexts When using XPath predicates in the ServiceMix EIP configuration, it is
necessary to define a namespace context using the eip:namespace-context
element. The namespace can then be referenced using a namespaceContext
attribute.

When ServiceMix EIP configuration is migrated to FUSE Mediation Router,
however, there is no need to define namespace contexts, because FUSE
Mediation Router allows you to define XPath predicates without referencing
a namespace context. Hence, you can simply drop the
eip:namespace-context elements when you migrate to FUSE Mediation
Router.

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6126

http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf
http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf

ServiceMix EIP Patterns

Supported patterns The patterns supported by ServiceMix EIP are shown in Table A.2 on page 127.

Table A.2. ServiceMix EIP Patterns

How do we handle a situation where the
implementation of a single logical function

Content-Based
Router

(e.g., inventory check) is spread across
multiple physical systems?

How do we communicate with another
system if the message originator does not
have all the required data items available?

Content
Enricher

How can a component avoid receiving
uninteresting messages?

Message Filter

How can we perform complex processing on
a message while maintaining independence
and flexibility?

Pipeline

How can we get a stream of related but
out-of-sequence messages back into the
correct order?

Resequencer

How do we combine the results of individual,
but related messages so that they can be
processed as a whole?

Split
Aggregator

How do we route a message to a list of
specified recipients?

Static
Recipient List

How do we route a message consecutively
through a series of processing steps?

Static Routing
Slip

How do you inspect messages that travel on
a point-to-point channel?

Wire Tap

127FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

How can we process a message if it contains
multiple elements, each of which may have
to be processed in a different way?

XPath Splitter

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6128

Content-Based Router

Overview A content-based router enables you to route messages to the appropriate
destination, where the routing decision is based on the message contents.
This pattern maps to the corresponding content-based router on page 52
pattern in FUSE Mediation Router.

Figure A.1. Content-Based Router Pattern

Example ServiceMix EIP route The following example shows how to define a content-based router using the
ServicMix EIP component. Incoming messages are routed to the
http://test/pipeline/endpoint endpoint, if a test:echo element is
present in the message body, and to the test:recipients endpoint,
otherwise:

<eip:content-based-router service="test:router" endpoint="en
dpoint">
<eip:rules>
<eip:routing-rule>
<eip:predicate>
<eip:xpath-predicate xpath="count(/test:echo) = 1"

namespaceContext="#nsContext" />
</eip:predicate>
<eip:target>
<eip:exchange-target uri="endpoint:test:pipeline:end

point" />
</eip:target>

</eip:routing-rule>
<eip:routing-rule>
<!-- There is no predicate, so this is the default des

tination -->
<eip:target>
<eip:exchange-target service="test:recipients" />

</eip:target>
</eip:routing-rule>

129FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

</eip:rules>
</eip:content-based-router>

Equivalent FUSE Mediation
Router XML route

The following example shows how to define an equivalent route using FUSE
Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:http://pro

gress.com/demos/test/router/endpoint"/>
<choice>
<when>
<xpath>count(/test:echo) = 1</xpath>
<to uri="jbi:endpoint:http://pro

gress.com/demos/test/pipeline/endpoint"/>
</when>
<otherwise>
<!-- This is the default destination -->
<to uri="jbi:service:http://progress.com/demos/test/re

cipients"/>
</otherwise>

</choice>
</route>

Equivalent FUSE Mediation
Router Java DSL route

The following example shows how to define an equivalent route using the
FUSE Mediation Router Java DSL:

from("jbi:endpoint:http://progress.com/demos/test/router/end
point").

choice().when(xpath("count(/test:echo) = 1")).to("jbi:en
dpoint:http://progress.com/demos/test/pipeline/endpoint").

otherwise().to("jbi:service:http://pro
gress.com/demos/test/recipients");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6130

Content Enricher

Overview A content enricher is a pattern for augmenting a message with missing
information. The ServiceMix EIP content enricher is more or less equivalent
to a pipeline that adds missing data as the message passes through an
enricher target. Consequently, when migrating to FUSE Mediation Router,
you can re-implement the ServiceMix content enricher as a FUSE Mediation
Router pipeline.

Figure A.2. Content Enricher Pattern

Example ServiceMix EIP route The following example shows how to define a content enricher using the
ServiceMix EIP component. Incoming messages pass through the enricher
target, test:additionalInformationExtracter, which adds somemissing
data to the message before the message is sent on to its ultimate destination,
test:myTarget.

<eip:content-enricher service="test:contentEnricher" end
point="endpoint">
<eip:enricherTarget>
<eip:exchange-target service="test:additionalInformationEx

tracter" />
</eip:enricherTarget>
<eip:target>
<eip:exchange-target service="test:myTarget" />

131FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

</eip:target>
</eip:content-enricher>

Equivalent FUSE Mediation
Router XML route

The following example shows how to define an equivalent route using FUSE
Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:http://progress.com/demos/test/con

tentEnricher/endpoint"/>
<to uri="jbi:service:http://progress.com/demos/test/addition

alInformationExtracter"/>
<to uri="jbi:service:http://progress.com/demos/test/myTar

get"/>
</route>

Equivalent FUSE Mediation
Router Java DSL route

The following example shows how to define an equivalent route using the
FUSE Mediation Router Java DSL:

from("jbi:endpoint:http://progress.com/demos/test/contentEn
richer/endpoint").

to("jbi:service:http://progress.com/demos/test/additional
InformationExtracter").

to("jbi:service:http://progress.com/demos/test/myTarget");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6132

Message Filter

Overview A message filter is a processor that eliminates undesired messages based on
specific criteria. Filtering is controlled by specifying a predicate in the filter:
when the predicate is true, the incoming message is allowed to pass;
otherwise, it is blocked. This pattern maps to the corresponding message
filter on page 54 pattern in FUSE Mediation Router.

Figure A.3. Message Filter Pattern

Example ServiceMix EIP route The following example shows how to define a message filter using the
ServiceMix EIP component. Incoming messages are passed through a filter
mechanism that blocks messages that lack a test:world element.

<eip:message-filter service="test:messageFilter" endpoint="en
dpoint">
<eip:target>
<eip:exchange-target service="test:trace3" />

</eip:target>
<eip:filter>
<eip:xpath-predicate xpath="count(/test:world) = 1"

namespaceContext="#nsContext"/>
</eip:filter>

</eip:message-filter>

Equivalent FUSE Mediation
Router XML route

The following example shows how to define an equivalent route using FUSE
Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:http://progress.com/demos/test/mes

sageFilter/endpoint">
<filter>
<xpath>count(/test:world) = 1</xpath>
<to uri="jbi:service:http://pro

gress.com/demos/test/trace3"/>

133FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

</filter>
</route>

Equivalent FUSE Mediation
Router Java DSL route

The following example shows how to define an equivalent route using the
FUSE Mediation Router Java DSL:

from("jbi:endpoint:http://progress.com/demos/test/messageFil
ter/endpoint").
filter(xpath("count(/test:world) = 1")).
to("jbi:service:http://progress.com/demos/test/trace3");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6134

Pipeline

Overview The ServiceMix EIP pipeline pattern is used to pass messages through a single
transformer endpoint, where the transformer's input is taken from the source
endpoint and the transformer's output is routed to the target endpoint. This
pattern is thus a special case of the more general FUSE Mediation Router
pipes and filters on page 26 pattern, which enables you to pass an Inmessage
through multiple transformer endpoints.

Figure A.4. Pipes and Filters Pattern

Example ServiceMix EIP route The following example shows how to define a pipeline using the ServiceMix
EIP component. Incoming messages are passed into the transformer endpoint,
test:decrypt, and the output from the transformer endpoint is then passed
into the target endpoint, test:plaintextOrder.

<eip:pipeline service="test:pipeline" endpoint="endpoint">
<eip:transformer>
<eip:exchange-target service="test:decrypt" />

</eip:transformer>
<eip:target>
<eip:exchange-target service="test:plaintextOrder" />

</eip:target>
</eip:pipeline>

Equivalent FUSE Mediation
Router XML route

The following example shows how to define an equivalent route using FUSE
Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:http://pro

gress.com/demos/test/pipeline/endpoint"/>
<to uri="jbi:service:http://progress.com/demos/test/de

crypt"/>
<to uri="jbi:service:http://progress.com/demos/test/plain

135FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

textOrder"/>
</route>

Equivalent FUSE Mediation
Router Java DSL route

The following example shows how to define an equivalent route using the
FUSE Mediation Router Java DSL:

from("jbi:endpoint:http://progress.com/demos/test/pipeline/en
dpoint").

pipeline("jbi:service:http://progress.com/demos/test/de
crypt", "jbi:service:http://progress.com/demos/test/plaintex
tOrder");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6136

Resequencer

Overview The resequencer pattern enables you to resequence messages according to
the sequence number stored in an NMR property. The ServiceMix EIP
resequencer pattern maps to the FUSE Mediation Router
resequencer on page 66 configured with the stream resequencing algorithm.

Figure A.5. Resequencer Pattern

Sequence number property The sequence of messages emitted from the resequencer is determined by
the value of the sequence number property: messages with a low sequence
number are emitted first and messages with a higher number are emitted
later. By default, the sequence number is read from the
org.apache.servicemix.eip.sequence.number property in ServiceMix.
But you can customize the name of this property using the
eip:default-comparator element in ServiceMix.

The equivalent concept in FUSE Mediation Router is a sequencing expression,
which can be any message-dependent expression. When migrating from
ServiceMix EIP, you would normally define an expression that extracts the
sequence number from a header (a FUSE Mediation Router header is
equivalent to an NMR message property). For example, to extract a sequence
number from a seqnum header, you could use the simple expression,
header.seqnum.

Example ServiceMix EIP route The following example shows how to define a resequencer using the ServiceMix
EIP component.

<eip:resequencer
service="sample:Resequencer"
endpoint="ResequencerEndpoint"
comparator="#comparator"
capacity="100"
timeout="2000">

137FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

<eip:target>
<eip:exchange-target service="sample:SampleTarget" />

</eip:target>
</eip:resequencer>

<!-- Configure default comparator with custom sequence number
property -->
<eip:default-comparator xml:id="comparator" sequenceNumber
Key="seqnum"/>

Equivalent FUSE Mediation
Router XML route

The following example shows how to define an equivalent route using FUSE
Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:sample:Resequencer:ResequencerEnd

point"/>
<resequencer>
<simple>header.seqnum</simple>
<to uri="jbi:service:sample:SampleTarget" />
<stream-config capacity="100" timeout="2000"/>

</resequencer>
</route>

Equivalent FUSE Mediation
Router Java DSL route

The following example shows how to define an equivalent route using the
FUSE Mediation Router Java DSL:

from("jbi:endpoint:sample:Resequencer:ResequencerEndpoint").
resequencer(header("seqnum")).
stream(new StreamResequencerConfig(100, 2000L)).
to("jbi:service:sample:SampleTarget");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6138

Static Recipient List

Overview A recipient list is a type of router that sends each incoming message to
multiple different destinations. The ServiceMix EIP recipient list is restricted
to processing InOnly and RobustInOnly exchange patterns. Moreover, the list
of recipients must be static. This pattern maps to the recipient list on page 56
with fixed destination pattern in FUSE Mediation Router.

Figure A.6. Static Recipient List Pattern

Example ServiceMix EIP route The following example shows how to define a static recipient list using the
ServiceMix EIP component. Incoming messages are copied to the
test:messageFilter endpoint and to the test:trace4 endpoint.

<eip:static-recipient-list service="test:recipients" end
point="endpoint">
<eip:recipients>
<eip:exchange-target service="test:messageFilter" />
<eip:exchange-target service="test:trace4" />

</eip:recipients>
</eip:static-recipient-list>

Equivalent FUSE Mediation
Router XML route

The following example shows how to define an equivalent route using FUSE
Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:http://progress.com/demos/test/re

cipients/endpoint"/>
<to uri="jbi:service:http://progress.com/demos/test/message

139FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

Filter"/>
<to uri="jbi:service:http://progress.com/demos/test/trace4"/>

</route>

Note
The preceding route configuration appears to have the same syntax
as a FUSE Mediation Router pipeline pattern. The crucial difference
is that the preceding route is intended for processing InOnlymessage
exchanges, which are processed in a slightly different way—see
"Pipes and Filters" on page 26 for more details.

Equivalent FUSE Mediation
Router Java DSL route

The following example shows how to define an equivalent route using the
FUSE Mediation Router Java DSL:

from("jbi:endpoint:http://progress.com/demos/test/recipients/en
dpoint").

to("jbi:service:http://progress.com/demos/test/messageFil
ter", "jbi:service:http://progress.com/demos/test/trace4");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6140

Static Routing Slip

Overview The static routing slip pattern in the ServiceMix EIP component is used to
route an InOutmessage exchange through a series of endpoints. Semantically,
it is equivalent to the pipeline on page 26 pattern in FUSE Mediation Router.

Example ServiceMix EIP route The following example shows how to define a static routing slip using the
ServiceMix EIP component. Incoming messages pass through each of the
endpoints, test:procA, test:procB, and test:procC, where the output
of each endpoint is connected to the input of the next endpoint in the chain.
The final endpoint, tets:procC, sends its output (Out message) back to the
caller.

<eip:static-routing-slip service="test:routingSlip" end
point="endpoint">
<eip:targets>
<eip:exchange-target service="test:procA" />
<eip:exchange-target service="test:procB" />
<eip:exchange-target service="test:procC" />

</eip:targets>
</eip:static-routing-slip>

Equivalent FUSE Mediation
Router XML route

The following example shows how to define an equivalent route using FUSE
Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:http://progress.com/demos/test/rout

ingSlip/endpoint"/>
<to uri="jbi:service:http://progress.com/demos/test/procA"/>

<to uri="jbi:service:http://progress.com/demos/test/procB"/>

<to uri="jbi:service:http://progress.com/demos/test/procC"/>
</route>

Equivalent FUSE Mediation
Router Java DSL route

The following example shows how to define an equivalent route using the
FUSE Mediation Router Java DSL:

from("jbi:endpoint:http://progress.com/demos/test/rout
ingSlip/endpoint").

pipeline("jbi:service:http://pro
gress.com/demos/test/procA",

141FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

"jbi:service:http://pro
gress.com/demos/test/procB",

"jbi:service:http://pro
gress.com/demos/test/procC");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6142

Wire Tap

Overview The wire tap pattern allows you to route messages to a separate tap location
before it is forwarded to the ultimate destination. The ServiceMix EIP wire
tap pattern maps to the wire tap on page 120 pattern in FUSE Mediation
Router.

Figure A.7. Wire Tap Pattern

Example ServiceMix EIP route The following example shows how to define a wire tap using the ServiceMix
EIP component. The In message from the source endpoint is copied to the
In-listener endpoint, before being forwarded on to the target endpoint. If you
want to monitor any returned Outmessages or Faultmessages from the target
endpoint, you would also need to define an Out listener (using the
eip:outListner element) and a Fault listener (using the
eip:faultListener element).

<eip:wire-tap service="test:wireTap" endpoint="endpoint">
<eip:target>
<eip:exchange-target service="test:target" />

</eip:target>
<eip:inListener>
<eip:exchange-target service="test:trace1" />

</eip:inListener>
</eip:wire-tap>

Equivalent FUSE Mediation
Router XML route

The following example shows how to define an equivalent route using FUSE
Mediation Router XML configuration:

143FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

<route>
<from uri="jbi:endpoint:http://pro

gress.com/demos/test/wireTap/endpoint"/>
<to uri="jbi:service:http://progress.com/demos/test/trace1"/>

<to uri="jbi:service:http://progress.com/demos/test/target"/>
</route>

Equivalent FUSE Mediation
Router Java DSL route

The following example shows how to define an equivalent route using the
FUSE Mediation Router Java DSL:

from("jbi:endpoint:http://progress.com/demos/test/wireTap/en
dpoint")
.to("jbi:service:http://progress.com/demos/test/trace1",

"jbi:service:http://progress.com/demos/test/target");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6144

XPath Splitter

Overview A splitter is a type of router that splits an incoming message into a series of
outgoing messages, where each of the messages contains a piece of the
original message. The ServiceMix EIP XPath splitter pattern is restricted to
using the InOnly and RobustInOnly exchange patterns. The expression that
defines how to split up the original message is defined in the XPath language.
The XPath splitter pattern maps to the splitter on page 59 pattern in FUSE
Mediation Router.

Figure A.8. XPath Splitter Pattern

Forwarding NMR attachments
and properties

The eip:xpath-splitter element supports a forwardAttachments
attribute and a forwardProperties attribute, either of which can be set to
true, if you want the splitter to copy the incoming message's attachments
or properties to the outgoing messages. The corresponding splitter pattern in
FUSE Mediation Router does not support any such attributes. By default, the
incoming message's headers are copied to each of the outgoing messages by
the FUSE Mediation Router splitter.

Example ServiceMix EIP route The following example shows how to define a splitter using the ServiceMix
EIP component. The specified XPath expression, /*/*, would cause an
incoming message to split at every occurrence of a nested XML element (for
example, the /foo/bar and /foo/car elements would be split into distinct
messages).

<eip:xpath-splitter service="test:xpathSplitter" endpoint="en
dpoint"

xpath="/*/*" namespaceContext="#nsContext">

<eip:target>
<eip:exchange-target uri="service:http://test/router" />

145FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6

</eip:target>
</eip:xpath-splitter>

Equivalent FUSE Mediation
Router XML route

The following example shows how to define an equivalent route using FUSE
Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:http://progress.com/demos/test/xpath

Splitter/endpoint"/>
<splitter>
<xpath>/*/*</xpath>
<to uri="jbi:service:http://test/router"/>

</splitter>
</route>

Equivalent FUSE Mediation
Router Java DSL route

The following example shows how to define an equivalent route using the
FUSE Mediation Router Java DSL:

from("jbi:endpoint:http://progress.com/demos/test/xpathSplit
ter/endpoint").

splitter(xpath("/*/*")).to("jbi:service:ht
tp://test/router");

FUSE™ Mediation Router Implementing Enterprise Integration Patterns Version 1.6146

	Implementing Enterprise Integration Patterns
	Table of Contents
	Chapter 1. Introducing Enterprise Integration Patterns
	Overview of the Patterns

	Chapter 2. Messaging Systems
	Message
	Message Channel
	Message Endpoint
	Pipes and Filters
	Message Router
	Message Translator

	Chapter 3. Messaging Channels
	Point-to-Point Channel
	Publish-Subscribe Channel
	Dead Letter Channel
	Guaranteed Delivery
	Message Bus

	Chapter 4. Message Construction
	Chapter 5. Message Routing
	Content-based Router
	Message Filter
	Recipient List
	Splitter
	Aggregator
	Resequencer
	Routing Slip
	Throttler
	Delayer
	Load Balancer
	Multicast

	Chapter 6. Message Transformation
	Content Enricher
	Content Filter
	Normalizer

	Chapter 7. Messaging Endpoints
	Messaging Mapper
	Event Driven Consumer
	Polling Consumer
	Competing Consumers
	Message Dispatcher
	Selective Consumer
	Durable Subscriber
	Idempotent Consumer
	Transactional Client
	Messaging Gateway
	Service Activator

	Chapter 8. System Management
	Wire Tap

	Appendix A. Migrating from ServiceMix EIP
	Migrating Endpoints
	Common Elements
	ServiceMix EIP Patterns
	Content-Based Router
	Content Enricher
	Message Filter
	Pipeline
	Resequencer
	Static Recipient List
	Static Routing Slip
	Wire Tap
	XPath Splitter

