Progress

FUSE

FUSE" Mediation Router

Getting Started

Version 1.6
April 2009

SOFTWARE

Getting Started

Version 1.6

Publication date 17 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

1. Introducing FUSE Mediation ROULErcccininiiiiiiiiiii et r e s s e s s s a e 9
What is FUSE Mediation ROULEI?ie e e e e e enas 10
(o 1T = 12
How to Develop @ Router AppliCationc.ooieiiii e 15
2. Creating a Simple Content-Based ROULETcciciiiiiiiiiiiii i r e e e e ea 17
P B B UISIEES . enee i e e 18
LT oY= IO 1YY VTt 20
Create @ NEW PrOjeCt ... e 22
Examining the Sample COOEuuinieii e e e 24
Build and Run the Sample ProjECEiie i 27

FUSE" Mediation Router Getting Started Version 1.6 3

FUSE" Mediation Router Getting Started Version 1.6

List of Figures

1.1. Architecture of the FUSE Mediation Router

2.1. Overview of the Tutorialccceiit.

FUSE" Mediation Router Getting Started Version 1.6

FUSE" Mediation Router Getting Started Version 1.6

List of Examples

1.1. DSL Wire Tap Pattern
1.2. Spring XML Wire Tap Pattern
2.1. Sample Content-Based Router

FUSE" Mediation Router Getting Started Version 1.6

FUSE" Mediation Router Getting Started Version 1.6

Chapter 1. Introducing FUSE Mediation
Router

This chapter introduces the FUSE Mediation Router architecture and other basic concepts.

What is FUSE Mediation ROULEI? ... aa e 10
(o] a1 (=T ox {0 (= PPt 12
How to Develop a Router Application

FUSE" Mediation Router Getting Started Version 1.6 9

Chapter 1. Introducing FUSE Mediation Router

What is FUSE Mediation Router?

Overview

Enterprise integration patterns

Route building languages

FUSE Mediation Router is an open-source integration framework. It enables
you to define and implement routes—declarative solutions for specific
integration problems. A route defines an integration path between two or more
endpoints, a path from an input source to one or more output destinations.
Each endpoint in a route, whether it is an input source or an output
destination, is identified by a URL. FUSE Mediation Router supports a wide
variety of endpoint types (and URLs).

You can deploy FUSE Mediation Router in a variety of environments, such as
Tomcat servlet containers, OSGi containers, and J2EE application servers.
FUSE Mediation Router works with the following FUSE products:

¢ FUSE ESB (Apache ServiceMix)
* FUSE Message Broker (Apache ActiveMQ)
e FUSE Services Framework (Apache CXF)

You also can use FUSE Mediation Router either on a standalone basis or in
any Spring Framework-hosted application.

Routes enable you to easily implement enterprise integration patterns (EIPs)
using plain old Java objects (POJOs). To learn more, read the authoritative
book, Enterprise Integration Patterns, by Gregor Hohpe and Bobby Woolf.
The book describes a number of design patterns for the use of enterprise
application integration and message-oriented middleware. Also see Enterprise
Integration Patterns® and Apache Camel Enterprise Integration Patterns Guide?.

FUSE Mediation Router provides two functionally equivalent ways to define
routes:

* a Java domain specific language (DSL) — the DSL, also referred to as a
fluent API, is a programming language designed for implementing enterprise
integration patterns.

One advantage of using a DSL is that the FUSE Mediation Router can
support type-safe smart completion of routing rules in your IDE using regular

! http://www.enterpriseintegrationpatterns.com
http://activemq.apache.org/camel/enterprise-integration-patterns.htmil

10

FUSE™ Mediation Router Getting Started Version 1.6

http://www.enterpriseintegrationpatterns.com
http://www.enterpriseintegrationpatterns.com
http://activemq.apache.org/camel/enterprise-integration-patterns.html
http://www.enterpriseintegrationpatterns.com
http://activemq.apache.org/camel/enterprise-integration-patterns.html

What is FUSE Mediation Router?

Java code without using extensive XML configuration. If you change your
DSL rules, you just recompile your Java sources.

Example 1.1 on page 11 shows a DSL route that implements a Wire Tap
pattern.

Example 1.1. DSL Wire Tap Pattern

from("direct:start")
.to("log:foo")
.wireTap ("direct:tap")
.to("mock:result") ;

a Spring XML file — FUSE Mediation Router provides custom Spring
elements that mimic the routing DSL. The advantage of using an XML file
is that it changing a route requires no recompilation.

Example 1.2 on page 11 shows an XML route that implements the same
Wire Tap pattern shown in Example 1.1 on page 11.

Example 1.2. Spring XML Wire Tap Pattern

<route>
<from uri="direct:start"/>
<to uri="log:foo"/>
<wireTap uri="direct:tap"/>
<to uri="mock:result"/>
</route>

FUSE" Mediation Router Getting Started Version 1.6 11

Chapter 1. Introducing FUSE Mediation Router

Architecture

Overview Figure 1.1 on page 12 shows a general overview of the FUSE Mediation
Router architecture. This architecture enables you to deploy across a wide
variety of container types.

Figure 1.1. Architecture of the FUSE Mediation Router

/ Container \

Config Router Endpoints
.. ____————*_ﬁ_f'fﬂ_:_:”/
o9 9T eg |
Components
Router A router application is constructed using either Java DSL, XML configuration,

or a combination of both. At runtime the router is represented by a
CamelContext object. The camelContext object encapsulates routing rules
contained in RouteBuilder objects, and components that enable the router
to bind to various network protocols and other resources.

Endpoints An endpoint is a source or a sink of messages, identified by a URI. This means
that an endpoint maps either to a network location, or to some other resource
that can produce or consume a stream of messages. Within a routing rule,
endpoints are used in two distinct ways:

12 FUSE™ Mediation Router Getting Started Version 1.6

Components

Architecture

* the source endpoint appears at the start of a rule in a from () statement.

A source endpoint acts as a source of the messages processed by a route.
If the route creates reply messages, the source endpoint acts as a sink for
the replies.

* the target endpoint appears at the end of a rule in a to () statement. A

target endpoint acts as a sink for messages. Target endpoints can also act
as a source of reply messages.

A component is a plug-in that integrates the router core with a particular
network protocol or external resource. From the perspective of a route
developer, a component appears to be a factory for creating a specific type
of endpoint. For example, there is a file component that can be used to create
endpoints that read/write messages to and from particular directories or files.
There is an Apache CXF component that enables you to create endpoints that
communicate with Web services.

Before you can use a particular component, you must configure it and add it
to the route's configuration. You do not have to do this for the following
components, which are embedded in the router core:

* Bean — Binds Java beans to message exchanges. This component is also
useful for exposing and invoking POJO (Plain Old Java Objects).

* Direct — Provides direct, synchronous invocation of any consumers when
a producer sends a message exchange. A direct endpoint can be used to
connect existing routes. Clients running in the same JVM as the router can
also access direct endpoints.

* File — Provides access to the file system, enabling you to read messages
from files and write messages to files.

* Log — Logs the message exchange to some underlying logging system like
log4j.

* Mock — Provides a powerful declarative testing mechanism similar to
jMock. This component allows declarative expectations (assertions) to be
created on any Mock endpoint before a test begins. When running tests,
messages are fired to one or more endpoints and the assertions are checked.

* SEDA — Provides asynchronous SEDA behaviour, so that messages are
exchanged on a BlockingQueue, and consumers are invoked in a separate
thread from the producer.

FUSE" Mediation Router Getting Started Version 1.6 13

Chapter 1. Introducing FUSE Mediation Router

RouteBuilders

Deployment Options

CamelContext

* Timer — Generates message exchanges when a timer fires. This component
can only be used to define consumer endpoints (appearing at the start of
a route).

* VM — Enables asynchronous calls to another endpoint in the same JVM.

For more details about the available components see the Deployment Guide
and the list of Camel componentss.

The RouteBuilder classes encapsulate the routing rules. A router developer
defines custom classes that inherit from the base RouteBuilder class, and
adds instances of these classes to the router's camelcontext object.

The router architecture supports these deployment options:

» Spring container deployment — You can deploy the router application into
a Spring container, using the Spring configuration file to configure
components and define routes.

» Standalone deployment — You can write @ main () method in the

application code, which is responsible for creating and registering
RouteBuilder objects, as well as configuring and registering components.

* OSG/ — You can deploy the router application into an OSGI container.

For more details about the deployment options, see the Deployment Guide.

A camelContext object represents a single FUSE Mediation Router rulebase.
It defines the context used to configure routes and the details which policies
should be used during message exchanges between endpoints.

3 http://activemq.apache.org/camel/components.htmi

14

FUSE™ Mediation Router Getting Started Version 1.6

http://fusesource.com/docs/router/1.6/deploy_guide/deploy_guide.pdf
http://activemq.apache.org/camel/components.html
http://fusesource.com/docs/router/1.6/deploy_guide/deploy_guide.pdf
http://activemq.apache.org/camel/components.html

How to Develop a Router Application

How to Develop a Router Application

Overview

Choosing a routing language

Choosing the deployment
environment

Regardless of the complexity of the application being written there are two
things a developer will always need to consider:

 the routing language to use
* the application's deployment environment

The basic steps for developing a router application are also the same no matter
the complexity of the problem.

One of the biggest choices faced by a FUSE Mediation Router developer is
whether to use the Java DSL or the Spring XML to define the routes. In most
cases the Java DSL is a better choice than the Spring XML for the following
reasons:

* |t is possible to configure an IDE's content completion feature to work with
the Java DSL.

* |t allows for the mixing of normal Java code with the Java DSL and therefor
provides a richer language.

* |t keeps all of an applications logic in a single format and not split between
code and configuration.

e |t is easier to manage than a large amount of XML.

Using the Spring XML to define routes does offer some flexibility because the
router application does not need to be recompiled everytime a route is
changed. It is also a nice environment for developers who are not comfortable
with Java code.

The choice of deployment environment is typically out of the hands of an
individual developer. The environment an application is ultimately deployed
in determined by factors such as corporate standards and large grained project
requirements.

Fortunately, FUSE Mediation Router has a flexible deployment model and the
core part of an application, the routing rules, are not effected by how the

application will be deployed. A developer could write and do a large part of
the testing using a standalone deployment. When the time comes to deploy

FUSE" Mediation Router Getting Started Version 1.6 15

Chapter 1. Introducing FUSE Mediation Router

the router into it ultimate deployment environment it is a simple matter of
removing the main () method used to instantiate the standalone router
application.

Development steps To develop a router application the following high-level steps are involved:
1. Define routing rules using either Java DSL, XML, or both.
2. Implement additional business logic using POJOs.
3. Configure non-core components.
4. Deploy the router.

See Deployment Guide.

16 FUSE™ Mediation Router Getting Started Version 1.6

http://fusesource.com/docs/router/1.6/deploy_guide/deploy_guide.pdf

Chapter 2. Creating a Simple
Content-Based Router

It is easy to create a simple content-based router using the Apache Maven tooling and the Java DSL.

PO B GUISIEES ..t et ettt 18
TULOMTAI OVEIVIBW ..ttt ettt ettt et et et e et et et et e e e e e 20
Create @ NEW ProJeCt ... e 22
Examining the Sample COOE ... e e et 24
Build and Run the Sample ProjECEot 27

FUSE" Mediation Router Getting Started Version 1.6 17

Chapter 2. Creating a Simple Content-Based Router

Prerequisites

Overview

Java Runtime

Apache Maven 2

18

The following are required to complete this example:
* Internet connection (required by Maven)
¢ "Java Runtime"

* "Apache Maven 2"

FUSE Mediation Router requires a Java 5 development kit (JDK 1.5.x). After
installing the JDK, set your gava_HOME environment variable to point to the
root directory of your JDK, and set your PATH environment variable to include
the Java bin directory.

For more information, see Installation Guide.

The FUSE Mediation Router Maven tooling requires Apache Maven version
2.0.6 or later. To download Apache Maven, go to http:/maven.apache.org/
download.html.

After installing Apache Maven do the following:

1. Setyour M2 HOME environment variable to point to the Maven root
directory.

2. SetyourMavEN OPTs environment variable to -xmx512M to increase the
memory available for Maven builds.

3. Set your pATH environment variable to include the Maven bin directory:

Platform | Path

Windows [$M2 HOME%\bin

UNIX $M2 HOME/bin

FUSE™ Mediation Router Getting Started Version 1.6

http://fusesource.com/docs/router/1.6/install_guide/install_guide.pdf
http://maven.apache.org/download.html
http://maven.apache.org/download.html

Prerequisites

@ Tip

You can use the maven command mvn -version to verify that Java
and maven are installed correctly. The example output is:

machineA:~$ mvn -version

Maven version: 2.0.9

Java version: 1.5.0_16

OS name: "mac os x" version: "10.5.6" arch: "i386" Family:
"unix"

FUSE" Mediation Router Getting Started Version 1.6 19

Chapter 2. Creating a Simple Content-Based Router

Tutorial Overview

Overview Figure 2.1 on page 20 shows an overview of the architecture of the router
featured in this tutorial.

Figure 2.1. Overview of the Tutorial

/ Spring Container \

Config Router —

File Endpoints

Spring
configuration

K File Component

The router shown in Figure 2.1 on page 20 consists of the following parts:

* Router — The core component of the router example. The router consists
of an instance of type org.apache.camel.builder.RouteBuilder,

which defines a route between component endpoints. This route is executed
at runtime by the FUSE Mediation Router engine.

» Spring container — A standard container (see Springl) that implements
sophisticated configuration mechanisms; for example, supporting concepts
such as dependency injection and reversion of control.

» Spring configuration file — An XML file that tells the Spring container what
objects need to be loaded to start the router. By default, the Spring
configuration file is placed in META-INF/spring/camel-context.xml ON

the current classpath.

! http://www.springframework.org/

20 FUSE™ Mediation Router Getting Started Version 1.6

http://www.springframework.org/
http://www.springframework.org/

Tutorial Overview

In this example, the Spring container is configured with the name of a Java
package, tutorial. The Spring container initializes the router artifacts,
such as RouteBuilder objects, that it finds in the specified Java package.

* File endpoints — The source and sinks of the route as specified in the
RouteBuilder object. In this example, all of the endpoints are file

endpoints, which are used to read or write messages to the file system.

Tutorial stages The tutorial consists of the following stages:
1. "Create a New Project"
2. "Examining the Sample Code"

3. "Build and Run the Sample Project"

FUSE" Mediation Router Getting Started Version 1.6 21

Chapter 2. Creating a Simple Content-Based Router

Create a New Project

Overview The first step in the tutorial is creating a Maven project (simple-router)
that contains a sample application.

Steps To create the project do the following:

1. Create a new directory, ProjectRoot.
2. In a command window, change to the pProjectRroot directory.

3. Enter the following command to create the simple-router project:

mvn archetype:create
-DremoteRepositories=http://repo.open.iona.com/maven2
-DarchetypeGroupId=org.apache.camel.archetypes
-DarchetypeArtifactId=camel-archetype-java
-DarchetypeVersion=1.6.0.0-fuse

-DgroupId=tutorial

-DartifactId=simple-router

(® Note

Maven accesses the Internet to download JARs and stores them
in its local repository.

22 FUSE™ Mediation Router Getting Started Version 1.6

Create a New Project

Maven creates the following directories and files:

ProjectRoot/simple-router

ProjectRoot/simple-router/pom.xml @
ProjectRoot/simple-router/ReadMe.txt

ProjectRoot/simple-router/src

ProjectRoot/simple-router/src/data
ProjectRoot/simple-router/src/data/messagel.xml @
ProjectRoot/simple-router/src/data/message2.xml @
ProjectRoot/simple-router/src/main
ProjectRoot/simple-router/src/main/java
ProjectRoot/simple-router/src/main/java/tutorial
ProjectRoot/simple-router/src/main/java/tutorial/MyRouteBuilder.java @
ProjectRoot/simple-router/src/main/resources
ProjectRoot/simple-router/src/main/resources/logdj.properties
ProjectRoot/simple-router/src/main/resources/META-INF
ProjectRoot/simple-router/src/main/resources/META-INF/spring
ProjectRoot/simple-router/src/main/resources/META-INF/spring/camel-context.xml @

Some of the project artifacts are described below:

©® pom.xml is a Maven project file.

® messagel.xml is an input message in XML format.

® message2.xml is an input message in XML format.

® MyRouteBuilder.java is a Java source file that implements the

sample route.
camel-context.xml is a Spring configuration file.

]

FUSE" Mediation Router Getting Started Version 1.6 23

Chapter 2. Creating a Simple Content-Based Router

Examining the Sample Code

Overview

Sample Code

package tutorial;

import
import
import
import

import

/**

org.apache.
org.apache.
org.apache.
org.apache.

static org.

* A Camel Router

*

* @Qversion $

Once the sample project is generated the sample code can be found in

ProjectRoot/simple-router/src/main/java/tutorial /MyRouteBuilder.java
This sample code implements a content-based router, and illustrates how
easily — and concisely — you can solve integration problems using FUSE
Mediation Router.

Example 2.1 on page 24 shows how the sample route is implemented.

Example 2.1. Sample Content-Based Router

(1

camel .Exchange;
camel.Processor;
camel.builder.RouteBuilder;
camel.spring.Main;

apache.camel.builder.xml.XPathBuilder.xpath;

=)
public class MyRouteBuilder extends RouteBuilder ({
/**
* A main() so we can easily run these routing rules in our IDE
=)
public static void main(String... args) {
Main.main (args); ©
}
/**
* Lets configure the Camel routing rules using Java code...
=Y
public void configure () {

// TODO create Camel routes here.

24

FUSE™ Mediation Router Getting Started Version 1.6

Examining the Sample Code

// here is a sample which processes the input files
// (leaving them in place - see the 'noop' flag)

// then performs content based routing on the message
// using XPath

from("file:src/data?noop=true"). &
choice () .
when (xpath ("/person/city = 'London'")). @
to("file:target/messages/uk") .
otherwise () .

to("file:target/messages/others") ;

One of the most notable features of the code in Example 2.1 on page 24 is
how the Java DSL uses a series of method calls to create an English-like
expression that makes the intent of the code clear — the sample reads input
messages from a directory, applies an XPath predicate to each message's
XML content, and, based on the result, chooses a different route for the output
messages.

Other notable features include:

® Maven automatically creates a package name based on the value of the
-DgroupId argument to the mvn archetype:create command.

® FUSE Mediation Router defines a convenient wrapper class for the Spring
container. To instantiate a Spring container instance, all that is required
is a shortmain () method that delegates creation of the container to the

wrapper class.
® The from() method call takes a file URL as its argument. This URL

provides information that FUSE Mediation Router uses to interpret and
execute the route.

The file: prefix in the URL indicates that a file endpoint is desired,
which means the file component is responsible for creating the endpoint.
The file component, like other FUSE Mediation Router components,
serves as an endpoint factory.

The option in the URL, ?noop=true, indicates that the files in src/data
should be left in place after they are consumed. This option is one of
many available. Like other components, the file component provides
numerous options.

® The when () method call specifies an XPath predicate, which is applied

to each input message. If the predicate evaluates to true, the message

FUSE" Mediation Router Getting Started Version 1.6 25

Chapter 2. Creating a Simple Content-Based Router

is routed to the uk subdirectory; if it evaluates to false, the message is
routed to the others subdirectory.

26 FUSE™ Mediation Router Getting Started Version 1.6

Build and Run the Sample Project

Build and Run the Sample Project

Overview Once the route is implemented Maven can build and run the sample project.

Steps To build and run the sample project do the following:

1. Ina command window, change to the projectroot/simple-router
directory.

2. Enter the following command to build the project:

mvn install

Maven builds the project and creates a target directory for the build
artifacts:

ProjectRoot/simple-router/target
ProjectRoot/simple-router/target/simple-router-1.0-SNAPSHOT.jar @
ProjectRoot/simple-router/target/classes
ProjectRoot/simple-router/target/classes/log4j.properties O
ProjectRoot/simple-router/target/classes/META-INF
ProjectRoot/simple-router/target/classes/META-INF/spring
ProjectRoot/simple-router/target/classes/META-INF/spring/camel-context.xml
ProjectRoot/simple-router/target/classes/tutorial
ProjectRoot/simple-router/target/classes/tutorial/MyRouteBuilder.class ©
ProjectRoot/simple-router/target/maven-archiver
ProjectRoot/simple-router/target/maven-archiver/pom.properties

Some of the project artifacts are described below:

©® simple-router-1.0-SNAPSHOT.jar is the deployment JAR.
® log4j.properties is a properties file used to control logging

levels.
® MyRouteBuilder.class is the class file compiled from

MyRouteBuilder. java.

FUSE" Mediation Router Getting Started Version 1.6 27

Chapter 2. Creating a Simple Content-Based Router

28

Enter the following command to run the project:

mvn camel:run

When FUSE Mediation Router starts, it prints lines to the console. For
example:

23-Feb-2009 16:51:04 org.apache.camel.spring.Main doStart
INFO: Apache Camel 1.6.0.0-fuse starting

23-Feb-2009 16:51:04 org.springframework.context.support.Ab
stractApplicationContext prepareRefresh

The sample application runs until it is manually stopped. It routes
messages from ProjectRoot/simple-router/src/data to either
ProjectRoot/simple-router/target/messages/uk, Of
ProjectRoot/simple-router/target/messages/others.

To stop the application press Ctrl+C.

FUSE™ Mediation Router Getting Started Version 1.6

	Getting Started
	Table of Contents
	Chapter 1. Introducing FUSE Mediation Router
	What is FUSE Mediation Router?
	Architecture
	How to Develop a Router Application

	Chapter 2. Creating a Simple Content-Based Router
	Prerequisites
	Tutorial Overview
	Create a New Project
	Examining the Sample Code
	Build and Run the Sample Project

