
FUSE™ Mediation Router

Programmer's Guide

Version 1.6
April 2009

Programmer's Guide
Version 1.6

Publication date 17 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
1. Understanding Message Formats ... 11

Exchanges ... 12
Messages .. 14
Built-In Type Converters .. 19

2. Implementing a Processor ... 23
Processing Models ... 24
Implementing a Simple Processor .. 27
Accessing Message Content .. 29
The ExchangeHelper Class ... 31

3. Type Converters .. 35
Type Converter Architecture .. 36
Implementing a Custom Type Converter ... 39

4. Implementing a Component ... 41
Component Architecture .. 42

Factory Patterns for a Component .. 43
Using a Component in a Route .. 46
Consumer Patterns and Threading .. 47
Asynchronous Processing ... 51

How to Implement a Component ... 54
Auto-Discovery and Configuration .. 57

Setting Up Auto-Discovery ... 58
Configuring a Component ... 60

5. Component Interface .. 63
The Component Interface ... 64
Implementing the Component Interface ... 66

6. Endpoint Interface ... 71
The Endpoint Interface .. 72
Implementing the Endpoint Interface .. 76

7. Consumer Interface .. 85
The Consumer Interface .. 86
Implementing the Consumer Interface ... 92

8. Producer Interface ... 99
The Producer Interface .. 100
Implementing the Producer Interface ... 103

9. Exchange Interface .. 107
The Exchange Interface ... 108
Implementing the Exchange Interface .. 112

10. Message Interface .. 117
The Message Interface .. 118
Implementing the Message Interface ... 121

Index .. 125

3FUSE™ Mediation Router Programmer's Guide Version 1.6

FUSE™ Mediation Router Programmer's Guide Version 1.64

List of Figures
1.1. Exchange Object Passing through a Route 12
2.1. Pipelining Model ... 24
2.2. Example of Interceptor Chaining .. 25
2.3. Pipeline Alternative to Interceptor Chaining 26
3.1. Type Conversion Process ... 37
4.1. Component Factory Patterns .. 43
4.2. Consumer and Producer Instances in a Route 46
4.3. Event-Driven Consumer .. 47
4.4. Scheduled Poll Consumer .. 48
4.5. Polling Consumer .. 50
4.6. Synchronous Producer .. 51
4.7. Asynchronous Producer .. 52
5.1. Component Inheritance Hierarchy ... 64
6.1. Endpoint Inheritance Hierarchy ... 73
7.1. Consumer Inheritance Hierarchy ... 87
8.1. Producer Inheritance Hierarchy ... 100
9.1. Exchange Inheritance Hierarchy .. 108
10.1. Message Inheritance Hierarchy ... 118

5FUSE™ Mediation Router Programmer's Guide Version 1.6

FUSE™ Mediation Router Programmer's Guide Version 1.66

List of Tables
7.1. Scheduled Poll Parameters .. 89

7FUSE™ Mediation Router Programmer's Guide Version 1.6

FUSE™ Mediation Router Programmer's Guide Version 1.68

List of Examples
1.1. Exchange Methods .. 12
1.2. Message Interface ... 14
1.3. Unmarshalling a Java Object .. 17
1.4. Converting a Value to a String .. 19
2.1. Java DSL Pipeline ... 25
2.2. Pipeline Alternative to Encryption Interceptor 26
2.3. Processor Interface .. 27
2.4. Simple Processor Implementation .. 27
2.5. Accessing an Authorization Header .. 29
2.6. Accessing the Message Body .. 29
2.7. The resolveEndpoint() Method .. 31

2.8. Creating a File Endpoint .. 31
3.1. TypeConverter Interface .. 36
3.2. Getting a Master Type Converter ... 37
3.3. Example of an Annotated Converter Class 39
4.1. Configuring a Component in Spring .. 60
4.2. JMS Component Spring Configuration 61
5.1. Component Interface .. 64
5.2. Implementation of createEndpoint() 69

5.3. FileComponent Implementation .. 69
6.1. Endpoint Interface ... 73
6.2. Implementing DefaultEndpoint ... 76
6.3. ScheduledPollEndpoint Implementation 78
6.4. DefaultPollingEndpoint Implementation 80
6.5. BrowsableEndpoint Interface .. 81
6.6. SedaEndpoint Implementation .. 81
7.1. FileEndpoint createConsumer() Implementation 88
7.2. JMXConsumer Implementation ... 92
7.3. ScheduledPollConsumer Implementation 94
7.4. PollingConsumerSupport Implementation 96
8.1. Producer Interface ... 100
8.2. AsyncProcessor Interface ... 101
8.3. AsyncCallback Interface .. 102
8.4. DefaultProducer Implementation ... 103
8.5. CollectionProducer Implementation 104
9.1. Exchange Interface .. 108
9.2. Custom Exchange Implementation 112
9.3. FileExchange Implementation ... 114
10.1. Message Interface .. 118
10.2. Custom Message Implementation 121

9FUSE™ Mediation Router Programmer's Guide Version 1.6

FUSE™ Mediation Router Programmer's Guide Version 1.610

Chapter 1. Understanding Message
Formats
Before you can begin programming with FUSE Mediation Router, you should have a clear understanding of how
messages and message exchanges are modelled. Because FUSE Mediation Router can process many message
formats, the basic message type is designed to have an abstract format. FUSE Mediation Router provides the
APIs needed to access and transform the data formats that underly message bodies and message headers.

Exchanges ... 12
Messages .. 14
Built-In Type Converters .. 19

11FUSE™ Mediation Router Programmer's Guide Version 1.6

Exchanges

Overview An exchange object is a wrapper that encapsulates a set of related messages
provide the primary means of accessing messages in FUSE Mediation Router
and they provide the primary means of accessing messages in FUSE Mediation
Router. For example, you can access In, Out, and Fault messages using the
getIn(), getOut(), and getFault() accessors defined on Exchange
objects. An important feature of exchanges in FUSE Mediation Router is that
they support lazy creation of messages. This can provide a significant
optimization in the case of routes that do not require explicit access to
messages.

Figure 1.1. Exchange Object Passing through a Route

Figure 1.1 on page 12 shows an exchange object passing through a route.
In the context of a route, an exchange object gets passed as the argument of
the Processor.process() method. This means that the exchange object
is directly accessible to the source endpoint, the target endpoint, and all of
the processors in between.

The Exchange interface The org.apache.camel.Exchange interface defines methods to access In,
Out and Fault messages, as shown in Example 1.1 on page 12.

Example 1.1. Exchange Methods

Message getIn();
void setIn(Message in);

Message getOut();
Message getOut(boolean lazyCreate);
void setOut(Message out);

Message getFault();
Message getFault(boolean lazyCreate);
void setFault(Message fault);

FUSE™ Mediation Router Programmer's Guide Version 1.612

Chapter 1. Understanding Message Formats

For a complete description of the methods in the Exchange interface, see
"The Exchange Interface" on page 108.

Lazy creation of messages FUSE Mediation Router supports lazy creation of In, Out, and Fault messages.
This means that message instances are not created until you try to access
them (for example, by calling getIn(), getOut(), or getFault()). The lazy
message creation semantics are implemented by the
org.apache.camel.impl.DefaultExchange class.

If you call one of the no-argument accessors (getIn(), getOut(), or
getFault()), or if you call an accessor with the boolean argument equal to
true (that is, getIn(true), getOut(true), or getFault(true)), the
default method implementation creates a new message instance, if one does
not already exist.

If you call an accessor with the boolean argument equal to false (that is,
getIn(false), getOut(false), or getFault(false)), the default method
implementation returns the current message value.1

1If there is no active method the returned value will be null.

13FUSE™ Mediation Router Programmer's Guide Version 1.6

Exchanges

Messages

Overview Message objects represent messages using the following abstract model:

• Message body

• Message headers

• Message attachments

The message body and the message headers can be of arbitrary type (they
are declared as type Object) and the message attachments are declared to
be of type javax.activation.DataHandler2 , which can contain arbitrary
MIME types. If you need to obtain a concrete representation of the message
contents, you can convert the body and headers to another type using the
type converter mechanism and, possibly, using the marshalling and
unmarshalling mechanism.

One important feature of FUSE Mediation Router messages is that they support
lazy creation of message bodies and headers. In some cases, this means that
a message can pass through a route without needing to be parsed at all.

The Message interface The org.apache.camel.Message interface defines methods to access the
message body, message headers and message attachments, as shown in
Example 1.2 on page 14.

Example 1.2. Message Interface

Object getBody();
<T> T getBody(Class<T> type);
void setBody(Object body);
<T> void setBody(Object body, Class<T> type);

Object getHeader(String name);
<T> T getHeader(String name, Class<T> type);
void setHeader(String name, Object value);
Object removeHeader(String name);
Map<String, Object> getHeaders();
void setHeaders(Map<String, Object> headers);

javax.activation.DataHandler getAttachment(String id);
java.util.Map<String, javax.activation.DataHandler> getAttach

2 http://java.sun.com/javaee/5/docs/api/javax/activation/DataHandler.html

FUSE™ Mediation Router Programmer's Guide Version 1.614

Chapter 1. Understanding Message Formats

http://java.sun.com/javaee/5/docs/api/javax/activation/DataHandler.html
http://java.sun.com/javaee/5/docs/api/javax/activation/DataHandler.html

ments();
java.util.Set<String> getAttachmentNames();
void addAttachment(String id, javax.activation.DataHandler
content)

For a complete description of the methods in the Message interface, see
"The Message Interface" on page 118.

Lazy creation of bodies, headers,
and attachments

FUSE Mediation Router supports lazy creation of bodies, headers, and
attachments. This means that the objects that represent a message body, a
message header, or a message attachment are not created until they are
needed.

For example, consider the following route that accesses the foo message
header from the In message:

from("SourceURL").filter(header("foo").isEqualTo("bar")).to("Tar
getURL");

In this route, if we assume that the component referenced by SourceURL
supports lazy creation, the In message headers are not actually parsed until
the header("foo") call is executed. At that point, the underlying message
implementation parses the headers and populates the header map. The
message body is not parsed until you reach the end of the route, at the
to("TargetURL") call. At that point, the body is converted into the format
required for writing it to the target endpoint, TargetURL.

By waiting until the last possible moment before populating the bodies,
headers, and attachments, you can ensure that unnecessary type conversions
are avoided. In some cases, you can completely avoid parsing. For example,
if a route contains no explicit references to message headers, a message could
traverse the route without ever parsing the headers.

Whether or not lazy creation is implemented in practice depends on the
underlying component implementation. In general, lazy creation is valuable
for those cases where creating a message body, a message header, or a
message attachment is expensive. If the body is left in the form of a raw
buffer, it is probably not overly expensive, but parsing headers always adds
some cost. For details about implementing a message type that supports lazy
creation, see "Implementing the Message Interface" on page 121.

Initial message format The initial format of an In message is determined by the source endpoint,
and the initial format of an Out message is determined by the target endpoint.
If lazy creation is supported by the underlying component, the message

15FUSE™ Mediation Router Programmer's Guide Version 1.6

Messages

remains unparsed until it is accessed explicitly by the application. Most FUSE
Mediation Router components create the message body in a relatively raw
form—for example, representing it using types such as byte[], ByteBuffer,
InputStream, or OutputStream. This ensures that the overhead required
for creating the initial message is minimal. Where more elaborate message
formats are required components usually rely on type converters or marshalling
processors.

Type converters It does not matter what the initial format of the message is, because you can
easily convert a message from one format to another using the built-in type
converters (see "Built-In Type Converters" on page 19). There are various
methods in the FUSE Mediation Router API that expose type conversion
functionality. For example, the convertBodyTo(Class type) method can
be inserted into a route to convert the body of an In message, as follows:

from("SourceURL").convertBodyTo(String.class).to("TargetURL");

Where the body of the In message is converted to a java.lang.String. The
following example shows how to append a string to the end of the In message
body:

from("SourceURL").setBody(bodyAs(String.class).append("My Spe
cial Signature")).to("TargetURL");

Where the message body is converted to a string format before appending a
string to the end. It is not necessary to convert the message body explicitly
in this example. You can also use:

from("SourceURL").setBody(body().append("My Special Signa
ture")).to("TargetURL");

Where the append() method automatically converts the message body to a
string before appending its argument.

Type conversion methods in
Message

The org.apache.camel.Message interface exposes some methods that
perform type conversion explicitly:

• getBody(Class<T> type)—Returns the message body as type, T.

• getHeader(String name, Class<T> type)—Returns the named header

value as type, T.

FUSE™ Mediation Router Programmer's Guide Version 1.616

Chapter 1. Understanding Message Formats

For the complete list of supported conversion types, see "Built-In Type
Converters" on page 19.

Converting to XML In addition to supporting conversion between simple types (such as byte[],
ByteBuffer, String, and so on), the built-in type converter also supports
conversion to XML formats. For example, you can convert a message body
to the org.w3c.dom.Document type. This conversion is more expensive than
the simple conversions, because it involves parsing the entire message and
then creating a tree of nodes to represent the XML document structure. You
can convert to the following XML document types:

• org.w3c.dom.Document

• javax.xml.transform.sax.SAXSource

XML type conversions have narrower applicability than the simpler conversions.
Because not every message body conforms to an XML structure, you have to
remember that this type conversion might fail. On the other hand, there are
many scenarios where a router deals exclusively with XML message types.

Marshalling and unmarshalling Marshalling involves converting a high-level format to a low-level format, and
unmarshalling involves converting a low-level format to a high-level format.
The following two processors are used to perform marshalling or unmarshalling
in a route:

• marshal()

• unmarshal()

For example, to read a serialized Java object from a file and unmarshal it into
a Java object, you could use the route definition shown in
Example 1.3 on page 17.

Example 1.3. Unmarshalling a Java Object

from("file://tmp/appfiles/serialized").unmarshal().
serialization().<FurtherProcessing>.to("TargetURL");

17FUSE™ Mediation Router Programmer's Guide Version 1.6

Messages

For details of how to marshal and unmarshal various data formats, see
"Transforming Message Content" in Defining Routes.

Final message format When an In message reaches the end of a route, the target endpoint must be
able to convert the message body into a format that can be written to the
physical endpoint. The same rule applies to Out messages that arrive back
at the source endpoint. This conversion is usually performed implicitly, using
the FUSE Mediation Router type converter. Typically, this involves converting
from a low-level format to another low-level format, such as converting from
a byte[] array to an InputStream type.

FUSE™ Mediation Router Programmer's Guide Version 1.618

Chapter 1. Understanding Message Formats

http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf
http://fusesource.com/docs/router/1.6/defining_routes/defining_routes.pdf

Built-In Type Converters

Overview This section describes the conversions supported by the master type converter.
These conversions are built into the FUSE Mediation Router core.

Usually, the type converter is called through convenience functions, such as
Message.getBody(Class<T> type) or Message.getHeader(String
name, Class<T> type). It is also possible to invoke the master type
converter directly. For example, if you have an exchange object, exchange,
you could convert a given value to a String as shown in
Example 1.4 on page 19.

Example 1.4. Converting a Value to a String

org.apache.camel.TypeConverter tc = exchange.getContext().get
TypeConverter();
String str_value = tc.convertTo(String.class, value);

Basic type converters FUSE Mediation Router provides built-in type converters that perform
conversions to and from the following basic types:

• java.io.File

• String

• byte[] and java.nio.ByteBuffer

• java.io.InputStream and java.io.OutputStream

• java.io.Reader and java.io.Writer

• java.io.BufferedReader and java.io.BufferedWriter

• java.io.StringReader

However, not all of these conversions are supported. The built-in converter
is mainly focused on providing conversions from the File and String types.
The File type can be converted to any of the preceding types, accept Reader,
Writer, and StringReader. The String type can be converted to File,
byte[], ByteBuffer, InputStream, or StringReader. The conversion

19FUSE™ Mediation Router Programmer's Guide Version 1.6

Built-In Type Converters

from String to File works by interpreting the string as a file name. The trio
of String, byte[], and ByteBuffer are completely inter-convertible.

Note
You can explicitly specify which character encoding to use for
conversion from byte[] to String and from String to byte[] by
setting the Exchange.CHARSET_NAME exchange property in the
current exchange. For example, to perform conversions using the
UTF-8 character encoding, call
exchange.setProperty("Exchange.CHARSET_NAME", "UTF-8").
The supported character sets are described in the
java.nio.charset.Charset3 class.

Collection type converters FUSE Mediation Router provides built-in type converters that perform
conversions to and from the following collection types:

• Object[]

• java.util.Set

• java.util.List

All permutations of conversions between the preceding collection types are
supported.

Map type converters FUSE Mediation Router provides built-in type converters that perform
conversions to and from the following map types:

• java.util.Map

• java.util.HashMap

• java.util.Hashtable

• java.util.Properties

3 http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html

FUSE™ Mediation Router Programmer's Guide Version 1.620

Chapter 1. Understanding Message Formats

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html

The preceding map types can also be converted into a set, of java.util.Set
type, where the set elements are of the MapEntry<K,V> type.

DOM type converters You can perform type conversions to the following Document Object Model
(DOM) types:

• org.w3c.dom.Document—convertible from byte[], String,

java.io.File, and java.io.InputStream.

• org.w3c.dom.Node

• javax.xml.transform.dom.DOMSource—convertible from String.

• javax.xml.transform.Source—convertible from byte[] and String.

All permutations of conversions between the preceding DOM types are
supported.

SAX type converters You can also perform conversions to the
javax.xml.transform.sax.SAXSource type, which supports the SAX
event-driven XML parser (see the SAX Web site4 for details). You can convert
to SAXSource from the following types:

• String

• InputStream

• Source

• StreamSource

• DOMSource

Custom type converters FUSE Mediation Router also enables you to implement your own custom type
converters. For details on how to implement a custom type converter, see
"Type Converters" on page 35.

4 http://www.saxproject.org/

21FUSE™ Mediation Router Programmer's Guide Version 1.6

Built-In Type Converters

http://www.saxproject.org/
http://www.saxproject.org/

FUSE™ Mediation Router Programmer's Guide Version 1.622

Chapter 2. Implementing a Processor
FUSE Mediation Router allows you to implement a custom processor. You can then insert the custom processor
into a route to perform operations on exchange objects as they pass through the route.

Processing Models ... 24
Implementing a Simple Processor .. 27
Accessing Message Content .. 29
The ExchangeHelper Class ... 31

23FUSE™ Mediation Router Programmer's Guide Version 1.6

Processing Models

Overview Before implementing a processor, you need to consider how the processor
will fit into a FUSE Mediation Router route. There are two basic ways to create
routes:

• "Pipelining model"

• "Interceptor chaining"

Pipelining is the preferred method for constructing routes. However, you can
accomplish the same routing functionality using either method.

Pipelining model The pipelining model describes the way in which processors are arranged in
"Pipes and Filters" in Implementing Enterprise Integration Patterns. Pipelining
is the most common way to process a sequence of endpoints (a producer
endpoint is just a special type of processor). When the processors are arranged
in this way, the exchange's In and Out messages are processed as shown in
Figure 2.1 on page 24.

Figure 2.1. Pipelining Model

The processors in the pipeline look like services, where the In message is
analogous to a request, and the Out message is analogous to a reply. In fact,
in a realistic pipeline, the nodes in the pipeline are often implemented by
Web service endpoints, such as the CXF component.

For example, Example 2.1 on page 25 shows a Java DSL pipeline constructed
from a sequence of two processors, ProcessorA, ProcessorB, and a producer
endpoint, TargetURI.

FUSE™ Mediation Router Programmer's Guide Version 1.624

Chapter 2. Implementing a Processor

http://fusesource.com/docs/router/1.6/eip/eip.pdf
http://fusesource.com/docs/router/1.6/eip/eip.pdf

Example 2.1. Java DSL Pipeline

from(SourceURI).pipeline(ProcessorA, ProcessorB, TargetURI);

Interceptor chaining An alternative paradigm for linking together the nodes of a route is interceptor
chaining, where a processor in the route processes the exchange both before
and after dispatching the exchange to the next processor in the chain. This
style of processing is also supported by FUSE Mediation Router, but it is not
the usual approach to use. Figure 2.2 on page 25 shows an example of an
interceptor processor that implements a custom encryption algorithm.

Figure 2.2. Example of Interceptor Chaining

In this example, incoming messages are encrypted in a custom format. The
interceptor first decrypts the In message, then dispatches it to the Web services
endpoint, cxf:bean:processTxn, and finally, the reply (Out message) is
encrypted using the custom format, before being sent back through the
consumer endpoint. Using the interceptor chaining approach, therefore, a
single interceptor instance can modify both the request and the response.

For example, if you want to define a route with an HTTP port that services
incoming requests encoded using custom encryption, you can define a route
like the following:

from("jetty:http://localhost:8080/foo")
.intercept(new MyDecryptEncryptInterceptor())
.to("cxf:bean:processTxn");

Where the class, MyDecryptEncryptInterceptor, is implemented by
inheriting from the class,
org.apache.camel.processor.DelegateProcessor.

Comparison of pipelining and
interceptor chaining

Although it is possible to implement encryption using an interceptor processor,
this is not a common way of programming in FUSE Mediation Router. A more
typical approach is shown in Figure 2.3 on page 26.

25FUSE™ Mediation Router Programmer's Guide Version 1.6

Processing Models

Figure 2.3. Pipeline Alternative to Interceptor Chaining

In this example, the encryption functionality is implemented in a separate
processor from the decryption functionality. The resulting processor pipeline
is semantically equivalent to the original interceptor chain shown in
Figure 2.2 on page 25. One slight complication of the pipeline route is that
it requires the addition of a transform processor at the end of the route to
copy the In message to the Out message and making the reply message
available to the HTTP consumer endpoint. An alternative solution to this
problem is to implement the encrypt processor so that it creates an Out
message directly.

To implement the pipeline approach shown in Figure 2.3 on page 26, you
can define a route similar to Example 2.2 on page 26.

Example 2.2. Pipeline Alternative to Encryption Interceptor

from("jetty:http://localhost:8080/foo")
.process(new MyDecryptProcessor())
.to("cxf:bean:processTxn")
.process(new MyEncryptProcessor())
.transform(body());

The final processor node, transform(body()), has the effect of copying the
In message to the Out message (the In message body is copied explicitly and
the In message headers are copied implicitly).

FUSE™ Mediation Router Programmer's Guide Version 1.626

Chapter 2. Implementing a Processor

Implementing a Simple Processor

Overview This section describes how to implement a simple processor that executes
message processing logic before delegating the exchange to the next processor
in the route.

Processor interface Simple processors are created by implementing the
org.apache.camel.Processor interface. As shown in
Example 2.3 on page 27, the interface defines a single method, process(),
which processes an exchange object.

Example 2.3. Processor Interface

package org.apache.camel;

public interface Processor {
void process(Exchange exchange) throws Exception;

}

Implementing the Processor
interface

To create a simple processor you must implement the Processor interface
and provide the logic for the process() method. Example 2.4 on page 27
shows the outline of a simple processor implementation.

Example 2.4. Simple Processor Implementation

import org.apache.camel.Processor;

public class MyProcessor implements Processor {
public MyProcessor() { }

public void process(Exchange exchange) throws Exception
{

// Insert code that gets executed *before* delegating

// to the next processor in the chain.
...

}
}

All of the code in the process() method gets executed before the exchange
object is delegated to the next processor in the chain.

27FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing a Simple Processor

For examples of how to access the message body and header values inside
a simple processor, see "Accessing Message Content" on page 29.

Inserting the simple processor
into a route

Use the process() DSL command to insert a simple processor into a route.
Create an instance of your custom processor and then pass this instance as
an argument to the process() method, as follows:

org.apache.camel.Processor myProc = new MyProcessor();

from("SourceURL").process(myProc).to("TargetURL");

FUSE™ Mediation Router Programmer's Guide Version 1.628

Chapter 2. Implementing a Processor

Accessing Message Content

Accessing message headers Message headers typically contain the most useful message content from the
perspective of a router, because headers are often intended to be processed
in a router service. To access header data, you must first get the message
from the exchange object (for example, using Exchange.getIn()), and then
use the Message interface to retrieve the individual headers (for example,
using Message.getHeader()).

Example 2.5 on page 29 shows an example of a custom processor that
accesses the value of a header named Authorization. This example uses
the ExchangeHelper.getMandatoryHeader() method, which eliminates
the need to test for a null header value.

Example 2.5. Accessing an Authorization Header

import org.apache.camel.*;
import org.apache.camel.util.ExchangeHelper;

public class MyProcessor implements Processor {
public void process(Exchange exchange) {
String auth = ExchangeHelper.getMandatoryHeader(exchange,

"Authorization", String.class);
// process the authorization string...
// ...

}
}

For full details of the Message interface, see "Messages" on page 14.

Accessing the message body You can also access the message body. For example, to append a string to
the end of the In message, you can use the processor shown in
Example 2.6 on page 29.

Example 2.6. Accessing the Message Body

import org.apache.camel.*;
import org.apache.camel.util.ExchangeHelper;

public class MyProcessor implements Processor {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

29FUSE™ Mediation Router Programmer's Guide Version 1.6

Accessing Message Content

}
}

Accessing message attachments You can access a message's attachments using either the
Message.getAttachment() method or the Message.getAttachments()
method. See Example 1.2 on page 14 for more details.

FUSE™ Mediation Router Programmer's Guide Version 1.630

Chapter 2. Implementing a Processor

The ExchangeHelper Class

Overview The org.apache.camel.util.ExchangeHelper1 class is a FUSE Mediation
Router utility class that provides methods that are useful when implementing
a processor.

Resolve an endpoint The static resolveEndpoint() method is one of the most useful methods
in the ExchangeHelper class. You use it inside a processor to create new
Endpoint instances on the fly.

Example 2.7. The resolveEndpoint() Method

public final class ExchangeHelper {
...
@SuppressWarnings({"unchecked" })
public static <E extends Exchange> Endpoint<E> resolveEnd

point(E exchange, Object value)
throws NoSuchEndpointException { ... }

...
}

The first argument to resolveEndpoint() is an exchange instance, and the
second argument is usually an endpoint URI string. Example 2.8 on page 31
shows how to create a new file endpoint from an exchange instance exchange

Example 2.8. Creating a File Endpoint

Endpoint file_endp = ExchangeHelper.resolveEndpoint(exchange,
"file://tmp/messages/in.xml");

Wrapping the exchange accessors The ExchangeHelper class provides several static methods of the form
getMandatoryBeanProperty(), which wrap the corresponding
getBeanProperty() methods on the Exchange class. The difference between
them is that the original getBeanProperty() accessors return null, if the
corresponding property is unavailable, and the getMandatoryBeanProperty()
wrapper methods throw a Java exception. The following wrapper methods
are implemented in the ExchangeHelper class:

public final class ExchangeHelper {
...

1 http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/util/ExchangeHelper.html

31FUSE™ Mediation Router Programmer's Guide Version 1.6

The ExchangeHelper Class

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/util/ExchangeHelper.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/util/ExchangeHelper.html

public static <T> T getMandatoryProperty(Exchange exchange,
String propertyName, Class<T> type)

throws NoSuchPropertyException { ... }

public static <T> T getMandatoryHeader(Exchange exchange,
String propertyName, Class<T> type)

throws NoSuchHeaderException { ... }

public static Object getMandatoryInBody(Exchange exchange)

throws InvalidPayloadException { ... }

public static <T> T getMandatoryInBody(Exchange exchange,
Class<T> type)

throws InvalidPayloadException { ... }

public static Object getMandatoryOutBody(Exchange exchange)

throws InvalidPayloadException { ... }

public static <T> T getMandatoryOutBody(Exchange exchange,
Class<T> type)

throws InvalidPayloadException { ... }
...

}

Testing the exchange pattern Several different exchange patterns are compatible with holding an In message.
Several different exchange patterns are also compatible with holding an Out
message. To provide a quick way of checking whether or not an exchange
object is capable of holding an In message or an Out message, the
ExchangeHelper class provides the following methods:

public final class ExchangeHelper {
...
public static boolean isInCapable(Exchange exchange) {

... }

public static boolean isOutCapable(Exchange exchange) {
... }

...
}

Get the In message's MIME
content type

If you want to find out the MIME content type of the exchange's In message,
you can access it by calling the
ExchangeHelper.getContentType(exchange) method. To implement

FUSE™ Mediation Router Programmer's Guide Version 1.632

Chapter 2. Implementing a Processor

this, the ExchangeHelper object looks up the value of the In message's
Content-Type header—this method relies on the underlying component to
populate the header value).

33FUSE™ Mediation Router Programmer's Guide Version 1.6

The ExchangeHelper Class

FUSE™ Mediation Router Programmer's Guide Version 1.634

Chapter 3. Type Converters
FUSE Mediation Router has a built-in type conversion mechanism, which is used to convert message bodies and
message headers to different types. This chapter explains how to extend the type conversion mechanism by
adding your own custom converter methods.

Type Converter Architecture .. 36
Implementing a Custom Type Converter ... 39

35FUSE™ Mediation Router Programmer's Guide Version 1.6

Type Converter Architecture

Overview This section describes the overall architecture of the type converter
mechanism, which you must understand, if you want to write custom type
converters. If you only need to use the built-in type converters, see
"Understanding Message Formats" on page 11.

Type converter interface Example 3.1 on page 36 shows the definition of the
org.apache.camel.TypeConverter interface, which all type converters
must implement.

Example 3.1. TypeConverter Interface

package org.apache.camel;

public interface TypeConverter {
<T> T convertTo(Class<T> type, Object value);

}

Master type converter The FUSE Mediation Router type converter mechanism follows a master/slave
pattern. There are many slave type converters, which are each capable of
performing a limited number of type conversions, and a single master type
converter, which aggregates the type conversions performed by the slaves.
The master type converter acts as a front-end for the slave type converters.
When you request the master to perform a type conversion, it selects the
appropriate slave and delegates the conversion task to that slave.

For users of the type conversion mechanism, the master type converter is the
most important because it provides the entry point for accessing the conversion
mechanism. During start up, FUSE Mediation Router automatically associates
a master type converter instance with the CamelContext object. To obtain
a reference to the master type converter, you call the
CamelContext.getTypeConverter() method. For example, if you have an
exchange object, exchange, you can obtain a reference to the master type
converter as shown in Example 3.2 on page 37.

FUSE™ Mediation Router Programmer's Guide Version 1.636

Chapter 3. Type Converters

Example 3.2. Getting a Master Type Converter

org.apache.camel.TypeConverter tc = exchange.getContext().getTypeConverter();

Type converter loader The master type converter uses a type converter loader to populate the registry
of slave type converters. A type converter loader is any class that implements
the TypeConverterLoader interface. FUSE Mediation Router currently uses
only one kind of type converter loader—the annotation type converter loader
(of AnnotationTypeConverterLoader type).

Type conversion process Figure 3.1 on page 37 gives an overview of the type conversion process,
showing the steps involved in converting a given data value, value, to a
specified type, toType.

Figure 3.1. Type Conversion Process

37FUSE™ Mediation Router Programmer's Guide Version 1.6

Type Converter Architecture

The type conversion mechanism proceeds as follows:

1. The CamelContext object holds a reference to the master TypeConverter

instance. The first step in the conversion process is to retrieve the master
type converter by calling CamelContext.getTypeConverter().

2. Type conversion is initiated by calling the convertTo() method on the

master type converter. This method instructs the type converter to convert
the data object, value, from its original type to the type specified by the

toType argument.

3. Because the master type converter is a front end for many different slave
type converters, it looks up the appropriate slave type converter by checking
a registry of type mappings The registry of type converters is keyed by a
type mapping pair (toType, fromType). If a suitable type converter is

found in the registry, the master type converter calls the slave's
convertTo() method and returns the result.

4. If a suitable type converter cannot be found in the registry, the master type
converter loads a new type converter, using the type converter loader.

5. The type converter loader searches the available JAR libraries on the
classpath to find a suitable type converter. Currently, the loader strategy
that is used is implemented by the annotation type converter loader, which
attempts to load a class annotated by the org.apache.camel.Converter

annotation. See "Create a TypeConverter file" on page 40.

6. If the type converter loader is successful, a new slave type converter is
loaded and entered into the type converter registry. This type converter is
then used to convert the value argument to the toType type.

7. If the data is successfully converted, the converted data value is returned.
If the conversion does not succeed, null is returned.

FUSE™ Mediation Router Programmer's Guide Version 1.638

Chapter 3. Type Converters

Implementing a Custom Type Converter

Overview The type conversion mechanism can easily be customized by adding a new
slave type converter. This section describes how to implement a slave type
converter and how to integrate it with FUSE Mediation Router, so that it is
automatically loaded by the annotation type converter loader.

How to implement a type
converter

To implement a custom type converter, perform the following steps:

1. "Implement an annotated converter class" .

2. "Create a TypeConverter file" .

3. "Package the type converter" .

Implement an annotated
converter class

You can implement a custom type converter class using the @Converter
annotation. You must annotate the class itself and each of the methods
intended to perform type conversion. Each converter method must take a
single argument, which defines the from type, and a non-void return value,
which defines the to type. The type converter loader uses Java reflection to
find the annotated methods and integrate them into the type converter
mechanism. Example 3.3 on page 39 shows an example of an annotated
converter class that defines a single converter method for converting from
java.io.File to java.io.InputStream.

Example 3.3. Example of an Annotated Converter Class

package com.YourDomain.YourPackageName;

import org.apache.camel.Converter;

import java.io.*;

@Converter
public class IOConverter {

private IOConverter() {
}

@Converter
public static InputStream toInputStream(File file) throws

FileNotFoundException {
return new BufferedInputStream(new FileInput

39FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing a Custom Type Converter

Stream(file));
}

}

The toInputStream() method is responsible for performing the conversion
from the File type to the InputStream type.

Note
The method name is unimportant, and can be anything you choose.
What is important are the argument type, the return type, and the
presence of the @Converter annotation.

Create a TypeConverter file To enable the discovery mechanism (which is implemented by the annotation
type converter loader) for your custom converter, create a TypeConverter
file at the following location:

META-INF/services/org/apache/camel/TypeConverter

The TypeConverter file must contain a comma-separated list of package
names identifying the packages that contain type converter classes. For
example, if you want the type converter loader to search the
com.YourDomain.YourPackageName package for annotated converter classes,
the TypeConverter file would have the following contents:

com.YourDomain.YourPackageName

Package the type converter The type converter is packaged as a JAR file containing the compiled classes
of your custom type converters and the META-INF directory. Put this JAR file
on your classpath to make it available to your FUSE Mediation Router
application.

FUSE™ Mediation Router Programmer's Guide Version 1.640

Chapter 3. Type Converters

Chapter 4. Implementing a Component
This chapter provides a general overview of the approaches can be used to implement a FUSE Mediation Router
component.

Component Architecture .. 42
Factory Patterns for a Component .. 43
Using a Component in a Route .. 46
Consumer Patterns and Threading .. 47
Asynchronous Processing ... 51

How to Implement a Component ... 54
Auto-Discovery and Configuration .. 57

Setting Up Auto-Discovery ... 58
Configuring a Component ... 60

41FUSE™ Mediation Router Programmer's Guide Version 1.6

Component Architecture
Factory Patterns for a Component .. 43
Using a Component in a Route .. 46
Consumer Patterns and Threading .. 47
Asynchronous Processing ... 51

FUSE™ Mediation Router Programmer's Guide Version 1.642

Chapter 4. Implementing a Component

Factory Patterns for a Component

Overview A FUSE Mediation Router component consists of a set of classes that are
related to each other through a factory pattern. The primary entry point to a
component is the Component object itself (an instance of
org.apache.camel.Component type). You can use the Component object
as a factory to create Endpoint objects, which in turn act as factories for
creating Consumer, Producer, and Exchange objects. These relationships
are summarized in Figure 4.1 on page 43

Figure 4.1. Component Factory Patterns

Component A component implementation is an endpoint factory. The main task of a
component implementor is to implement the Component.createEndpoint()
method, which is responsible for creating new endpoints on demand.

Each kind of component must be associated with a component prefix that
appears in an endpoint URI. For example, the file component is usually
associated with the file prefix, which can be used in an endpoint URI like
file://tmp/messages/input. When you install a new component in FUSE
Mediation Router, you must define the association between a particular
component prefix and the name of the class that implements the component.

Endpoint Each endpoint instance encapsulates a particular endpoint URI. Every time
FUSE Mediation Router encounters a new endpoint URI, it creates a new
endpoint instance.

43FUSE™ Mediation Router Programmer's Guide Version 1.6

Factory Patterns for a Component

Endpoints must implement the org.apache.camel.Endpoint interface.
The Endpoint interface defines the following factory methods:

• createConsumer() and createPollingConsumer()—Creates a consumer

endpoint, which represents the source endpoint at the beginning of a route.

• createProducer()—Creates a producer endpoint, which represents the

target endpoint at the end of a route.

• createExchange()—Creates an exchange object, which encapsulates the

messages passed up and down the route.

An endpoint object is also a factory for creating consumer endpoints and
producer endpoints.

Consumer Consumer endpoints consume requests. They always appear at the start of
a route and they encapsulate the code responsible for receiving incoming
requests and dispatching outgoing replies. From a service-oriented prospective
a consumer represents a service.

Consumers must implement the org.apache.camel.Consumer interface.
There are a number of different patterns you can follow when implementing
a consumer. These patterns are described in "Consumer Patterns and
Threading" on page 47.

Producer Producer endpoints produce requests. They always appears at the end of a
route and they encapsulate the code responsible for dispatching outgoing
requests and receiving incoming replies. From a service-oriented prospective
a producer represents a service consumer.

Producers must implement the org.apache.camel.Producer interface.
You can optionally implement the producer to support an asynchronous style
of processing. See "Asynchronous Processing" on page 51 for details.

Exchange Exchange objects encapsulate a related set of messages. For example, one
kind of message exchange is a synchronous invocation, which consists of a
request message and its related reply.

Exchanges must implement the org.apache.camel.Exchange interface.
The default implementation, DefaultExchange, is sufficient for many
component implementations. However, if you want to associated extra data

FUSE™ Mediation Router Programmer's Guide Version 1.644

Chapter 4. Implementing a Component

with the exchanges or have the exchanges preform additional processing, it
can be useful to customize the exchange implementation.

Message There are three different kinds of messages:

• In messages

• Out messages

• Fault messages

All of the message types are represented by the same Java object,
org.apache.camel.Message. It is not always necessary to customize the
message implementation—the default implementation, DefaultMessage, is
usually adequate.

45FUSE™ Mediation Router Programmer's Guide Version 1.6

Factory Patterns for a Component

Using a Component in a Route

Overview A FUSE Mediation Router route is essentially a pipeline of processors, of
org.apache.camel.Processor type. Messages are encapsulated in an
exchange object, E, which gets passed from node to node by invoking the
process() method. The architecture of the processor pipeline is illustrated
in Figure 4.2 on page 46.

Figure 4.2. Consumer and Producer Instances in a Route

Source endpoint At the start of the route, you have the source endpoint, which is represented
by an org.apache.camel.Consumer object. The source endpoint is
responsible for accepting incoming request messages and dispatching replies.
When constructing the route, FUSE Mediation Router creates the appropriate
Consumer type based on the component prefix from the endpoint URI, as
described in "Factory Patterns for a Component" on page 43.

Processors Each intermediate node in the pipeline is represented by a processor object
(implementing the org.apache.camel.Processor interface). You can insert
either standard processors (for example, filter, throttler, or delayer)
or insert your own custom processor implementations.

Target endpoint At the end of the route is the target endpoint, which is represented by an
org.apache.camel.Producer object. Because it comes at the end of a
processor pipeline, the producer is also a processor object (implementing the
org.apache.camel.Processor interface). The target endpoint is responsible
for sending outgoing request messages and receiving incoming replies. When
constructing the route, FUSE Mediation Router creates the appropriate
Producer type based on the component prefix from the endpoint URI.

FUSE™ Mediation Router Programmer's Guide Version 1.646

Chapter 4. Implementing a Component

Consumer Patterns and Threading

Overview The pattern used to implement the consumer determines the threading model
used in processing the incoming exchanges. Consumers can be implemented
using one of the following patterns:

• "Event-driven pattern" —The consumer is driven by an external thread.

• "Scheduled poll pattern" —The consumer is driven by a dedicated thread
pool.

• "Polling pattern" —The threading model is left undefined.

Event-driven pattern In the event-driven pattern, the processing of an incoming request is initiated
when another part of the application (typically a third-party library) calls a
method implemented by the consumer. A good example of an event-driven
consumer is the FUSE Mediation Router JMX component, where events are
initiated by the JMX library. The JMX library calls the handleNotification()
method to initiate request processing—see Example 7.2 on page 92 for
details.

Figure 4.3 on page 47 shows an outline of the event-driven consumer pattern.
In this example, it is assumed that processing is triggered by a call to the
notify() method.

Figure 4.3. Event-Driven Consumer

The event-driven consumer processes incoming requests as follows:

1. The consumer must implement a method to receive the incoming event
(in Figure 4.3 on page 47 this is represented by the notify() method).

The thread that calls notify() is normally a separate part of the

application, so the consumer's threading policy is externally driven.

47FUSE™ Mediation Router Programmer's Guide Version 1.6

Consumer Patterns and Threading

For example, in the case of the JMX consumer implementation, the
consumer implements the
NotificationListener.handleNotification() method to receive
notifications from JMX. The threads that drive the consumer processing
are created within the JMX layer.

2. In the body of the notify() method, the consumer first converts the

incoming event into an exchange object, E, and then calls process()

on the next processor in the route, passing the exchange object as its
argument.

Scheduled poll pattern In the scheduled poll pattern, the consumer retrieves incoming requests by
checking at regular time intervals whether or not a request has arrived.
Checking for requests is scheduled automatically by a built-in timer class,
the scheduled executor service, which is a standard pattern provided by the
java.util.concurrent library. The scheduled executor service executes a
particular task at timed intervals and it also manages a pool of threads, which
are used to run the task instances.

Figure 4.4 on page 48 shows an outline of the scheduled poll consumer
pattern.

Figure 4.4. Scheduled Poll Consumer

The scheduled poll consumer processes incoming requests as follows:

FUSE™ Mediation Router Programmer's Guide Version 1.648

Chapter 4. Implementing a Component

1. The scheduled executor service has a pool of threads at its disposal, that
can be used to initiate consumer processing. After each scheduled time
interval has elapsed, the scheduled executor service attempts to grab a
free thread from its pool (there are five threads in the pool by default).
If a free thread is available, it uses that thread to call the poll() method

on the consumer.

2. The consumer's poll() method is intended to trigger processing of an

incoming request. In the body of the poll() method, the consumer

attempts to retrieve an incoming message. If no request is available, the
poll() method returns immediately.

3. If a request message is available, the consumer inserts it into an exchange
object and then calls process() on the next processor in the route,

passing the exchange object as its argument.

Polling pattern In the polling pattern, processing of an incoming request is initiated when a
third-party calls one of the consumer's polling methods:

• receive()

• receiveNoWait()

• receive(long timeout)

It is up to the component implementation to define the precise mechanism
for initiating calls on the polling methods. This mechanism is not specified
by the polling pattern.

Figure 4.5 on page 50 shows an outline of the polling consumer pattern.

49FUSE™ Mediation Router Programmer's Guide Version 1.6

Consumer Patterns and Threading

Figure 4.5. Polling Consumer

The polling consumer processes incoming requests as follows:

1. Processing of an incoming request is initiated whenever one of the
consumer's polling methods is called. The mechanism for calling these
polling methods is implementation defined.

2. In the body of the receive() method, the consumer attempts to retrieve

an incoming request message. If no message is currently available, the
behavior depends on which receive method was called.

• receiveNoWait() returns immediately

• receive(long timeout) waits for the specified timeout interval1

before returning

• receive() waits until a message is received

3. If a request message is available, the consumer inserts it into an exchange
object and then calls process() on the next processor in the route,

passing the exchange object as its argument.

1The timeout interval is typically specified in milliseconds.

FUSE™ Mediation Router Programmer's Guide Version 1.650

Chapter 4. Implementing a Component

Asynchronous Processing

Overview Producer endpoints normally follow a synchronous pattern when processing
an exchange. When the preceding processor in a pipeline calls process()
on a producer, the process() method blocks until a reply is received. In this
case, the processor's thread remains blocked until the producer has completed
the cycle of sending the request and receiving the reply.

Sometimes, however, you might prefer to decouple the preceding processor
from the producer, so that the processor's thread is released immediately and
the process() call does not block. In this case, you should implement the
producer using an asynchronous pattern, which gives the preceding processor
the option of invoking a non-blocking version of the process() method.

To give you an overview of the different implementation options, this section
describes both the synchronous and the asynchronous patterns for
implementing a producer endpoint.

Synchronous producer Figure 4.6 on page 51 shows an outline of a synchronous producer, where
the preceding processor blocks until the producer has finished processing the
exchange.

Figure 4.6. Synchronous Producer

The synchronous producer processes an exchange as follows:

1. The preceding processor in the pipeline calls the synchronous process()

method on the producer to initiate synchronous processing. The
synchronous process() method takes a single exchange argument.

2. In the body of the process() method, the producer sends the request

(In message) to the endpoint.

51FUSE™ Mediation Router Programmer's Guide Version 1.6

Asynchronous Processing

3. If required by the exchange pattern, the producer waits for the reply (Out
or Fault message) to arrive from the endpoint. This step can cause the
process() method to block indefinitely. However, if the exchange pattern

does not mandate a reply, the process() method can return immediately

after sending the request.

4. When the process() method returns, the exchange object contains the

reply from the synchronous call (either an Out message or a Fault
message).

Asynchronous producer Figure 4.7 on page 52 shows an outline of an asynchronous producer, where
the producer processes the exchange in a sub-thread, and the preceding
processor is not blocked for any significant length of time.

Figure 4.7. Asynchronous Producer

The synchronous producer processes an exchange as follows:

1. Before the processor can call the asynchronous process() method, it

must create an asynchronous callback object, which is responsible for
processing the exchange on the return portion of the route. For the
asynchronous callback, the processor must implement a class that inherits
from the AsyncCallback interface.

FUSE™ Mediation Router Programmer's Guide Version 1.652

Chapter 4. Implementing a Component

2. The processor calls the asynchronous process() method on the producer

to initiate asynchronous processing. The asynchronous process()

method takes two arguments:

• an exchange object

• a synchronous callback object

3. In the body of the process() method, the producer creates a Runnable

object that encapsulates the processing code. The producer then delegates
the execution of this Runnable object to a sub-thread.

4. The asynchronous process() method returns, thereby freeing up the

processor's thread. The exchange processing continues in a separate
sub-thread.

5. The Runnable object sends the In message to the endpoint.

6. If required by the exchange pattern, the Runnable object waits for the

reply (Out or Fault message) to arrive from the endpoint. The Runnable

object remains blocked until the reply is received.

7. After the reply arrives, the Runnable object inserts the reply (Out or

Fault message) into the exchange object and then calls done() on the

asynchronous callback object. The asynchronous callback is then
responsible for processing the reply message (executed in the sub-thread).

53FUSE™ Mediation Router Programmer's Guide Version 1.6

Asynchronous Processing

How to Implement a Component

Overview This section gives a brief overview of the steps required to implement a custom
FUSE Mediation Router component.

Which interfaces do you need to
implement?

When implementing a component, it is usually necessary to implement the
following Java interfaces:

• org.apache.camel.Component

• org.apache.camel.Endpoint

• org.apache.camel.Consumer

• org.apache.camel.Producer

In addition, it can also be necessary to implement the following Java interfaces:

• org.apache.camel.Exchange

• org.apache.camel.Message

Implementation steps You typically implement a custom component as follows:

1. Implement the Component interface—A component object acts as an

endpoint factory. You extend the DefaultComponent class and

implement the createEndpoint() method.

See "Component Interface" on page 63.

2. Implement the Endpoint interface—An endpoint represents a resource

identified by a specific URI. The approach taken when implementing an
endpoint depends on whether the consumers follow an event-driven
pattern, a scheduled poll pattern, or a polling pattern.

For an event-driven pattern, implement the endpoint by extending the
DefaultEndpoint class and implementing the following methods:

FUSE™ Mediation Router Programmer's Guide Version 1.654

Chapter 4. Implementing a Component

• createProducer()

• createConsumer()

For a scheduled poll pattern, implement the endpoint by extending the
ScheduledPollEndpoint class and implementing the following
methods:

• createProducer()

• createConsumer()

For a polling pattern, implement the endpoint by extending the
DefaultPollingEndpoint class and implementing the following
methods:

• createProducer()

• createPollConsumer()

See "Endpoint Interface" on page 71.

3. Implement the Consumer interface—There are several different

approaches you can take to implementing a consumer, depending on
which pattern you need to implement (event-driven, scheduled poll, or
polling). The consumer implementation is also crucially important for
determining the threading model used for processing a message exchange.

See "Implementing the Consumer Interface" on page 92.

4. Implement the Producer interface—To implement a producer, you

extend the DefaultProducer class and implement the process()

method.

See "Producer Interface" on page 99.

5. Optionally implement the Exchange or the Message interface—The
default implementations of Exchange and Message can be used directly,

but occasionally, you might find it necessary to customize these types.

55FUSE™ Mediation Router Programmer's Guide Version 1.6

How to Implement a Component

See "Exchange Interface" on page 107 and "Message Interface"
on page 117.

Installing and configuring the
component

You can install a custom component in one of the following ways:

• Add the component directly to the CamelContext—The
CamelContext.addComponent() method adds a component

programatically. For more details, see "Adding Components to the Camel
Context" in Deployment Guide.

• Add the component using Spring configuration—The standard Spring bean

element creates a component instance. The bean's id attribute implicitly

defines the component prefix. For details, see "Configuring a Component"
on page 60.

• Configure FUSE Mediation Router to auto-discover the
component—Auto-discovery, ensures that FUSE Mediation Router
automatically loads the component on demand. For details, see "Setting
Up Auto-Discovery" on page 58.

FUSE™ Mediation Router Programmer's Guide Version 1.656

Chapter 4. Implementing a Component

http://fusesource.com/docs/router/1.6/deploy_guide/deploy_guide.pdf
http://fusesource.com/docs/router/1.6/deploy_guide/deploy_guide.pdf

Auto-Discovery and Configuration
Setting Up Auto-Discovery ... 58
Configuring a Component ... 60

57FUSE™ Mediation Router Programmer's Guide Version 1.6

Auto-Discovery and Configuration

Setting Up Auto-Discovery

Overview Auto-discovery is a mechanism that enables you to dynamically add
components to your FUSE Mediation Router application. The component URI
prefix is used as a key to load components on demand. For example, if FUSE
Mediation Router encounters the endpoint URI, activemq://MyQName, and
the ActiveMQ endpoint is not yet loaded, FUSE Mediation Router searches
for the component identified by the activemq prefix and dynamically loads
the component.

Availability of component classes Before configuring auto-discovery, you must ensure that your custom
component classes are accessible from your current classpath. Typically, you
bundle the custom component classes into a JAR file, and add the JAR file
to your classpath.

Configuring auto-discovery To enable auto-discovery of your component, create a Java properties file
named after the component prefix, component-prefix, and store that file
in the following location:

/META-INF/services/org/apache/camel/component/component-prefix

The component-prefix properties file must contain the following property
setting:

class=component-class-name

Where component-class-name is the fully-qualified name of your custom
component class. You can also define additional system property settings in
this file.

Example For example, you can enable auto-discovery for the FUSE Mediation Router
FTP component by creating the following Java properties file:

/META-INF/services/org/apache/camel/component/ftp

Which contains the following Java property setting:

class=org.apache.camel.component.file.remote.RemoteFileCompon
ent

FUSE™ Mediation Router Programmer's Guide Version 1.658

Chapter 4. Implementing a Component

Note
The Java properties file for the FTP component is already defined in
the JAR file, camel-ftp-Version.jar.

59FUSE™ Mediation Router Programmer's Guide Version 1.6

Setting Up Auto-Discovery

Configuring a Component

Overview You can add a component by configuring it in the FUSE Mediation Router
Spring configuration file, META-INF/spring/camel-context.xml. To find
the component, the component's URI prefix is matched against the ID attribute
of a bean element in the Spring configuration. If the component prefix matches
a bean element ID, FUSE Mediation Router instantiates the referenced class
and injects the properties specified in the Spring configuration.

Note
This mechanism has priority over auto-discovery. If the CamelContext
finds a Spring bean with the requisite ID, it will not attempt to find
the component using auto-discovery.

Define bean properties on your
component class

If there are any properties that you want to inject into your component class,
define them as bean properties. For example:

public class CustomComponent extends
DefaultComponent<CustomExchange> {
...
PropType getProperty() { ... }
void setProperty(PropType v) { ... }

}

The getProperty() method and the setProperty() method access the value
of property.

Configure the component in
Spring

To configure a component in Spring, edit the configuration file,
META-INF/spring/camel-context.xml, as shown in
Example 4.1 on page 60.

Example 4.1. Configuring a Component in Spring

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframe

work.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/camel/schema/spring http://act

ivemq.apache.org/camel/schema/spring/camel-spring.xsd">

FUSE™ Mediation Router Programmer's Guide Version 1.660

Chapter 4. Implementing a Component

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<package>RouteBuilderPackage</package>

</camelContext>

<bean id="component-prefix" class="component-class-name">
<property name="property" value="propertyValue"/>
</bean>

</beans>

The bean element with ID component-prefix configures the
component-class-name component. You can inject properties into the
component instance using property elements. For example, the property
element in the preceding example would inject the value, propertyValue,
into the property property by calling setProperty() on the component.

Examples Example 4.2 on page 61 shows an example of how to configure the FUSE
Mediation Router's JMS component by defining a bean element with ID equal
to jms. These settings are added to the Spring configuration file,
camel-context.xml.

Example 4.2. JMS Component Spring Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframe

work.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/camel/schema/spring http://act

ivemq.apache.org/camel/schema/spring/camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<package>org.apache.camel.example.spring</package> ❶

</camelContext>

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent"> ❷
<property name="connectionFactory"> ❸

<bean class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL"

value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>
❹

</bean>
</property>

</bean>
</beans>

61FUSE™ Mediation Router Programmer's Guide Version 1.6

Configuring a Component

❶ The CamelContext automatically instantiates any RouteBuilder classes

that it finds in the specified Java package,
org.apache.camel.example.spring.

❷ The bean element with ID, jms, configures the JMS component. The

bean ID corresponds to the component's URI prefix. For example, if a
route specifies an endpoint with the URI, jms://MyQName, FUSE

Mediation Router automatically loads the JMS component using the
settings from the jms bean element.

❸ JMS is just a wrapper for a messaging service. You must specify the
concrete implementation of the messaging system by setting the
connectionFactory property on the JmsComponent class.

❹ In this example, the concrete implementation of the JMS messaging
service is Apache ActiveMQ. The brokerURL property initializes a

connection to an ActiveMQ broker instance, where the message broker
is embedded in the local Java virtual machine (JVM). If a broker is not
already present in the JVM, ActiveMQ will instantiate it with the options
broker.persistent=false (the broker does not persist messages)

and broker.useJmx=false (the broker does not open a JMX port).

FUSE™ Mediation Router Programmer's Guide Version 1.662

Chapter 4. Implementing a Component

Chapter 5. Component Interface
This chapter describes how to implement the Component interface.

The Component Interface ... 64
Implementing the Component Interface ... 66

63FUSE™ Mediation Router Programmer's Guide Version 1.6

The Component Interface

Overview To implement a FUSE Mediation Router component, you must implement
the org.apache.camel.Component interface. An instance of Component
type provides the entry point into a custom component. That is, all of the
other objects in a component are ultimately accessible through the Component
instance. Figure 5.1 on page 64 shows the relevant Java interfaces and
classes that make up the Component inheritance hierarchy.

Figure 5.1. Component Inheritance Hierarchy

The Component interface Example 5.1 on page 64 shows the definition of the
org.apache.camel.Component interface.

Example 5.1. Component Interface

package org.apache.camel;

public interface Component<E extends Exchange> {
CamelContext getCamelContext();
void setCamelContext(CamelContext context);

Endpoint<E> createEndpoint(String uri) throws Exception;
}

Component methods The Component interface defines the following methods:

• getCamelContext() and setCamelContext()—References the

CamelContext to which this Component belongs. The setCamelContext()

FUSE™ Mediation Router Programmer's Guide Version 1.664

Chapter 5. Component Interface

method is automatically called when you add the component to a
CamelContext.

• createEndpoint()—The factory method that gets called to create

Endpoint instances for this component. The uri parameter is the endpoint

URI, which contains the details required to create the endpoint.

65FUSE™ Mediation Router Programmer's Guide Version 1.6

The Component Interface

Implementing the Component Interface

The DefaultComponent class You implement a new component by extending the
org.apache.camel.impl.DefaultComponent class, which provides some
standard functionality and default implementations for some of the methods.
In particular, the DefaultComponent class provides support for URI parsing
and for creating a scheduled executor (which is used for the scheduled poll
pattern).

URI parsing The createEndpoint(String uri) method defined in the base Component
interface takes a complete, unparsed endpoint URI as its sole argument. The
DefaultComponent class, on the other hand, defines a three-argument
version of the createEndpoint() method with the following signature:

protected abstract Endpoint<E> createEndpoint(String uri,
String remaining,
Map parameters)

throws Exception;

uri is the original, unparsed URI; remaining is the part of the URI that
remains after stripping off the component prefix at the start and cutting off
the query options at the end; and parameters contains the parsed query
options. It is this version of the createEndpoint() method that you must
override when inheriting from DefaultComponent. This has the advantage
that the endpoint URI is already parsed for you.

The following sample endpoint URI for the file component shows how URI
parsing works in practice:

file:///tmp/messages/foo?delete=true&moveNamePostfix=.old

For this URI, the following arguments are passed to the three-argument version
of createEndpoint():

Header 2Header 1

file:///tmp/messages/foo?delete=true&moveNamePostfix=.olduri

/tmp/messages/fooremaining

Two entries are set in java.util.Map:parameters

• parameter delete is boolean true

FUSE™ Mediation Router Programmer's Guide Version 1.666

Chapter 5. Component Interface

Header 2Header 1

• parameter moveNamePostfix has the string value, .old.

Parameter injection By default, the parameters extracted from the URI query options are injected
on the endpoint's bean properties. The DefaultComponent class automatically
injects the parameters for you.

For example, if you want to define a custom endpoint that supports two URI
query options: delete and moveNamePostfix. All you must do is define the
corresponding bean methods (getters and setters) in the endpoint class:

public class FileEndpoint extends ScheduledPollEndpoint<FileEx
change> {

...
public boolean isDelete() {

return delete;
}
public void setDelete(boolean delete) {

this.delete = delete;
}
...
public String getMoveNamePostfix() {

return moveNamePostfix;
}
public void setMoveNamePostfix(String moveNamePostfix) {

this.moveNamePostfix = moveNamePostfix;
}

}

It is also possible to inject URI query options into consumer parameters. For
details, see "Consumer parameter injection" on page 87.

Disabling endpoint parameter
injection

If there are no parameters defined on your Endpoint class, you can optimize
the process of endpoint creation by disabling endpoint parameter injection.
To disable parameter injection on endpoints, override the
useIntrospectionOnEndpoint() method and implement it to return false,
as follows:

protected boolean useIntrospectionOnEndpoint() {
return false;

}

67FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Component Interface

Note
The useIntrospectionOnEndpoint() method does not affect the
parameter injection that might be performed on a Consumer class.
Parameter injection at that level is controlled by the
Endpoint.configureProperties() method (see "Implementing
the Endpoint Interface" on page 76).

Scheduled executor service The DefaultComponent class is capable of initializing a scheduled executor
service, which schedules commands to execute periodically. In particular,
the scheduled executor is used in the scheduled poll pattern, where it is
responsible for driving the periodic polling of a consumer endpoint.

To instantiate a scheduled executor service, call the
DefaultComponent.getExecutorService() method, which returns a
java.util.concurrent.ScheduledThreadPoolExecutor instance that
implements the java.util.concurrent.ScheduledExecutorService
interface). The ScheduledThreadPoolExecutor instance is initialized with
a thread pool containing five threads. This implies that a scheduled poll
consumer can process up to five incoming requests in parallel.

Note
Instantiation of the thread pool is lazy, such that no executor service
is created until you actually call getExecutorService().

Validating the URI If you want to validate the URI before creating an endpoint instance, you can
override the validateURI() method from the DefaultComponent class,
which has the following signature:

protected void validateURI(String uri,
String path,
Map parameters)

throws ResolveEndpointFailedException;

FUSE™ Mediation Router Programmer's Guide Version 1.668

Chapter 5. Component Interface

If the supplied URI does not have the required format, the implementation
of validateURI() should throw the
org.apache.camel.ResolveEndpointFailedException exception.

Creating an endpoint Example 5.2 on page 69 outlines how to implement the
DefaultComponent.createEndpoint() method, which is responsible for
creating endpoint instances on demand.

Example 5.2. Implementation of createEndpoint()

public class CustomComponent extends DefaultComponent<CustomExchange> { ❶
...
protected Endpoint<CustomExchange> createEndpoint(String uri, String remaining, Map

parameters) throws Exception { ❷
CustomEndpoint result = new CustomEndpoint(uri, this); ❸
// ...
return result;

}
}

❶ The CustomComponent is the name of your custom component class,

which is defined by extending the DefaultComponent class. The type

argument, CustomExchange, can be a custom exchange implementation,

but you can also just use Exchange here.

❷ When extending DefaultComponent, you must implement the

createEndpoint() method with three arguments (see "URI parsing"

on page 66).
❸ Create an instance of your custom endpoint type, CustomEndpoint, by

calling its constructor. At a minimum, this constructor takes a copy of
the original URI string, uri, and a reference to this component instance,

this.

Example Example 5.3 on page 69 shows the complete implementation of the
FileComponent class, which is taken from the FUSE Mediation Router file
component implementation.

Example 5.3. FileComponent Implementation

package org.apache.camel.component.file;

import org.apache.camel.CamelContext;

69FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Component Interface

import org.apache.camel.Endpoint;
import org.apache.camel.impl.DefaultComponent;

import java.io.File;
import java.util.Map;

public class FileComponent extends DefaultComponent<FileExchange> {
public static final String HEADER_FILE_NAME = "org.apache.camel.file.name";

public FileComponent() { ❶
}

public FileComponent(CamelContext context) { ❷
super(context);

}

protected Endpoint<FileExchange> createEndpoint(String uri, String remaining, Map
parameters) throws Exception { ❸

File file = new File(remaining);
FileEndpoint result = new FileEndpoint(file, uri, this);
return result;

}
}

❶ Always define a no-argument constructor for the component class in
order to facilitate automatic instantiation of the class.

❷ A constructor that takes the parent CamelContext instance as an

argument is convenient when creating a component instance by
programming.

❸ The implementation of the FileComponent.createEndpoint()method

follows the pattern described in Example 5.2 on page 69. The
implementation creates a FileEndpoint object.

FUSE™ Mediation Router Programmer's Guide Version 1.670

Chapter 5. Component Interface

Chapter 6. Endpoint Interface
This chapter describes how to implement the Endpoint interface, which is an essential step in the implementation
of a FUSE Mediation Router component.

The Endpoint Interface .. 72
Implementing the Endpoint Interface .. 76

71FUSE™ Mediation Router Programmer's Guide Version 1.6

The Endpoint Interface

Overview An instance of org.apache.camel.Endpoint type encapsulates an endpoint
URI, and it also serves as a factory for Consumer, Producer, and Exchange
objects. There are three different approaches to implementing an endpoint:

• Event-driven

• scheduled poll

• polling

These endpoint implementation patterns complement the corresponding
patterns for implementing a consumer—see "Implementing the Consumer
Interface" on page 92.

Figure 6.1 on page 73 shows the relevant Java interfaces and classes that
make up the Endpoint inheritance hierarchy.

FUSE™ Mediation Router Programmer's Guide Version 1.672

Chapter 6. Endpoint Interface

Figure 6.1. Endpoint Inheritance Hierarchy

The Endpoint interface Example 6.1 on page 73 shows the definition of the
org.apache.camel.Endpoint interface.

Example 6.1. Endpoint Interface

package org.apache.camel;

public interface Endpoint<E extends Exchange> {
boolean isSingleton();

String getEndpointUri();

CamelContext getCamelContext();
void setCamelContext(CamelContext context);

void configureProperties(Map options);

boolean isLenientProperties();

E createExchange();
E createExchange(ExchangePattern pattern);

73FUSE™ Mediation Router Programmer's Guide Version 1.6

The Endpoint Interface

E createExchange(Exchange exchange);

Producer<E> createProducer() throws Exception;

Consumer<E> createConsumer(Processor processor) throws
Exception;

PollingConsumer<E> createPollingConsumer() throws Excep
tion;
}

Endpoint methods The Endpoint interface defines the following methods:

• isSingleton()—Returns true, if you want to ensure that each URI maps
to a single endpoint within a CamelContext. When this property is true,
multiple references to the identical URI within your routes always refer to
a single endpoint instance. When this property is false, on the other hand,
multiple references to the same URI within your routes refer to distinct
endpoint instances. Each time you refer to the URI in a route, a new
endpoint instance is created.

• getEndpointUri()—Returns the endpoint URI of this endpoint.

• getCamelContext()—return a reference to the CamelContext instance
to which this endpoint belongs.

• setCamelContext()—Sets the CamelContext instance to which this
endpoint belongs.

• configureProperties()—Stores a copy of the parameter map that is
used to inject parameters when creating a new Consumer instance.

• isLenientProperties()—Returns true to indicate that the URI is
allowed to contain unknown parameters (that is, parameters that cannot
be injected on the Endpoint or the Consumer class). Normally, this method
should be implemented to return false.

• createExchange()—An overloaded method with the following variants:

• E createExchange()—Creates a new exchange instance with a default

exchange pattern setting.

• E createExchange(ExchangePattern pattern)—Creates a new

exchange instance with the specified exchange pattern.

FUSE™ Mediation Router Programmer's Guide Version 1.674

Chapter 6. Endpoint Interface

• E createExchange(Exchange exchange)—Converts the given

exchange argument to the type of exchange needed for this endpoint.

If the given exchange is not already of the correct type, this method
copies it into a new instance of the correct type. A default implementation
of this method is provided in the DefaultEndpoint class.

• createProducer()—Factory method used to create new Producer
instances.

• createConsumer()—Factory method to create new event-driven consumer
instances. The processor argument is a reference to the first processor
in the route.

• createPollingConsumer()—Factory method to create new polling
consumer instances.

Endpoint singletons In order to avoid unnecessary overhead, it is a good idea to create a single
endpoint instance for all endpoints that have the same URI (within a
CamelContext). You can enforce this condition by implementing
isSingleton() to return true.

Note
In this context, same URI means that two URIs are the same when
compared using string equality. In principle, it is possible to have
two URIs that are equivalent, though represented by different strings.
In that case, the URIs would not be treated as the same.

75FUSE™ Mediation Router Programmer's Guide Version 1.6

The Endpoint Interface

Implementing the Endpoint Interface

Alternative ways of implementing
an endpoint

The following alternative endpoint implementation patterns are supported:

• "Event-driven endpoint implementation"

• "Scheduled poll endpoint implementation"

• "Polling endpoint implementation"

Event-driven endpoint
implementation

If your custom endpoint conforms to the event-driven pattern (see "Consumer
Patterns and Threading" on page 47), it is implemented by extending the
abstract class, org.apache.camel.impl.DefaultEndpoint, as shown in
Example 6.2 on page 76.

Example 6.2. Implementing DefaultEndpoint

import java.util.Map;
import java.util.concurrent.BlockingQueue;

import org.apache.camel.Component;
import org.apache.camel.Consumer;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultEndpoint;

public class CustomEndpoint extends DefaultEndpoint<CustomExchange> { ❶

public CustomEndpoint(String endpointUri, Component component) { ❷
super(endpointUri, component);
// Do any other initialization...

}

public Producer createProducer() throws Exception { ❸
return new CustomProducer(this);

}

public Consumer createConsumer(Processor processor) throws Exception { ❹
return new CustomConsumer(this, processor);

}

public boolean isSingleton() {
return true;

FUSE™ Mediation Router Programmer's Guide Version 1.676

Chapter 6. Endpoint Interface

}

// Implement the following two methods, only if you need a custom exchange class.
//
public CustomExchange createExchange() { ❺

return new CustomExchange(getCamelContext(), getExchangePattern());
}

public CustomExchange createExchange(ExchangePattern pattern) {
return new CustomExchange(getCamelContext(), pattern);

}
}

❶ Implement an event-driven custom endpoint, CustomEndpoint, by

extending the DefaultEndpoint class.

❷ You must have at least one constructor that takes the endpoint URI,
endpointUri, and the parent component reference, component, as

arguments.
❸ Implement the createProducer() factory method to create producer

endpoints.
❹ Implement the createConsumer() factory method to create event-driven

consumer instances.

Important
Do not override the createPollingConsumer() method.

❺ If you intend to customize the exchange implementation, you should
override the createExchange() and the

createExchange(ExchangePattern) methods, to ensure that the

correct exchange type is created. If you do not override these methods,
the implementations inherited from DefaultEndpoint will create a

DefaultExchange instance.

The DefaultEndpoint class provides default implementations of the following
methods, which you might find useful when writing your custom endpoint
code:

• getEndpointUri()—Returns the endpoint URI.

• getCamelContext()—Returns a reference to the CamelContext.

• getComponent()—Returns a reference to the parent component.

77FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Endpoint Interface

• getExecutorService()—Returns a reference to a scheduled executor
service. The scheduled executor is a
java.util.concurrent.ScheduledExecutorService object.

• createPollingConsumer()—Creates a polling consumer. The created
polling consumer's functionality is based on the event-driven consumer. If
you override the event-driven consumer method, createConsumer(), you
get a polling consumer implementation for free.

• createExchange(Exchange e)—Converts the given exchange object, e,
to the type required for this endpoint. This method creates a new endpoint
using the overridden createExchange() endpoints. This ensures that the
method also works for custom exchange types.

Scheduled poll endpoint
implementation

If your custom endpoint conforms to the scheduled poll pattern (see
"Consumer Patterns and Threading" on page 47) it is implemented by
inheriting from the abstract class,
org.apache.camel.impl.ScheduledPollEndpoint, as shown in
Example 6.3 on page 78.

Example 6.3. ScheduledPollEndpoint Implementation

import org.apache.camel.Consumer;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.ExchangePattern;
import org.apache.camel.Message;
import org.apache.camel.impl.ScheduledPollEndpoint;

public class CustomEndpoint extends ScheduledPollEndpoint<CustomExchange> { ❶

protected CustomEndpoint(String endpointUri, CustomComponent component) { ❷
super(endpointUri, component);
// Do any other initialization...

}

public Producer<CustomExchange> createProducer() throws Exception { ❸
Producer<CustomExchange> result = new CustomProducer(this);
return result;

}

public Consumer<CustomExchange> createConsumer(Processor processor) throws Exception {
❹

Consumer<CustomExchange> result = new CustomConsumer(this, processor);
configureConsumer(result); ❺

FUSE™ Mediation Router Programmer's Guide Version 1.678

Chapter 6. Endpoint Interface

return result;
}

public boolean isSingleton() {
return true;

}

// Implement the following two methods, only if you need a custom exchange class.
//
public CustomExchange createExchange() { ❻

return new CustomExchange(...);
}

public CustomExchange createExchange(ExchangePattern pattern) {
return new CustomExchange(getCamelContext(), pattern);

}
}

❶ Implement a scheduled poll custom endpoint, CustomEndpoint, by

extending the ScheduledPollEndpoint class.

❷ You must to have at least one constructor that takes the endpoint URI,
endpointUri, and the parent component reference, component, as

arguments.
❸ Implement the createProducer() factory method to create a producer

endpoint.
❹ Implement the createConsumer() factory method to create a scheduled

poll consumer instance.

Important
Do not override the createPollingConsumer() method.

❺ The configureConsumer() method, defined in the

ScheduledPollEndpoint base class, is responsible for injecting

consumer query options into the consumer. See "Consumer parameter
injection" on page 87.

❻ If you intend to customize the exchange implementation, you should
override the createExchange() and the

createExchange(ExchangePattern) methods, to ensure that the

correct exchange type is created. If you do not override these methods,

79FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Endpoint Interface

the implementations inherited from DefaultEndpoint will create a

DefaultExchange instance.

Polling endpoint implementation If your custom endpoint conforms to the polling consumer pattern (see
"Consumer Patterns and Threading" on page 47), it is implemented by
inheriting from the abstract class,
org.apache.camel.impl.DefaultPollingEndpoint, as shown in
Example 6.4 on page 80.

Example 6.4. DefaultPollingEndpoint Implementation

import org.apache.camel.Consumer;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.ExchangePattern;
import org.apache.camel.Message;
import org.apache.camel.impl.DefaultPollingEndpoint;

public class CustomEndpoint extends DefaultPollingEndpoint<CustomExchange> {
...
public PollingConsumer<CustomExchange> createPollingConsumer() throws Exception {

PollingConsumer<CustomExchange> result = new CustomConsumer(this);
configureConsumer(result);
return result;

}

// Do NOT implement createConsumer(). It is already implemented in DefaultPollingEndpoint.

...
}

Because this CustomEndpoint class is a polling endpoint, you must
implement the createPollingConsumer() method instead of the
createConsumer() method. The consumer instance returned from
createPollingConsumer() must inherit from the PollingConsumer
interface. For details of how to implement a polling consumer, see "Polling
consumer implementation" on page 95.

Apart from the implementation of the createPollingConsumer() method,
the steps for implementing a DefaultPollingEndpoint are similar to the

FUSE™ Mediation Router Programmer's Guide Version 1.680

Chapter 6. Endpoint Interface

steps for implementing a ScheduledPollEndpoint. See
Example 6.3 on page 78 for details.

Implementing the
BrowsableEndpoint interface

If you want to expose the list of exchange instances that are pending in the
current endpoint, you can implement the
org.apache.camel.spi.BrowsableEndpoint interface, as shown in
Example 6.5 on page 81. It makes sense to implement this interface if the
endpoint performs some sort of buffering of incoming events. For example,
the FUSE Mediation Router SEDA endpoint implements the
BrowsableEndpoint interface—see Example 6.6 on page 81.

Example 6.5. BrowsableEndpoint Interface

package org.apache.camel.spi;

import java.util.List;

import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;

public interface BrowsableEndpoint<T extends Exchange> extends Endpoint<T> {
List<Exchange> getExchanges();

}

Example Example 6.6 on page 81 shows the implementation of SedaEndpoint, which
is taken from the FUSE Mediation Router SEDA component implementation.
The SEDA endpoint is an example of an event-driven endpoint. Incoming
events are stored in a FIFO queue (an instance of
java.util.concurrent.BlockingQueue) and a SEDA consumer starts up
a thread to read and process the events. The events themselves are
represented by org.apache.camel.Exchange objects.

Example 6.6. SedaEndpoint Implementation

package org.apache.camel.component.seda;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.BlockingQueue;

import org.apache.camel.Component;
import org.apache.camel.Consumer;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;

81FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Endpoint Interface

import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultEndpoint;
import org.apache.camel.spi.BrowsableEndpoint;

public class SedaEndpoint extends DefaultEndpoint<Exchange> implements BrowsableEndpoint<Ex
change> { ❶

private BlockingQueue<Exchange> queue;

public SedaEndpoint(String endpointUri, Component component, BlockingQueue<Exchange>
queue) { ❷

super(endpointUri, component);
this.queue = queue;

}

public SedaEndpoint(String uri, SedaComponent component, Map parameters) { ❸
this(uri, component, component.createQueue(uri, parameters));

}

public Producer createProducer() throws Exception { ❹
return new CollectionProducer(this, getQueue());

}

public Consumer createConsumer(Processor processor) throws Exception { ❺
return new SedaConsumer(this, processor);

}

public BlockingQueue<Exchange> getQueue() { ❻
return queue;

}

public boolean isSingleton() { ❼
return true;

}

public List<Exchange> getExchanges() { ❽
return new ArrayList<Exchange>(getQueue());

}
}

❶ The SedaEndpoint class follows the pattern for implementing an

event-driven endpoint by extending the DefaultEndpoint class. The

SedaEndpoint class also implements the BrowsableEndpoint

interface, which provides access to the list of exchange objects in the
queue.

FUSE™ Mediation Router Programmer's Guide Version 1.682

Chapter 6. Endpoint Interface

❷ Following the usual pattern for an event-driven consumer, SedaEndpoint

defines a constructor that takes an endpoint argument, endpointUri,

and a component reference argument, component.

❸ Another constructor is provided, which delegates queue creation to the
parent component instance.

❹ The createProducer() factory method creates an instance of

CollectionProducer, which is a producer implementation that adds

events to the queue.
❺ The createConsumer() factory method creates an instance of

SedaConsumer, which is responsible for pulling events off the queue

and processing them.
❻ The getQueue() method returns a reference to the queue.

❼ The isSingleton() method returns true, indicating that a single

endpoint instance should be created for each unique URI string.
❽ The getExchanges() method implements the corresponding abstract

method from BrowsableEndpoint.

83FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Endpoint Interface

FUSE™ Mediation Router Programmer's Guide Version 1.684

Chapter 7. Consumer Interface
This chapter describes how to implement the Consumer interface, which is an essential step in the implementation
of a FUSE Mediation Router component.

The Consumer Interface .. 86
Implementing the Consumer Interface ... 92

85FUSE™ Mediation Router Programmer's Guide Version 1.6

The Consumer Interface

Overview An instance of org.apache.camel.Consumer type represents a source
endpoint in a route. There are several different ways of implementing a
consumer (see "Consumer Patterns and Threading" on page 47), and this
degree of flexibility is reflected in the inheritance hierarchy (see
Figure 7.1 on page 87), which includes several different base classes for
implementing a consumer.

FUSE™ Mediation Router Programmer's Guide Version 1.686

Chapter 7. Consumer Interface

Figure 7.1. Consumer Inheritance Hierarchy

Consumer parameter injection For consumers that follow the scheduled poll pattern (see "Scheduled poll
pattern" on page 48), FUSE Mediation Router provides support for injecting
parameters into consumer instances. For example, consider the following
endpoint URI for a component identified by the custom prefix:

custom:destination?consumer.myConsumerParam

FUSE Mediation Router provides support for automatically injecting query
options of the form consumer.*. For the consumer.myConsumerParam
parameter, you need to define corresponding setter and getter methods on
the Consumer implementation class as follows:

87FUSE™ Mediation Router Programmer's Guide Version 1.6

The Consumer Interface

public class CustomConsumer<E extends Exchange> extends ScheduledPollConsumer<E> {
...
String getMyConsumerParam() { ... }
void setMyConsumerParam(String s) { ... }
...

}

Where the getter and setter methods follow the usual Java bean conventions
(including capitalizing the first letter of the property name).

In addition to defining the bean methods in your Consumer implementation,
you must also remember to call the configureConsumer() method in the
implementation of Endpoint.createConsumer(). See "Scheduled poll
endpoint implementation" on page 78). Example 7.1 on page 88 shows an
example of a createConsumer() method implementation, taken from the
FileEndpoint class in the file component:

Example 7.1. FileEndpoint createConsumer() Implementation

...
public class FileEndpoint extends ScheduledPollEndpoint<FileExchange> {

...
public Consumer<FileExchange> createConsumer(Processor processor) throws Exception {

Consumer<FileExchange> result = new FileConsumer(this, processor);
configureConsumer(result);
return result;

}
...
}

At run time, consumer parameter injection works as follows:

1. When the endpoint is created, the default implementation of
DefaultComponent.createEndpoint(String uri) parses the URI to

extract the consumer parameters, and stores them in the endpoint instance
by calling ScheduledPollEndpoint.configureProperties().

2. When createConsumer() is called, the method implementation calls

configureConsumer() to inject the consumer parameters (see

Example 7.1 on page 88).

FUSE™ Mediation Router Programmer's Guide Version 1.688

Chapter 7. Consumer Interface

3. The configureConsumer() method uses Java reflection to call the setter

methods whose names match the relevant options after the consumer.

prefix has been stripped off.

Scheduled poll parameters A consumer that follows the scheduled poll pattern automatically supports
the consumer parameters shown in Table 7.1 on page 89 (which can appear
as query options in the endpoint URI).

Table 7.1. Scheduled Poll Parameters

DescriptionDefaultName

Delay, in milliseconds, before the first poll.1000initialDelay

Depends on the value of the useFixedDelay

flag (time unit is milliseconds).

500delay

If false, the delay parameter is interpreted
as the polling period. Polls will occur at

falseuseFixedDelay

initialDelay, initialDelay+delay,
initialDelay+2*delay, and so on.

If true, the delay parameter is interpreted as
the time elapsed between the previous
execution and the next execution. Polls will
occur at initialDelay,
initialDelay+[ProcessingTime]+delay, and
so on. Where ProcessingTime is the time
taken to process an exchange object in the
current thread.

Converting between event-driven
and polling consumers

FUSE Mediation Router provides two special consumer implementations
which can be used to convert back and forth between an event-driven
consumer and a polling consumer. The following conversion classes are
provided:

• org.apache.camel.impl.EventDrivenPollingConsumer—Converts

an event-driven consumer into a polling consumer instance.

• org.apache.camel.impl.DefaultScheduledPollConsumer—Converts

a polling consumer into an event-driven consumer instance.

89FUSE™ Mediation Router Programmer's Guide Version 1.6

The Consumer Interface

In practice, these classes are used to simplify the task of implementing an
Endpoint type. The Endpoint interface defines the following two methods
for creating a consumer instance:

package org.apache.camel;

public interface Endpoint<E extends Exchange> {
...
Consumer<E> createConsumer(Processor processor) throws

Exception;
PollingConsumer<E> createPollingConsumer() throws Excep

tion;
}

createConsumer() returns an event-driven consumer and
createPollingConsumer() returns a polling consumer. You would only
implement one these methods. For example, if you are following the
event-driven pattern for your consumer, you would implement the
createConsumer() method provide a method implementation for
createPollingConsumer() that simply raises an exception. With the help
of the conversion classes, however, FUSE Mediation Router is able to provide
a more useful default implementation.

For example, if you want to implement your consumer according to the
event-driven pattern, you implement the endpoint by extending
DefaultEndpoint and implementing the createConsumer() method. The
implementation of createPollingConsumer() is inherited from
DefaultEndpoint, where it is defined as follows:

public PollingConsumer<E> createPollingConsumer() throws Ex
ception {

return new EventDrivenPollingConsumer<E>(this);
}

The EventDrivenPollingConsumer constructor takes a reference to the
event-driven consumer, this, effectively wrapping it and converting it into a
polling consumer. To implement the conversion, the
EventDrivenPollingConsumer instance buffers incoming events and makes
them available on demand through the receive(), the receive(long
timeout), and the receiveNoWait() methods.

Analogously, if you are implementing your consumer according to the polling
pattern, you implement the endpoint by extending DefaultPollingEndpoint
and implementing the createPollingConsumer() method. In this case,
the implementation of the createConsumer() method is inherited from
DefaultPollingEndpoint, and the default implementation returns a

FUSE™ Mediation Router Programmer's Guide Version 1.690

Chapter 7. Consumer Interface

DefaultScheduledPollConsumer instance (which converts the polling
consumer into an event-driven consumer).

91FUSE™ Mediation Router Programmer's Guide Version 1.6

The Consumer Interface

Implementing the Consumer Interface

Alternative ways of implementing
a consumer

You can implement a consumer in one of the following ways:

• "Event-driven consumer implementation"

• "Scheduled poll consumer implementation"

• "Polling consumer implementation"

Event-driven consumer
implementation

In an event-driven consumer, processing is driven explicitly by external events.
The events are received through an event-listener interface, where the listener
interface is specific to the particular event source.

Example 7.2 on page 92 shows the implementation of the JMXConsumer
class, which is taken from the FUSE Mediation Router JMX component
implementation. The JMXConsumer class is an example of an event-driven
consumer, which is implemented by inheriting from the
org.apache.camel.impl.DefaultConsumer class. In the case of the
JMXConsumer example, events are represented by calls on the
NotificationListener.handleNotification() method, which is a
standard way of receiving JMX events. In order to receive these JMX events,
it is necessary to implement the NotificationListener interface and
override the handleNotification() method, as shown in
Example 7.2 on page 92.

Example 7.2. JMXConsumer Implementation

package org.apache.camel.component.jmx;

import javax.management.Notification;
import javax.management.NotificationListener;
import org.apache.camel.Processor;
import org.apache.camel.impl.DefaultConsumer;

public class JMXConsumer extends DefaultConsumer implements
NotificationListener { ❶

JMXEndpoint jmxEndpoint;

public JMXConsumer(JMXEndpoint endpoint, Processor pro
cessor) { ❷

super(endpoint, processor);

FUSE™ Mediation Router Programmer's Guide Version 1.692

Chapter 7. Consumer Interface

this.jmxEndpoint = endpoint;
}

public void handleNotification(Notification notification,
Object handback) { ❸

try {
getProcessor().process(jmxEndpoint.createEx

change(notification)); ❹
} catch (Throwable e) {

handleException(e); ❺
}

}
}

❶ The JMXConsumer pattern follows the usual pattern for event-driven

consumers by extending the DefaultConsumer class. Additionally,

because this consumer is designed to receive events from JMX (which
are represented by JMX notifications), it is necessary to implement the
NotificationListener interface.

❷ You must implement at least one constructor that takes a reference to
the parent endpoint, endpoint, and a reference to the next processor

in the chain, processor, as arguments.

❸ The handleNotification() method (which is defined in

NotificationListener) is automatically invoked by JMX whenever

a JMX notification arrives. The body of this method should contain the
code that performs the consumer's event processing. Because the
handleNotification() call originates from the JMX layer, the

consumer's threading model is implicitly controlled by the JMX layer,
not by the JMXConsumer class.

Note
The handleNotification() method is specific to the JMX
example. When implementing your own event-driven consumer,
you must identify an analogous event listener method to
implement in your custom consumer.

❹ This line of code combines two steps. First, the JMX notification object
is converted into an exchange object, which is the generic representation
of an event in FUSE Mediation Router. The, the newly created exchange
object is passed to the next processor in the route (invoked
synchronously).

93FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Consumer Interface

❺ The handleException() method is implemented by the

DefaultConsumer base class. By default, it handles exceptions using

the org.apache.camel.impl.LoggingExceptionHandler class.

Scheduled poll consumer
implementation

In a scheduled poll consumer, polling events are automatically generated by
a timer class, java.util.concurrent.ScheduledExecutorService. To
receive the generated polling events, you must implement the
ScheduledPollConsumer.poll() method (see "Consumer Patterns and
Threading" on page 47).

Example 7.3 on page 94 shows how to implement a consumer that follows
the scheduled poll pattern, which is implemented by extending the
ScheduledPollConsumer class.

Example 7.3. ScheduledPollConsumer Implementation

import java.util.concurrent.ScheduledExecutorService;

import org.apache.camel.Consumer;
import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.Message;
import org.apache.camel.PollingConsumer;
import org.apache.camel.Processor;

import org.apache.camel.impl.ScheduledPollConsumer;

public class CustomConsumer<E extends Exchange> extends ScheduledPollConsumer<E> { ❶
private final CustomEndpoint endpoint;

public CustomConsumer(CustomEndpoint endpoint, Processor processor) { ❷
super(endpoint, processor);
this.endpoint = endpoint;

}

protected void poll() throws Exception { ❸
E exchange = /* Receive exchange object ... */;

// Example of a synchronous processor.
getProcessor().process(exchange); ❹

}

@Override
protected void doStart() throws Exception { ❺

FUSE™ Mediation Router Programmer's Guide Version 1.694

Chapter 7. Consumer Interface

// Pre-Start:
// Place code here to execute just before start of processing.
super.doStart();
// Post-Start:
// Place code here to execute just after start of processing.

}

@Override
protected void doStop() throws Exception { ❻

// Pre-Stop:
// Place code here to execute just before processing stops.
super.doStop();
// Post-Stop:
// Place code here to execute just after processing stops.

}
}

❶ Implement a scheduled poll consumer class, CustomConsumer, by

extending the org.apache.camel.impl.ScheduledPollConsumer

class.
❷ You must implement at least one constructor that takes a reference to

the parent endpoint, endpoint, and a reference to the next processor

in the chain, processor, as arguments.

❸ Override the poll() method to receive the scheduled polling events.

This is where you should put the code that retrieves and processes
incoming events (represented by exchange objects).

❹ In this example, the event is processed synchronously. If you want to
process events asynchronously, you should use a reference to an
asynchronous processor instead, by calling getAsyncProcessor(). For

details of how to process events asynchronously, see "Asynchronous
Processing" on page 51.

❺ (Optional) If you want some lines of code to execute as the consumer
is starting up, override the doStart() method as shown.

❻ (Optional) If you want some lines of code to execute as the consumer
is stopping, override the doStop() method as shown.

Polling consumer implementation Example 7.4 on page 96 outlines how to implement a consumer that follows
the polling pattern, which is implemented by extending the
PollingConsumerSupport class.

95FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Consumer Interface

Example 7.4. PollingConsumerSupport Implementation

import org.apache.camel.Exchange;
import org.apache.camel.RuntimeCamelException;
import org.apache.camel.impl.PollingConsumerSupport;

public class CustomConsumer extends PollingConsumerSupport {
❶

private final CustomEndpoint endpoint;

public CustomConsumer(CustomEndpoint endpoint) { ❷
super(endpoint);
this.endpoint = endpoint;

}

public Exchange receiveNoWait() { ❸
Exchange exchange = /* Obtain an exchange object. */;

// Further processing ...
return exchange;

}

public Exchange receive() { ❹
// Blocking poll ...

}

public Exchange receive(long timeout) { ❺
// Poll with timeout ...

}

protected void doStart() throws Exception { ❻
// Code to execute whilst starting up.

}

protected void doStop() throws Exception {
// Code to execute whilst shutting down.

}
}

❶ Implement your polling consumer class, CustomConsumer, by extending

the org.apache.camel.impl.PollingConsumerSupport class.

❷ You must implement at least one constructor that takes a reference to
the parent endpoint, endpoint, as an argument. A polling consumer

does not need a reference to a processor instance.

FUSE™ Mediation Router Programmer's Guide Version 1.696

Chapter 7. Consumer Interface

❸ The receiveNoWait() method should implement a non-blocking

algorithm for retrieving an event (exchange object). If no event is
available, it should return null.

❹ The receive() method should implement a blocking algorithm for

retrieving an event. This method can block indefinitely, if events remain
unavailable.

❺ The receive(long timeout) method implements an algorithm that

can block for as long as the specified timeout (typically specified in units
of milliseconds).

❻ If you want to insert code that executes while a consumer is starting up
or shutting down, implement the doStart() method and the doStop()

method, respectively.

97FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Consumer Interface

FUSE™ Mediation Router Programmer's Guide Version 1.698

Chapter 8. Producer Interface
This chapter describes how to implement the Producer interface, which is an essential step in the implementation
of a FUSE Mediation Router component.

The Producer Interface .. 100
Implementing the Producer Interface ... 103

99FUSE™ Mediation Router Programmer's Guide Version 1.6

The Producer Interface

Overview An instance of org.apache.camel.Producer type represents a target
endpoint in a route. The role of the producer is to send requests (In messages)
to a specific physical endpoint and to receive the corresponding response
(Out or Fault message). A Producer object is essentially a special kind of
Processor that appears at the end of a processor chain (equivalent to a
route). Figure 8.1 on page 100 shows the inheritance hierarchy for producers.

Figure 8.1. Producer Inheritance Hierarchy

The Producer interface Example 8.1 on page 100 shows the definition of the
org.apache.camel.Producer interface.

Example 8.1. Producer Interface

package org.apache.camel;

public interface Producer<E extends Exchange> extends Pro
cessor, Service {

Endpoint<E> getEndpoint();

E createExchange();

E createExchange(ExchangePattern pattern);

FUSE™ Mediation Router Programmer's Guide Version 1.6100

Chapter 8. Producer Interface

E createExchange(E exchange);
}

Producer methods The Producer interface defines the following methods:

• process() (inherited from Processor)—The most important method. A
producer is essentially a special type of processor that sends a request to
an endpoint, instead of forwarding the exchange object to another processor.
By overriding the process() method, you define how the producer sends
and receives messages to and from the relevant endpoint.

• getEndpoint()—Returns a reference to the parent endpoint instance.

• createExchange()—These overloaded methods are analogous to the
corresponding methods defined in the Endpoint interface. Normally, these
methods delegate to the corresponding methods defined on the parent
Endpoint instance (this is what the DefaultEndpoint class does by
default). Occasionally, you might need to override these methods.

Asynchronous processing Processing an exchange object in a producer—which usually involves sending
a message to a remote destination and waiting for a reply—can potentially
block for a significant length of time. If you want to avoid blocking the current
thread, you can opt to implement the producer as an asynchronous processor.
The asynchronous processing pattern decouples the preceding processor from
the producer, so that the process() method returns without delay. See
"Asynchronous Processing" on page 51.

When implementing a producer, you can support the asynchronous processing
model by implementing the org.apache.camel.AsyncProcessor interface.
On its own, this is not enough to ensure that the asynchronous processing
model will be used: it is also necessary for the preceding processor in the
chain to call the asynchronous version of the process() method. The
definition of the AsyncProcessor interface is shown in
Example 8.2 on page 101.

Example 8.2. AsyncProcessor Interface

package org.apache.camel;

public interface AsyncProcessor extends Processor {
boolean process(Exchange exchange, AsyncCallback callback);

}

101FUSE™ Mediation Router Programmer's Guide Version 1.6

The Producer Interface

The asynchronous version of the process() method takes an extra argument,
callback, of org.apache.camel.AsyncCallback type. The corresponding
AsyncCallback interface is defined as shown in Example 8.3 on page 102.

Example 8.3. AsyncCallback Interface

package org.apache.camel;

public interface AsyncCallback {
void done(boolean doneSynchronously);

}

The caller of AsyncProcessor.process() must provide an implementation
of AsyncCallback to receive the notification that processing has finished.
The AsyncCallback.done() method takes a boolean argument that indicates
whether the processing was performed synchronously or not. Normally, the
flag would be false, to indicate asynchronous processing. In some cases,
however, it can make sense for the producer not to process asynchronously
(in spite of being asked to do so). For example, if the producer knows that
the processing of the exchange will complete rapidly, it could optimise the
processing by doing it synchronously. In this case, the doneSynchronously
flag should be set to true.

ExchangeHelper class When implementing a producer, you might find it helpful to call some of the
methods in the org.apache.camel.util.ExchangeHelper utility class.
For full details of the ExchangeHelper class, see "The ExchangeHelper
Class" on page 31.

FUSE™ Mediation Router Programmer's Guide Version 1.6102

Chapter 8. Producer Interface

Implementing the Producer Interface

Alternative ways of implementing
a producer

You can implement a producer in one of the following ways:

• "How to implement a synchronous producer" .

• "How to implement an asynchronous producer" .

How to implement a synchronous
producer

Example 8.4 on page 103 outlines how to implement a synchronous producer.
In this case, call to Producer.process() blocks until a reply (either an Out
message or a Fault message) is received.

Example 8.4. DefaultProducer Implementation

import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultProducer;

public class CustomProducer extends DefaultProducer { ❶

public CustomProducer(Endpoint endpoint) { ❷
super(endpoint);
// Perform other initialization tasks...

}

public void process(Exchange exchange) throws Exception
{ ❸

// Process exchange synchronously.
// ...

}
}

❶ Implement a custom synchronous producer class, CustomProducer,

by extending the org.apache.camel.impl.DefaultProducer class.

❷ Implement a constructor that takes a reference to the parent endpoint.

❸ The process() method implementation represents the core of the

producer code. The implementation of the process() method is entirely

dependent on the type of component that you are implementing. In
outline, the process() method is normally implemented as follows:

103FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Producer Interface

• If the exchange contains an In message, and if this is consistent with
the specified exchange pattern, then send the In message to the
designated endpoint.

• If the exchange pattern anticipates the receipt of an Out message or
a Fault message, then wait until the Out message or the Fault message
has been received. This typically causes the process() method to

block for a significant length of time.

• When a reply is received, call either exchange.setOut() or

exchange.setFault() to attach the reply to the exchange object

and then return.

How to implement an
asynchronous producer

Example 8.5 on page 104 outlines how to implement an asynchronous
producer. In this case, you must implement both a synchronous process()
method and an asynchronous process() method (which takes an additional
AsyncCallback argument).

Example 8.5. CollectionProducer Implementation

import org.apache.camel.AsyncCallback;
import org.apache.camel.AsyncProcessor;
import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultProducer;

public class CustomProducer extends DefaultProducer implements AsyncProcessor { ❶

public CustomProducer(Endpoint endpoint) { ❷
super(endpoint);
// ...

}

public void process(Exchange exchange) throws Exception { ❸
// Process exchange synchronously.
// ...

}

public boolean process(Exchange exchange, AsyncCallback callback) { ❹
// Process exchange asynchronously.
CustomProducerTask task = new CustomProducerTask(exchange, callback);
// Process 'task' in a separate thread...
// ...

FUSE™ Mediation Router Programmer's Guide Version 1.6104

Chapter 8. Producer Interface

return false; ❺
}

}

public class CustomProducerTask implements Runnable { ❻
private Exchange exchange;
private AsyncCallback callback;

public CustomProducerTask(Exchange exchange, AsyncCallback callback) {
this.exchange = exchange;
this.callback = callback;

}

public void run() { ❼
// Process exchange.
// ...
callback.done(false);

}
}

❶ Implement a custom asynchronous producer class, CustomProducer,

by extending the org.apache.camel.impl.DefaultProducer class,

and implementing the AsyncProcessor interface.

❷ Implement a constructor that takes a reference to the parent endpoint.

❸ Implement the synchronous process() method.

❹ Implement the asynchronous process() method. You can implement

the asynchronous method in several ways. The approach shown here is
to create a java.lang.Runnable instance, task, that represents the

code that runs in a sub-thread. You then use the Java threading API to
run the task in a sub-thread (for example, by creating a new thread or
by allocating the task to an existing thread pool).

❺ Normally, you return false from the asynchronous process() method,

to indicate that the exchange was processed asynchronously.
❻ The CustomProducerTask class encapsulates the processing code that

runs in a sub-thread. This class must store a copy of the Exchange

object, exchange, and the AsyncCallback object, callback, as private

member variables.
❼ The run() method contains the code that sends the In message to the

producer endpoint and waits to receive the reply, if any. After receiving
the reply (Out message or Fault message) and inserting it into the

105FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Producer Interface

exchange object, you must call callback.done() to notify the caller

that processing is complete.

FUSE™ Mediation Router Programmer's Guide Version 1.6106

Chapter 8. Producer Interface

Chapter 9. Exchange Interface
This chapter describes how to implement the Exchange interface, which is an optional step in the implementation
of a FUSE Mediation Router component.

The Exchange Interface ... 108
Implementing the Exchange Interface .. 112

107FUSE™ Mediation Router Programmer's Guide Version 1.6

The Exchange Interface

Overview An instance of org.apache.camel.Exchange type encapsulates all of the
messages belonging to a single message exchange. For example, a typical
synchronous invocation consists of an In message and an Out message.

Figure 9.1 on page 108 shows the inheritance hierarchy for the exchange
type. You do not always need to implement a custom exchange type for a
component. In many cases, the default implementation, DefaultExchange,
is adequate.

Figure 9.1. Exchange Inheritance Hierarchy

The Exchange interface Example 9.1 on page 108 shows the definition of the
org.apache.camel.Exchange interface.

Example 9.1. Exchange Interface

package org.apache.camel;

import java.util.Map;

import org.apache.camel.spi.UnitOfWork;

public interface Exchange {
ExchangePattern getPattern();

Object getProperty(String name);
<T> T getProperty(String name, Class<T> type);
void setProperty(String name, Object value);
Object removeProperty(String name);
Map<String, Object> getProperties();

FUSE™ Mediation Router Programmer's Guide Version 1.6108

Chapter 9. Exchange Interface

Message getIn();
void setIn(Message in);

Message getOut();
Message getOut(boolean lazyCreate);
void setOut(Message out);

Message getFault();
Message getFault(boolean lazyCreate);

Throwable getException();
void setException(Throwable e);

boolean isFailed();

CamelContext getContext();

Exchange newInstance();

Exchange copy();

void copyFrom(Exchange source);

UnitOfWork getUnitOfWork();
void setUnitOfWork(UnitOfWork unitOfWork);

String getExchangeId();
void setExchangeId(String id);

}

Exchange methods The Exchange interface defines the following methods:

• getPattern()—The exchange pattern can be one of the values enumerated
in org.apache.camel.ExchangePattern. The following exchange pattern
values are supported:

• InOnly

• RobustInOnly

• InOut

• InOptionalOut

• OutOnly

109FUSE™ Mediation Router Programmer's Guide Version 1.6

The Exchange Interface

• RobustOutOnly

• OutIn

• OutOptionalIn

Normally, you specify the exchange pattern value in the constructor of your
custom exchange class.

• setProperty(), getProperty(), getProperties(),
removeProperty()—Use the property setter and getter methods to
associate named properties with the exchange instance. The properties
consist of miscellaneous metadata that you might need for your custom
exchange implementation.

• setIn(), getIn()—Setter and getter methods for the In message. These
methods are used only for exchange patterns that can have an In message.

The getIn() implementation provided by the DefaultExchange class
implements lazy creation semantics: if the In message is null when
getIn() is called, the DefaultExchange class creates a default In
message.

• setOut(), getOut()—Setter and getter methods for the Out message.
These methods are used only for exchange patterns that can have an Out
message.

There are two varieties of getOut() method in the DefaultExchange
class:

• getOut() with no arguments enables lazy creation of an Out message.

If the current Out message is null, a new message is automatically

created.1

• getOut(boolean lazyCreate) with a boolean argument triggers lazy

creation. If the argument is true, it returns the current value even if the

current Out message is null.

• getFault()—Getter message for the fault message. There are two varieties

of getFault() method in the DefaultExchange class:

1The DefaultExchange class also defines a setFault() method.

FUSE™ Mediation Router Programmer's Guide Version 1.6110

Chapter 9. Exchange Interface

• getFault() with no arguments enables lazy creation of a Fault message.

• getFault(boolean lazyCreate) with a boolean argument triggers

lazy creation. If the argument is true, it returns the current value even

if the current Fault message is null.

• setException(), getException()—Getter and setter methods for an

exception object (of Throwable type).

• isFailed()—Returns true, if the exchange failed either due to an

exception or due to a fault.

• getContext()—Returns a reference to the associated CamelContext

instance.

• newInstance()—Creates a new exchange instance for the purpose of

copying the current exchange object. For example, in the DefaultExchange

class, the copy() method calls newInstance() to create a new exchange

instance.

• copy()—Creates a new, identical (apart from the exchange ID) copy of
the current custom exchange object. The body and headers of the In
message, the Out message (if any), and the Fault message (if any) are also
copied by this operation.

• copyFrom()—Copies the generic contents (apart from the exchange ID)
of the specified generic exchange object, exchange, into the current
exchange instance. Because this method must be able to copy from any
exchange type, it copies the generic exchange properties, but not the custom
properties. The body and headers of the In message, the Out message (if
any), and the Fault message (if any) are also copied by this operation.

• setUnitOfWork(), getUnitOfWork()—Getter and setter methods for
the org.apache.camel.spi.UnitOfWork bean property. This property
is only required for exchanges that can participate in a transaction.

• setExchangeId(), getExchangeId()—Getter and setter methods for
the exchange ID. Whether or not a custom component uses and exchange
ID is an implementation detail.

111FUSE™ Mediation Router Programmer's Guide Version 1.6

The Exchange Interface

Implementing the Exchange Interface

How to implement a custom
exchange

Example 9.2 on page 112 outlines how to implement an exchange by extending
the DefaultExchange class.

Example 9.2. Custom Exchange Implementation

import org.apache.camel.CamelContext;
import org.apache.camel.Exchange;
import org.apache.camel.ExchangePattern;
import org.apache.camel.impl.DefaultExchange;

public class CustomExchange extends DefaultExchange { ❶

public CustomExchange(CamelContext camelContext, Exchange
Pattern pattern) { ❷

super(camelContext, pattern);
// Set other member variables...

}

public CustomExchange(CamelContext camelContext) { ❸
super(camelContext);
// Set other member variables...

}

public CustomExchange(DefaultExchange parent) { ❹
super(parent);
// Set other member variables...

}

@Override
public Exchange newInstance() { ❺

Exchange e = new CustomExchange(this);
// Copy custom member variables from current in

stance...
return e;

}

@Override
protected Message createInMessage() { ❻

return new CustomMessage();
}

@Override
protected Message createOutMessage() {

return new CustomMessage();

FUSE™ Mediation Router Programmer's Guide Version 1.6112

Chapter 9. Exchange Interface

}

@Override
protected Message createFaultMessage() {

return new CustomMessage();
}

@Override
protected void configureMessage(Message message) { ❼

super.configureMessage(message);
// Perform custom message configuration...

}
}

❶ Implements a custom exchange class, CustomExchange, by extending

the org.apache.camel.impl.DefaultExchange class.

❷ You usually need a constructor that lets you specify the exchange pattern
explicitly, as shown here.

❸ This constructor, taking only a CamelContext argument, context,

implicitly sets the exchange pattern to InOnly as defined in the

DefaultExchange constructor.

❹ This constructor copies the exchange pattern and the unit of work from
the specified exchange object, parent.

❺ The newInstance() method is called from inside the

DefaultExchange.copy() method. Customization of the

newInstance() method should focus on copying all of the custom

properties of the current exchange instance into the new exchange
instance. The DefaultExchange.copy() method copies the generic

exchange properties (by calling copyFrom()).

❻ (Optional) Only needed if you implement a custom message type. The
createInMessage(), createOutMessage(), and

createFaultMessage() methods are implemented to support lazy

message creation when you are using a custom message type. In this
example, createInMessage() returns a message of CustomMessage

type. When a new In message is created by a call to getIn(), the default

getIn() implementation calls createInMessage() to create the new

message.
❼ In the body of configureMessage() you can put code to configure all

message types (In, Out, and Fault). The DefaultExchange class uses

113FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Exchange Interface

configureMessage() to configure a message whenever you call

setIn(), setOut(), or setFault(), and whenever a message is

created by lazy instantiation.

Example Example 9.3 on page 114 shows the implementation of the FileExchange
class, which is taken from the FUSE Mediation Router file component
implementation. The FileExchange implementation is characterised by two
things:

• It has an additional file property, which references the file containing the

In message,

• It only supports the InOnly exchange pattern.

Example 9.3. FileExchange Implementation

package org.apache.camel.component.file;

import org.apache.camel.CamelContext;
import org.apache.camel.Exchange;
import org.apache.camel.ExchangePattern;
import org.apache.camel.impl.DefaultExchange;

import java.io.File;

public class FileExchange extends DefaultExchange {
private File file;

public FileExchange(CamelContext camelContext, Exchange
Pattern pattern, File file) { ❶

super(camelContext, pattern);
setIn(new FileMessage(file));
this.file = file;

}

public FileExchange(DefaultExchange parent, File file) {
❷

super(parent);
this.file = file;

}

public File getFile() { ❸
return this.file;

}

FUSE™ Mediation Router Programmer's Guide Version 1.6114

Chapter 9. Exchange Interface

public void setFile(File file) {
this.file = file;

}

public Exchange newInstance() { ❹
return new FileExchange(this, getFile());

}
}

❶ In addition to letting you specify the Camel context, camelContext,

and the exchange pattern, pattern, this constructor also specifies the

custom property, file.

❷ This constructor gets called by the newInstance() method. This

constructor copies the unit of work and the exchange pattern from
parent (implemented by the super-constructor) and initializes the file

property with the specified value.
❸ The getFile() and setFile() methods access the file property,

which represents the file from which the exchange object reads the In
message.

❹ The newInstance() method is overridden to ensure that the

DefaultExchange.copy() method works properly. The form of

constructor called here ensures that the file property gets copied into

the new instance.

115FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Exchange Interface

FUSE™ Mediation Router Programmer's Guide Version 1.6116

Chapter 10. Message Interface
This chapter describes how to implement the Message interface, which is an optional step in the implementation
of a FUSE Mediation Router component.

The Message Interface .. 118
Implementing the Message Interface ... 121

117FUSE™ Mediation Router Programmer's Guide Version 1.6

The Message Interface

Overview An instance of org.apache.camel.Message type can represent any kind of
message (In, Out, or Fault). Figure 10.1 on page 118 shows the inheritance
hierarchy for the message type. You do not always need to implement a
custom message type for a component. In many cases, the default
implementation, DefaultMessage, is adequate.

Figure 10.1. Message Inheritance Hierarchy

The Message interface Example 10.1 on page 118 shows the definition of the
org.apache.camel.Message interface.

Example 10.1. Message Interface

package org.apache.camel;

import java.util.Map;
import java.util.Set;

import javax.activation.DataHandler;

public interface Message {

String getMessageId();
void setMessageId(String messageId);

Exchange getExchange();

Object getHeader(String name);
<T> T getHeader(String name, Class<T> type);
void setHeader(String name, Object value);
Object removeHeader(String name);

FUSE™ Mediation Router Programmer's Guide Version 1.6118

Chapter 10. Message Interface

Map<String, Object> getHeaders();
void setHeaders(Map<String, Object> headers);

Object getBody();
<T> T getBody(Class<T> type);
void setBody(Object body);
<T> void setBody(Object body, Class<T> type);

DataHandler getAttachment(String id);
Map<String, DataHandler> getAttachments();
Set<String> getAttachmentNames();
void removeAttachment(String id);
void addAttachment(String id, DataHandler content);
void setAttachments(Map<String, DataHandler> attachments);

boolean hasAttachments();

Message copy();

void copyFrom(Message message);
}

Message methods The Message interface defines the following methods:

• setMessageId(), getMessageId()—Getter and setter methods for the

message ID. Whether or not you need to use a message ID in your custom
component is an implementation detail.

• getExchange()—Returns a reference to the parent exchange object.

• getHeader(), getHeaders(), setHeader(), setHeaders(),

removeHeader()—Getter and setter methods for the message headers.

In general, these message headers can be used either to store actual header
data, or to store miscellaneous metadata.

• getBody(), setBody()—Getter and setter methods for the message body.

• getAttachment(), getAttachments(), getAttachmentNames(),

removeAttachment(), addAttachment(), setAttachments(),

hasAttachments()—Methods to get, set, add, and remove attachments.

119FUSE™ Mediation Router Programmer's Guide Version 1.6

The Message Interface

• copy()—Creates a new, identical (including the message ID) copy of the

current custom message object.

• copyFrom()—Copies the complete contents (including the message ID)

of the specified generic message object, message, into the current message

instance. Because this method must be able to copy from any message
type, it copies the generic message properties, but not the custom
properties.

FUSE™ Mediation Router Programmer's Guide Version 1.6120

Chapter 10. Message Interface

Implementing the Message Interface

How to implement a custom
message

Example 10.2 on page 121 outlines how to implement a message by extending
the DefaultMessage class.

Example 10.2. Custom Message Implementation

import org.apache.camel.Exchange;
import org.apache.camel.impl.DefaultMessage;

public class CustomMessage extends DefaultMessage { ❶

public CustomMessage() { ❷
// Create message with default properties...

}

@Override
public String toString() { ❸

// Return a stringified message...
}

public CustomExchange getExchange() { ❹
return (CustomExchange)super.getExchange();

}

@Override
public CustomMessage newInstance() { ❺

return new CustomMessage(...);
}

@Override
protected Object createBody() { ❻

// Return message body (lazy creation).
}

@Override
protected void populateInitialHeaders(Map<String, Object>

map) { ❼
// Initialize headers from underlying message (lazy

creation).
}

@Override
protected void populateInitialAttachments(Map<String, Da

taHandler> map) { ❽
// Initialize attachments from underlying message

121FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Message Interface

(lazy creation).
}

}

❶ Implements a custom message class, CustomMessage, by extending

the org.apache.camel.impl.DefaultMessage class.

❷ Typically, you need a default constructor that creates a message with
default properties.

❸ Override the toString() method to customize message stringification.

❹ (Optional) This is a convenient method that returns a reference to the
parent exchange instance, casts it to the correct type.

❺ The newInstance() method is called from inside the

MessageSupport.copy() method. Customization of the

newInstance() method should focus on copying all of the custom

properties of the current message instance into the new message
instance. The MessageSupport.copy() method copies the generic

message properties by calling copyFrom().

❻ The createBody() method works in conjunction with the

MessageSupport.getBody() method to implement lazy access to the

message body. By default, the message body is null. It is only when

the application code tries to access the body (by calling getBody()),

that the body should be created. The MessageSupport.getBody()

automatically calls createBody(), when the message body is accessed

for the first time.
❼ The populateInitialHeaders() method works in conjunction with

the header getter and setter methods to implement lazy access to the
message headers. This method parses the message to extract any
message headers and inserts them into the hash map, map. The

populateInitialHeaders() method is automatically called when a

user attempts to access a header (or headers) for the first time (by calling
getHeader(), getHeaders(), setHeader(), or setHeaders()).

❽ The populateInitialAttachments() method works in conjunction

with the attachment getter and setter methods to implement lazy access
to the attachments. This method extracts the message attachments and
inserts them into the hash map, map. The

populateInitialAttachments() method is automatically called when

a user attempts to access an attachment (or attachments) for the first

FUSE™ Mediation Router Programmer's Guide Version 1.6122

Chapter 10. Message Interface

time by calling getAttachment(), getAttachments(),

getAttachmentNames(), or addAttachment().

123FUSE™ Mediation Router Programmer's Guide Version 1.6

Implementing the Message Interface

FUSE™ Mediation Router Programmer's Guide Version 1.6124

Index
Symbols
@Converter, 39

A
AsyncCallback, 101
asynchronous producer

implementing, 104
AsyncProcessor, 101
auto-discovery

configuration, 58

C
Component

createEndpoint(), 66
definition, 64
methods, 64

component prefix, 43
components, 43

bean properties, 60
configuring, 56
implementation steps, 54
installing, 56
interfaces to implement, 54
parameter injection, 67
Spring configuration, 60

Consumer, 44
consumers, 44

event-driven, 47, 54
polling, 49, 55
scheduled, 48, 55
threading, 47

D
DefaultComponent

createEndpoint(), 66
DefaultEndpoint, 76

createExchange(), 78
createPollingConsumer(), 78

getCamelConext(), 77
getComponent(), 77
getEndpointUri(), 77
getExecutorService(), 78

E
Endpoint, 43

createConsumer(), 75
createExchange(), 74
createPollingConsumer(), 75
createProducer(), 75
getCamelContext(), 74
getEndpointURI(), 74
interface definition, 73
isLenientProperties(), 74
isSingleton(), 74
setCamelContext(), 74

endpoint
event-driven, 76
scheduled, 78

endpoints, 43
Exchange, 44, 108

copy(), 111
copyFrom(), 111
getExchangeId(), 111
getIn(), 29, 110
getOut(), 110
getPattern(), 109
getProperties(), 110
getProperty(), 110
getUnitOfWork(), 111
removeProperty(), 110
setExchangeId(), 111
setIn(), 110
setOut(), 110
setProperty(), 110
setUnitOfWork(), 111

exchange
in capable, 32
out capable, 32

exchange properties
accessing, 31

ExchangeHelper, 31

125FUSE™ Mediation Router Programmer's Guide Version 1.6

getContentType(), 32
getMandatoryHeader(), 29, 31
getMandatoryInBody(), 31
getMandatoryOutBody(), 31
getMandatoryProperty(), 31
isInCapable(), 32
isOutCapable(), 32
resolveEndpoint(), 31

exchanges, 44

I
in message

MIME type, 32
interceptors, 25

M
Message, 45

getHeader(), 29
message headers

accessing, 29
messages, 45

P
pipeline, 24
Processor, 27

implementing, 27
producer, 44
Producer, 44

createExchange(), 101
getEndpoint(), 101
process(), 101

producers
asynchronous, 52
synchronous, 51

S
ScheduledPollEndpoint, 78
simple processor

implementing, 27
synchronous producer

implementing, 103

T
type conversion

runtime process, 37
type converter

annotating the implementation, 39
discovery file, 40
implementation steps, 39
mater, 36
packaging, 40
slave, 36

TypeConverter, 36
TypeConverterLoader, 37

U
useIntrospectionOnEndpoint(), 67

FUSE™ Mediation Router Programmer's Guide Version 1.6126

	Programmer's Guide
	Table of Contents
	Chapter 1. Understanding Message Formats
	Exchanges
	Messages
	Built-In Type Converters

	Chapter 2. Implementing a Processor
	Processing Models
	Implementing a Simple Processor
	Accessing Message Content
	The ExchangeHelper Class

	Chapter 3. Type Converters
	Type Converter Architecture
	Implementing a Custom Type Converter

	Chapter 4. Implementing a Component
	Component Architecture
	Factory Patterns for a Component
	Using a Component in a Route
	Consumer Patterns and Threading
	Asynchronous Processing

	How to Implement a Component
	Auto-Discovery and Configuration
	Setting Up Auto-Discovery
	Configuring a Component

	Chapter 5. Component Interface
	The Component Interface
	Implementing the Component Interface

	Chapter 6. Endpoint Interface
	The Endpoint Interface
	Implementing the Endpoint Interface

	Chapter 7. Consumer Interface
	The Consumer Interface
	Implementing the Consumer Interface

	Chapter 8. Producer Interface
	The Producer Interface
	Implementing the Producer Interface

	Chapter 9. Exchange Interface
	The Exchange Interface
	Implementing the Exchange Interface

	Chapter 10. Message Interface
	The Message Interface
	Implementing the Message Interface

	Index

