
FUSE Message Broker
Connectivity Guide

Version 5.1
July 2008

Making Software Work Together™

Connectivity Guide
IONA Technologies

Version 5.1

Published 16 Jul 2008
Copyright © 2001-2008 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
Preface ... 11

The FUSE Message Broker Library ... 12
Open Source Project Resources ... 13
Document Conventions ... 14

Protocol Summary ... 17
Simple Connections .. 18
Discovery Protocols .. 20
Peer-to-Peer Protocols ... 21

OpenWire Protocol .. 23
Introduction to the OpenWire Protocol ... 24
OpenWire Example ... 27

Stomp Protocol ... 31
Introduction to the Stomp Protocol ... 32
Stomp Example ... 34
Protocol Details ... 37
Stomp Tutorial .. 46

REST Protocols ... 53
Introduction to the REST Protocol .. 54
REST Example .. 55
Protocol Details ... 64

VM Protocol ... 71
Introduction to the VM Protocol ... 72

Discovery Protocols ... 77
Configuring a Simple Broker Cluster .. 78
Failover Protocol .. 84
Dynamic Discovery Protocol ... 88
Discovery Agents ... 93

Peer-to-Peer Protocols .. 97
Peer Protocol .. 98

3

4

List of Figures
1. Connecting to the ActiveMQ JMX Port 49
2. Monitoring the Status of the FOO.BAR Queue 50
3. Welcome Page for Web Examples .. 57
4. The Send a JMS Message Form ... 58
5. Default Option to Browse a Queue .. 59
6. Option to Browse a Queue as XML ... 60
7. Option to Browse a Queue as Atom .. 61
8. Option to Browse a Queue as RSS 1.0 62
9. Clients Connected through the VM Protocol 72
10. Simple Cluster Architecture .. 78
11. Peer Protocol Endpoints with Embedded Brokers 98

5

6

List of Tables
1. Protocols for Simple Connections ... 18
2. Summary of Discovery Protocols .. 20
3. Summary of Peer-to-Peer Protocols ... 21
4. Transport Protocols Supported by OpenWire 24
5. Transport Options Supported by OpenWire Protocol 25
6. Transport Protocols Supported by Stomp 32
7. Client Commands for the Stomp Protocol 38
8. Server Commands for the Stomp Protocol 43
9. HTTP RESTful Operations .. 65
10. URL Options Recognized by the Message Servlet 66
11. Message Servlet RESTful HTTP Operations 67
12. URL Options Recognized by the QueueBrowse Servlet 68
13. Form Properties Recognized by Message Servlet 69
14. VM Transport Options (for All URI Syntaxes) 73
15. VM Transport Options (for Simple URI Syntax Only) 74
16. Broker Options .. 74
17. Failover Transport Options .. 84
18. Discovery Transport Options ... 89
19. Broker Options .. 99

7

8

List of Examples
1. Configuration of an Embedded Servlet Engine 55
2. Web Form for Sending a Message to a Queue or Topic 68

9

10

Preface

11

The FUSE Message Broker Library
The FUSE Message Broker documentation library consists of the following
books:

• Installing FUSE Message Broker discusses the requirements and procedures
for installing FUSE Message Broker

• Getting Started with FUSE Message Broker provides an overview of the
central concepts behind FUSE Message Brokerand walks you through a
simple example.

• Connectivity Guide on page 1 explains the different wire protocols and
transports that FUSE Message Broker supports.

• Using FUSE Message Broker's Persistence Features describes how to enable
message persistence using the AMQ Message Store or a relational database
in FUSE Message Broker.

12

http://open.iona.com/docs/install_fuse_mb/install_fuse_mb.pdf
http://open.iona.com/docs/getting_started/getting_started.pdfindex.html
http://open.iona.com/docs/message_broker/persistence/persistence.pdf

Open Source Project Resources
Apache CXF

Web site: http://incubator.apache.org/cxf/

User's list: <cxf-user@incubator.apache.org>

Apache Tomcat
Web site: http://tomcat.apache.org/

User's list: <users@tomcat.apache.org>

Apache ActiveMQ
Web site: http://activemq.apache.org/

User's list: <users@@activemq.apache.org>

Apache Camel
Web site:
http://activemq.apache.org/camel/enterprise-integration-patterns.html

User's list: <camel-user@activemq.apache.org>

Apache ServiceMix
Web site: http://servicemix.org/site/home.html

User's list: <servicemix-users@geronimo.apache.org>

13

http://incubator.apache.org/cxf/
http://tomcat.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/camel/enterprise-integration-patterns.html
http://servicemix.org/site/home.html

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width (Courier font) in normal text represents portions of code and literal names of items
such as classes, functions, variables, and data structures. For example, text might refer to the
javax.xml.ws.Endpoint class.

fixed width

Constant width paragraphs represent code examples or information a system displays on the
screen. For example:

import java.util.logging.Logger;

Fixed width italic words or characters in code and commands represent variable values you
must supply, such as arguments to commands or path names for your particular system. For
example:

Fixed width

italic

% cd /users/YourUserName

Italic words in normal text represent emphasis and introduce new terms.Italic

Bold words in normal text represent graphical user interface components such as menu
commands and dialog boxes. For example: the User Preferences dialog.

Bold

Keying conventions
This book uses the following keying conventions:

When a command’s format is the same for multiple platforms, the command prompt is not
shown.

No prompt

A percent sign represents the UNIX command shell prompt for a command that does not require
root privileges.

%

A number sign represents the UNIX command shell prompt for a command that requires root
privileges.

#

The notation > represents the MS-DOS or Windows command prompt.>

Horizontal or vertical ellipses in format and syntax descriptions indicate that material has been
eliminated to simplify a discussion.

...

Brackets enclose optional items in format and syntax descriptions.[]

Braces enclose a list from which you must choose an item in format and syntax descriptions.{ }

14

In format and syntax descriptions, a vertical bar separates items in a list of choices enclosed
in {} (braces).

|

Admonition conventions
This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

Tips provide hints about completing a task or using a tool. They may also provide information about
workarounds to possible problems.

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be encountered. These errors are unlikely to cause
damage to your data or your systems.

Warnings display information about errors that may cause damage to your systems. Possible damage from
these errors include system failures and loss of data.

15

16

Protocol Summary
FUSE Message Broker supports a wide variety of protocols for client-to-broker, broker-to-broker, and client-to-client
connections. The intention is that the variety of protocols will make it easier to connect to a range of client types.
Different network topologies can also be supported with the help of special protocols, such as discovery and
peer-to-peer.

Simple Connections .. 18
Discovery Protocols .. 20
Peer-to-Peer Protocols ... 21

17

Simple Connections
Overview

The following protocols can be used either for straightforward client-to-broker
connections (transport connector) or broker-to-broker connections (network
connector). For each wire protocol (that is, on-the-wire message encoding),
FUSE Message Broker supports one or more associated transport protocols.
Hence, you can configure connections with a wide variety of wire
protocol/transport protocol combinations.

Protocols for simple connections
Table 1 on page 18 shows the protocol combinations that messaging clients
can use to connect directly to the message broker.

Table 1. Protocols for Simple Connections

DescriptionSample URLTransport
Protocol

Wire
Protocol

Connect to the message broker endpoint at Host:Port

using the OpenWire over TCP protocol.

tcp://Host:PortTCPOpenWire

This URL is also used to configure the transport
connector in a broker.

Connect to the message broker endpoint at Host:Port

using the OpenWire over SSL protocol.

ssl://Host:PortSSLOpenWire

This URL is also used to configure the transport
connector in a broker.

Connect to the message broker endpoint at Host:Port

using the OpenWire over HTTP protocol (HTTP

http://Host:PortHTTPOpenWire

tunneling). You can use this protocol to navigate through
firewalls.

This URL is also used to configure the transport
connector in a broker.

Connect to the message broker endpoint at Host:Port

using the OpenWire over HTTPS protocol

https://Host:PortHTTPSOpenWire

This URL is also used to configure the transport
connector in a broker.

18

Protocol Summary

DescriptionSample URLTransport
Protocol

Wire
Protocol

Connect to the message broker endpoint at Host:Port

using the Stomp over TCP protocol.

stomp://Host:PortTCPStomp

This URL is also used to configure the transport
connector in a broker.

Connect to the message broker endpoint at Host:Port

using the Stomp over SSL protocol.

stomp+ssl://Host:PortSSLStomp

This URL is also used to configure the transport
connector in a broker.

Connect to the message broker endpoint at Host:Port

using the REST protocol. The REST endpoint is
implemented as a servlet deployed in a servlet engine.

http://Host:Port/

demo/message/FOO/BAR

?timeout=10000

&type=queue

HTTPREST

For example, the sample URL is built up from a Web
context name, demo, followed by the servlet name,

message, followed by a destination name, FOO/BAR,

and some query options.

This URL is not used to configure the REST transport
connector in a broker. Use the <jetty> tag to configure

the REST endpoint in the broker.

http://Host:Port/

demo/message/FOO/BAR

HTTPSRESTs

?timeout=10000

&type=queue

Configure the transport connector in a message broker
to accept XMPP connections on Host:Port (for

example, from an Instant Messaging client).

xmpp://Host:PortTCPXMPP

Configure clients to connect to a broker embedded
within the same Java Virtual Machine (JVM). The

vm://BrokerNameN/AVM

BrokerName is the broker name of the embedded

broker.

19

Simple Connections

Discovery Protocols
Overview

A discovery protocol builds a connection to a message broker in two steps,
as follows:

1. Obtain a list of available broker endpoints (represented by URIs).

2. Connect to an endpoint randomly selected from the given list.

Discovery protocols are particularly useful for clients that connect to a cluster
of message brokers.

Summary of discovery protocols
Table 1 on page 18 describes the discovery protocols that clients can use.

Table 2. Summary of Discovery Protocols

DescriptionSample URLProtocol

Configure clients to connect to one of the broker
endpoints from the URI list, uri1,...,uriN. The

failover://(uri1,...,uriN)?TransportOptionsFailover

transport options, ?TransportOptions, are specified

in the form of a query list. If no transport options are
required, you can omit the parentheses and the
question mark, ?.

Configure clients to connect to one of the broker
endpoints from a URI list that is dynamically discovered

discovery://(DiscoveryAgentUri)?TransportOptionsDiscovery

at runtime, using a discovery agent. The discovery
agent URI, DiscoveryAgentUri, is normally a

multicast discovery agent—for example,
multicast://default.

Discovery agents
The discovery protocol supports a number of discovery agents, which are also
specified in the form of a URI. For details of the supported discovery agents,
see Discovery Agents on page 93 .

Note
Although discovery agent URIs look superficially like transport URIs,
they are not the same thing. A discovery agent URI can only be used
in certain contexts and cannot be used in place of a transport URI.

20

Protocol Summary

Peer-to-Peer Protocols
Overview

Peer-to-peer protocols enable messaging clients to communicate with each
other directly, eliminating the requirement to route messages through an
external message broker.

Summary of peer-to-peer
protocols Table 3 on page 21 describes the peer-to-peer protocols that clients can use.

Table 3. Summary of Peer-to-Peer Protocols

DescriptionSample URLProtocol

Configure clients to connect to their peers in the group
with the group name, PeerGroup. The BrokerName

peer://PeerGroup/BrokerName?BrokerOptionsPeer

specifies the broker name for the embedded broker.
The broker options, BrokerOptions, are specified in

the form of a query list (for example,
?persistent=true).

Broker options
The peer protocol supports a variety of broker options. For details, see the

broker options listed in Table 19 on page 99 .

21

Peer-to-Peer Protocols

22

OpenWire Protocol
The OpenWire protocol is the default on-the-wire protocol for FUSE Message Broker. This chapter provides a
brief introduction to the protocol, illustrating how to use OpenWire with a variety of transport protocols.

Introduction to the OpenWire Protocol ... 24
OpenWire Example ... 27

23

Introduction to the OpenWire Protocol
Overview

The OpenWire protocol is a JMS compliant wire protocol (defining message
types and message encodings) that is native to the FUSE Message Broker.
The protocol is designed to be fully-featured, JMS-compliant, and highly
performant. It is the default protocol of the FUSE Message Broker.

Transport protocols
Table 4 on page 24 shows the transport protocols supported by the OpenWire
wire protocol:

Table 4. Transport Protocols Supported by OpenWire

DescriptionURLTransport
Protocol

Endpoint URL for OpenWire over TCP/IP. The broker listens
for TCP connections on the host machine, Host, and IP port,

Port.

tcp://Host:PortTCP

(Java clients only) Endpoint URL for OpenWire over TCP/IP,
where the socket layer is secured using SSL (or TLS).

ssl://Host:PortSSL

For details of how to configure an SSL connection, see the
FUSE Message Broker Security Guide.

(Java clients only) Endpoint URL for OpenWire over HTTP.http://Host:PortHTTP

(Java clients only) Endpoint URL for OpenWire over HTTP,
where the socket layer is secured by SSL (or TLS).

https://Host:PortHTTPS

For details of how to configure a HTTPS connection, see the
FUSE Message Broker Security Guide. [REVISIT - Insert
Olink.]

Transport options
OpenWire supports a number of transport options, which can be set as query
options on the transport URL. For example, to specify that error messages
should omit the stack trace, use a URL like the following:

tcp://localhost:61616?wireformat.stackTraceEnabled=false

Where the wireformat.stackTraceEnabled property is set to false to

disable the inclusion of stack traces in error messages. Table 5 on page 25
gives the complete list of transport options for OpenWire.

24

OpenWire Protocol

Table 5. Transport Options Supported by OpenWire Protocol

Negotiation policyDescriptionDefaultProperty

Set to false if either side is

false.

Should the stack trace of an exception
occuring on the broker be sent to the
client?

truewireformat

.stackTraceEnabled

Set to false if either side is

false.

Provides a hint to the peer that TCP
nodelay should be enabled on the

communications Socket.

falsewireformat

.tcpNoDelayEnabled

Set to false if either side is

false.

Should commonly repeated values be
cached so that less marshalling
occurs?

truewireformat

.cacheEnabled

Set to false if either side is

false.

Should wire size be optimized over
CPU usage?

truewireformat

.tightEncodingEnabled

Set to true if both sides are

true.

Should the size of the packet be
prefixed before each packet is
marshalled?

truewireformat

.prefixPacketSize

Use the smaller of the two
values.

The maximum inactivity duration
(before which the socket is considered

30000wireformat

.maxInactivityDuration
dead) in milliseconds. On some
platforms it can take a long time for
a socket to appear to die, so we allow
the broker to kill connections if they
are inactive for a period of time. Set
to a value <= 0 to disable inactivity

monitoring.

Use the smaller of the two
values.

If cacheEnabled is true, this

property specifies the maximum
number of values to cache.

1024wireformat .cacheSize

Supported clients
FUSE Message Broker currently supports the following client types for the
OpenWire protocol:

• Java clients—the Java API conforms fully to the JMS specification.

For details of how to program the messaging clients, see the FUSE Message
Broker Client Guide.

25

Introduction to the OpenWire Protocol

If you want to develop an OpenWire client using other programming languages,
try one of the following client types from the Apache ActiveMQ
[http://activemq.apache.org/] project:

• C++ clients—for C++ clients, Apache ActiveMQ provides the CMS (C++
Messaging Service) API, which is closely modelled on the JMS specification.
Only the TCP transport is supported for C++ clients.

26

OpenWire Protocol

http://activemq.apache.org/
http://activemq.apache.org/

OpenWire Example
Overview

It is relatively straightforward to try out the various OpenWire+transport
combinations using the sample code provided. After configuring the broker
to add the relevant transport connectors, you can use the sample producer
tool and the consumer tool to transmit messages through the broker using
the following protocols: OpenWire over TCP or OpenWire over HTTP.

Note
The secure socket protocols—OpenWire over SSL, and OpenWire
over HTTPS—are discussed in the FUSE Message Broker Security
Guide.

Example prerequisites
Before you can build and run the sample clients, you must have installed the
Apache Ant build tool, version 1.6 or later (see http://ant.apache.org/).

The OpenWire examples depend on the sample producer and consumer clients
located in the following directory:

FUSEInstallDir/fuse-message-broker-Version/example

For a detailed description of the example clients, see [REVISIT - Xref to Getting
Started, or whatever.]]

Example steps
To try out the OpenWire protocol, perform the following steps:

1. Configure the broker on page 27 .

2. Run the broker on page 28 .

3. Run the consumer on page 28 .

4. Run the producer with the TCP protocol on page 29 .

5. Run the producer with the HTTP protocol on page 30 .

Configure the broker
Add the following transport connectors to the default broker configuration file
(in fuse-message-broker-Version/conf/activemq.xml):

27

OpenWire Example

http://ant.apache.org/

<beans>
...
<transportConnectors>

...
<transportConnector name="openwire" uri="tcp://local

host:61616"/>
<transportConnector name="http" uri="http://local

host:61620"/> </transportConnectors>
...

</beans>

Run the broker
Run the default broker by entering the following at a command line:

activemq

The default broker automatically takes its configuration from the default
configuration file.

Note
The activemq script automatically sets the ACTIVEMQ_HOME and

ACTIVEMQ_BASE environment variables to

FUSEInstallDir/fuse-message-broker-Version by default. If

you want the activemq script to pick up its configuration from a

non-default conf directory, you can set ACTIVEMQ_BASE explicitly

in your environment. The configuration files will then be taken from
$ACTIVEMQ_BASE/conf.

Run the consumer
To connect the consumer tool to the tcp://localhost:61616 endpoint

(OpenWire over TCP), change directory to
fuse-message-broker-Version/example and enter the following command:

ant consumer -Durl=tcp://localhost:61616 -Dmax=100

You should see some output like the following:

Buildfile: build.xml
init:

28

OpenWire Protocol

compile:
consumer:

[echo] Running consumer against server at $url =
tcp://localhost:61616
for subject $subject = TEST.FOO

[java] Connecting to URL: tcp://localhost:61616
[java] Consuming queue: TEST.FOO
[java] Using a non-durable subscription
[java] We are about to wait until we consume: 100 mes

sage(s) then
we will shutdown

Run the producer with the TCP
protocol To connect the producer tool to the tcp://localhost:61616 endpoint

(OpenWire over TCP), open a new command prompt, change directory to
fuse-message-broker-Version/example and enter the following command:

ant producer -Durl=tcp://localhost:61616

In the window where the consumer tool is running, you should see some
output like the following:

[java] Received: Message: 0 sent at: Wed Sep 19 14:38:06
BST
2007 ...

[java] Received: Message: 1 sent at: Wed Sep 19 14:38:06
BST
2007 ...

[java] Received: Message: 2 sent at: Wed Sep 19 14:38:06
BST
2007 ...

[java] Received: Message: 3 sent at: Wed Sep 19 14:38:06
BST
2007 ...

[java] Received: Message: 4 sent at: Wed Sep 19 14:38:06
BST
2007 ...

[java] Received: Message: 5 sent at: Wed Sep 19 14:38:06
BST
2007 ...

[java] Received: Message: 6 sent at: Wed Sep 19 14:38:06
BST
2007 ...

[java] Received: Message: 7 sent at: Wed Sep 19 14:38:06
BST
2007 ...

29

OpenWire Example

[java] Received: Message: 8 sent at: Wed Sep 19 14:38:06
BST
2007 ...

[java] Received: Message: 9 sent at: Wed Sep 19 14:38:06
BST
2007 ...

Run the producer with the HTTP
protocol To connect the producer tool to the http://localhost:61620 endpoint

(OpenWire over HTTP), enter the following command from the example

directory:

ant producer -Durl=http://localhost:61620

This command sends ten new messages to the consumer client.

Note
The JAR files for the HTTP protocol are currently located in the
lib/optional subdirectory. If you construct the CLASSPATH

manually, you must be sure to include the JAR files from this
subdirectory.

30

OpenWire Protocol

Stomp Protocol
The Stomp protocol is a simplified messaging protocol that is specially designed for implementing clients using
scripting languages. This chapter provides a brief introduction to the protocol, illustrating how to run Stomp
clients implemented in Ruby.

Introduction to the Stomp Protocol ... 32
Stomp Example ... 34
Protocol Details ... 37
Stomp Tutorial .. 46

31

Introduction to the Stomp Protocol
Overview

The Stomp protocol is a simplified messaging protocol that is being developed
as an open source project (http://stomp.codehaus.org/). The advantage of the
stomp protocol is that you can easily improvise a messaging client—even
when a specific client API is not available—because the protocol is so simple.

Transport protocols
Table 6 on page 32 shows the transport protocols supported by the Stomp
wire protocol:

Table 6. Transport Protocols Supported by Stomp

DescriptionURLTransport
Protocol

Endpoint URL for Stomp over TCP/IP. The broker listens for
TCP connections on the host machine, Host, and IP port,

Port.

stomp://Host:PortTCP

Endpoint URL for secure Stomp over SSL. The broker listens
for TCP connections on the host machine, Host, and IP port,

Port.

stomp+ssl://Host:PortSSL

Supported clients
Stomp currently supports the following client types:

• C clients.

• C++ clients.

• C# and .Net clients.

• .Net clients.

• Delphi clients.

• Flash clients.

• Perl clients.

• PHP clients.

• Pike clients.

32

Stomp Protocol

http://stomp.codehaus.org/

• Python clients.

For details of how to program these messaging clients, see the FUSE Message
Broker Client Guide.]

33

Introduction to the Stomp Protocol

Stomp Example
Overview

FUSE Message Broker provides some sample code in
fuse-message-broker-Version/example/ruby that enables you to

experiment with the Stomp protocol in the Ruby programming language.

If you want to find out more about writing Stomp clients in other scripting
languages, see the Cross Language Client Development Guide.

Example prerequisites
You must download and install the requisite packages to support the Ruby
programming language before you can run the Stomp example. Install the
following packages:

• Ruby programming language—download and install the Ruby programming
language from http://www.ruby-lang.org/en/downloads. Add the Ruby /bin

directory to your PATH.

• RubyGems package manager—RubyGems (www.rubygems.org) is a utility
for installing and managing add-ons to the Ruby language. Download and
install RubyGems as follows:

1. Download a RubyGems archive file (.tgz, .zip, or .gem) from the

RubyForge (http://rubyforge.org/frs/?group_id=126).

2. Unzip the RubyGems archive.

3. Initialize RubyGems by entering the following command:

ruby GemsInstallDir/setup.rb

4. Add GemsInstallDir/bin to your PATH.

• Stomp package for Ruby—install the Stomp package for Ruby by running
the following command:

gem install stomp

34

Stomp Protocol

http://www.ruby-lang.org/en/downloads
www.rubygems.org
http://rubyforge.org/frs/?group_id=126

RubyGems downloads and installs the requisite package to support the
Ruby Stomp client API.

Example steps
To try out the Stomp protocol, perform the following steps:

1. Configure the broker on page 35 .

2. Run the broker on page 35 .

3. Run the Ruby listener on page 36 .

4. Run the Ruby publisher on page 36

Configure the broker
Check that the the Stomp connector is present in the default broker
configuration file (in fuse-message-broker-Version/conf/activemq.xml),

as follows:

<beans>
...
<transportConnectors>

...
<transportConnector name="stomp" uri="stomp://local

host:61613"/>
</transportConnectors>
...

</beans>

Run the broker
Run the default broker by entering the following at a command line:

activemq

The default broker automatically takes its configuration from the default
configuration file.

Note
The activemq script automatically sets the ACTIVEMQ_HOME and

ACTIVEMQ_BASE environment variables to

FUSEInstallDir/fuse-message-broker-Version by default. If

35

Stomp Example

you want the activemq script to pick up its configuration from a

non-default conf directory, you can set ACTIVEMQ_BASE explicitly

in your environment. The configuration files will then be taken from
$ACTIVEMQ_BASE/conf.

Run the Ruby listener
To connect the listener tool to the stomp://localhost:61613 endpoint

(Stomp over TCP), change directory to
fuse-message-broker-Version/example/ruby and enter the following

command:

ruby listener.rb

They Ruby listener connects to the endpoint, stomp://localhost:61613,

by default. You could change this endpoint address by editing the
listener.rb script.

Run the Ruby publisher
To connect the publisher tool to the stomp://localhost:61613 endpoint

(Stomp over TCP), change directory to
fuse-message-broker-Version/example/ruby and enter the following

command:

ruby publisher.rb

You should see some output like the following:

Sent 1000 messages
Sent 2000 messages
Sent 3000 messages
Sent 4000 messages
Sent 5000 messages
Sent 6000 messages
Sent 7000 messages
Sent 8000 messages
Sent 9000 messages
Sent 10000 messages
Received report: Received 10000 in 4.567 seconds, remaining:
9

36

Stomp Protocol

Protocol Details
Overview

This section describes the format of Stomp data packets , as well as the
semantics of the data packet exchanges. Stomp is a relatively simple wire
protocol—it is even possible to communicate manually with a Stomp broker
using a telnet client (see Stomp Tutorial on page 46).

Transport protocols
In principal, Stomp can be combined with any transport protocol, including
connection-oriented and non-connection-oriented transports. In practice,
though, Stomp is usually implemented over TCP and this is the only transport
currently supported by FUSE Message Broker.

Licence
The Stomp specification is licensed under the Creative Commons Attribution
v2.5 [http://creativecommons.org/licenses/by/2.5/]

Stomp frame format
The Stomp specification defines the term frame to refer to the data packets
transmitted over a Stomp connection. A Stomp frame has the following general
format:

<StompCommand>
<HeaderName_1>:<HeaderValue_1>
<HeaderName_2>:<HeaderValue_2>

<FrameBody>
^@

A Stomp frame always starts with a Stomp command (for example, SEND) on

a line by itself. The Stomp command may then be followed by zero or more
header lines: each header is in a <key>:<value> format and terminated by

a newline. A blank line indicates the end of the headers and the beginning
of the body, <FrameBody>, (which is empty for many of the commands). The

frame is terminated by the null character, which is represented as ^@ above

(Ctrl-@ in ASCII)).

Oneway and RPC commands
Most Stomp commands have oneway semantics (that is, after sending a
frame, the sender does not expect any reply). The only exceptions are:

• CONNECT command—after a client sends a CONNECT frame, it expects the

server to reply with a CONNECTED frame.

37

Protocol Details

http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/

• Commands with a receipt header—a client can force the server to

acknowledge receipt of a command by adding a receipt header to the

outgoing frame.

• Erroneous commands—if a client sends a frame that is malformed, or
otherwise in error, the server may reply with an ERROR frame. Note,

however, that the ERROR frame is not formally correlated with the original

frame that caused the error (Stomp frames are not required to include a
unique identifier).

Receipt header
Any client frame, other than CONNECT, may specify a receipt header with

an arbitrary value. This causes the server to acknowledge receipt of the frame
with a RECEIPT frame, which contains the value of this header as the value

of the receipt-id header in the RECEIPT frame. For example, the following

frame shows a SEND command that includes a receipt header:

SEND
destination:/queue/a
receipt:message-12345

Hello a!^@

Client commands
Table 7 on page 38 lists the client commands for the Stomp protocol. The
Reply column indicates whether or not the server sends a reply frame by
default.

Table 7. Client Commands for the Stomp Protocol

DescriptionRoleReply?Command

Open a connection to a Stomp broker (server).Producer,
Consumer

YesCONNECT on page
39

Send a message to a particular queue or topic on the server.ProducerNoSEND on page 39

Subscribe to a particular queue or topic on the server.ConsumerNoSUBSCRIBE on page
40

Cancel a subscription to a particular queue or topic.ConsumerNoUNSUBSCRIBEonpage
41

Acknowledge receipt of one message.ConsumerNoACK on page 42

38

Stomp Protocol

DescriptionRoleReply?Command

Start a transaction (applies to SEND or ACK commands).Producer,
Consumer

NoBEGIN on page 42

Commit a transaction.Producer,
Consumer

NoCOMMIT on page
42

Roll back a transaction.Producer,
Consumer

NoABORT on page 43

Shut down the existing connection gracefully.Producer,
Consumer

NoDISCONNECTonpage
43

CONNECT
After opening a socket to connect to the remote server, the client sends a
CONNECT command to initiate a Stomp session. For example, the following

frame shows a typical CONNECT command, including a login header and a

passcode header:

CONNECT
login: <username>
passcode:<passcode>

^@

After the client sends the CONNECT frame, the server always acknowledges

the connection by sending a frame, as follows:

CONNECTED
session: <session-id>

^@

The session-id header is a unique identifier for this session (currently

unused).

SEND
The SEND command sends a message to a destination—for example, a queue

or a topic—in the messaging system. It has one required header,
destination, which indicates where to send the message. The body of the

SEND command is the message to be sent. For example, the following frame

sends a message to the /queue/a destination:

39

Protocol Details

SEND
destination:/queue/a
hello queue a

^@

From the client’s perspective, the destination name, /queue/a, is an arbitrary

string. Despite seeming to indicate that the destination is a queue it does not,
in fact, specify any such thing. Destination names are simply strings that are
mapped to some form of destination on the server; how the server translates
these strings is up to the implementation.

The SEND command also supports the following optional headers:

• transaction—specifies the transaction ID. Include this header, if the

SEND command partakes in a transaction (see BEGIN on page 42).

• content-length—specifies the byte count for the length of the message

body. If a content-length header is included, this number of bytes should

be read, regardless of whether or not there are null characters in the body.
The frame still needs to be terminated with a null byte and if a
content-length is not specified, the first null byte encountered signals the
end of the frame.

SUBSCRIBE
The SUBSCRIBE command registers a client’s interest in listening to a specific

destination. Like the SEND command, the SUBSCRIBE command requires a

destination header. Henceforth, any messages received on the subscription

are delivered as MESSAGE frames, from the server to the client. For example,

the following frame shows a client subscribing to the destination, /queue/a:

SUBSCRIBE
destination: /queue/foo
ack: client

^@

In this case the ack header is set to client, which means that messages

are considered delivered only after the client specifically acknowledges them
with an ACK frame. The body of the SUBSCRIBE command is ignored.

40

Stomp Protocol

The SUBSCRIBE command supports the following optional headers:

• ack—specify the acknowledgement mode for this subscription. The following

modes are recognized:

• auto—messages are considered delivered as soon as the server delivers

them to the client (in the form of a MESSAGE command). The server does

not expect to receive any ACK commands from the client for this

subscription.

• client—messages are considered delivered only after the client

specifically acknowledges them with an ACK frame.

• selector—specifies a SQL 92 selector on the message headers, which

acts as a filter for content based routing.

• id—specify an ID to identify this subscription. Later, you can use the ID

to UNSUBSCRIBE from this subscription (you may end up with overlapping

subscriptions, if multiple selectors match the same destination).

When an id header is supplied, the server should append a subscription

header to any MESSAGE commands sent to the client. When using wildcards

and selectors, this enables clients to figure out which subscription triggered
the message.

UNSUBSCRIBE
The UNSUBSCRIBE command removes an existing subscription, so that the

client no longer receives messages from that destination. It requires either a
destination header or an id header (if the previous SUBSCRIBE operation

passed an id value). For example, the following frame cancels the subscription

to the /queue/a destination:

UNSUBSCRIBE
destination: /queue/a

41

Protocol Details

^@

ACK
The ACK command acknowledges the consumption of a message from a

subscription. If the client issued a SUBSCRIBE frame with an ack header set

to client, any messages received from that destination are not considered

to have been consumed until the message is acknowledged by an ACK frame.

The ACK command has one required header, message-id, which must contain

a value matching the message-id for the MESSAGE being acknowledged.

Optionally, a transaction header may be included, if the acknowledgment

participates in a transaction. For example, the following frame acknowledges
a message in the context of a transaction:

ACK
message-id: <message-identifier>
transaction: <transaction-identifier>

^@

BEGIN
The BEGIN command initiates a transaction. Transactions can be applied to

SEND and ACK commands. Any messages sent or acknowledged during a

transaction can either be commited or rolled back at the end of the transaction.

BEGIN
transaction: <transaction-identifier>

^@

The transaction header is required and the <transaction-identifier>

can be included in SEND, COMMIT, ABORT, and ACK frames to bind them to

the named transaction.

COMMIT
The COMMIT command commits a specific transaction.

COMMIT
transaction: <transaction-identifier>

42

Stomp Protocol

^@

The transaction header is required and specifies the transaction,

<transaction-identifier>, to commit.

ABORT
The ABORT command rolls back a specific transaction.

ABORT
transaction: <transaction-identifier>

^@

The transaction header is required and specifies the transaction,

<transaction-identifier>, to roll back.

DISCONNECT
The DISCONNECT command disconnects gracefully from the server.

DISCONNECT

^@

Server commands
Table 8 on page 43 lists the commands that the server can send to a Stomp
client. These commands all have oneway semantics.

Table 8. Server Commands for the Stomp Protocol

DescriptionCommand

Send a message to the client, where the client has previously registered a
subscription with the server.

MESSAGE on page 43

Acknowledges receipt of a client command, if the client requested a receipt
by included a receipt-id header.

RECEIPT on page 44

Error message sent from the server to the client.ERROR on page 44

MESSAGE
The MESSAGE command conveys messages from a subscription to the client.

The MESSAGE frame must include a destination header, which identifies

the destination from which the message is taken. The MESSAGE frame also

43

Protocol Details

contains a message-id header with a unique message identifier. The frame

body contains the message contents. For example, the following frame shows
a typical MESSAGE command with destination and message-id headers:

MESSAGE
destination:/queue/a
message-id: <message-identifier>

hello queue a^@

The MESSAGE command supports the following optional headers:

• content-length—specifies the byte count for the length of the message

body. If a content-length header is included, this number of bytes should

be read, regardless of whether or not there are null characters in the body.
The frame still needs to be terminated with a null byte and if a
content-length is not specified, the first null byte encountered signals the
end of the frame.

RECEIPT
A RECEIPT frame is issued from the server whenever the client requests a

receipt for a given command. The RECEIPT frame includes a receipt-id,

containing the value of the receipt-id from the original client request. For

example, the following frame shows a typical RECEIPT command with

receipt-id header:

RECEIPT
receipt-id:message-12345

^@

The receipt body is always empty.

ERROR
The server may send ERROR frames if something goes wrong. The error frame

should contain a message header with a short description of the error. The

body may contain more detailed information (or may be empty). For example,
the following frame shows an ERROR command with a non-empty body:

ERROR

44

Stomp Protocol

message: malformed packet received

The message:

MESSAGE
destined:/queue/a
Hello queue a!

Did not contain a destination header, which is required for
message
propagation.
^@

The ERROR command supports the following optional headers:

• content-length—specifies the byte count for the length of the message

body. If a content-length header is included, this number of bytes should

be read, regardless of whether or not there are null characters in the body.
The frame still needs to be terminated with a null byte and if a
content-length is not specified, the first null byte encountered signals the
end of the frame.

45

Protocol Details

Stomp Tutorial
Telnet client

Because Stomp frames consist of plain text, it is possible to improvise a Stomp
client by starting up a telnet session and entering Stomp frames directly at

the keyboard. This can be a useful diagnostic tool and is also a good way to
learn about the Stomp protocol.

Typing the null character
While most characters in a Stomp frame are just plain text, there is one
required character, null, that you might have difficulty typing at the keyboard.
On some keyboards, you can type null as Ctrl-@. Other keyboards might
require you to do a bit of research, however.

For example, to type a null character on the 101-key keyboard that is
commonly used with a Windows PC, proceed as follows:

1. Enable NumLock on the numeric keypad (this is essential).

2. While holding down the Alt key, type zero, 0, four times in succession on

the numeric keypad.

Tutorial steps
To send and receive messages over the Stomp protocol using telnet clients,
perform the following steps:

1. Start the broker on page 47 .

2. Start a telnet session for the producer on page 47 .

3. Start a Stomp session for the producer on page 47 .

4. Send a message to a queue on page 48 .

5. Check the queue status using JMX on page 48 .

6. Start a telnet session for the consumer on page 50 .

7. Start a Stomp session for the consumer on page 50 .

8. Subscribe to a queue on page 51 .

9. Acknowledge a message on page 52 .

10. Unsubscribe from the queue on page 52 .

46

Stomp Protocol

11. Disconnect the clients on page 52 .

Start the broker
Start the default broker by entering the following at a command prompt:

activemq

Normally, the default broker is configured to initialize a Stomp connector that
listens on port, 61613. Look for a line like the following in the broker’s log:

INFO TransportServerThreadSupport - Listening for connec
tions at:
stomp://localhost:61613

If the Stomp connector is not present in the broker, you will have to configure
it—see Configure the broker on page 35 for details.

Start a telnet session for the
producer Open a new command prompt and start a new telnet session for the

producer client, by entering the following command:

telnet

This command starts telnet in interactive mode. Now enter the following

telnet commands (the telnet prompt that begins each line is

implementation dependent):

telnet> set localecho
Local echo on
telnet> open localhost 61613

After entering the open command, telnet should connect to the Stomp

socket on your local ActiveMQ broker (where the Stomp port is presumed to
be 61613 here). You should now see a blank screen, where you can directly
type the contents of the Stomp frames you want to send over TCP.

Start a Stomp session for the
producer Start a Stomp session for the producer by entering the following Stomp frame

in the telnet window:

CONNECT
login:foo

47

Stomp Tutorial

passcode:bar

^@

The login and passcode headers are currently ignored by the ActiveMQ

broker, so you can enter any values you like for these headers. Don’t forget
to insert a blank line after the headers. Finally, you must terminate the frame
by typing the null character, ^@ (for notes on how to type the null character

at your keyboard, see Typing the null character on page 46).

If all goes well, you will see a response similar to the following:

CONNECTED
session:ID:fboltond820-2290-1190810591249-3:0

Send a message to a queue
Send a message to the FOO.BAR queue by entering the following frame:

SEND
destination:/queue/FOO.BAR
receipt:

Hello, queue FOO.BAR
^@

As soon as you have finished typing the null character, ^@, you should receive

the following RECEIPT frame from the server:

RECEIPT
receipt-id:

It is a good idea to include a receipt header in the frames you send from a

telnet client. It enables you to confirm that the connection is working normally.

Check the queue status using
JMX The status of the ActiveMQ broker can be monitored through a JMX port. To

monitor the broker, start a new command prompt and enter the following
command:

jconsole

48

Stomp Protocol

The jconsole utility is a standard JMX client that is included with Sun’s

Java Development Kit (JDK). When you start the jconsole utility, a dialog

appears and prompts you to connect to a JMX process, as shown in
Figure 1 on page 49 .

Figure 1. Connecting to the ActiveMQ JMX Port

Select the ActiveMQ broker process and click Connect. The main jconsole

window opens. To view the current status of the FOO.BAR message queue,

click on the MBeans tab and use the tree on the left hand side to drill down
to org.apache.activemq/localhost/Queue/FOO.BAR. Click on the

FOO.BAR icon to view the current status, as shown in Figure 2 on page 50

.

49

Stomp Tutorial

Figure 2. Monitoring the Status of the FOO.BAR Queue

The status shows an EnqueueCount of 1, which tells you that the producer
has successfully enqueued one message in the FOO.BAR queue.

Start a telnet session for the
consumer Open a new command prompt and start a new telnet session for the

consumer client, by entering the following command:

telnet

Enter the following telnet commands to connect to the Stomp socket on

the broker:

telnet> set localecho
Local echo on
telnet> open localhost 61613

Start a Stomp session for the
consumer Start a Stomp session for the consumer by entering the following Stomp frame

in the consumer’s telnet window:

50

Stomp Protocol

CONNECT
login:foo
passcode:bar

^@

If all goes well, you will see a response similar to the following:

CONNECTED
session:ID:fboltond820-2290-1190810591249-3:1

Subscribe to a queue
Subscribe to the FOO.BAR queue by entering the following Stomp frame in

the consumer’s telnet window:

SUBSCRIBE
destination:/queue/FOO.BAR
ack:client

^@

The ack header is set to the value client, which implies that the consumer

client is expected to acknowledge each message it receives from the broker.
After typing the terminating null character, ^@, the broker dispatches the sole

message on the FOO.BAR queue by sending a MESSAGE frame, as follows:

MESSAGE
destination:/queue/FOO.BAR
receipt:
timestamp:1190811984837
priority:0
expires:0
message-id:ID:fboltond820-2290-1190810591249-3:0:-1:1:1

Hello, queue FOO.BAR

To see what effect this has on the queue status, go to the jconsole window

and click Refresh on the MBeans tab. The DispatchCount attribute is now
equal to 1, indicating that the broker has dispatched the message to the
consumer. The DequeueCount is equal to 0, however; this is because the

51

Stomp Tutorial

message is not considered to be dequeued until the consumer client sends
an acknowledgement.

Acknowledge a message
Acknowledge the received message by entering the following Stomp frame in
the consumer’s telnet window:

ACK
message-id:ID:fboltond820-2290-1190810591249-3:0:-1:1:1

^@

Where the message ID must match the value from the message-id header

in the received MESSAGE frame. To check that the acknowledgement has been

effective, go back to the jconsole window and click Refresh on the MBeans

tab. You should now find that the DequeueCount has increased to 1.

Unsubscribe from the queue
Unsubscribe from the FOO.BAR queue by entering the following Stomp frame

in the consumer’s telnet window:

UNSUBSCRIBE
destination:/queue/FOO.BAR
receipt:

^@

Disconnect the clients
To shut down both the producer and consumer gracefully, enter the following
DISCONNECT frame in each of their respective telnet windows:

DISCONNECT

^@

52

Stomp Protocol

REST Protocols
The REST protocol is a simple HTTP-based protocol that enables you to interact with the message broker using
HTML forms and DHTML scripts. This chapter provides a brief introduction to the protocol, illustrating how to
contact the message broker from a Web browser.

Introduction to the REST Protocol .. 54
REST Example .. 55
Protocol Details ... 64

53

Introduction to the REST Protocol
Overview

The REST protocol is a simple HTTP-based protocol that enables you to
contact the message broker through a Web browser. You can contact the
message broker by navigating to appropriately formatted URLs or by posting
HTML forms.

Transport protocols
The FUSE Message Broker’s REST protocol is based on a subset of the HTTP
protocol. Hence, HTTP is the only supported transport.

Supported clients
REST supports the following client types:

• Web forms—use conventional HTML forms to POST a message to a

destination (queue or topic) or to GET a message from a destination—see

Example of posting a message on page 68 .

• Ajax clients—an Asynchronous JavaScript And Xml (Ajax) library that
enables you to communicate with a REST endpoint using JavaScript in a
DHTML Web page. For details of how to program an Ajax client, see the
Cross Language Client Development Guide.

REST servlets
The REST protocol is implemented by the following servlets running in a Web
container:

• message servlet—supports the sending and consuming of messages.

• queueBrowse servlet—enables you to view the current status of a particular

queue.

54

REST Protocols

REST Example
Overview

This section describes how to run the REST example, which consists of a
servlet engine integral to the message broker binary, and some demonstration
servlets that run as a Web application. To connect to the Web applications,
you can use your favorite Web browser.

Example prerequisites
You must ensure that the message broker is configured to instantiate an
embedded servlet engine. In your broker configuration file,
conf/activemq.xml, check that there is a jetty element configured as

shown in Example 1 on page 55 .

Example 1. Configuration of an Embedded Servlet Engine

<!-- Embedded servlet engine for serving up the Admin console
-->
<jetty xmlns="http://mortbay.com/schemas/jetty/1.0">
<connectors>
<nioConnector port="8161" />

</connectors>
<handlers>
<webAppContext contextPath="/admin"
resourceBase="${activemq.base}/webapps/admin"
logUrlOnStart="true" />

<webAppContext contextPath="/demo"
resourceBase="${activemq.base}/webapps/demo"
logUrlOnStart="true" />

</handlers>
</jetty>

With the configuration shown in Example 1 on page 55 , the servlet engine
opens up a HTTP port on IP port, 8161. The following Web applications are
loaded:

• Demonstration application (from webapps/demo),

• REST protocol servlets (from webapps/demo).

• Web console servlet (from webapps/admin),

Example steps
To run the REST Web example, perform the following steps:

55

REST Example

1. Run the servlet engine on page 56 .

2. Open a Web browser on page 56 .

3. Send a message on page 57 .

4. Browse the message queue on page 58 .

5. Receive a message from the queue on page 62 .

Run the servlet engine
To run the embedded servlet engine, open a new command window and enter
the following command to start the default message broker:

activemq

This step assumes that your broker is configured as described in Example
prerequisites on page 55 .

Open a Web browser
Open your favorite Web browser (for example, Firefox or Internet Explorer)
and navigate to the following URL:

http://localhost:8161/demo

Your browser should now show the welcome page for the Web examples, as
shown in Figure 3 on page 57 .

56

REST Protocols

Figure 3. Welcome Page for Web Examples

57

REST Example

Send a message To view the form for publishing messages, click the link, Send a message
[http://localhost:8080/activemq-web-demo/send.html]. The Send a JMS
Message form now appears in your browser, as shown in Figure 4 on page
58 .

Figure 4. The Send a JMS Message Form

In the Destination name text field, enter FOO.BAR to send a message to the

FOO.BAR queue. Leave the Destination Type as Queue. Then enter an arbitrary

text message in the large message text box. Click the Send button at the
bottom of the form to send the message.

Browse the message queue
Using the history feature of your browser, navigate back to the example
welcome page (see Figure 3 on page 57). The queueBrowse servlet supports

a variety of ways to browse the contents of a queue and these are listed at
the bottom of the welcome page. The following browsing options are listed:

• Browse a queue.
[http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR]

• Browse a queue as XML
[http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=xml].

• Browse a queue as Atom
[http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=atom_1.0].

• Browse a queue as RSS 1.0
[http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=rss_1.0].

• Browse a queue as RSS 2.0
[http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=rss_2.0].

58

REST Protocols

http://localhost:8080/activemq-web-demo/send.html
http://localhost:8080/activemq-web-demo/send.html
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=xml
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=xml
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=atom_1.0
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=atom_1.0
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=rss_1.0
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=rss_1.0
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=rss_2.0
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=rss_2.0

If you click on Browse a queue, you should see a page like Figure 5 on page
59 .

Figure 5. Default Option to Browse a Queue

If you click on Browse a queue as XML, you should see a page like
Figure 6 on page 60 .

59

REST Example

Figure 6. Option to Browse a Queue as XML

60

REST Protocols

If you click on Browse a queue as Atom, you should see a page like
Figure 7 on page 61 .

Figure 7. Option to Browse a Queue as Atom

If you click on Browse a queue as RSS 1.0 or Browse a queue as RSS 2.0,
you should see a page like Figure 8 on page 62 .

61

REST Example

Figure 8. Option to Browse a Queue as RSS 1.0

Receive a message from the
queue To receive a message from the FOO.BAR queue, open the example welcome

page in your browser, http://localhost:8161/demo
[http://localhost:8080/activemq-web-demo], and click the link, Receive a
message
[http://localhost:8080/activemq-web-demo/message/FOO/BAR?timeout=10000&type=queue].

62

REST Protocols

http://localhost:8080/activemq-web-demo
http://localhost:8080/activemq-web-demo
http://localhost:8080/activemq-web-demo/message/FOO/BAR?timeout=10000&type=queue
http://localhost:8080/activemq-web-demo/message/FOO/BAR?timeout=10000&type=queue
http://localhost:8080/activemq-web-demo/message/FOO/BAR?timeout=10000&type=queue

You should now see the text of the message that you sent earlier. You will
probably also receive an error from your browser, if the message is not
formatted as HTML or XML (which the browser expects).

63

REST Example

Protocol Details
What is REST?

Representational State Transfer (REST) is a software architecture designed
for distributed systems, like the World Wide Web. For details of the REST
architecture and the philosophy underlying it, see the REST Wikipedia
[http://en.wikipedia.org/wiki/Representational_State_Transfer#REST.27s_Central_Principle:_Resources]
article.

One of the key concepts of a RESTful architecture is that the interaction
between different network nodes should take on a very simple form. In
particular, the number of operations in a RESTful protocol must be kept small:
for example, the REST protocol in FUSE requires just three operations.

Outline of a REST interaction
In general, a REST interaction consists of the following elements:

• Operation—belongs to a restricted, well-known set of operations—for
example, in the HTTP protocol, the main operations are GET, POST, PUT,

and DELETE. The advantage of this approach is that, in contrast to RPC

architectures, there is no need to define interfaces for a RESTful protocol.
The operations are all known in advance.

• URI—identifies the resource that the operation acts on. For example, a
HTTP GET operation acts on the URI by fetching data from the resource

identified by the URI.

• Data (if required)—needed for operations that send data to the remote
resource.

HTTP as a RESTful protocol
HTTP is a good example of a protocol demonstrating RESTful design principles.
In fact, proponents of REST argue that it is precisely the RESTful qualities of
HTTP that enabled the rapid expansion of the World Wide Web. In keeping
with REST principles, HTTP has a restricted operation set, consisting of only
eight operations: GET, POST, PUT, DELETE, OPTIONS, HEAD, TRACE, and

CONNECT.

For the purpose of implementing a RESTful protocol, the first four HTTP
operations—GET, POST, PUT, and DELETE—are the most important. The

semantics of these operations are described briefly in Table 9 on page 65 .

64

REST Protocols

http://en.wikipedia.org/wiki/Representational_State_Transfer#REST.27s_Central_Principle:_Resources
http://en.wikipedia.org/wiki/Representational_State_Transfer#REST.27s_Central_Principle:_Resources

Table 9. HTTP RESTful Operations

DescriptionOperation

Fetch the remote resource identified by the URI.GET

Add/append/insert data to the remote resource identified
by the URI.

POST

Replace the remote resource identified by the URI with the
data from this operation.

PUT

Delete the remote resource identified by the URI.DELETE

This simple set of operations—analogous to the classic CRUD (Create,
Replace, Update, and Delete) operations for a database—turns out to be
remarkably powerful and flexible.

REST protocol servlets
The following servlets—which are automatically deployed in the message
broker Web console—implement RESTful access to the FUSE message queues:

• message servlet on page 65 .

• queueBrowse servlet on page 67 .

message servlet
The RESTful service implemented by the FUSE message servlet enables you

to enqueue and dequeue messages over HTTP. You can, therefore, use the
message servlet to implement message producers and message consumers
as Web forms.

To interact with the FUSE message servlet, construct a URL of the following

form:

http://Host:Port/WebContext/message/Destination
Path?Opt1=Val1&Opt2=Val2...

Where the URL is constructed from the following parts:

• Host:Port—the host and port of the servlet engine. For example, in the

default message broker configuration, a HTTP port is opened on
localhost:8161.

65

Protocol Details

• WebContext—in a Web application, it is usual to group related components

(servlets and so on) under a particular Web context, WebContext. For

example, for the REST demonstration servlets, the Web context is demo by

default.

• message—routes this URL to the message servlet.

• DestinationPath—specifies the compound name of a queue or topic in

the message broker. For example, the FOO.BAR queue has the destination

path, FOO/BAR.

• ?Opt1=Val1&Opt2=Val2—you can add some options in order to qualify

how the URL is processed.

For example, the following URL can be used to fetch a message from the
FOO.BAR queue, where the Web console has the default configuration:

http://localhost:8161/demo/mes
sage/FOO/BAR?type=queue&timeout=5000

Table 10 on page 66 shows the URL options recognized by the message

servlet:

Table 10. URL Options Recognized by the Message Servlet

DescriptionURL Option

Can be either queue or topic.type

When consuming a message from a queue, specifies the
length of time (in units of milliseconds) the client is
prepared to wait.

timeout

Three HTTP operations—GET, POST, and DELETE—are recognized by the

message servlet. The semantics of these operations are described briefly in

Table 11 on page 67 .

66

REST Protocols

Table 11. Message Servlet RESTful HTTP Operations

DescriptionOperation

Consume a single message from the destination (queue or
topic) specified by the URL.

GET

Send a single message to the destination (queue or topic)
specified by the URL.

POST

Consume a single message from the destination (queue or
topic) specified by the URL. This operation has the same
effect as GET.

DELETE

For details of the form properties recognized by the message servlet (for

POSTing a message), see Example of posting a message on page 68 .

queueBrowse servlet
The RESTful service implemented by the queueBrowse servlet enables you

to monitor the contents and status of any queue or topic in the Web console.
Effectively, the queueBrowse servlet is a simple management tool.

To interact with the FUSE queueBrowse servlet, construct a URL of the

following form:

http://Host:Port/WebContext/queueBrowse/Destination
Path?Opt1=Val1&Opt2=Val2...

The queueBrowse URL has a similar structure to the message URL (see

message servlet on page 65), except that the queueBrowse URL is built

from WebContext/queueBrowse instead of WebContext/message.

For example, the following URL can be used to browse the FOO.BAR queue,

where the Web console has the default configuration:

http://localhost:8161/demo/queueBrowse/FOO/BAR

Table 12 on page 68 shows the URL options recognized by the queueBrowse

servlet:

67

Protocol Details

Table 12. URL Options Recognized by the QueueBrowse Servlet

DescriptionURL Option

Specifies the format for viewing the queue/topic. The
following views are supported:

view

• simple—(default) displays a compact summary of the

queue in XML format, where each message is shown as
a message element with ID.

• xml—displays a detailed summary of the queue in XML

format, where each message is shown in full.

• rss—displays a compact summary of the queue in the

form of an RSS 1.0, 2.0 or Atom 0.3 feed. You can
configure the type of feed using feedType.

In combination with the setting, view=rss, you can use

this option to specify one of the following feeds:

feedType

• rss_1.0

• rss_2.0

• atom_0.3

Override the MIME content type of the view.contentType

The maximum number of messages to render.maxMessages

Example of posting a message
Example 2 on page 68 shows an example of the Web form used to send a
message to the FOO.BAR queue in the Web console, as demonstrated in Send

a message on page 57 .

Example 2. Web Form for Sending a Message to a Queue or Topic

<html>
<head>
<title>Send a JMS Message</title>

68

REST Protocols

<link rel="stylesheet" href="style.css" type="text/css">
</head>
<body>
<h1>Send a JMS Message</h1>
<form action="message/FOO/BAR" method="post">
<p>
<label for="destination">Destination name</label>
<input type="text" name="destination"/>

</p>
<p>
<label for="type">Destination Type: </label>
<select name="type">
<option selected value="queue">Queue</option>
<option type" value="topic">Topic</option>

</select>
</p>
<p>
<textarea name="body" rows="30" cols="80">

Enter some text here for the message body...
</textarea>

</p>
<p>
<input type="submit" value="Send"/>
<input type="reset"/>

</p>
</form>
</body>
</html>

Table 13 on page 69 describes the form properties that are recognized by
the message servlet.

Table 13. Form Properties Recognized by Message Servlet

DescriptionForm Property

The action attribute of the <form> tag has the format,

message/DestinationPath, where DestinationPath

Form action

is the compound name of the queue or topic, using
forward slash, /, as the delimiter (for example, FOO/BAR).

The compound name of the destination queue or topic,
using a period, ., as the delimiter (for example, FOO.BAR).

destination

If this property is specified in the form, it overrides the
value of the DestinationPath in the form action.

Destination type, equals queue or topic.type

69

Protocol Details

DescriptionForm Property

Message body.body

Example of getting a message
To consume a message from a topic or queue, send a HTTP GET operation
(for example, by following a hypertext link) using the URL format described
in message servlet on page 65 . For example, to consume a message from
the FOO.BAR queue, navigate to the following URL:

http://localhost:8161/demo/mes
sage/FOO/BAR?timeout=10000&type=queue

Examples of browsing a queue
To browse a queue using the queueBrowse servlet, simply navigate to an

URL of the appropriate form, as described in queueBrowse servlet on page
67 .

For example, to browse the FOO.BAR queue in XML format:

http://localhost:8161/demo/queueBrowse/FOO/BAR?view=xml

To browse the FOO.BAR queue as an Atom 1.0 feed:

http://localhost:8161/demo/queueBrowse/FOO/BAR?view=rss&feed
Type=atom_1.0

To browse the FOO.BAR queue as an RSS 1.0 feed:

http://localhost:8161/demo/queueBrowse/FOO/BAR?view=rss&feed
Type=rss_1.0

70

REST Protocols

VM Protocol
The VM transport allows clients to connect to each other inside the Java Virtual Machine (JVM) without the
overhead of network communication.

Introduction to the VM Protocol ... 72

71

Introduction to the VM Protocol
Overview

The VM protocol enables Java clients running inside the same JVM to
communicate with each other inside the JVM, without having to resort to a
using a network protocol. The clients still require a broker to mediate the
exchange of messages, however. The VM protocol implicitly creates an
embedded broker the first time it is accessed. Figure 9 on page 72 shows
the basic architecture of the VM protocol.

Figure 9. Clients Connected through the VM Protocol

Embedded broker lifecycle
The embedded broker has the following lifecycle:

1. The first client that attempts to access a specific broker (for example,
broker1) causes the broker to be instantiated. In some cases—for example,

72

VM Protocol

if the VM URI contains special broker configuration details—it might be
important to control which client instantiates the broker.

2. Subsequent clients connect to the pre-existing embedded broker.

3. After all of the connections are closed by the clients, the embedded broker
is automatically shut down.

Simple URI syntax
A VM URI can be constructed with the following simple URI syntax:

vm://BrokerName?TransportOptions

Where BrokerName specifies the name of the embedded broker to which the

client connects. The transport options, ?TransportOptions, are specified

in the form of a query list, where you can use any of the options shown in
Table 14 on page 73 and Table 15 on page 74 .

Advanced URI syntax
Alternatively, you can construct a VM URI using the following advanced URI
syntax:

vm://(BrokerConfigURI)?TransportOptions

Where BrokerConfigURI is a broker configuration URI (see Broker

configuration URI on page 75). With this syntax, you can use only the options
shown in Table 14 on page 73 .

Transport options
Table 14 on page 73 shows the transport options you can use with either
the simple or advanced VM URI syntax.

Table 14. VM Transport Options (for All URI Syntaxes)

DescriptionOption

If true, forces each command sent over the transport to be marshalled and unmarshalled

using the specified wire format. Default is false.

marshal

The name of the wire format to use.wireFormat

Properties prefixed by wireFormat. configure the specified wire format.wireFormat.*

73

Introduction to the VM Protocol

Table 15 on page 74 shows transport options that are valid only for the
simple URI syntax.

Table 15. VM Transport Options (for Simple URI Syntax Only)

DescriptionOption

Properties prefixed by broker. configure the embedded broker. You can specify any of the

standard broker options (see TABLE) in this way.

broker.*

Specifies an external broker configuration file. For example, to pick up the broker
configuration file, activemq.xml, you would set brokerConfig as follows:

brokerConfig=xbean:activemq.xml.

brokerConfig

Broker options
Table 16 on page 74 shows the broker options.

Table 16. Broker Options

DescriptionOption

If true, enables JMX. Default is true.useJmx

If true, the broker uses persistent storage. Default is true.persistent

If true, the broker populates the JMSXUserID message property with the

sender’s authenticated username. Default is false.

populateJMSXUserID

If true, the broker installs a shutdown hook, so that it can shut down

properly when it receives a JVM kill. Default is true.

useShutdownHook

Specifies the broker name. Default is localhost.brokerName

If true, deletes all the messages in the persistent store as the broker starts

up. Default is false.

deleteAllMessagesOnStartup

If true, enables statistics gathering in the broker. Default is true.enableStatistics

Example URIs
You can construct the following example URIs using the simple syntax:

• Basic VM URI on page 75 .

• Simple URI with broker options on page 75 .

74

VM Protocol

• Simple URI with external configuration file on page 75 .

Basic VM URI
To connect to the embedded broker with broker name, broker1, you can use

the following URI:

vm://broker1

Simple URI with broker options
To create and connect to the embedded broker, broker1, where you want

the broker to have a non-persistent message store, use the following URI:

vm://broker1?broker.persistent=false

Evidently, the broker options (such as broker.persistent) can only be

taken into account, if the VM URI makes the first connection to the embedded
broker (thus causing the broker to be instantiated). If the VM URI connects
to an existing embedded broker, it is too late to change the broker
configuration.

Simple URI with external
configuration file To create and connect to the embedded broker, broker1, where the broker

is to be configured by the file, activemq.xml, use the following URI:

vm://broker1?brokerConfig=xbean:activemq.xml

Where the brokerConfig option enables you to specify the location of the

external configuration file, activemq.xml.

Broker configuration URI
The broker configuration URI is the very same URI that you use on the
command line to configure the standalone broker, activemq. There are three

different URI schemes supported for broker configuration: broker:,

properties:, and xbean:. Of these URI schemes, the broker: URI is the

most useful one for constructing VM URIs.

The broker configuration URI has the following syntax:

broker://(TransportURI, ..., network:NetworkURI,
...)/BrokerName?BrokerOptions

75

Introduction to the VM Protocol

Where the broker:// prefix is immediately followed by a list of URIs in

parentheses. Inside the URI list you can put URIs, TransportURI, for the

broker’s transport endpoints and URIs, network:NetworkURI, for the broker’s

network connectors. This is followed by the broker’s name, BrokerName, and

any broker options from Table 16 on page 74 .

Advanced example URI
The following VM URI uses the advanced URI syntax to create and connect
to an embedded broker, where the broker is configured using a broker
configuration URI.

vm:(broker:(tcp://localhost:6000)?persistent=false)?mar
shal=false

76

VM Protocol

Discovery Protocols
This chapter introduces the simplest kind of broker cluster: a collection of isolated broker instances (no network
connectors). When used in combination with the discovery protocols, such a cluster can be used as a simple
load balancing system.

Configuring a Simple Broker Cluster .. 78
Failover Protocol .. 84
Dynamic Discovery Protocol ... 88
Discovery Agents ... 93

77

Configuring a Simple Broker Cluster
Simple cluster architecture

Figure 10 on page 78 shows an example of the kind of simple broker cluster
that is the subject of discussion in this chapter, where the cluster shown in
Figure 10 on page 78 consists of just two brokers: broker A and broker B.

Figure 10. Simple Cluster Architecture

The preceding figure illustrates the simplest type of cluster, where no network
connectors are enabled on the brokers and the brokers remain unaware of
each other (isolated brokers). Assuming that the producers do not care which
consumer processes the messages, this cluster architecture can be useful for

78

Discovery Protocols

balancing load across multiple hosts. There are, however, some serious
limitations with this type of cluster.

Failover protocols
The cluster architecture shown in Figure 10 on page 78 can support some
simple modes of failover protection. In particular, if a producer or consumer
loses its connection to a broker, it can use one of the failover URIs to manage
reconnection to an alternative broker in the cluster. Currently, the following
failover protocols support reconnection logic:

• Failover Protocol on page 84 .

• Dynamic Discovery Protocol on page 88 .

• Discovery Agents on page 93 .

Limitations of simple broker
clusters The cluster architecture shown in Figure 10 on page 78 suffers from the

following limitations:

• Each broker must have a consumer for each type of queue.

• If a consumer for a particular queue on a particular broker becomes
unavailable, messages on that queue will accumulate in the broker without
being processed.

• Producers have no way of finding out whether a particular queue instance
has an associated consumer.

In principle, these limitations can be overcome by linking brokers together
using network connectors.

Steps to create multiple broker
instance Perform the following steps to create multiple message broker instances:

1. Create a directory for the new broker configuration on page 80 .

2. Copy configuration files on page 80 .

3. Customize port numbers on page 80 .

4. Customize the broker name on page 81 .

5. (Optionally) Disable network connectors on page 81 .

6. Create a script to run the broker on page 82

79

Configuring a Simple Broker Cluster

7. Repeat as necessary on page 83 .

Create a directory for the new
broker configuration Create a new directory to hold the configuration files for a new broker instance.

For example, in your working directory, FuseWorking, create a directory,

broker_a, for broker A by entering the following command:

mkdir FuseWorking/broker_a

Copy configuration files
From the FUSE Message Broker install directory, InstallDir, copy the conf

and webapps directories into the broker_a directory. For example:

Windows

mkdir FuseWorking\broker_a\conf
copy InstallDir\conf FuseWorking\broker_a\conf
mkdir FuseWorking\broker_a\webapps
copy InstallDir\webapps FuseWorking\broker_a\webapps

UNIX

cp InstallDir/conf FuseWorking/broker_a/conf
cp InstallDir/webapps FuseWorking/broker_a/webapps

Where the conf directory contains the basic configuration files for the broker

and the webapps directory contains the files required to run the Web console

management tool.

Customize port numbers
You must customize the port numbers used by broker A, in order to avoid
clashes with other brokers. To customize the port numbers, edit the
broker_a/conf/activemq.xml configuration file. For example, you might

customize the transport connector ports as follows:

<transportConnectors>
<transportConnector name="openwire"

uri="tcp://localhost:61716"
discoveryUri="multicast://default"/>

80

Discovery Protocols

...
</transportConnectors>

Where the TCP connector port has been changed from 61616 to 61716. You

also need to customize the port for the servlet engine (which hosts the Web
console application), as follows:

<jetty xmlns="http://mortbay.com/schemas/jetty/1.0">
<connectors>

<nioConnector port="8171" />
</connectors>
...

</jetty>

Where the servlet engine port has been changed from 8161 to 8171.

Customize the broker name
You must also customize the broker name, by setting the brokerName attribute

of the broker element. For example, to set the broker name for broker A,

edit the broker_a/conf/activemq.xml configuration file as follows:

<broker xmlns="http://activemq.org/config/1.0"
brokerName="brokera"
dataDirectory="${activemq.base}/data">
...

</broker>

Where the broker name is set to broker_a.

Note
It is important for each broker in a cluster to have a distinct name.
For example, discovery agents and network connectors require that
each broker in the cluster has a distinct name.

(Optionally) Disable network
connectors By default, the standard broker configuration comes with a network connector

enabled. For the basic cluster discussed in this chapter, however, each broker
is isolated and unaware of its peers. To configure this type of cluster, you
must edit the broker_a/conf/activemq.xml configuration file, commenting

out any network connector elements, networkConnector, as shown in the

following example:

81

Configuring a Simple Broker Cluster

<networkConnectors>
<!-- Comment out the network connectors ... -->
<!--
<networkConnector name="default-nc"

uri="multicast://default"/>
-->

</networkConnectors>

Note
Of course, network connectors are useful and a network of brokers
is much more responsive and flexible than a simple collection of
isolated broker instances. If you prefer, you can leave the network
connectors enabled, but you should be aware that the examples will
behave somewhat differently from the descriptions given in the text.

Create a script to run the broker
The standalone message broker, activemq, reads the environment variable,

ACTIVEMQ_BASE, to determine the location of its configuration directory.

Hence, in order to run a standalone broker using the broker A configuration,
you must set ACTIVEMQ_BASE to the directory, FuseWorking/broker_a

before running activemq.

The easiest approach to take is to create a dedicated script to run broker A.
For example, you might create a script similar to the following:

Windows

Create a Windows .bat file, broker_a.bat, according to the following

outline:

@echo off
REM Set generic FUSE Message Broker environment
REM ... (Not shown - for details, see install guide)
set ACTIVEMQ_BASE=FuseWorking\broker_a
echo Running Broker A...
activemq

UNIX

Assuming you are using a Bourne shell, create a shell script, broker_a,

according to the following outline:

82

Discovery Protocols

#! /bin/sh
Set generic FUSE Message Broker environment
... (Not shown - for details, see install guide)
ACTIVEMQ_BASE=FuseWorking/broker_a; export ACTIVEMQ_BASE
echo Running Broker A...
activemq

Repeat as necessary
Repeat the preceding steps to create as many broker instances as required—for
example, broker B, C, D, and so on.

Example broker cluster
To run the examples described in this chapter, two brokers are required:
broker A and broker B. Broker A is configured with the following transport
connectors:

<transportConnectors>
<transportConnector

name="openwire" uri="tcp://localhost:61716" dis
coveryUri="multicast://default"/>

</transportConnectors>

And broker B is configured with the following transport connectors:

<transportConnectors>
<transportConnector

name="openwire" uri="tcp://localhost:61816" dis
coveryUri="multicast://default"/>

</transportConnectors>

Where the TCP ports are configured to have distinct values (61716 and 61816,

respectively). You must also ensure that any other port numbers are configured
to be distinct (for example, the servlet engine port inside the <jetty> tag).

83

Configuring a Simple Broker Cluster

Failover Protocol
Overview

The failover protocol overlays reconnect logic on top of any of the other
transports. The failover URI is composed of multiple URIs that represent
different broker endpoints. By default, the protocol randomly chooses a URI
from the list and attempts to establish a connection to it. If it does not succeed,
or if it subsequently fails, a new connection is established to one of the other
URIs in the list.

Configuration syntax
A failover URI must conform to the following syntax:

failover://(uri1,...,uriN)?TransportOptions

Where the URI list, uri1,...,uriN, is a comma-separated list containing

one or more broker endpoint URIs. The transport options,
?TransportOptions, are specified in the form of a query list (where the

supported options are described in Table 17 on page 84). If no transport
options are required, you can use the following alternative syntax:

failover://uri1,...,uriN

Transport options
The failover protocol supports the transport options described in
Table 17 on page 84 .

Table 17. Failover Transport Options

DescriptionDefaultOption Name

How long to wait before the first reconnect attempt (in ms).10initialReconnectDelay

The maximum amount of time to wait between reconnect attempts
(in ms).

30000maxReconnectDelay

If true, use an exponential back-off between reconnect attempts.trueuseExponentialBackOff

The exponent used in the exponential back-off algorithm.2backOffMultiplier

If not 0, this is the maximum number of reconnect attempts before

an error is sent back to the client.

0maxReconnectAttempts

84

Discovery Protocols

DescriptionDefaultOption Name

If true, choose a URI at random from the list provided.truerandomize

Sample URI
The following is an example of a failover URI that randomly connects to one
of two message brokers:

failover://(tcp://localhost:61616,tcp://remotehost:61616)?ini
tialReconnectDelay=100

Example of using the failover
protocol To try out the failover protocol, perform the following steps:

1. Start up broker A on page 85 .

2. Start up consumer A on page 85 .

3. Start up broker B on page 86 .

4. Start up consumer B on page 86 .

5. Start up a producer with failover URL on page 86 .

6. Kill the active broker on page 87 .

Start up broker A
Assuming that you have already configured a simple broker cluster as
described in Configuring a Simple Broker Cluster on page 78 , start broker A
by running the relevant script. For example:

broker_a

Start up consumer A
Start a consumer that consumes messages from the TEST.FOO queue on

broker A. The consumer tool is located in the example directory of the FUSE

Message Broker install directory, InstallDir. Assuming that broker A’s TCP

connector is listening on port 61716 on the local host, open a new command

window and start consumer A as follows:

cd InstallDir/example
ant consumer -Durl=tcp://localhost:61716 -Dmax=100

85

Failover Protocol

The consumer tool should log output similar to the following as it starts up:

Buildfile: build.xmlinit:compile:consumer: [echo] Running
consumer
against server at $url = tcp://localhost:61716 for subject
$subject = TEST.FOO

[java] Connecting to URL: tcp://localhost:61716 [java]
Consuming
queue: TEST.FOO [java] Using a non-durable subscription

[java] We
are about to wait until we consume: 100 message(s) then we
will shutdown

Start up broker B
Start broker B by running the relevant script. For example, open a new
command window and enter:

broker_b

Start up consumer B
Start a consumer that consumes messages from the TEST.FOO queue on

broker B. Assuming that broker B’s TCP connector is listening on port 61816

on the local host, open a new command window and start consumer B as
follows:

cd InstallDir/example
ant consumer -Durl=tcp://localhost:61816 -Dmax=100

Start up a producer with failover
URL Start a producer with a failover URL such that it can connect either to broker

A or to broker B. Open a new command window and start the producer as
follows:

cd InstallDir/example
ant producer -Durl="failover://(tcp://localhost:61716,tcp://loc
alhost:61816)?initialReconnectDelay=100"
-DsleepTime=5000

It is important to include the double quotes around the failover URL, otherwise
the comma-separated list would be parsed as two arguments. The sleep time

86

Discovery Protocols

is set to 5 seconds between messages, in order to give you enough time to
perform the next step.

Kill the active broker
After starting the producer, observe which of the consumers is receiving
messages. If consumer A is receiving messages, the producer must be
connected to broker A, in which case broker A is the active broker. If consumer
B is receiving messages, broker B is the active broker.

To test the failover functionality on the producer side, kill the active broker
(not consumer!) by switching focus to the relevant broker window and typing
Ctrl-C. If the producer is still producing messages (it produces ten in total),

it will attempt to reconnect to the other broker. You should see output similar
to the following in the producer log:

[java] 13:50:31 WARN Transport failed, attempting to
automatically reconnect due to: java.io.EOFException

[java] java.io.EOFException
[java] at java.io.DataInputStream.readInt(DataInput

Stream.java:358) ...
[java] Sending message: Message: 7 sent at: Wed Oct 10

13:50:31 BST 2007 ...
[java] 13:50:32 INFO Successfully reconnected to

tcp://localhost:61716

87

Failover Protocol

Dynamic Discovery Protocol
Overview

The dynamic discovery protocol combines reconnect logic with the capability
to auto-discover broker endpoints in the local network. The discovery protocol
invokes a discovery agent in order to build up a list of broker URIs. The
protocol then randomly chooses a URI from the list and attempts to establish
a connection to it. If it does not succeed, or if it subsequently fails, a new
connection is established to one of the other URIs in the list.

Discovery agents
A discovery agent is a bootstrap mechanism that enables a message broker,
consumer, or producer to obtain a list of broker URIs, where the URIs
represent connector endpoints. The broker, consumer, or producer can
subsequently connect to one of the URIs in the list.

The following kinds of discovery agent are currently supported in FUSE
Message Broker:

• Simple (static) discovery agent.

• Multicast discovery agent.

• Rendezvous discovery agent.

For more details, see Discovery Agents on page 93 .

Configuring a transport connector
with a discovery agent Before you can use the discovery protocol, you must make your broker’s

endpoints discoverable by adding a discovery agent to each transport
connector. For example, to make a TCP transport connector discoverable, set
the discoveryUri attribute on the transportConnector element as follows:

<transportConnectors>
<transportConnector

name="openwire" uri="tcp://localhost:61716" dis
coveryUri="multicast://default"/>

</transportConnectors>

Where the TCP transport connector is configured to use the multicast discovery
agent, multicast://default.

Configuration syntax
A discovery URI must conform to the following syntax:

88

Discovery Protocols

discovery://(DiscoveryAgentUri)?TransportOptions

Where the discovery agent URI, DiscoveryAgentUri, identifies a discovery

agent, as described in Discovery agents on page 88 above. The transport
options, ?TransportOptions, are specified in the form of a query list (where

the supported options are described in Table 18 on page 89). If no transport
options are required, you can use the following alternative syntax:

discovery://DiscoveryAgentUri

Transport options
The discovery protocol supports the transport options described in
Table 18 on page 89

Table 18. Discovery Transport Options

DescriptionDefaultOption Name

How long to wait before the first reconnect attempt (in ms).10initialReconnectDelay

The maximum amount of time to wait between reconnect attempts
(in ms).

30000maxReconnectDelay

If true, use an exponential back-off between reconnect attempts.trueuseExponentialBackOff

The exponent used in the exponential back-off algorithm.2backOffMultiplier

If not 0, this is the maximum number of reconnect attempts before

an error is sent back to the client.

0maxReconnectAttempts

Sample URI
The following is an example of a discovery URI that uses a multicast discovery
agent:

discovery://(multicast://default)?initialReconnectDelay=100

Example of using the dynamic
discovery protocol To try out the dynamic discovery protocol, perform the following steps:

1. Configure the brokers’ transport connectors on page 90 .

2. Start up broker A on page 90 .

3. Start up consumer A on page 90 .

89

Dynamic Discovery Protocol

4. Start up broker B on page 90 .

5. Start up consumer B on page 91 .

6. Start up a producer with discovery URL on page 91 .

7. Kill the active broker on page 92

Configure the brokers’ transport
connectors To run the current example you need a cluster of two brokers: broker A and

broker B. For details of how to set up the broker cluster, see Configuring a
Simple Broker Cluster on page 78 . In particular, you must ensure that each
broker configures its TCP transport connector with a discovery URI, as follows:

<transportConnectors>
<transportConnector

name="openwire" uri="tcp://localhost:61716" dis
coveryUri="multicast://default"/>

</transportConnectors>

Where the discoveryUri attribute on the transportConnector element

is initialized to multicast://default.

Start up broker A
Assuming that you have already configured a simple broker cluster as
described in Configuring a Simple Broker Cluster on page 78 , start broker A
by running the relevant script. For example:

broker_a

Start up consumer A
Start a consumer that consumes messages from the TEST.FOO queue on

broker A. Assuming that broker A’s TCP connector is listening on port 61716

on the local host, open a new command window and start consumer A as
follows:

cd InstallDir/example
ant consumer -Durl=tcp://localhost:61716 -Dmax=100

Start up broker B
Start broker B by running the relevant script. For example, open a new
command window and enter:

90

Discovery Protocols

broker_b

Start up consumer B
Start a consumer that consumes messages from the TEST.FOO queue on

broker B. Assuming that broker B’s TCP connector is listening on port 61816

on the local host, open a new command window and start consumer B as
follows:

cd InstallDir/example
ant consumer -Durl=tcp://localhost:61816 -Dmax=100

Start up a producer with
discovery URL Start a producer with a discovery URL such that it can connect either to

broker A or to broker B. Open a new command window and start the producer
as follows:

cd InstallDir/example
ant producer -Durl=discovery://(multicast://default) -Dsleep
Time=2000

The sleep time is set to 2 seconds between messages, in order to give you
enough time to perform the next step.

As the producer starts up, it should log the following lines to the screen:

Buildfile: build.xml
init:
compile:
producer:

[echo] Running producer against server at $url = discov
ery://(multicast://default)
for subject $subject = TEST.FOO

[java] Connecting to URL: discovery://(multicast://de
fault)

[java] Publishing a Message with size 1000 to queue:
TEST.FOO

[java] Using non-persistent messages
[java] Sleeping between publish 2000 ms
[java] 16:27:55 WARN brokerName not set
[java] 16:27:56 INFO Adding new broker connection URL:

tcp://fboltond820:61816
[java] 16:27:56 INFO Adding new broker connection URL:

tcp://fboltond820:61716

91

Dynamic Discovery Protocol

[java] 16:27:56 INFO Successfully reconnected to
tcp://fboltond820:61816

You can ignore the warning message, WARN brokerName not set. The next

two INFO messages show that the discovery mechanism is working: each of

the discovered URLs is logged here. Finally, the producer connects to one of
the discovered URLs and starts sending message to that broker.

Kill the active broker
After starting the producer, observe which of the consumers is receiving
messages. If consumer A is receiving messages, the producer must be
connected to broker A, in which case broker A is the active broker. If consumer
B is receiving messages, broker B is the active broker.

To test the failover functionality on the producer side, kill the active broker
(not consumer!) by switching focus to the relevant broker window and typing
Ctrl-C. If the producer is still producing messages, it will attempt to reconnect

to the other broker. You should see output similar to the following in the
producer log:

[java] 16:28:10 WARN Transport failed, attempting to
automaticallyreconnect due to: java.io.EOFException

[java] java.io.EOFException
[java] at java.io.DataInputStream.readInt(DataInput

Stream.java:358) ...
[java] Sending message: Message: 7 sent at: Wed Oct 10

13:50:31 BST 2007 ...
[java] 16:28:10 INFO Successfully reconnected to

tcp://fboltond820:61716

92

Discovery Protocols

Discovery Agents
Overview

A discovery agent is a bootstrap mechanism that enables a client or message
broker to discover other broker instances on a network. On the client side,
the purpose of the discovery agent is simply to obtain a list of broker URIs.
The list of URIs is then processed by the dynamic discovery protocol,
discovery://(...), which opens a connection to one of the URIs in the

list.

Discovery agents typically use some form of ping mechanism to discover the
broker URIs. Hence, it is usually necessary to enable the discovery mechanism
on the server side as well (an exception to this requirement is the simple

discovery agent).

Configuring discovery agents on
the message broker For certain kinds of discovery agent (for example, multicast or rendezvous),

it is necessary to enable the discovery agent in the message broker
configuration. For example, to enable the multicast discovery agent on an
Openwire endpoint, you should edit the relevant transportConnector

element as follows:

<transportConnectors>
<transportConnector

name="openwire" uri="tcp://localhost:61716" dis
coveryUri="multicast://default"/>

</transportConnectors>

Where the discoveryUri attribute on the transportConnector element

is initialized to multicast://default. You can associate multiple endpoints

with the same discovery agent. For example, to configure both an Openwire
endpoint and a Stomp endpoint to use the multicast://default discovery

agent:

<transportConnectors>
<transportConnector

name="openwire" uri="tcp://localhost:61716" dis
coveryUri="multicast://default"/>

<transportConnector
name="stomp" uri="stomp://localhost:61613" dis

93

Discovery Agents

coveryUri="multicast://default"/>
</transportConnectors>

Using a discovery agent on the
client side You cannot use a discovery agent URI directly, on the client side. A discovery

agent is not a transport protocol and it is not recognized as such by messaging
clients. To use a discovery agent on the client side, the agent
URI,DiscoveryAgentUri, is embedded inside a discovery URL, as follows:

discovery://(DiscoveryAgentUri)?TransportOptions

The client recognizes the discovery URL as a transport. It first obtains a list
of available endpoint URLs using the specified discovery agent and then
connects to one of the discovered URLs. For more details about the discovery
protocol, see Dynamic Discovery Protocol on page 88 .

Configuring broker networks

Discovery agents FUSE Message Broker currently supports the following discovery agents:

• Simple (static) discovery agent on page 94 .

• Multicast discovery agent on page 95 .

• Rendezvous discovery agent on page 95 .

Simple (static) discovery agent
The simple (static) discovery agent provides an explicit list of broker URLs
for a client to connect to. For example:

simple://(tcp://localhost:61716,tcp://localhost:61816)

In general, the URI for a simple discovery agent must conform to the following
syntax:

simple://(URI1,URI2,URI3,...)

Or equivalently:

static://(URI1,URI2,URI3,...)

The two prefixes, simple: and static:, are exactly equivalent. In order to

use the agent URI, itmust be embedded inside a discovery URL—for example:

94

Discovery Protocols

discovery://(static://(tcp://localhost:61716,tcp://local
host:61816))

This discovery agent is only used on the client side. No extra configuration is
required in the broker.

Multicast discovery agent
The multicast discovery agent uses the IP multicast protocol to find any
message brokers currently active on the local network. In order for the protocol
to work, a multicast discovery agent must be enabled on each broker you
want to advertise and messaging clients must be configured to use a
discovery URI.

The URI for a multicast discovery agent must conform to the following syntax:

multicast://GroupID

Where the GroupID is an alphanumeric identifier. All participants in the same

discovery network must use the same GroupID. For example, the FUSE

Message Broker is usually configured to use the URI, multicast://default.

Rendezvous discovery agent
The rendezvous discovery agent is derived from Apple’s Bonjour Networking
[http://developer.apple.com/networking/bonjour/] technology, which defines
the rendezvous protocol as a mechanism for discovering services on a network.
To enable the protocol, a multicast discovery agent must be configured on
each broker you want to advertise and messaging clients must be configured
to use a discovery URI.

The URI for a rendezvous discovery agent must conform to the following
syntax:

rendezvous://GroupID

Where the GroupID is an alphanumeric identifier. All participants in the same

discovery network must use the same GroupID.

For example, to use a rendezvous discovery agent on the client side, where
the client needs to connect to the groupA group, you would construct a

discovery URL like the following:

95

Discovery Agents

http://developer.apple.com/networking/bonjour/
http://developer.apple.com/networking/bonjour/

discovery://(rendezvous://groupA)

96

Discovery Protocols

Peer-to-Peer Protocols
Peer-to-peer protocols enable messaging clients to communicate with each other directly, eliminating the
requirement to route messages through an external message broker.

Peer Protocol .. 98

97

Peer Protocol
Overview

The peer protocol enables you to set up a peer-to-peer network by creating
an embedded broker inside each peer endpoint. Figure 11 on page 98
illustrates the peer-to-peer network topology for a simple two-peer network.

Figure 11. Peer Protocol Endpoints with Embedded Brokers

In this topology, a standalone broker is not required, because each peer
instantiates its own embedded broker. As shown in Figure 11 on page 98 ,
the producer sends messages to its embedded broker, broker1, by connecting

98

Peer-to-Peer Protocols

to the local VM endpoint, vm://broker1—see Chapter 5 on page 71 . The

embedded brokers, broker1 and broker2, are linked together using a network

connector, which allows messages to flow in either direction between the
brokers. When the producer sends a message to the queue, TEST.FOO, the

first embedded broker, broker1, automatically pushes the message across

the network connector and on to the remote embedded broker, broker2. The

consumer can then receive the message from its embedded broker, broker2.

Discovering peer endpoints
Implicitly, the peer protocol uses multicast discovery to locate active peers
on the network. In order for this to work, you must ensure that the IP multicast
protocol is enabled on your operating system. See Dynamic Discovery
Protocol on page 88 for details.

URI syntax
A peer URI must conform to the following syntax:

peer://PeerGroup/BrokerName?BrokerOptions

Where the group name, PeerGroup, identifies the set of peers that can

communicate with each other. That is, a given peer can connect only to the
set of peers that specify the same PeerGroup name in their URLs. The

BrokerName specifies the broker name for the embedded broker. The broker

options, BrokerOptions, are specified in the form of a query list (for example,

?persistent=true).

Broker options
The peer URL supports the broker options described in Table 19 on page
99 .

Table 19. Broker Options

DescriptionOption

If true, enables JMX. Default is true.useJmx

If true, the broker uses persistent storage. Default is true.persistent

If true, the broker populates the JMSXUserID message property with the

sender’s authenticated username. Default is false.

populateJMSXUserID

99

Peer Protocol

DescriptionOption

If true, the broker installs a shutdown hook, so that it can shut down

properly when it receives a JVM kill. Default is true.

useShutdownHook

Specifies the broker name. Default is localhost.brokerName

If true, deletes all the messages in the persistent store as the broker starts

up. Default is false.

deleteAllMessagesOnStartup

If true, enables statistics gathering in the broker. Default is true.enableStatistics

Sample URI
The following is an example of a peer URL that belongs to the peer group,
groupA, and creates an embedded broker with broker name, broker1:

peer://groupA/broker1?persistent=false

Example of using the peer
protocol To try out the peer protocol, perform the following steps:

1. Start up consumer with embedded broker on page 100 .

2. Start up producer with embedded broker on page 101 .

Start up consumer with
embedded broker Start a consumer that consumes messages from the TEST.FOO queue

belonging to the group peer group. To start the consumer, run the consumer

tool with a peer group URL as follows:

cd InstallDir/example
ant consumer -Durl="peer://group/broker1?persistent=false" -
Dmax=100

Where the first component of the URL path, group, specifies that this peer

belongs to the group peer group. The second component, broker1, specifies

the name of the embedded broker and the setting, persistent=false, sets

a broker option. When the consumer starts up, you should see output like
the following in the command window:

consumer:

100

Peer-to-Peer Protocols

[echo] Running consumer against server at $url =
peer://group/broker1?persistent=false for subject $subject =
TEST.FOO

[java] Connecting to URL: peer://group/broker1?persist
ent=false

[java] Consuming queue: TEST.FOO
[java] Using a non-durable subscription
[java] 15:43:10 INFO ActiveMQ null JMS Message Broker

(broker1) is starting
[java] 15:43:10 INFO For help or more information please

see:
http://activemq.apache.org/

[java] 15:43:10 INFO Using Persistence Adapter: Memory
PersistenceAdapter

[java] 15:43:10 INFO Listening for connections at:
tcp://fboltond820:2399

[java] 15:43:10 INFO Connector tcp://fboltond820:2399
Started

[java] 15:43:10 INFO Network Connector org.apache.act
ivemq.transport.discovery.multicast.MulticastDiscoveryA
gent@da4b71 Started

[java] 15:43:10 INFO ActiveMQ JMS Message Broker
(broker1, ID:fboltond820-2398-1192200190327-2:0) started

[java] 15:43:10 INFO Connector vm://broker1 Started
[java] 15:43:10 INFO JMX consoles can connect to ser

vice:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
[java] We are about to wait until we consume: 100 mes

sage(s) then we will shutdown

While the consumer is starting up, it activates an embedded broker with
broker name, broker1, and attempts to connect to its peers using a multicast

discovery agent.

Start up producer with embedded
broker Start a producer that sends messages to the TEST.FOO queue on the group

peer group. To start the producer, run the producer tool with a peer group
URL as follows:

cd InstallDir/example
ant producer -Durl="peer://group/broker2?persistent=false" -
DsleepTime=1000

Where the name of the embedded broker is set to broker2 and the sleep

time (time between successive messages) is set to 1000 ms. When the
producer starts up, the output log should include some lines like the following:

101

Peer Protocol

[java] 15:43:27 INFO Establishing network connection
between from vm://broker2 to tcp://fboltond820:2399

[java] 15:43:28 INFO Network connection between
vm://broker2#2 and tcp://localhost/127.0.0.1:2399(broker1)
has been established.

These lines indicate that a peer-to-peer connection was successfully
established between the embedded brokers, broker1 and broker2. The

consumer should now be able to receive the messages sent by the producer.

102

Peer-to-Peer Protocols

	Connectivity Guide
	Table of Contents
	Preface
	The FUSE Message Broker Library
	Open Source Project Resources
	Document Conventions

	Protocol Summary
	Simple Connections
	Discovery Protocols
	Peer-to-Peer Protocols

	OpenWire Protocol
	Introduction to the OpenWire Protocol
	OpenWire Example

	Stomp Protocol
	Introduction to the Stomp Protocol
	Stomp Example
	Protocol Details
	Stomp Tutorial

	REST Protocols
	Introduction to the REST Protocol
	REST Example
	Protocol Details

	VM Protocol
	Introduction to the VM Protocol

	Discovery Protocols
	Configuring a Simple Broker Cluster
	Failover Protocol
	Dynamic Discovery Protocol
	Discovery Agents

	Peer-to-Peer Protocols
	Peer Protocol

