IONA

FUSE Message Broker

Cetting Started with FUSE Message Broker

Version 5.1
July 2008

Making Software Work Together™

Getting Started with FUSE Message Broker
IONA Technologies

Version 5.1

Published 16 Jul 2008
Copyright © 2001-2008 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

11 - oL 9
The FUSE Message BroKer LiDraryc.ououiuiririii e e e e e 10
Open SOUCE ProJECT RESOUITESiniiiii et eans 11
DoCUMENT CONVENTIONS ... ettt e e e et e e e e e e et e et e e e e e e neneen 12
Introducing FUSE MesSSage BIrOKETccieieiiiiiiiiiiiiiiiiitisssas s s sasasasasasasnsassanssssnsnssnsssnrarnsnna 15
What is FUSE MeSSage BroKer?uieiiiiii it e 16
SUPPOrEd SEANAAIAS ... eiieeiee e e 17
Supported Wire Protocols and ClENtSooiiiiiii e 18
High AVailability ..o e 19
SCaAlADI Y +eee e e, 20
ST ESY 15y T o 21
S Uy ot e e e e 22
=Y 0T g o ot 23
LGV 0 U= o 3 PPN 25
S = 7 T o 26
Broker Deployment OptioNnSeii e 29
Configuring FUSE MeSSage BroKercuiuiriiiii it e 30
= 22] o -] P 33
SHAMTING @ BIOKET e 34
Testing the Installation ... s 36
Monitoring FUSE M@ESSAgE BIOKEYiuiieiiiii et ee e 37
SEOPPING @ BIOKEI .ot et et e, 38
Running the Java EXamPlec.oiiiiiiiiii i s s e s s s s s s s e s nrn e aanaaanen 39
BEfOrE YOU DBEIN ot e e 40
RUNNING the DIOKEY ... e 41
RUNNING The CONSUME .. e et e e e e ene e 42
RUNNING the PrOQUCEY ... eene 44
MONITOKNG The BrOKEr ... e 45
Configuring the EXAmMIPIEe e e 47
T 1< PPN 49

List of Figures

NO Ok WhN

. Point-to-point MesSagingcccoviiiiiiii 27
. Publish-Subscribe Messagingcccooviiiiiiiiiicie, 28
. A Network of BroKEIS ...uiueeiiii i 29
. Transport CONNECIOrSvivieiei i 31
. Network CoNNEBCLOrS ...vvueieii e 31
. The Advanced Tab in JCONSOIEovieiieiii i 45
. Queue Attributes in JCONSOIEvvviviiiiiie s 46

List of Examples

OO WN —

. Defining Transport and Network Connectorscccooiviviiiinint, 30
. Starting an Embedded Brokercccooiiiiiiiiiiiiieea 34
. Starting a Named Embedded Brokercoooveviiniiiiininiinnnnn. 34
. Connecting to @ BroKErc.vviinieiiii e 42
. Creating @ QUEUE OF TOPIC +.vvuvninieieie e 42
. Attaching to @ QUEUE OF TOPIC +.vuevuinieiei e 44

Preface

The FUSE Message Broker Library

The FUSE Message Broker documentation library consists of the following
books:

10

Installing FUSE Message Broker discusses the requirements and procedures
for installing FUSE Message Broker

Getting Started with FUSE Message Broker on page 1 provides an overview
of the central concepts behind FUSE Message Brokerand walks you through
a simple example.

Connectivity Guide explains the different wire protocols and transports that
FUSE Message Broker supports.

Using FUSE Message Broker's Persistence Features describes how to enable
message persistence using the AMQ Message Store or a relational database
in FUSE Message Broker.

http://open.iona.com/docs/install_fuse_mb/install_fuse_mb.pdf
http://open.iona.com/docs/message_broker/persistence/connectivity_guide.pdfindex.html
http://open.iona.com/docs/message_broker/persistence/persistence.pdf

Open Source Project Resources

Apache CXF

Apache Tomcat

Apache ActiveMQ

Apache Camel

Apache ServiceMix

Web site: http://incubator.apache.org/cxf/

User's list: <cxf-user@incubator.apache.org>

Web site: http://tomcat.apache.org/

User's list: <users@tomcat. apache.org>

Web site: http://activemq.apache.org/

User's list: <users@Ractivemg.apache.org>

Web site:
http://activemq.apache.org/camel/enterprise-integration-patterns.htmi

User's list: <camel-userR@activemq.apache.org>

Web site: http://servicemix.org/site/home.html

User's list: <servicemix-users@geronimo.apache.org>

11

http://incubator.apache.org/cxf/
http://tomcat.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/camel/enterprise-integration-patterns.html
http://servicemix.org/site/home.html

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

fixed width

Fixed width (Courier font) in normal text represents portions of code and literal names of items
such as classes, functions, variables, and data structures. For example, text might refer to the
javax.xml.ws.Endpoint class.

Constant width paragraphs represent code examples or information a system displays on the
screen. For example:

import java.util.logging.Logger;

Fixed width

Fixed width italic words or characters in code and commands represent variable values you
must supply, such as arguments to commands or path names for your particular system. For

italic
example:
$ cd /users/YourUserName
Italic Italic words in normal text represent emphasis and introduce new terms.
Bold Bold words in normal text represent graphical user interface components such as menu

commands and dialog boxes. For example: the User Preferences dialog.

Keying conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple platforms, the command prompt is not
shown.

% A percent sign represents the UNIX command shell prompt for a command that does not require
root privileges.

A number sign represents the UNIX command shell prompt for a command that requires root
privileges.

> The notation > represents the MS-DOS or Windows command prompt.

Horizontal or vertical ellipses in format and syntax descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax descriptions.

Braces enclose a list from which you must choose an item in format and syntax descriptions.

12

in () (braces).

In format and syntax descriptions, a vertical bar separates items in a list of choices enclosed

Admonition conventions

This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

@

h

Tips provide hints about completing a task or using a tool. They may also provide information about
workarounds to possible problems.

®

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be encountered. These errors are unlikely to cause

damage to your data or your systems.

v
X

Warnings display information about errors that may cause damage to your systems. Possible damage from

these errors include system failures and loss of data.

13

14

Introducing FUSE Message Broker

This chapter provides an overview of the supported standards and available features in FUSE Message Broker.

What is FUSE MESSAZE BrOKEI? ...ttt e e e e e aens 16
BT oo o ¢ £=Ta IS =T o F= Yo L3t 17
Supported Wire Protocols and CHENESe.ieeii e e e e e e eeaaenas 18
HIgh AVailability .. e 19
IS T2 12 o 11 20
S CSY ISy T3 21
BT o) 22
=Y 0T g F=T o ot e 23

15

Introducing FUSE Message Broker

What is FUSE Message Broker?

ActiveM) . o .
ctiveMQ FUSE Message Broker is IONA Technologies' distribution of Apache ActiveMQ,
the open source message-oriented middleware (MOM) system.

Pure Java FUSE Message Broker is written in Java and fully implements the Java
Message Service (JMS) 1.1 specification. It also supports J2EE integration
features such as Java Database Connectivity (JDBC), J2EE Connector
Architecture (JCA), and Enterprise JavaBeans (EJB).

16

Supported Standards

Supported Standards

JMS 1.1
J2EE 1.4
JNDI

AJAX and REST

JMS 1.1 allows J2EE application components to create, send, receive, and
read messages for reliable, loosely coupled communication across distributed
systems.

FUSE Message Broker supports the following JMS features:
* Queue- and topic-based messaging

* Persistent and non-persistent messaging

* JMS transactions

¢ XA transactions

FUSE Message Broker can be used with your organization's existing J2EE
platform architecture. It supports any J2EE application server, such as
Geronimo 1.x, JBoss 4.x, WebSphere 6.x or WebLogic 9.x.

The JCA Resource Adapter allows a J2EE application server to efficiently pool
connections, control transactions, and manage security for FUSE Message
Broker.

Java Naming and Directory Interface (JNDI) enables applications to locate
and connect with services, for seamless connectivity to heterogeneous
enterprise naming and directory services. Developers rely on the JNDI standard
to build directory-enabled applications.

You can set up JNDI in FUSE Message Broker simply by adding a
jndi.properties file to your classpath.

FUSE Message Broker facilitates integration of existing Internet applications
and wireless devices that depend on HTTP. It includes a Representational
State Transfer (REST) API that allows you to integrate Asynchronous JavaScript
and XML (AJAX) applications into your organization's messaging backbone.

17

Introducing FUSE Message Broker

Supported Wire Protocols and Clients

Encoding formats

While FUSE Message Broker is written in Java, it can also supports
connections with a host of different clients thanks to its support for the
OpenWire and STOMP encoding formats.

OpenWire The default wire protocol used by native Java FUSE Message Broker clients
is the OpenWire binary format. There are also OpenWire client libraries
available for C, C++ and .NET.

STOMP

Streaming Text Oriented Messaging Protocol (STOMP) is used to support
FUSE Message Broker clients written in languages such as Ruby, Perl, Python,
and PHP.

18

High Availability

Clustering

Failover

High Availability

FUSE Message Broker supports reliable high performance load balancing of
messages on a queue across consumers. If a consumer dies, any
unacknowledged messages are redelivered to other consumers on the queue.
If one consumer is faster than the others it receives more messages.

A client can connect to one broker node in a cluster and automatically fail
over to a new node in the cluster if there is a failure. On the broker side, FUSE
Message Broker uses a store-and-forward method to distribute messages over
a cluster.

19

Introducing FUSE Message Broker

Scalability

High capacity brokers

Clustering

JMS streams for large messages

Message compression

20

Each broker supports thousands of persistent messages per second with
minimal latency, and can handle a vast number of connections and
destinations.

Messaging loads can be shared among brokers in a cluster.

When sending messages of 1GB or larger, JMS streams eliminate the
bottleneck that would occur as the JMS client tries to keep such large
messages in memory.

GZIP compression allows highly verbose messages to be compressed.

Persistence

Persistence options

Supported databases

Persistence

You can enable or disable persistence depending on your business
requirements. When persistence is enabled, you can configure FUSE Message
Broker to write messages directly to a database, or to the high performance
journal for increased throughput.

See Using FUSE Message Broker's Persistence Features for details.

You can use any JDBC-compliant database to store long-term persisted
messages. Supported databases include:

* Apache Derby

* Oracle

e Sybase

* DB2

* Microsoft SQL Server
* Postgresql

* MySQL

* Axion

* HSQL

21

http://open.iona.com/docs/message_broker/persistence/persistence.pdf

Introducing FUSE Message Broker

Security

Encryption

FUSE Message Broker supports Secure Sockets Layer (SSL) encryption for
transport over HTTPS.

Authenticati horizati
uthentication and authorization FUSE Message Broker provides plug-in points to support custom authentication

and authorization, and supports third-party authentication providers, firewalls,
proxy servers, HTTP(s) tunneling and DMZ products.

22

Performance

Optimized for performance

Performance options

High performance journal

Performance

Although message oriented middleware is primarily focused on reliability over
performance, FUSE Message Broker is optimized for high performance through
its use of staged event-driven architecture (SEDA), straight through processing
(STP), reactive scalable flow control, and high-performance journaling.

You can optimize FUSE Message Broker by adjusting the following messaging
parameters:

* Message compression
* Message fragmentation

* Asynchronous message sends

Disable time stamps
¢ Customizable message pre-fetching
* Disable message copying

¢ Optimized message dispatch

The FUSE Message Broker high performance journal, which is enabled by
default, reduces latency by capturing messages, transaction commits/rollbacks,
and message acknowledgements faster than any database can. These are
then written to a JDBC database at regular intervals.

23

24

Key Concepts

This chapter introduces some concepts that are key to understanding the Java Message Service (JMS) APl and
FUSE Message Broker.

JMS Basics

.. 26
Broker Deployment OPLiONSieie it et 29
Configuring FUSE MESSAEE BIOKETeiiei et ens 30

25

Key Concepts

JMS Basics

JMS components

Providers

Messages

Clients

26

Java Message Service (JMS) is a Java Message Oriented Middleware (MOM)
API for sending messages between two or more clients.

If you are unfamiliar with JMS, you may want to read the Java Message
Service API section of Sun Microsystems' J2EE 1.4 Tutorial
[http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html]

A JMS system is comprised of the following components:
* Providers

* Messages

¢ Clients

¢ Destinations

The JMS provider is a messaging system that implements the JMS interfaces.
Message broker such as Apache ActiveMQ and FUSE Message Broker are
examples of providers.

A messages is an object that contains the data being transferred between
JMS clients.

A client is an application that uses the services of the message broker. There
are two types of client in a JMS system:

Producer

Producers create messages and send them to the broker for delivery to
a particular destination.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Destinations

Queues

Topics

JMS Basics

Consumer

Consumers retrieve messages from a destination.

Destinations are maintained by the message broker. They can be either queues
or topics.

A queue is a destination that contains messages that have been sent and are
waiting to be read. Messages are delivered in the order sent.A message is
removed from the queue once it has been read.

Queues are used for point-to-point or one-to-one messaging.

Figure 1. Point-to-point Messaging

Sender

Topics are used to send messages to one or more consumers. Producers
publish messages to a topic and one or more consumers subscribe to the
topic

In this one-to-many messaging scenario, producers are also referred to as
publishers and consumers as subscribers.

Key Concepts

28

Figure 2. Publish-Subscribe Messaging

Broker Deployment Options

Broker Deployment Options

Broker functions

Embedded broker

Standalone broker

Network of brokers

The message broker is responsible for routing messages to the correct topic
or queue. It is also responsible for providing quality of service features, such
as reliability, persistence, security, and high availability.

You can deploy FUSE Message Broker in either standalone or embedded
mode. You can also deploy a network of brokers.

An embedded broker executes within the same JVM process as the clients
that are using its services. So rather than communicating across the network,
clients can communicate with the broker more efficiently using direct method
invocation.

In addition, if the network fails, clients can continue to send messages to the
broker, which will hold the messages until the network is restarted. See
Starting an embedded broker on page 34

A standalone broker does not share its JVM process with clients and instead
communicates with clients using a network-based transport connector. See
Starting a standalone broker on page 34 for details.

Often a number of brokers can be linked together in a network or cluster of
brokers. A network of brokers can use various network topologies, such as
hub-and-spoke, daisy chain, or mesh.

Figure 3. A Network of Brokers

Client

|

Client

|

29

Key Concepts

Configuring FUSE Message Broker

XML configuration

Connectors

30

FUSE Message Broker is configured using XBean XML. XBean is an extension
of the Spring Framework that has allowed the developers of Apache ActiveMQ
to develop a syntax that is less verbose and yet more expressive than basic
Spring configuration.

Configuration is stored in the activemqg.xml file in the rnstaiipir/conf
directory.

The activemg.xml file allows you to configure transport and network
connectors for FUSE Message Broker, as shown below:

Example 1. Defining Transport and Network Connectors

<transportConnectors>
<transportConnector name="openwire" uri="tcp://local
host:61616" discoveryUri="multicast://default"/>
<transportConnector name="ssl" uri="ssl://localhost:61617"/>

<transportConnector name="stomp" uri="stomp://local
host:61613"/>

<transportConnector name="xmpp" uri="xmpp://local
host:61222"/>
</transportConnectors>

<networkConnectors>
<!-- by default just auto discover the other brokers -->
<networkConnector name="default-nc" uri="multicast://de
fault"/>
K==
<networkConnector name="hostl and host2" uri="stat
ic:// (tcp://hostl1:61616,tcp://host2:61616)"/>
-—>
</networkConnectors>

Transport connectors are used for communication between clients and brokers.

Configuring FUSE Message Broker

Figure 4. Transport Connectors

Client Transport Connector—»| Broker

A broker uses a network connector to communicate with another broker.

Figure 5. Network Connectors

Broker Network Connector——| Broker

Note

For more details on transport and network connectors, see the
Connectivity Guide guide.

31

http://open.iona.com/docs/message_broker/persistence/connectivity_guide.pdfindex.html

32

Basic Tasks

This chapter covers the basics of stopping, starting, testing, and monitoring FUSE Message Broker.

SHAMTING @ BIOKET et 34
Testing the INStallation ... e 36
Monitoring FUSE M@ESSAZE BIOKEYu ittt e et e e e e 37
IS (0] 7o T == T = (0] (=T G 38

33

Basic Tasks

Starting a Broker

Starting a standalone broker

Starting an embedded broker

34

To start a standalone instance of FUSE Message Broker:

1. Inacommand prompt or terminal window, change directory to the FUSE
Message Broker installation directory.

2. Change directory to the bin directory.

3. Type the following:
* Windows:
activemg.bat
* UNIX:

./activemq

An embedded broker executes within the same JVM process as the clients
that are using its services. There are a number of ways to embed a broker.
The simplest is shown in Example 2 on page 34

Example 2. Starting an Embedded Broker

BrokerService broker = new BrokerService() ;
broker.addConnector ("tcp://localhost:61616") ;
broker.start () ;

Clients running in the same VM can connect to the embedded broker using
the VM transport connector; external clients connect using the TCP transport
connector.

If you have more than one broker running in the same VM, you need to set
the broker name, as shown in Example 3 on page 34:

Example 3. Starting a Named Embedded Broker

BrokerService broker = new BrokerService();
broker.setBrokerName ("brokerl") ;
broker.addConnector ("tcp://localhost:61616") ;
broker.start () ;

Starting a Broker

Clients or other brokers connecting from within the same VM can use the URI
vm://brokerl.

35

Basic Tasks

Testing the Installation

Overview

Testing on Windows

Testing on UNIX

Running the Web demos

36

Once you have run the start script, a number of messages are written to the
command window, including the following:

INFO BrokerService - ActiveMQ JMS Message Broker (localhost,
ID: hostname—-3074-1194432866307-0:0) started

Since FUSE Message Broker runs on port 61616, you can check whether
that port is in use by running the netstat command.

To test your installation on Windows, run the following from a command
prompt:

netstat -an|find "61616"

On UNIX, run the following from a terminal window:

netstat -an|grep 61616

FUSE Message Broker includes a number of Web demos and examples that
you can use to become familiar with the product.

To run the Web demos, ensure that the broker is running and then open the
following URL in your browser:

http://localhost:8161/demo

Monitoring FUSE Message Broker

Monitoring FUSE Message Broker

Overview

Using the Web Console

Using JMX

You can monitor FUSE Message Broker using one of the following:
* The ActiveMQ Web Console
e JMX

Once FUSE Message Broker is running, you can access the Web Console by
opening the following URL in your browser:

http://localhost:8161/admin

From the home page of the Web Console you can click the Send link in the
top navigation bar to send a test message to an existing queue or topic.

Click the Queues link to see the available queues in your installation. A queue
called Example.A is available by default.

Click the Topics link to see the available topics in your installation.

To enable JMX support for FUSE Message Broker:
1. Open the following Spring XML configuration file:

Installbir/conf/activemqg.xml

2. Add a usedmx attribute with a value of true to the broker element, as
follows:

<broker useJmx="true" brokerName="MyBroker">
</broker>
3. Run a JMX console, by running jconsole from Java HoME/bin.

4. Select FUSE Message Broker in the list of connections and click Connect.

37

Basic Tasks

Stopping a Broker

Terminating the broker process

Stopping using the Admin tool

Killing a background process on
UNIX

38

You can stop a running broker; on both Windows and UNIX by pressing Ctrl+C
in the command window or terminal in which the process is running.

To stop a broker using the Admin tool.

1. Inacommand prompt or terminal window, change directory to the FUSE
Message Broker installation directory.

2. Change directory to the bin directory.
3. Type the following:
¢ Windows:

activemg-admin stop Hostname

* UNIX:

./activemg-admin stop Hostname

If FUSE Message Broker was started in the background on UNIX, first identify
the process ID by typing the following in a terminal window:

ps -ef|grep activemq

Then kill the process by typing the following:

kill pID

Running the Java Example

This chapter walks you through the Java example that ships with FUSE Message Broker .

BEIOrE YOU DBEIN ot e e 40
RUNNING The DIOKEY ... ettt aaans 41
RUNNING The CONSUMEE ... et ettt et et e e e e et e e e eees 42
RUNNING the PrOQUCEY ... ettt a e 44
MONITONNG The BIOKEY ... ettt eas 45
Configuring the EXAMIPIEu et et enas 47

39

Running the Java Example

Before you begin

Prerequisites

Example location

What happens

40

Before you run the Java example, ensure that you have the required version
of Apache Ant and of the Java Development Kit installed. See Java and
Compiler Requirements in the Installing FUSE Message Broker for details.

You can use Ant to run the example code from the root of the examp1e folder

in the FUSE Message Broker. installation directory. Each Ant target is explained
below.

The Java source code is is contained in the src folder.

By default, the example allows you to do the following:
1. Run an embedded instance of FUSE Message Broker.

2. Run a consumer that waits to consume a predefined number of messages
from a queue and then closes the connection.

3. Run a producer that sends the messages to the queue.

http://open.iona.com/docs/install_fuse_mb/install_fuse_mb.pdf
http://open.iona.com/docs/install_fuse_mb/install_fuse_mb.pdf

Running the broker

Running the broker

Running an embedded broker

Embedding a broker involves deploying an instance of FUSE Message Broker
inside a JVM.

Note

You can also simply run a standalone broker by running the activemq
script from the bin directory under the FUSE Message Broker

installation directory.
To run the embedded broker:

1. In a new command window, change directory to the example directory
in the FUSE Message Broker installation directory.

2. Type the following:

ant embedBroker

The code explained The embedBroker Ant target points to the EmbeddedBroker. java class,

which creates a new broker as shown in Example 3.1 on page 34.

41

Running the Java Example

Running the Consumer

Using Ant

The code explained

42

To run the consumer, type ant consumer at the command prompt. By
default, the consumer consumes the published messages from a queue.

The consumer Ant target points to the consumerTool.java class, which
uses the ActiveMQConnectionFactory class to connect to the broker, as
shown:

Example 4. Connecting to a Broker

public class ConsumerTool {

private String user = ActiveMQConnection.DEFAULT USER;
private String password = ActiveMQConnection.DEFAULT PASSWORD;
private String url = ActiveMQConnection.DEFAULT BROKER URL;

// Create the connection.

ActiveMQConnectionFactory connectionFactory = new ActiveMQCon
nectionFactory (user, password, url);

connection = connectionFactory.createConnection () ;
connection.start();

The consumer uses createQueue () to create a queue or
createTopic () depending on which arguments you pass in at runtime. The
queue or topic name is defined as TEST.Foo in the build.xml.

Example 5. Creating a Queue or Topic

private Session session;
private String subject = "TOOL.DEFAULT";
private boolean transacted;

// Create the session
Session session = connection.createSession (transacted, Ses
sion. AUTO_ACKNOWLEDGE N
if (topic) {
destination = session.createTopic (subject);

Running the Consumer

43

Running the Java Example

Running the Producer

Using Ant

The code explained

44

Use ant producer to send a given number of messages to a queue or topic.

The producer Ant target points to the producerTool.java class, which
again uses ActiveMQConnectionFactory to connect to the broker, as shown
in Example 4 on page 42.

The producer uses createQueue () Of createTopic () to publish to a
destination.

Note

If the destination already exits, the createQueue ()and
createTopic () are simply used to attach to the destination.

Example 6. Attaching to a Queue or Topic

// Create the session
Session session = connection.createSession (transacted, Ses
Sion.AUTO_ACKNOWLEDGE);
if (topic) {
destination = session.createTopic (subject);
} else {
destination = session.createQueue (subject);

}

Monitoring the Broker

Monitoring the Broker

Overview

Using JConsole

You can use any Java Management Extensions (JMX)-compliant console, such
as JConsole or MC4J to monitor the messages passed between the producer,
the broker, and the consumer.

To monitor the messages using JConsole:

1. Ensure that the Java HOME environment is set.

2. From a command prompt, run jconsole.

3. In the JConsole window, click the Advanced tab.

4. Enter the following into the JMX URL field.
service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

5. Click Connect.

Figure 6. The Advanced Tab in JConsole

£ JConsole: Connect to Agent

fLucaI |/Remute rnd\ranced |

JMX URL: |ser\rice:jmx:rmi:IIIjndiIrmi:IIIncalhnst:1 099smermi |

Liser Name: | |

Password: | |

Connect H Cancel ‘

6. Click the MBeans tab.

45

Running the Java Example

7. Under the Tree node in the MBeans panel, expand org.apache.activemq
localhost Queue.

8. Open TEST.FOO and in the Attributes tab, check that the messages have
been sent to the queue.

Figure 7. Queue Attributes in JConsole

[Attributes | Operations | Notifications " Info_|

MHame Yalue
AverageEnguedeTime 0.99045
CansumerCount 0
Cegueauscount 2000
DizpatchCount 2000
Engqueueaaunt 4010
MaxAuditDepth 2048
MaxEngueueTime 280
MaxFroducersToAudit 1024
tdernaryLimit 30198988
MemorPercentUsage 13
MemorJdsagePordion 1.0
MinEngueueTime 10
Marne TEST.FOO
FroducerCount 0
FroducerFlowCantral true
Queyesize 2010

46

Configuring the Example

Configuring the Example

Overview

Consumer and producer
configuration options

You can configure the producer and the consumer in the Java example in a
number of different ways by passing -p plus option flags to the clients at

runtime, as shown:

ant consumer -Durl=tcp://hostname:1234 -Dtopic=true

You can configure both the consumer and the producer by passing them the
following properties.
url

Used to specify a custom URL for the broker. For example,
tcp://hostname:1234.

topic

A boolean to determine whether to use topics or queues. Defaults to
false.

subject

Used to specify a custom destination. For example, MyQueue or MyTopic.

durable

A boolean to specify that you want to create a durable topic. Defaults to
false.

maXx
The maximum number of messages to be produced or consumed before
the client shuts down.

transacted

A boolean to specify whether transactions should be used. Defaults to
false.

sleepTime

The time to wait between message consumptions.

47

Running the Java Example

Consumer-only configuration
options

48

verbose

Used to print out more information. Defaults to true.

When running the consumer, you can also pass in the following arguments:

clientId

A string used to identify the client.

ack-mode

Sets the type of acknowledgement to use. See the JavaDoc
[http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.htmi]
for java.jmx.Session for details.

receive-time-out

An integer that specifies the time to wait until the message is consumed.

http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html
http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html

Index
A

AJAX, 17

Apache ActiveMQ, 16

Asynchronous JavaScript and XML (see AJAX)
authentication, 22

authorization, 22

B

broker
deployment options, 29
embedded, 29, 41
monitoring, 45
standalone, 29
starting, 34
stopping, 38

C

clustering, 19, 20
configuration, 30

D

databases, 21

E

encryption, 22

example
configuring, 47
running, 39

F

failover, 19

H
high availability, 19
high performance journal, 23

J
J2EE, 17
Java Message Service (see JMS)
Java Naming and Directory Interface (see JNDI)
JConsole, 45
JMS, 17, 26
clients, 26
consumers, 27
messages, 26
producers, 26
provider, 26
queues, 27
streams, 20
topics, 27
JMX, 37, 45
JNDI, 17

M

message compression, 20
monitoring, 37

N

network connectors, 30

P

performance, 23
persistence, 21

R

Representational State Transfer (see REST)
REST, 17

S

scalability, 20
security, 22
Spring Framework, 30

T

testing, 36
transport connectors, 30

49

XBean, 30

50

	Getting Started with FUSE Message Broker
	Table of Contents
	Preface
	The FUSE Message Broker Library
	Open Source Project Resources
	Document Conventions

	Introducing FUSE Message Broker
	What is FUSE Message Broker?
	Supported Standards
	Supported Wire Protocols and Clients
	High Availability
	Scalability
	Persistence
	Security
	Performance

	Key Concepts
	JMS Basics
	Broker Deployment Options
	Configuring FUSE Message Broker

	Basic Tasks
	Starting a Broker
	Testing the Installation
	Monitoring FUSE Message Broker
	Stopping a Broker

	Running the Java Example
	Before you begin
	Running the broker
	Running the Consumer
	Running the Producer
	Monitoring the Broker
	Configuring the Example

	Index

