PROGRESS

SOFTWARE

FUSE™ Message Broker

FUSE™ Message Broker Configuration Guide

Version 5.2
December 2008

Draft

FUSE Message Broker Configuration Guide

Progress Software
Version 5.2

Published 02 Dec 2008
Copyright © 2008 IONA Technologies PLC , a wholly-owned subsidiary of Progress Software Corporation.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Draft

Table of Contents

11 - oL 9
The FUSE Message BroKer LiDraryc.ououiuiririii e e e e e 10
Open SOUCE ProJECT RESOUITESiniiiii et eans 11
DoCUMENT CONVENTIONS ... ettt e e e et e e e et e e e e e neneen 12
Configuring the BIOKEKc.iuieiiiiiiiie e re s s s s s rarasa e a e asa s s a s e s s sasnrararnrasnsnsnrnn 15
XML CoNfigUIAtION . .oeieii e e e e e e 16
URI ConfigUIation ... e e e 20
Properties File Configurationcooiiiii e e e 21
Configuring an Embedded BroKErc.ouiiiiiiii i e, 22
ConfigUIING TranSPOIESueieieiiiiiii e s s s ra e e et e e s s s s s sasararasnsasasnsnsnsnnn 25
ConfiguriNg CHENTSouiiiiiiiii s e s s s s s rasara et a e e n e s n s s e s sasarararnrnsasnsnrns 27
T 1= P 29

List of Tables

Draft

1. URI Configuration: Broker Options

2. Available URI Values for BrokerFactory Class

List of Examples

OO WN —

Draft

. Example activemg.xmlcooiiiiii 16
. Configuring Persistenceccoooiiiiiiiiiiiii 19
. Configuring Startup Destinationsccoooiiiiiiiiii, 19
. Example Properties URIScoviiiiiiiiiiiiiicccceee e 21
. Example Properties Fileccooiiiiiiie e 21
. Configuring an Embedded Broker in Codecccevviiiiiiinininnn.n. 22

Draft

Preface

The FUSE Message BroKer Library ...t e e et et e e e aaanas
OpeN SOUICE PrOJECT RESOUICES . .vuiuiiiiie ettt ettt et e e e e e e e e eenens
Document Conventions

Draft

The FUSE Message Broker Library

10

The FUSE Message Broker documentation library consists of the following
books:

e |nstalling FUSE™ Message Broker discusses the requirements and
procedures for installing FUSE Message Broker

* Getting Started with FUSE™ Message Broker provides an overview of the
central concepts behind FUSE Message Brokerand walks you through a
simple example.

» Connectivity Guide explains the different wire protocols and transports that
FUSE Message Broker supports.

* Using FUSE™ Message Broker's Persistence Features describes how to
enable message persistence using the AMQ Message Store or a relational
database in FUSE Message Broker.

http://fusesource.com/docs/install_fuse_mb/install_fuse_mb.pdf
http://fusesource.com/docs/getting_started/getting_started.pdf
http://fusesource.com/docs/message_broker/persistence/connectivity_guide.pdf
http://fusesource.com/docs/message_broker/persistence/persistence.pdf

Draft

Open Source Project Resources

Apache CXF

Apache Tomcat

Apache ActiveMQ

Apache Camel

Apache ServiceMix

Web site: http://cxf.apache.org/

User's list: <user@cxf. apache.org>

Web site: http://tomcat.apache.org/

User's list: <users@tomcat. apache.org>

Web site: http://activemq.apache.org/

User's list: <users@activemq.apache.org>

Web site:
http://activemq.apache.org/camel/enterprise-integration-patterns.htmi

User's list: <camel-userRactivemq.apache.org>

Web site: http://servicemix.apache.org

User's list: <users@servicemix.apache.org>

11

http://cxf.apache.org/
http://tomcat.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/camel/enterprise-integration-patterns.html
http://servicemix.apache.org

Draft

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

fixed width

Fixed width (Courier font) in normal text represents portions of code and literal names of items
such as classes, functions, variables, and data structures. For example, text might refer to the
javax.xml.ws.Endpoint class.

Constant width paragraphs represent code examples or information a system displays on the
screen. For example:

import java.util.logging.Logger;

Fixed width

Fixed width italic words or characters in code and commands represent variable values you
must supply, such as arguments to commands or path names for your particular system. For

italic
example:
$ cd /users/YourUserName
Italic Italic words in normal text represent emphasis and introduce new terms.
Bold Bold words in normal text represent graphical user interface components such as menu

commands and dialog boxes. For example: the User Preferences dialog.

Keying conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple platforms, the command prompt is not
shown.

% A percent sign represents the UNIX command shell prompt for a command that does not require
root privileges.

A number sign represents the UNIX command shell prompt for a command that requires root
privileges.

> The notation > represents the MS-DOS or Windows command prompt.

Horizontal or vertical ellipses in format and syntax descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax descriptions.

Braces enclose a list from which you must choose an item in format and syntax descriptions.

12

Draft

in () (braces).

In format and syntax descriptions, a vertical bar separates items in a list of choices enclosed

Admonition conventions

This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

@

h

Tips provide hints about completing a task or using a tool. They may also provide information about
workarounds to possible problems.

®

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be encountered. These errors are unlikely to cause

damage to your data or your systems.

v
X

Warnings display information about errors that may cause damage to your systems. Possible damage from

these errors include system failures and loss of data.

13

Draft

Configuring the Broker

In FUSE Message Broker, there are two ways of configuring a broker: using an XML file and using a URI.

XML Configuration

... 16
L0100 =T T 1 o o 20
Properties File ConfigUrationooiieoiii i e e e 21
Configuring an EmMbedded BroKETieiiii e e e e e 22

15

Configuring the Broker

Draft

XML Configuration

Specifying an alternative
configuration file

Configuration file format

16

The recommended way to configure FUSE Message Broker is by using an
XBean XML configuration file. XBean is an extension of the Spring Framework
that has allowed the developers of Apache ActiveMQ to develop a syntax that
is less verbose and yet more expressive than basic Spring configuration.

By default, FUSE Message Broker uses the activemqg.xml configuration file
stored in the rnstaiipir/conf directory.

You can specify an alternative XML configuration file when running FUSE
Message Broker by using the xbean:file command line option, as follows:

activemqg xbean:file:PathToXmlConfigFile

For example:

activemg

xbean:file:C:/iona/fuse-message-broker-5.1.0.0/conf/activemqg.xml

The broker XML configuration file is comprised of a root beans element
followed by a nested broker element.

Example 1. Example activemq.xml

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:amg="http://activemq.org/config/1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframe
work.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans-2.0.xsd
http://activemg.org/config/1.0 http://act
ivemqg.apache.org/schema/activemg-core.xsd
http://activemg.apache.org/camel/schema/spring http://act
ivemqg.apache.org/camel/schema/spring/camel-spring.xsd">

<!-- Allows us to use system properties as variables in this
configuration file -->

<bean class="org.springframework.beans.factory.config.Prop
ertyPlaceholderConfigurer"/>

<broker xmlns="http://activemqg.org/config/1.0" broker

The broker element

Draft XML Configuration

Name="localhost" dataDirectory="${activemg.base}/data"

<!-- The transport connectors ActiveMQ will listen to —-->
<transportConnectors>
<transportConnector name="openwire" uri="tcp://local
host:61616"/>

<transportConnector name="ssl" uri="ssl://local
host:61617"/>

<transportConnector name="stomp" uri="stomp://local
host:61613"/>

<transportConnector name="xmpp" uri="xmpp://local

host:61222"/>
</transportConnectors>

<!-- The store and forward broker networks ActiveMQ will
listen to -->
<networkConnectors>

<!-- by default just auto discover the other brokers -->
<networkConnector name="default-nc" uri="multicast://de
fault"/>

<networkConnector name="hostl and host2" uri="stat
ic:// (tcp://hostl1:61616,tcp://host2:61616)"/>
</networkConnectors>>

</broker>
</beans>

Full details of elements and attributes that you may find in the configuration
file can be found in the XML Configuration Reference [../configref/index.html]>.
The following sections detail the most important tags.

The broker element identifies and configures an instance of a broker.
Specifying more than one broker element results in multiple broker instances
running in the same virtual machine.

brokerName

Specifies a unique name for the broker instance. Be sure not to use
special characters, such as underscores, as they are converted to URIs
which do not allow things like underscores in them.

17

../configref/index.html
../configref/index.html

Configuring the Broker

Transport connectors

Network connectors

Configuring persistence

18

Draft

dataDirectory

Specifies the directory where data files for the JDBC and Journal
persistence adaptors are stored.

The transportConnectors element contains one or more nested
transportConnector elements, each of which specifies an |IP address and
port number on which the broker listens and accepts network connection
requests from clients.

The transportConnector element takes the following attributes:

uri

Specifies the URI for this transport connector. For example,
tcp://localhost:61616. Required.

discoveryURI

Enables a discovery agent fort this transport connector. The broker will
listen for discovery advertisements from other brokers using this URI.

name

The name assigned to the transportConnector.

The networkConnectors element contains one or more nested
networkConnector elements, each of which specifies an IP address and

port number on which the broker creates connections to other brokers. The
following attributes are required.

name

The name of the network connector.

uri

The URI for this netwwork connector. You must use a static, rendezvous,
or multicast URI

You can configure a number of message persistence implementations using
the persistenceAdapter element. See Using FUSE™ Message Broker's
Persistence Features for details.

http://fusesource.com/docs/message_broker/persistence/persistence.pdf
http://fusesource.com/docs/message_broker/persistence/persistence.pdf

Startup destintations

Draft XML Configuration

Example 2. Configuring Persistence

<persistenceAdapter>

<journaledJDBC journallogFiles="5" dataDirectory="${act
ivemg.base}/activemg-data" dataSource="#postgres-ds"/>
</persistenceAdapter>

Typically in FUSE Message Broker, destinations are created on demand.
However, you can configure which destinations are available when the broker
starts up using the destinations element.

Example 3. Configuring Startup Destinations

<destinations>
<queue physicalName="FO0O.BAR" />
<topic physicalName="SOME.TOPIC" />
</destinations>

The name and physicalName attributes should match the corresponding
names in the client's JNDI context.

19

Configuring the Broker

Draft

URI Configuration

You can configure a broker by appending a URL to the activemq command

Broker options

20

using the following syntax:

activemq

broker:(transportURI,network:networkURI)/brokerName?brokerOptions

For example:

activemq

broker{tcp:/localhost: 61616 network:static:icpy/femotehast:61616)2persistent=false8assemx=tue

You can include the following broker options to a configuration URI.

Table 1. URI Configuration: Broker Options

Option Default |Description
Value

useJmx true Expose the broker to JMX

persistent true Enable the broker to use persistent
storage

populateJMSXUserID false Have the broker populate the
JMSXUserID property of messages
to indicate the authenticated
username of the sender

useShutdownHook true Have the broker install a shutdown
hook so that it can properly shut
itself down on a JVM Kkill

brokerName localhost |The name of the broker

deleteAllMessagesOnStartup

false

Delete all the messages in the
persistent store when the broker
starts up

enableStatistics

true

Enable statistics gathering

Draft Properties File Configuration

Properties File Configuration

Examples

You can run a configured broker by referencing a properties file, using the
following syntax:

activemq properties:PropertiesFile

The PropertiesFile value can point to a local file or to a URL resource.

Example 4. Example Properties URIs

properties:/brokers/brokerl.properties
properties:brokerl.properties
properties:http://example.com/brokerl.properties

Example 5. Example Properties File

usedmx = false
persistent = false
brokerName = brokerl

21

Configuring the Broker

Draft

Configuring an Embedded Broker

Configuring through code

Using the BrokerFactory class

22

You can fully configure an embedded broker through application code, as
shown in Example 6 on page 22.

Example 6. Configuring an Embedded Broker in Code

BrokerService broker = new BrokerService () ;
broker.setBrokerName ("brokerl") ;
broker.setUseShutdownHook (false) ;

//Add plugin

broker.setPlugins (new BrokerPlugin[] {new JaasAuthentication
Plugin()});

//Add a network connection

NetworkConnector connector = answer.addNetworkConnector ("stat
ic://"+"tcp://broker2:61616") ;

connector.setDuplex (true) ;

broker.addConnector ("tcp://localhost:61616") ;
broker.start () ;

Note

Always add plug-ins before connectors, otherwise the plug-ins will
not be initialized.

You can use the BrokerFactory class to create and configure a broker using
the following syntax:

BrokerService broker = BrokerFactory.createBroker (new
URI (URI)) ;

The available values of the URI are:

Table 2. Available URI Values for BrokerFactory Class

URI Example Description
scheme
xbean: |xbean:activemq.xml Searches the classpath for

an XML document
(activemq.xml) with the

given URI, which is then

Draft Configuring an Embedded Broker

URI Example Description
scheme
used as the XML
Configuration on page 16
file: file:brokers/conf/activemq.xml |Loads the given file as the
XML
Configuration on page 16
broker: |broker:tcp://localhost:61616 |Configures the broker using

URI
Configuration on page 20

23

Draft

Configuring Transports

In FUSE Message Broker all connectors whether a transport connector or a network connector, are configured
through a uniform resource identifier (URI).

This chapter maps to the following section of the ActiveMQ Wiki:

http://activemq.apache.org/configuring-version-5-transports.html

25

http://activemq.apache.org/configuring-version-5-transports.html

Draft

Configuring Clients

In FUSE Message Broker, you configure clients using

27

Index

Draft

29

	FUSE™ Message Broker Configuration Guide
	Table of Contents
	Preface
	The FUSE Message Broker Library
	Open Source Project Resources
	Document Conventions

	Configuring the Broker
	XML Configuration
	URI Configuration
	Properties File Configuration
	Configuring an Embedded Broker

	Configuring Transports
	Configuring Clients
	Index

