PROGRESS

SOFTWARE

FUSE™ Message Broker

Connectivity Guide

Version 5.2
December 2008

Connectivity Guide
Progress Software

Version 5.2

Published 02 Dec 2008
Copyright © 2008 IONA Technologies PLC , a wholly-owned subsidiary of Progress Software Corporation.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

=1 - oL N 11
The FUSE Message BroKer LiDraryc.ououiuiririii e e e e e 12
Open SOUCE ProJECT RESOUITESiniiiii et eans 13
DoCUMENT CONVENTIONS ... ettt e e e et e e e e e e et e et e e e e e e neneen 14
ProtoCOl SUMMAIY ...uiuiiiiii et re s e s s s s s rasasasara e a s a s s s s sensasarnrararnrnsasnsnrnn 17
SIMPIE CONNECHIONS L. vttt et e 18
DiISCOVEIY PrOTOCOIS . .onieiiiii e et a e 20
PEEI-10-PEEI PrOTOCOIS ... et e e 21
[0 o= 1T I o o od 1 PP 23
Introduction to the OpenWire ProtoCOlc.ieiie e ee e 24
(00 T=T T = T o 27
B3 T o 30 o (0 oo PPN 31
Introduction to the STomMpP Protocoloeininiii e 32
IS (0 0 0o T =T 0 4 o] Pt 34
ProtoCOl DELAIIS ...ttt e anas 38
IS (0 2 0o T o ¢ 47
REST PrOtOCOIScuieiiiiuieiieiisii s st s s s s s s s s s s se s s s sa s s s sa s sa s sas s sa s s sansnsansnsassnsasensasnns 55
Introduction t0 the REST ProtoColouinie i e 56
) e o o] 57
ProtoCOl DELAIISeie e e anas 66
Y4 o (oo 73
Introduction to the VIM ProtoCol ... e 74
DiSCOVEIY ProtOCOIS ...uiuiiiiiiiiiiiiiii i e e s s s s s s e s s s e a s s s a s s s e a s s nsa s s nansasansnsasnnsnsns 79
Configuring a Simple Broker CIUSTEY ... 80
11101 G 0T oo o 86
Dynamic DiSCOVENY ProtOCOIiuitiiti i e e e a e 90
B oo LT YA Y (=Y | - OO 95
Peer-t0-Peer ProtoCoISicivuieiiiiiiiiiis s s s s s s n s e s rarr s n e e ranas 929
T 0] (oo o 100

List of Figures

1. Connecting to the ActiveMQ JMX Portcccoviiiiiiiiiiineen, 50
2. Monitoring the Status of the FOO.BAR QueU€ccevvvuivieninnannnns 51
3. Welcome Page for Web Examplescccooiiiiiiiiiiiiiiiiiiiiieeeen, 59
4. The Send a JMS Message FOrmccocovviiiiiiiiiieiiiceeee 60
5. Default Option to Browse @ QUEUEccveviniiiiiiiiiiiieeeeeenes 61
6. Option to Browse a Queue as XMLovviiiiiiiiiiiiieieeeeeen 62
7. Option to Browse a Queue as AtOMoevveiiiieiiiiiiiiie e, 63
8. Option to Browse a Queue as RSS 1.0ovvviviiiiiiiiiiiieieen 64
9. Clients Connected through the VM Protocolcoooviiiiiiiinenss 74
10. Simple Cluster Architecturecoooiviiiiiiii 80
11. Peer Protocol Endpoints with Embedded Brokers 100

List of Tables

1. Protocols for Simple Connectionsccooeiiiiiiiiiiie, 18
2. Summary of Discovery Protocolscoveviiiiiiiiiiiiiiiiiieene, 20
3. Summary of Peer-to-Peer Protocolscccoeviiiiiiiiiiiiiiiiiiiinn, 21
4. Transport Protocols Supported by OpenWireccccovvveiiiiinennnn. 24
5. Transport Options Supported by OpenWire Protocol 25
6. Transport Protocols Supported by Stompcccocoiiiiiiiinn.n. 32
7. Client Commands for the Stomp Protocolccooveiiviiininnnnn. 39
8. Server Commands for the Stomp Protocolcocovviiiiiiiiinnts 44
9. HTTP RESTful Operationscociieiiiiiiiiieii e 67
10. URL Options Recognized by the Message Servlet 68
11. Message Servlet RESTful HTTP Operationsc.cccocoviiiiinnnnn. 69
12. URL Options Recognized by the QueueBrowse Servlet 70
13. Form Properties Recognized by Message Servletc...... 71
14. VM Transport Options (for All URI Syntaxes)ccoevvvvvevinennnn. 75
15. VM Transport Options (for Simple URI Syntax Only) 76
16. Broker OPtionsvueeiie i 76
17. Failover Transport Optionsc.oevieiiiiiiiii e 86
18. Discovery Transport Optionsccoeiiiiiiiiiii e 91
19. Broker Optionsceieiiiii i 101

List of Examples

1. Configuration of an Embedded Servlet Engine

2. Web Form for Sending a Message to a Queue or Topic

10

Preface

The FUSE Message BroKer Library ...t e e et et e e e aaanas
OpeN SOUICE PrOJECT RESOUICES . .vuiuiiiiie ettt ettt et e e e e e e e e eenens
Document Conventions

11

The FUSE Message Broker Library

12

The FUSE Message Broker documentation library consists of the following
books:

* |nstalling FUSE™ Message Broker discusses the requirements and
procedures for installing FUSE Message Broker

* Getting Started with FUSE™ Message Broker provides an overview of the
central concepts behind FUSE Message Brokerand walks you through a
simple example.

* Connectivity Guide on page 1 explains the different wire protocols and
transports that FUSE Message Broker supports.

* Using FUSE™ Message Broker's Persistence Features describes how to
enable message persistence using the AMQ Message Store or a relational
database in FUSE Message Broker.

http://fusesource.com/docs/install_fuse_mb/install_fuse_mb.pdf
http://fusesource.com/docs/getting_started/getting_started.pdf
http://fusesource.com/docs/message_broker/persistence/persistence.pdf

Open Source Project Resources

Apache CXF

Apache Tomcat

Apache ActiveMQ

Apache Camel

Apache ServiceMix

Web site: http://cxf.apache.org/

User's list: <user@cxf. apache.org>

Web site: http://tomcat.apache.org/

User's list: <users@tomcat. apache.org>

Web site: http://activemq.apache.org/

User's list: <users@activemq.apache.org>

Web site:
http://activemq.apache.org/camel/enterprise-integration-patterns.htmi

User's list: <camel-userR@activemq.apache.org>

Web site: http://servicemix.apache.org

User's list: <users@servicemix.apache.org>

13

http://cxf.apache.org/
http://tomcat.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/camel/enterprise-integration-patterns.html
http://servicemix.apache.org

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

fixed width

Fixed width (Courier font) in normal text represents portions of code and literal names of items
such as classes, functions, variables, and data structures. For example, text might refer to the
javax.xml.ws.Endpoint class.

Constant width paragraphs represent code examples or information a system displays on the
screen. For example:

import java.util.logging.Logger;

Fixed width

Fixed width italic words or characters in code and commands represent variable values you
must supply, such as arguments to commands or path names for your particular system. For

italic
example:
$ cd /users/YourUserName
Italic Italic words in normal text represent emphasis and introduce new terms.
Bold Bold words in normal text represent graphical user interface components such as menu

commands and dialog boxes. For example: the User Preferences dialog.

Keying conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple platforms, the command prompt is not
shown.

% A percent sign represents the UNIX command shell prompt for a command that does not require
root privileges.

A number sign represents the UNIX command shell prompt for a command that requires root
privileges.

> The notation > represents the MS-DOS or Windows command prompt.

Horizontal or vertical ellipses in format and syntax descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax descriptions.

Braces enclose a list from which you must choose an item in format and syntax descriptions.

14

in () (braces).

In format and syntax descriptions, a vertical bar separates items in a list of choices enclosed

Admonition conventions

This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

@

h

Tips provide hints about completing a task or using a tool. They may also provide information about
workarounds to possible problems.

®

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be encountered. These errors are unlikely to cause

damage to your data or your systems.

v
X

Warnings display information about errors that may cause damage to your systems. Possible damage from

these errors include system failures and loss of data.

15

16

Protocol Summary

FUSE Message Broker supports a wide variety of protocols for client-to-broker, broker-to-broker, and client-to-client
connections. The intention is that the variety of protocols will make it easier to connect to a range of client types.
Different network topologies can also be supported with the help of special protocols, such as discovery and
peer-to-peer.

IS Lo L= 070 g T=Tox 1 o 3 T 18
DiISCOVEIY PrOTOCOIS e ettt ettt a e e 20
PEEI-T0-PEEI PrOTOCOIS ... ettt e e 21

17

Protocol Summary

Simple Connections

Overview

Protocols for simple connections

The following protocols can be used either for straightforward client-to-broker
connections (transport connector) or broker-to-broker connections (network
connector). For each wire protocol (that is, on-the-wire message encoding),
FUSE Message Broker supports one or more associated transport protocols.
Hence, you can configure connections with a wide variety of wire
protocol/transport protocol combinations.

Table 1 on page 18 shows the protocol combinations that messaging clients
can use to connect directly to the message broker.

Table 1. Protocols for Simple Connections

Wire
Protocol

Transport
Protocol

Sample URL Description

OpenWire

TCP

tcp://Host: Port Connect to the message broker endpoint at Host: Port
using the OpenWire over TCP protocol.

This URL is also used to configure the transport
connector in a broker.

OpenWire

SSL

ssl://Host:Port Connect to the message broker endpoint at Host: Port
using the OpenWire over SSL protocol.

This URL is also used to configure the transport
connector in a broker.

OpenWire

HTTP

http://Host:Port Connect to the message broker endpoint at Host: Port

using the OpenWire over HTTP protocol (HTTP
tunneling). You can use this protocol to navigate through
firewalls.

This URL is also used to configure the transport
connector in a broker.

OpenWire

HTTPS

https://Host: Port Connect to the message broker endpoint at Host: Port
using the OpenWire over HTTPS protocol

This URL is also used to configure the transport
connector in a broker.

18

Simple Connections

Wire Transport Sample URL Description
Protocol Protocol
Stomp TCP stomp://Host:Port Connect to the message broker endpoint at Host: Port
using the Stomp over TCP protocol.
This URL is also used to configure the transport
connector in a broker.
Stomp SSL stomp+ssl://Host:Port |Connect tothe message broker endpoint at Host: Port
using the Stomp over SSL protocol.
This URL is also used to configure the transport
connector in a broker.
REST HTTP http://Host:Port/ Connect to the message broker endpoint at Host: Port
demo/message/FOO/BAR using the REST protocol. The REST endpoint is
Ptimeout=10000 implemented as a servlet deployed in a servlet engine.
&type=queue For example, the sample URL is built up from a Web
context name, demo, followed by the servlet name,
message, followed by a destination name, F00/BA2R,
and some query options.
This URL is not used to configure the REST transport
connector in a broker. Use the <jetty> tag to configure
the REST endpoint in the broker.
RESTs HTTPS http://Host: Port/
demo/message/FOO/BAR
?timeout=10000
&type=queue
XMPP TCP xmpp://Host: Port Configure the transport connector in a message broker
to accept XMPP connections on Host: port (for
example, from an Instant Messaging client).
VM N/A vm://BrokerName Configure clients to connect to a broker embedded

within the same Java Virtual Machine (JVM). The
BrokerName is the broker name of the embedded

broker.

19

Protocol Summary

Discovery Protocols

Overview

A discovery protocol
as follows:

builds a connection to a message broker in two steps,

1. Obtain a list of available broker endpoints (represented by URIs).

2. Connect to an endpoint randomly selected from the given list.

Discovery protocols are particularly useful for clients that connect to a cluster

of message brokers.

Summary of discovery protocols

Table 1 on page 18

Table 2. Summary of Discovery Protocols

describes the discovery protocols that clients can use.

Protocol

Sample URL

Description

Failover

failover:// (uril, ..., uriN) ? TransportQptions

Configure clients to connect to one of the broker
endpoints from the URI list, urii, ..., urin. The

transport options, ? TransportOptions, are specified

in the form of a query list. If no transport options are
required, you can omit the parentheses and the
question mark, 2.

Discovery

discovery:// (DiscoveryAgentUri) ? TranseortQotions,

Configure clients to connect to one of the broker
endpoints from a URI list that is dynamically discovered
at runtime, using a discovery agent. The discovery
agent URI, piscoveryAgentUri, is normally a

multicast discovery agent—for example,
multicast://default.

Discovery agents

20

The discovery protocol supports a number of discovery agents, which are also

specified in the form of a URI. For details of the supported discovery agents,
see Discovery Agents on page 95 .

Note

Although discovery agent URIs look superficially like transport URIs,
they are not the same thing. A discovery agent URI can only be used

in certain co

ntexts and cannot be used in place of a transport URI.

Peer-to-Peer Protocols

Peer-to-Peer Protocols

Overview

Summary of peer-to-peer

protocols

Peer-to-peer protocols enable messaging clients to communicate with each
other directly, eliminating the requirement to route messages through an
external message broker.

Table 3 on page 21 describes the peer-to-peer protocols that clients can use.

Table 3. Summary of Peer-to-Peer Protocols

Protocol

Sample URL

Description

Peer

peer://PeerGroup/BrokerName?BrokerOptions| Configure clients to connect to their peers in the group

with the group name, peerGroup. The BrokerName

specifies the broker name for the embedded broker.
The broker options, Brokeroptions, are specified in

the form of a query list (for example,
?persistent=true).

Broker options

The peer protocol supports a variety of broker options. For details, see the
broker options listed in Table 19 on page 101 .

21

22

OpenWire Protocol

The OpenWire protocol is the default on-the-wire protocol for FUSE Message Broker. This chapter provides a
brief introduction to the protocol, illustrating how to use OpenWire with a variety of transport protocols.

Introduction to the OPenWIre ProtOCOIuiee i e e e 24
L0 o T=Y T = T o 27

23

OpenWire Protocol

Introduction to the OpenWire Protocol

Overview

Transport protocols

The OpenWire protocol is a JMS compliant wire protocol (defining message
types and message encodings) that is native to the FUSE Message Broker.
The protocol is designed to be fully-featured, JMS-compliant, and highly
performant. It is the default protocol of the FUSE Message Broker.

Table 4 on page 24 shows the transport protocols supported by the OpenWire
wire protocol:

Table 4. Transport Protocols Supported by OpenWire

Transport URL
Protocol

Description

TCP tcp://Host: Port

Endpoint URL for OpenWire over TCP/IP. The broker listens
for TCP connections on the host machine, Host, and IP port,

Port.

SSL ssl://Host: Port

(Java clients only) Endpoint URL for OpenWire over TCP/IF,
where the socket layer is secured using SSL (or TLS).

For details of how to configure an SSL connection, see the
FUSE Message Broker Security Guide.

HTTP http://Host: Port

(Java clients only) Endpoint URL for OpenWire over HTTP.

HTTPS https://Host: Port (Java clients only) Endpoint URL for OpenWire over HTTP,

where the socket layer is secured by SSL (or TLS).

For details of how to configure a HTTPS connection, see the
FUSE Message Broker Security Guide. [REVISIT - Insert
Olink.]

Transport options

24

OpenWire supports a number of transport options, which can be set as query
options on the transport URL. For example, to specify that error messages
should omit the stack trace, use a URL like the following:

tcp://localhost:61616?wireformat.stackTraceEnabled=false

Where the wireformat.stackTraceEnabled property is set to false to

disable the inclusion of stack traces in error messages. Table 5 on page 25
gives the complete list of transport options for OpenWire.

Introduction to the OpenWire Protocol

Table 5. Transport Options Supported by OpenWire Protocol

Property Default Description Negotiation policy
wireformat true Should the stack trace of an exception |Set to false if either side is
stackTraceEnabled occuring on the broker be sent to the false.

client?
wireformat false Provides a hint to the peer that TCP |Set to false if either side is
.tcpNoDelayEnabled nodelay should be enabled on the false.

communications Socket.
wireformat true Should commonly repeated values be |Set to false if either side is
cacheEnabled cached so that less marshalling false.

occurs?
wireformat true Should wire size be optimized over |Set to false if either side is
.tightEncodingEnabled CPU usage? false.
wireformat true Should the size of the packet be Set to true if both sides are
.prefixPacketSize prefixed before each packet is frue.

marshalled?
wireformat 30000 The maximum inactivity duration Use the smaller of the two
.maxInactivityDuration (before_ whl_ch_ the socket is considered |values.

dead) in milliseconds. On some

platforms it can take a long time for

a socket to appear to die, so we allow

the broker to kill connections if they

are inactive for a period of time. Set

to a value <= 0 to disable inactivity

monitoring.
wireformat .cacheSize |1024 If cacheEnabled is true, this Use the smaller of the two

property specifies the maximum values.

number of values to cache.

Supported clients

FUSE Message Broker currently supports the following client types for the
OpenWire protocol:

* Java clients—the Java API conforms fully to the JMS specification.

For details of how to program the messaging clients, see the FUSE Message
Broker Client Guide.

25

OpenWire Protocol

26

If you want to develop an OpenWire client using other programming languages,
try one of the following client types from the Apache ActiveMQ
[http://activemq.apache.org/] project:

¢ C++ clients—for C+ + clients, Apache ActiveMQ provides the CMS (C++
Messaging Service) API, which is closely modelled on the JMS specification.
Only the TCP transport is supported for C+ + clients.

http://activemq.apache.org/
http://activemq.apache.org/

OpenWire Example

OpenWire Example

Overview

Example prerequisites

Example steps

Configure the broker

It is relatively straightforward to try out the various OpenWire+transport
combinations using the sample code provided. After configuring the broker
to add the relevant transport connectors, you can use the sample producer
tool and the consumer tool to transmit messages through the broker using
the following protocols: OpenWire over TCP or OpenWire over HTTP.

2) Note

The secure socket protocols—OpenWire over SSL, and OpenWire
over HTTPS—are discussed in the FUSE Message Broker Security
Guide.

Before you can build and run the sample clients, you must have installed the
Apache Ant build tool, version 1.6 or later (see http://ant.apache.org/).

The OpenWire examples depend on the sample producer and consumer clients
located in the following directory:

FUSEInstallDir/fuse-message-broker-Version/example

For a detailed description of the example clients, see [REVISIT - Xref to Getting
Started, or whatever.]]

To try out the OpenWire protocol, perform the following steps:
1. Configure the broker on page 27 .

2. Run the broker on page 28 .

3. Run the consumer on page 28 .

4. Run the producer with the TCP protocol on page 29 .

5. Run the producer with the HTTP protocol on page 30 .

Add the following transport connectors to the default broker configuration file
(in fuse-message-broker-Version/conf/activemq. xml):

27

http://ant.apache.org/

OpenWire Protocol

Run the broker

Run the consumer

28

<beans>
<transportConnectors>

<transportConnector name="openwire" uri="tcp://local
host:61616"/>

<transportConnector name="http" uri="http://local
host:61620"/> </transportConnectors>
</beans>

Run the default broker by entering the following at a command line:

activemqg

The default broker automatically takes its configuration from the default
configuration file.

@ Note

The activemq script automatically sets the acTrvemMg HOME and
ACTIVEMQ BASE environment variables to
FUSEInstallDir/fuse-message-broker-Version by default. If
you want the activemqg script to pick up its configuration from a
non-default conf directory, you can set AcTIVEMO BASE explicitly

in your environment. The configuration files will then be taken from
$ACTIVEMQ BASE/conf.

To connect the consumer tool to the tcp://localhost: 61616 endpoint

(OpenWire over TCP), change directory to
fuse-message-broker-Version/example and enter the following command:

ant consumer -Durl=tcp://localhost:61616 -Dmax=100
You should see some output like the following:

Buildfile: build.xml
init:

Run the producer with the TCP
protocol

compile:
consumer:
[echo]

OpenWire Example

Running consumer against server at $url =

tcp://localhost:61616

for subject
[Javal
[Javal
[Javal
[Javal

$subject = TEST.FOO

Connecting to URL: tcp://localhost:61616
Consuming queue: TEST.FOO

Using a non-durable subscription

We are about to wait until we consume: 100 mes

sage(s) then
we will shutdown

To connect the producer tool to the tcp://localhost: 61616 endpoint

(OpenWire over TCP), open a new command prompt, change directory to
fuse-message-broker-Version/example and enter the following command:

ant producer -Durl=tcp://localhost:61616

In the window where the consumer tool is running, you should see some
output like the following:

[Javal

BST

2007 ...
[Javal

BST

2007 ...
[Javal

BST

2007 ...
[Javal

BST

2007 ...
[Javal

BST

2007 ...
[Javal

BST

2007 ...
[Javal

BST

2007 ...
[Javal

BST

2007

Received: Message: 0 sent at: Wed Sep 19 14:38:06

Received: Message: 1 sent at: Wed Sep 19 14:38:06

Received: Message: 2 sent at: Wed Sep 19 14:38:06

Received: Message: 3 sent at: Wed Sep 19 14:38:06

Received: Message: 4 sent at: Wed Sep 19 14:38:06

Received: Message: 5 sent at: Wed Sep 19 14:38:06

Received: Message: 6 sent at: Wed Sep 19 14:38:06

Received: Message: 7 sent at: Wed Sep 19 14:38:06

29

OpenWire Protocol

[java]l Received: Message: 8 sent at: Wed Sep 19 14:38:06
BST
2007 ...
[javal Received: Message: 9 sent at: Wed Sep 19 14:38:06
BST
2007

Run the producer with the HTTP

protocol To connect the producer tool to the http://localhost: 61620 endpoint

(OpenWire over HTTP), enter the following command from the example

directory:

ant producer -Durl=http://localhost:61620

This command sends ten new messages to the consumer client.

(@ Note

The JAR files for the HTTP protocol are currently located in the
1ib/optional subdirectory. If you construct the CLASSPATH

manually, you must be sure to include the JAR files from this
subdirectory.

30

Stomp Protocol

The Stomp protocol is a simplified messaging protocol that is specially designed for implementing clients using
scripting languages. This chapter provides a brief introduction to the protocol, illustrating how to run Stomp
clients implemented in Ruby.

Introduction to the STOMP ProtOCOIoueie e e 32
IS (0 0 0T T T 12 o 34
ProtoCOl DELAIIS ... e 38
1S (0 2 1o T o ¢ 47

31

Stomp Protocol

Introduction to the Stomp Protocol

Overview

Transport protocols

The Stomp protocol is a simplified messaging protocol that is being developed
as an open source project (http://stomp.codehaus.org/). The advantage of the
stomp protocol is that you can easily improvise a messaging client—even

when a specific client API is not available—because the protocol is so simple.

wire protocol:

Table 6. Transport Protocols Supported by Stomp

Table 6 on page 32 shows the transport protocols supported by the Stomp

Transport URL Description

Protocol

TCP stomp://Host: Port Endpoint URL for Stomp over TCP/IP. The broker listens for
TCP connections on the host machine, Host, and IP port,
Port.

SSL stomp+ssl://Host: Port Endpoint URL for secure Stomp over SSL. The broker listens
for TCP connections on the host machine, Host, and IP port,
Port.

Supported clients

32

C clients.

C++ clients.

Stomp currently supports the following client types:

C# and .Net clients.

.Net clients.

Delphi clients.

Flash clients.
Perl clients.
PHP clients.

Pike clients.

http://stomp.codehaus.org/

Introduction to the Stomp Protocol

* Python clients.

For details of how to program these messaging clients, see the FUSE Message
Broker Client Guide.]

33

Stomp Protocol

Stomp Example

Overview

Example prerequisites

34

FUSE Message Broker provides some sample code in
fuse-message-broker-version/example/ruby that enables you to

experiment with the Stomp protocol in the Ruby programming language.

If you want to find out more about writing Stomp clients in other scripting
languages, see the Cross Language Client Development Guide.

You must download and install the requisite packages to support the Ruby
programming language before you can run the Stomp example. Install the
following packages:

* Ruby programming language—download and install the Ruby programming
language from http://www.ruby-lang.org/en/downloads. Add the Ruby /bin

directory to your pATH.

* RubyGems package manager—RubyGems (http://www.rubygems.org) is
a utility for installing and managing add-ons to the Ruby language.
Download and install RubyGems as follows:

1. Download a RubyGems archive file (.tgz, .zip, or .gem) from the
RubyForge (http://rubyforge.org/frs/?group_id=126).

2. Unzip the RubyGems archive.

3. Initialize RubyGems by entering the following command:

ruby GemsInstallDir/setup.rb

4. Add GemsInstallpir/bin to your PATH.

» Stomp package for Ruby—install the Stomp package for Ruby by running
the following command:

http://www.ruby-lang.org/en/downloads
http://www.rubygems.org
http://rubyforge.org/frs/?group_id=126

Example steps

Configure the broker

Run the broker

Stomp Example

gem install stomp

RubyGems downloads and installs the requisite package to support the
Ruby Stomp client API.

To try out the Stomp protocol, perform the following steps:
1. Configure the broker on page 35 .

2. Run the broker on page 35 .

3. Run the Ruby listener on page 36 .

4. Run the Ruby publisher on page 36

Check that the the Stomp connector is present in the default broker
Conﬂguraﬂonf”e("1fuse—message—broker—Vérsion/conf/activemq.xmlh

as follows:
<beans>
<transportConnectors>
<transportConnector name="stomp" uri="stomp://local
host:61613"/>

</transportConnectors>

</beans>

Run the default broker by entering the following at a command line:

activemg

The default broker automatically takes its configuration from the default
configuration file.

35

Stomp Protocol

Run the Ruby listener

Run the Ruby publisher

36

(Note

The activemq script automatically sets the acTrvemMo HOME and
ACTIVEMQ BASE environment variables to
FUSEInstallDir/fuse-message-broker-Version by default. If
you want the activemq script to pick up its configuration from a
non-default conf directory, you can set AcTIVEMQ BASE explicitly

in your environment. The configuration files will then be taken from
$ACTIVEMQ BASE/conf.

To connect the listener tool to the stomp://localhost: 61613 endpoint

(Stomp over TCP), change directory to
fuse-message-broker-Version/example/ruby and enter the following

command:

ruby listener.rb

They Ruby listener connects to the endpoint, stomp://localhost:61613,

by default. You could change this endpoint address by editing the
listener.rb script.

To connect the publisher tool to the stomp://localhost: 61613 endpoint

(Stomp over TCP), change directory to
fuse-message-broker-Version/example/ruby and enter the following

command:

ruby publisher.rb

You should see some output like the following:

Sent 1000 messages
Sent 2000 messages
Sent 3000 messages
Sent 4000 messages
Sent 5000 messages
Sent 6000 messages
Sent 7000 messages

Stomp Example

Sent 8000 messages

Sent 9000 messages

Sent 10000 messages

Received report: Received 10000 in 4.567 seconds, remaining:
9

37

Stomp Protocol

Protocol Details

Overview

Transport protocols

Licence

Stomp frame format

Oneway and RPC commands

38

This section describes the format of Stomp data packets , as well as the
semantics of the data packet exchanges. Stomp is a relatively simple wire
protocol—it is even possible to communicate manually with a Stomp broker
using a telnet client (see Stomp Tutorial on page 47).

In principal, Stomp can be combined with any transport protocol, including
connection-oriented and non-connection-oriented transports. In practice,
though, Stomp is usually implemented over TCP and this is the only transport
currently supported by FUSE Message Broker.

The Stomp specification is licensed under the Creative Commons Attribution
v2.5 [http://creativecommons.org/licenses/by/2.5/]

The Stomp specification defines the term frame to refer to the data packets
transmitted over a Stomp connection. A Stomp frame has the following general
format:

<StompCommand>
<HeaderName 1>:<HeaderValue 1>
<HeaderName 2>:<HeaderValue 2>

<FrameBody>
~@
A Stomp frame always starts with a Stomp command (for example, sEnD) on

a line by itself. The Stomp command may then be followed by zero or more
header lines: each header is in a <key>:<value> format and terminated by

a newline. A blank line indicates the end of the headers and the beginning
of the body, <FrameBody>, (which is empty for many of the commands). The

frame is terminated by the null character, which is represented as ~@ above
(Ctrl-@ in ASCII)).

Most Stomp commands have oneway semantics (that is, after sending a
frame, the sender does not expect any reply). The only exceptions are:

* CONNECT command—after a client sends a connecT frame, it expects the
server to reply with a coNNECTED frame.

http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/

Receipt header

Client commands

Protocol Details

* Commands with a receipt header—a client can force the server to

acknowledge receipt of a command by adding a receipt header to the

outgoing frame.

¢ Erroneous commands—if a client sends a frame that is malformed, or
otherwise in error, the server may reply with an ErRror frame. Note,

however, that the ErRrOR frame is not formally correlated with the original

frame that caused the error (Stomp frames are not required to include a
unique identifier).

Any client frame, other than connEcT, may specify a receipt header with

an arbitrary value. This causes the server to acknowledge receipt of the frame
with a REce1PT frame, which contains the value of this header as the value

of the receipt-id header in the ReCEIPT frame. For example, the following

frame shows a seND command that includes a receipt header:

SEND

destination:/queue/a
receipt:message-12345

Hello a!”@

Table 7 on page 39 lists the client commands for the Stomp protocol. The
Reply column indicates whether or not the server sends a reply frame by

default.

Table 7. Client Commands for the Stomp Protocol

Command Reply? [Role Description
CONNECT on page 40| Yes Producer, Open a connection to a Stomp broker (server).
Consumer
SEND on page 40 |[No Producer Send a message to a particular queue or topic on the server.
SUBSCRIBEon page 41 |No Consumer Subscribe to a particular queue or topic on the server.
UNSUBSCRIBEonpage42| No Consumer Cancel a subscription to a particular queue or topic.
ACK on page 43 No Consumer Acknowledge receipt of one message.
BEGIN on page 43 |No Producer, Start a transaction (applies to SEND or ACK commands).
Consumer

39

Stomp Protocol

Command Reply? |[Role Description
COMMIT on page 43 |No Producer, Commit a transaction.
Consumer
ABORT on page 44 |No Producer, Roll back a transaction.
Consumer
DISCONNECT onpage44|No Producer, Shut down the existing connection gracefully.
Consumer
NNECT . .
co ¢ After opening a socket to connect to the remote server, the client sends a
CONNECT command to initiate a Stomp session. For example, the following
frame shows a typical coNNECT command, including a 1ogin header and a
passcode header:
CONNECT
login: <username>
passcode:<passcode>
~@
After the client sends the coNnnNECT frame, the server always acknowledges
the connection by sending a frame, as follows:
CONNECTED
session: <session-id>
~@
The session-id header is a unique identifier for this session (currently
unused).
SEND

40

The sEND command sends a message to a destination—for example, a queue

or a topic—in the messaging system. It has one required header,
destination, which indicates where to send the message. The body of the

SEND command is the message to be sent. For example, the following frame
sends a message to the /queue/a destination:

SEND

SUBSCRIBE

Protocol Details

destination:/queue/a
hello queue a

~e

From the client’s perspective, the destination name, /queue/a, is an arbitrary

string. Despite seeming to indicate that the destination is a queue it does not,
in fact, specify any such thing. Destination names are simply strings that are
mapped to some form of destination on the server; how the server translates
these strings is up to the implementation.

The sEnD command also supports the following optional headers:

* transaction—specifies the transaction ID. Include this header, if the
SEND command partakes in a transaction (see BEGIN on page 43).

* content-length—specifies the byte count for the length of the message
body. If a content-length header is included, this number of bytes should

be read, regardless of whether or not there are null characters in the body.
The frame still needs to be terminated with a null byte and if a
content-length is not specified, the first null byte encountered signals the
end of the frame.

The suBscRIBE command registers a client’s interest in listening to a specific
destination. Like the senD command, the suBscRIBE command requires a

destination header. Henceforth, any messages received on the subscription
are delivered as MESSAGE frames, from the server to the client. For example,
the following frame shows a client subscribing to the destination, /queue/a:

SUBSCRIBE
destination: /queue/foo
ack: client

~e

In this case the ack header is set to c1ient, which means that messages

are considered delivered only after the client specifically acknowledges them
with an ack frame. The body of the suBscrRIBE command is ignored.

41

Stomp Protocol

UNSUBSCRIBE

42

The suBscrIBE command supports the following optional headers:

* ack—specify the acknowledgement mode for this subscription. The following

modes are recognized:

* auto—messages are considered delivered as soon as the server delivers
them to the client (in the form of a MESSAGE command). The server does
not expect to receive any ack commands from the client for this
subscription.

* client—messages are considered delivered only after the client
specifically acknowledges them with an ack frame.

selector—specifies a SQL 92 selector on the message headers, which
acts as a filter for content based routing.

id—specify an ID to identify this subscription. Later, you can use the ID
to unsuBscrIBE from this subscription (you may end up with overlapping
subscriptions, if multiple selectors match the same destination).

When an id header is supplied, the server should append a subscription
header to any MESSAGE commands sent to the client. When using wildcards

and selectors, this enables clients to figure out which subscription triggered
the message.

The uNsuBSCRIBE command removes an existing subscription, so that the

client no longer receives messages from that destination. It requires either a
destination header or an id header (if the previous SUBSCRIBE operation

passed an id value). For example, the following frame cancels the subscription
to the /queue/a destination:

UNSUBSCRIBE
destination: /queue/a

ACK

BEGIN

COMMIT

Protocol Details

~e

The ack command acknowledges the consumption of a message from a

subscription. If the client issued a suBSCRIBE frame with an ack header set
to client, any messages received from that destination are not considered
to have been consumed until the message is acknowledged by an ack frame.

The ack command has one required header, message-id, which must contain
a value matching the message-id for the MESSAGE being acknowledged.
Optionally, a transaction header may be included, if the acknowledgment

participates in a transaction. For example, the following frame acknowledges
a message in the context of a transaction:

ACK
message-id: <message-identifier>
transaction: <transaction-identifier>

~e

The BEGIN command initiates a transaction. Transactions can be applied to
SEND and Ack commands. Any messages sent or acknowledged during a
transaction can either be commited or rolled back at the end of the transaction.

BEGIN
transaction: <transaction-identifier>

~Q
The transaction header is required and the <transaction-identifier>

can be included in sEND, COMMIT, ABORT, and Ack frames to bind them to
the named transaction.

The comMIT command commits a specific transaction.

COMMIT
transaction: <transaction-identifier>

43

Stomp Protocol

ABORT

DISCONNECT

Server commands

~e

The transaction header is required and specifies the transaction,

<transaction-identifier>, to commit.

The aBorT command rolls back a specific transaction.

ABORT
transaction: <transaction-identifier>

~@

The transaction header is required and specifies the transaction,

<transaction-identifier>, to roll back.

The prsconnEcT command disconnects gracefully from the server.

DISCONNECT

~@

Table 8 on page 44 lists the commands that the server can send to a Stomp
client. These commands all have oneway semantics.

Table 8. Server Commands for the Stomp Protocol

Command

Description

MESSAGE on page 44

Send a message to the client, where the client has previously registered a
subscription with the server.

RECEIPT on page 45

Acknowledges receipt of a client command, if the client requested a receipt
by included a receipt-id header.

ERROR on page 45

Error message sent from the server to the client.

MESSAGE

44

The MEsSSAGE command conveys messages from a subscription to the client.
The MESSAGE frame must include a destination header, which identifies
the destination from which the message is taken. The MESSAGE frame also

RECEIPT

ERROR

Protocol Details

contains a message-id header with a unique message identifier. The frame

body contains the message contents. For example, the following frame shows
a typical MEssaGE command with destination and message-id headers:

MESSAGE
destination:/queue/a
message-id: <message-identifier>

hello queue a”@

The MEssaGE command supports the following optional headers:

* content-length—specifies the byte count for the length of the message
body. If a content-length header is included, this number of bytes should

be read, regardless of whether or not there are null characters in the body.
The frame still needs to be terminated with a null byte and if a
content-length is not specified, the first null byte encountered signals the
end of the frame.

A rReceIPT frame is issued from the server whenever the client requests a
receipt for a given command. The RECEIPT frame includes a receipt-id,
containing the value of the receipt-id from the original client request. For
example, the following frame shows a typical RECEIPT command with
receipt-id header:

RECEIPT
receipt-id:message-12345

~e

The receipt body is always empty.

The server may send ERROR frames if something goes wrong. The error frame
should contain a message header with a short description of the error. The

body may contain more detailed information (or may be empty). For example,
the following frame shows an ERROrR command with a non-empty body:

ERROR

45

Stomp Protocol

46

message: malformed packet received

The message:

MESSAGE
destined:/queue/a
Hello queue a!

Did not contain a destination header, which is required for
message

propagation.

~Q

The ERROR command supports the following optional headers:

* content-length—specifies the byte count for the length of the message
body. If a content-length header is included, this number of bytes should

be read, regardless of whether or not there are null characters in the body.
The frame still needs to be terminated with a null byte and if a
content-length is not specified, the first null byte encountered signals the
end of the frame.

Stomp Tutorial

Telnet client

Typing the null character

Tutorial steps

Stomp Tutorial

Because Stomp frames consist of plain text, it is possible to improvise a Stomp
client by starting up a telnet session and entering Stomp frames directly at

the keyboard. This can be a useful diagnostic tool and is also a good way to
learn about the Stomp protocol.

While most characters in a Stomp frame are just plain text, there is one
required character, null, that you might have difficulty typing at the keyboard.
On some keyboards, you can type null as Ctrl-@. Other keyboards might
require you to do a bit of research, however.

For example, to type a null character on the 101-key keyboard that is
commonly used with a Windows PC, proceed as follows:

1. Enable NumLock on the numeric keypad (this is essential).

2. While holding down the a1t key, type zero, 0, four times in succession on
the numeric keypad.

To send and receive messages over the Stomp protocol using telnet clients,
perform the following steps:

1. Start the broker on page 48 .
2. Start a telnet session for the producer on page 48 .

. Start a Stomp session for the producer on page 48 .

W

. Send a message to a queue on page 49 .

. Check the queue status using JMX on page 49 .

. Start a telnet session for the consumer on page 51 .
. Start a Stomp session for the consumer on page 51 .

. Subscribe to a queue on page 52 .

O© 00 N O o

. Acknowledge a message on page 53 .

10 Unsubscribe from the queue on page 53 .

47

Stomp Protocol

Start the broker

Start a telnet session for the
producer

Start a Stomp session for the
producer

48

1L Disconnect the clients on page 53 .

Start the default broker by entering the following at a command prompt:

activemqg

Normally, the default broker is configured to initialize a Stomp connector that
listens on port, 61613. Look for a line like the following in the broker’s log:

INFO TransportServerThreadSupport - Listening for connec
tions at:
stomp://localhost:61613

If the Stomp connector is not present in the broker, you will have to configure
it—see Configure the broker on page 35 for details.

Open a new command prompt and start a new telnet session for the
producer client, by entering the following command:

telnet

This command starts telnet in interactive mode. Now enter the following
telnet commands (the telnet prompt that begins each line is
implementation dependent):

telnet> set localecho
Local echo on
telnet> open localhost 61613

After entering the open command, telnet should connect to the Stomp

socket on your local ActiveMQ broker (where the Stomp port is presumed to
be 61613 here). You should now see a blank screen, where you can directly
type the contents of the Stomp frames you want to send over TCP.

Start a Stomp session for the producer by entering the following Stomp frame
in the telnet window:

CONNECT
login: foo

Send a message to a queue

Check the queue status using
JMX

Stomp Tutorial

passcode:bar
e

The 1ogin and passcode headers are currently ignored by the ActiveMQ

broker, so you can enter any values you like for these headers. Don’t forget
to insert a blank line after the headers. Finally, you must terminate the frame
by typing the null character, ~@ (for notes on how to type the null character

at your keyboard, see Typing the null character on page 47).

If all goes well, you will see a response similar to the following:

CONNECTED
session:ID:fboltond820-2290-1190810591249-3:0

Send a message to the F00.BAR queue by entering the following frame:

SEND
destination:/queue/FO00.BAR
receipt:

Hello, queue FOO.BAR
~@

As soon as you have finished typing the null character, ~e, you should receive

the following RECEIPT frame from the server:

RECEIPT
receipt-id:

It is a good idea to include a receipt header in the frames you send from a
telnet client. It enables you to confirm that the connection is working normally.

The status of the ActiveMQ broker can be monitored through a JMX port. To
monitor the broker, start a new command prompt and enter the following
command:

49

Stomp Protocol

50

jconsole

The jconsole utility is a standard JMX client that is included with Sun’s
Java Development Kit (JDK). When you start the jconsole utility, a dialog

appears and prompts you to connect to a JMX process, as shown in
Figure 1 on page 50 .

Figure 1. Connecting to the ActiveMQ JMX Port

£: JConsole: Connect to Agent g

l’LucaI rRemute rnmranced |

PID Clazss and Arguments
8reE CAPrograms \FUSEVuse-message-broker-4 1kinl fhinfrun

1] i | [»

Connect || Cancel |

Select the ActiveMQ broker process and click Connect. The main jconsole
window opens. To view the current status of the Foo.BAR message queue,

click on the MBeans tab and use the tree on the left hand side to drill down
t0 org.apache.activemg/localhost/Queue/F00.BAR. Click on the

FOO.BAR icon to view the current status, as shown in Figure 2 on page 51

Stomp Tutorial

Figure 2. Monitoring the Status of the FOO.BAR Queue

= J25E 5.0 Monitoring & Management Console: 876®localhost

Connection
[summary | Memory | Threads | Classes | MBeans | WM |
MBeans
[Erree {|[attributes | Operations | Nofifications | nfo_|
o |j..JMImpIementat|un : AT T
o Cjavalany ‘| ConsurmerGount 0
o [java.util logaing A Dequeuecount o
o[naming | DispatchCount 0
¢ 3 org.apache.activerny S JEngueueCaunt 1
7 O localhost | mernaryCimit 0223372036854775807
@ Broker MemorPercentagelsed 0
o [Connection AName__ FODBAR
o O3 Cannectar Queuesize 1

o= [MetworkConnacto
o 1 Gueue

@ FO0BAR
o= [Topic

) ——

The status shows an EnqueueCount of 1, which tells you that the producer
has successfully enqueued one message in the F00.BAR queue.

Start a telnet session for the

consumer Open a new command prompt and start a new telnet session for the

consumer client, by entering the following command:

telnet

Enter the following telnet commands to connect to the Stomp socket on
the broker:

telnet> set localecho
Local echo on
telnet> open localhost 61613

Start a Stomp session for the

consumer Start a Stomp session for the consumer by entering the following Stomp frame

in the consumer’s telnet window:

51

Stomp Protocol

Subscribe to a queue

52

CONNECT
login:foo
passcode:bar
~@

If all goes well, you will see a response similar to the following:

CONNECTED
session:ID:fboltond820-2290-1190810591249-3:1

Subscribe to the Foo.BAR queue by entering the following Stomp frame in
the consumer’s telnet window:

SUBSCRIBE
destination:/queue/F00.BAR
ack:client

~@

The ack header is set to the value c1ient, which implies that the consumer

client is expected to acknowledge each message it receives from the broker.
After typing the terminating null character, ~@, the broker dispatches the sole

message on the FOO.BAR queue by sending a MESSAGE frame, as follows:

MESSAGE

destination:/queue/FO0.BAR

receipt:

timestamp:1190811984837

priority:0

expires:0

message-id:ID: fboltond820-2290-1190810591249-3:0:-1:1:1

Hello, queue FOO.BAR

To see what effect this has on the queue status, go to the jconsole window

and click Refresh on the MBeans tab. The DispatchCount attribute is now
equal to 1, indicating that the broker has dispatched the message to the
consumer. The DequeueCount is equal to O, however; this is because the

Acknowledge a message

Unsubscribe from the queue

Disconnect the clients

Stomp Tutorial

message is not considered to be dequeued until the consumer client sends
an acknowledgement.

Acknowledge the received message by entering the following Stomp frame in
the consumer’s telnet window:

ACK
message-id:ID:fboltond820-2290-1190810591249-3:0:-1:1:1

~e

Where the message ID must match the value from the message-id header
in the received MESSAGE frame. To check that the acknowledgement has been
effective, go back to the jconsole window and click Refresh on the MBeans
tab. You should now find that the DequeueCount has increased to 1.

Unsubscribe from the Foo.BaR queue by entering the following Stomp frame
in the consumer’s telnet window:

UNSUBSCRIBE
destination:/queue/FO0.BAR
receipt:

~@

To shut down both the producer and consumer gracefully, enter the following
DISCONNECT frame in each of their respective telnet windows:

DISCONNECT

~e

53

54

REST Protocols

The REST protocol is a simple HTTP-based protocol that enables you to interact with the message broker using

HTML forms and DHTML scripts. This chapter provides a brief introduction to the protocol, illustrating how to
contact the message broker from a Web browser.

Introduction to the REST Protocol

.. 56
R e o o] e 57
0] (oTote I D] 7 1] NP 66

55

REST Protocols

Introduction to the REST Protocol

Overview

Transport protocols

Supported clients

REST servlets

56

The REST protocol is a simple HTTP-based protocol that enables you to
contact the message broker through a Web browser. You can contact the
message broker by navigating to appropriately formatted URLs or by posting
HTML forms.

The FUSE Message Broker’s REST protocol is based on a subset of the HTTP
protocol. Hence, HTTP is the only supported transport.

REST supports the following client types:

* Web forms—use conventional HTML forms to posT a message to a
destination (queue or topic) or to GET a message from a destination—see
Example of posting a message on page 70 .

* Ajax clients—an Asynchronous JavaScript And Xml (Ajax) library that
enables you to communicate with a REST endpoint using JavaScript in a
DHTML Web page. For details of how to program an Ajax client, see the
Cross Language Client Development Guide.

The REST protocol is implemented by the following servlets running in a Web
container:

* message Servlet—supports the sending and consuming of messages.

* queueBrowse Servliet—enables you to view the current status of a particular
queue.

REST Example

Overview

Example prerequisites

Example steps

REST Example

This section describes how to run the REST example, which consists of a
servlet engine integral to the message broker binary, and some demonstration
servlets that run as a Web application. To connect to the Web applications,
you can use your favorite Web browser.

You must ensure that the message broker is configured to instantiate an
embedded servlet engine. In your broker configuration file,
conf/activemq.xml, check that there is a jetty element configured as

shown in Example 1 on page 57 .

Example 1. Configuration of an Embedded Servlet Engine

<!-- Embedded servlet engine for serving up the Admin console
-—>
<jetty xmlns="http://mortbay.com/schemas/jetty/1.0">
<connectors>
<nioConnector port="8161" />
</connectors>
<handlers>
<webAppContext contextPath="/admin"
resourceBase="${activemqg.base}/webapps/admin"
logUrlOnStart="true" />
<webAppContext contextPath="/demo"
resourceBase="${activemqg.base}/webapps/demo"
logUrlOnStart="true" />
</handlers>
</jetty>

With the configuration shown in Example 1 on page 57 , the servlet engine

opens up a HTTP port on IP port, 8161. The following Web applications are
loaded:

* Demonstration application (from webapps/demo),
* REST protocol servlets (from webapps/demo).

* Web console servlet (from webapps/admin),

To run the REST Web example, perform the following steps:

57

REST Protocols

Run the servlet engine

Open a Web browser

58

1. Run the servlet engine on page 58 .

2. Open a Web browser on page 58 .

3. Send a message on page 59 .

4. Browse the message queue on page 60 .

5. Receive a message from the queue on page 64 .

To run the embedded servlet engine, open a new command window and enter
the following command to start the default message broker:

activemqg

This step assumes that your broker is configured as described in Example
prerequisites on page 57 .

Open your favorite Web browser (for example, Firefox or Internet Explorer)
and navigate to the following URL:

http://localhost:8161/demo

Your browser should now show the welcome page for the Web examples, as
shown in Figure 3 on page 59 .

REST Example

Figure 3. Welcome Page for Web Examples

L5} ActiveMQ Web Connector - Mozilla Firefox

File Edit View History Bookmarks Tools Help

ActiveMQ Web Connector

messages from a destination using a HTTP GET.

| Market data example

market prices change

| Chat example

| Simple Form based browser example
Send a message

Receive a message

Queue browser example

+ Browse a queune

+ Browse a queue as XML

+ Browse a queue as Atom

+ Browse a queune as RSS 1.0

+ Browse a queue as RSS 2.0

@I - - @ /u} E http://localhost: 8080/activemg-web-demo/ |" D] "| ‘kx]

D_ Customize Links _D Free Hotmai _D Fun&Action IZ! IONA employee search ﬂ_ IONA Ho_n_'l_e_[l IONA Intranet |—__I_i_S_HeI|:_n_:I¢_5_k _____ »
el

This service allows you to send messages to the IMS network using a normal HTTP POST and to receive

Market data publisher starts publishing some mock market data prices

Porfolio example shows how you could make an interactive trading portfolio which updates in real time as the

Chat room example shows how you can use Streamlets and ActiveMQ to create a simple chat room
3

Done

59

REST Protocols

Send a message

To view the form for publishing messages, click the link, Send a message
[http://localhost:8080/activemg-web-demo/send.html]. The Send a JMS
Message form now appears in your browser, as shown in Figure 4 on page 60

Figure 4. The Send a JMS Message Form

Send a JMS Message

Destination name FOO.BAR

Destination Type: | CQueue |+

Browse the message queue

60

In the Destination name text field, enter Foo.BAR to send a message to the
FOO.BAR queue. Leave the Destination Type as Queue. Then enter an arbitrary

text message in the large message text box. Click the Send button at the
bottom of the form to send the message.

Using the history feature of your browser, navigate back to the example
welcome page (see Figure 3 on page 59). The queueBrowse servlet supports

a variety of ways to browse the contents of a queue and these are listed at
the bottom of the welcome page. The following browsing options are listed:

* Browse a queue.
[http://localhost:8080/activemg-web-demo/queueBrowse/FOO/BAR]

* Browse a queue as XML
[http:/localhost:8080/activemqg-web-demo/queueBrowse/FOO/BAR ?view =xml].

* Browse a queue as Atom

[http;/ocalhost8080activencweb-demaueLieBrowss FOOBARMew=IssRéeedype=atom 1.01

* Browse a queue as RSS 1.0

[htip:/ocalhost:8080/activemncrweb-demoquerieBrowseFOOBARNew=rss&feedType=tss 1.0].

* Browse a queue as RSS 2.0

[httpy/localhost:8080/activerna-web-demaqueuieBrowse FOOBARNew=rss8feed Type=rss 2.0].

http://localhost:8080/activemq-web-demo/send.html
http://localhost:8080/activemq-web-demo/send.html
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=xml
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=xml
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=atom_1.0
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=atom_1.0
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=rss_1.0
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=rss_1.0
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=rss_2.0
http://localhost:8080/activemq-web-demo/queueBrowse/FOO/BAR?view=rss&feedType=rss_2.0

REST Example

If you click on Browse a queue, you should see a page like
Figure 5 on page 61 .

Figure 5. Default Option to Browse a Queue

£ Mozilla Firefox

File Edit View History Bookmarks Tools Help

’\4_1 -~ - @ ﬂ} ||:| http:f,fbcalhost:8161,fdem0,-’queueBr0wse|v| [b-] |'|:L'.-::-;

[} Customize Links [Free Hotmai [Fun&Action [IONA employee search | B IONA Home

This XML file does not appear to have any style information associated with it. The
document tree is shown below.

—<messages queue="queue://FOO.BAR">

<message id="ID:fboltond820-1311-1193390185518-2:2:1:1:1"/>
</messages>

Done

If you click on Browse a queue as XML, you should see a page like

Figure 6 on page 62 .

61

REST Protocols

Figure 6. Option to Browse a Queue as XML

62

REST Example

If you click on Browse a queue as Atom, you should see a page like

Figure 7 on page 63 .

Figure 7. Option to Browse a Queue as Atom

L5] queue://FOO.BAR - Mozilla Firefox

File Edit View History Bookmarks Tools Help

MM

[} customize Links || Free Hotmail [| Fun&Action [| IONA employee search BB IONA Home

Subscribe to this feed using |Gl Live Bookmarks

e |

[] Always use Live Bookmarks to subscribe to feeds

queue://FOO.BAR

This feed is auto-generated by Apache ActiveMQ

Subscribe Now

ID:fboltond820-1311-1193390185518-2:2:1:1:1

Done

If you click on Browse a queue as RSS 1.0 or Browse a queue as RSS 2.0,

you should see a page like Figure 8 on page 64 .

63

REST Protocols

Figure 8. Option to Browse a Queue as RSS 1.0

L5 queue://FOO.BAR - Mozilla Firefox

File Edt View History Bookmarks Tools Help

<E| = b LQ_:J ’,L" |L| http:f,u'localhost:8161,-’dem0,-’queueBrmvse|v| l}] '| - »-\]
[Customize Links || Free Hotmail [Fun&Action || IONA employee search | Bl 10NA Home »

D Subscribe to this feed using | & Live Bookmarks v

(] Always use Live Bookmarks to subscribe to feeds

Subscribe Now

queue://FOO.BAR

This feed is auto-generated by Apache ActiveMQ

ID:fboltond820-1311-1193390185518-2:2:1:1:1

First message for the FOO.BAR queue.

Receive a message from the

queue

64

To receive a message from the Foo.BAR queue, open the example welcome

page in your browser, http://localhost:8161/demo
[http://localhost:8080/activemg-web-demol, and click the link, Receive a
message

[httpy/localhost:8080/activemc-web-demo/message/FOO/BAR?imeout=10000&4ype=queiel.

http://localhost:8080/activemq-web-demo
http://localhost:8080/activemq-web-demo
http://localhost:8080/activemq-web-demo/message/FOO/BAR?timeout=10000&type=queue
http://localhost:8080/activemq-web-demo/message/FOO/BAR?timeout=10000&type=queue
http://localhost:8080/activemq-web-demo/message/FOO/BAR?timeout=10000&type=queue

REST Example

You should now see the text of the message that you sent earlier. You will
probably also receive an error from your browser, if the message is not
formatted as HTML or XML (which the browser expects).

65

REST Protocols

Protocol Details

What is REST?

Outline of a REST interaction

HTTP as a RESTful protocol

66

Representational State Transfer (REST) is a software architecture designed
for distributed systems, like the World Wide Web. For details of the REST
architecture and the philosophy underlying it, see the REST Wikipedia
[httpy/en.wikipedia.orgiwikiRepresentational State Transfer#REST27s Central Principle: Resources]
article.

One of the key concepts of a RESTful architecture is that the interaction
between different network nodes should take on a very simple form. In
particular, the number of operations in a RESTful protocol must be kept small:
for example, the REST protocol in FUSE requires just three operations.

In general, a REST interaction consists of the following elements:

* Operation—Dbelongs to a restricted, well-known set of operations—for
example, in the HTTP protocol, the main operations are GET, POST, PUT,
and DELETE. The advantage of this approach is that, in contrast to RPC
architectures, there is no need to define interfaces for a RESTful protocol.
The operations are all known in advance.

* URI—identifies the resource that the operation acts on. For example, a
HTTP GeT operation acts on the URI by fetching data from the resource
identified by the URI.

* Data (if required)—needed for operations that send data to the remote
resource.

HTTP is a good example of a protocol demonstrating RESTful design principles.
In fact, proponents of REST argue that it is precisely the RESTful qualities of
HTTP that enabled the rapid expansion of the World Wide Web. In keeping
with REST principles, HTTP has a restricted operation set, consisting of only
eight operations: GET, POST, PUT, DELETE, OPTIONS, HEAD, TRACE, and

CONNECT.

For the purpose of implementing a RESTful protocol, the first four HTTP
operations—GET, POST, PUT, and DELETE—are the most important. The

semantics of these operations are described briefly in Table 9 on page 67 .

http://en.wikipedia.org/wiki/Representational_State_Transfer#REST.27s_Central_Principle:_Resources
http://en.wikipedia.org/wiki/Representational_State_Transfer#REST.27s_Central_Principle:_Resources

REST protocol servlets

message servlet

Protocol Details

Table 9. HTTP RESTful Operations

Operation Description

GET Fetch the remote resource identified by the URI.

POST Add/append/insert data to the remote resource identified
by the URI.

PUT Replace the remote resource identified by the URI with the
data from this operation.

DELETE Delete the remote resource identified by the URI.

This simple set of operations—analogous to the classic CRUD (Create,
Replace, Update, and Delete) operations for a database—turns out to be
remarkably powerful and flexible.

The following servlets—which are automatically deployed in the message
broker Web console—implement RESTful access to the FUSE message queues:

* message servlet on page 67 .

* queueBrowse servlet on page 69 .

The RESTful service implemented by the FUSE message servlet enables you

to enqueue and dequeue messages over HTTP. You can, therefore, use the
message servlet to implement message producers and message consumers
as Web forms.

To interact with the FUSE message servlet, construct a URL of the following
form:

http://Host: Port/WebContext/message/Destination
Path?0ptl=Vall&Opt2=ValZ. ..

Where the URL is constructed from the following parts:

* Host:Port—the host and port of the servlet engine. For example, in the

default message broker configuration, a HTTP port is opened on
localhost:8161.

67

REST Protocols

68

* webContext—in a Web application, it is usual to group related components
(servlets and so on) under a particular Web context, webcontext. For
example, for the REST demonstration servlets, the Web context is demo by
default.

* message—rtoutes this URL to the message servlet.

* DestinationPath—specifies the compound name of a queue or topic in
the message broker. For example, the Foo.BaR queue has the destination
path, FOO/BAR.

* ?20pti=Vall&Opt2=Val2—you can add some options in order to qualify
how the URL is processed.
For example, the following URL can be used to fetch a message from the

FOO.BAR queue, where the Web console has the default configuration:

http://localhost:8161/demo/mes
sage/FOO/BAR?type=queue&timeout=5000

Table 10 on page 68 shows the URL options recognized by the message
servlet:

Table 10. URL Options Recognized by the Message Servlet

URL Option Description

type Can be either queue or topic.

timeout When consuming a message from a queue, specifies the
length of time (in units of milliseconds) the client is
prepared to wait.

Three HTTP operations—GET, POST, and DELETE—are recoghized by the
message Servlet. The semantics of these operations are described briefly in
Table 11 on page 69 .

queueBrowse servlet

Protocol Details

Table 11. Message Serviet RESTful HTTP Operations

Operation Description

GET Consume a single message from the destination (queue or
topic) specified by the URL.

POST Send a single message to the destination (queue or topic)
specified by the URL.

DELETE Consume a single message from the destination (queue or
topic) specified by the URL. This operation has the same
effect as GeT.

For details of the form properties recognized by the message servlet (for
POSTing a message), see Example of posting a message on page 70 .

The RESTful service implemented by the queueBrowse servlet enables you

to monitor the contents and status of any queue or topic in the Web console.
Effectively, the queueBrowse servlet is a simple management tool.

To interact with the FUSE queueBrowse servlet, construct a URL of the
following form:

http://Host: Port/WebContext/queueBrowse/Destination
Path?0Optl=Vall&Opt2=ValZ. ..

The queueBrowse URL has a similar structure to the message URL (see
message servlet on page 67), except that the queueBrowse URL is built

from webContext/queueBrowse instead of webContext/message

For example, the following URL can be used to browse the F00.BAR queue,
where the Web console has the default configuration:

http://localhost:8161/demo/queueBrowse/FO0/BAR

Table 12 on page 70 shows the URL options recognized by the queueBrowse
servlet:

69

REST Protocols

Table 12. URL Options Recognized by the QueueBrowse Serviet

URL Option

Description

view

Specifies the format for viewing the queue/topic. The
following views are supported:
* simple—(default) displays a compact summary of the

queue in XML format, where each message is shown as
a message element with ID.

* xml—displays a detailed summary of the queue in XML
format, where each message is shown in full.

* rss—displays a compact summary of the queue in the

form of an RSS 1.0, 2.0 or Atom 0.3 feed. You can
configure the type of feed using feedType.

feedType

In combination with the setting, view=rss, you can use
this option to specify one of the following feeds:

® rss 1.0
® rss 2.0

* atom 0.3

contentType

Override the MIME content type of the view.

maxMessages

The maximum number of messages to render.

Example of posting a message

Example 2 on page 70 shows an example of the Web form used to send a

message to the Foo.BaR queue in the Web console, as demonstrated in Send

a message on page 59 .

Example 2. Web Form for Sending a Message to a Queue or Topic

<html>
<head>

<title>Send a JMS Message</title>

70

Protocol Details

<link rel="stylesheet" href="style.css" type="text/css">
</head>
<body>
<hl>Send a JMS Message</hl>
<form action="message/FOO/BAR" method="post">

<p>

<label for="destination">Destination name</label>
<input type="text" name="destination"/>
</p>
<p>
<label for="type">Destination Type: </label>
<select name="type">
<option selected value="queue">Queue</option>
<option type" value="topic">Topic</option>

</select>

</p>

<p>

<textarea name="body" rows="30" cols="80">
Enter some text here for the message body...
</textarea>
</p>
<p>
<input type="submit" value="Send"/>
<input type="reset"/>

</p>
</form>
</body>
</html>

Table 13 on page 71 describes the form properties that are recognized by
the message servlet.

Table 13. Form Properties Recognized by Message Servlet

Form Property |Description

Form action The action attribute of the <form> tag has the format,
message/DestinationPath, Where DestinationPath

is the compound name of the queue or topic, using
forward slash, /, as the delimiter (for example, F00/B&R).

destination The compound name of the destination queue or topic,
using a period, ., as the delimiter (for example, F00.RBAR).

If this property is specified in the form, it overrides the
value of the pestinationPath in the form action.

type Destination type, equals queue or topic.

71

REST Protocols

Example of getting a message

Examples of browsing a queue

72

Form Property Description

body Message body.

To consume a message from a topic or queue, send a HTTP GET operation
(for example, by following a hypertext link) using the URL format described
in message servlet on page 67 . For example, to consume a message from
the Foo0.BAR queue, navigate to the following URL:

http://localhost:8161/demo/mes
sage/FOO/BAR?timeout=10000&type=queue

To browse a queue using the queueBrowse servlet, simply navigate to an
URL of the appropriate form, as described in queueBrowse servlet on page 69

For example, to browse the Foo.BaR queue in XML format:

http://localhost:8161/demo/queueBrowse/FO0/BAR?view=xml

To browse the Foo.BAR queue as an Atom 1.0 feed:

http://localhost:8161/demo/queueBrowse/FOO/BAR?view=rss&feed
Type=atom 1.0

To browse the F00.BAR queue as an RSS 1.0 feed:

http://localhost:8161/demo/queueBrowse/FOO/BAR?view=rss&feed
Type=rss_1.0

VM Protocol

The VM transport allows clients to connect to each other inside the Java Virtual Machine (JVM) without the
overhead of network communication.

INtroduction 10 the VIM ProtOCOI e e e et aaeaneeans

73

VM Protocol

Introduction to the VM Protocol

Overview

The VM protocol enables Java clients running inside the same JVM to
communicate with each other inside the JVM, without having to resort to a
using a network protocol. The clients still require a broker to mediate the
exchange of messages, however. The VM protocol implicitly creates an
embedded broker the first time it is accessed. Figure 9 on page 74 shows
the basic architecture of the VM protocol.

Figure 9. Clients Connected through the VM Protocol

JVM Instance

Client 1 Client 2 Client 3

vm://brokerl vm://brokerl vm: //brokerl

| |

Embedded Broker
brokerl

Create

Embedded broker lifecycle The embedded broker has the following lifecycle:

1. The first client that attempts to access a specific broker (for example,
brokerl) causes the broker to be instantiated. In some cases—for example,

74

Simple URI syntax

Advanced URI syntax

Transport options

Introduction to the VM Protocol

if the VM URI contains special broker configuration details—it might be
important to control which client instantiates the broker.

2. Subsequent clients connect to the pre-existing embedded broker.

3. After all of the connections are closed by the clients, the embedded broker
is automatically shut down.

A VM URI can be constructed with the following simple URI syntax:

vm: //BrokerName? TransportOptions

Where Brokername specifies the name of the embedded broker to which the
client connects. The transport options, ? Transportoptions, are specified

in the form of a query list, where you can use any of the options shown in
Table 14 on page 75 and Table 15 on page 76 .

Alternatively, you can construct a VM URI using the following advanced URI
syntax:

vm:// (BrokerConfigURI) ? TransportOptions

Where BrokerconfigURT is a broker configuration URI (see Broker

configuration URI on page 77). With this syntax, you can use only the options
shown in Table 14 on page 75 .

Table 14 on page 75 shows the transport options you can use with either
the simple or advanced VM URI syntax.

Table 14. VM Transport Options (for All URI Syntaxes)

Option Description

marshal If true, forces each command sent over the transport to be marshalled and unmarshalled
using the specified wire format. Default is false.

wireFormat The name of the wire format to use.

wireFormat.*

Properties prefixed by wireFormat. configure the specified wire format.

75

VM Protocol

Table 15 on page 76 shows transport options that are valid only for the
simple URI syntax.

Table 15. VM Transport Options (for Simple URI Syntax Only)

Option Description

broker.* Properties prefixed by broker. configure the embedded broker. You can specify any of the
standard broker options (see TABLE) in this way.

brokerConfig Specifies an external broker configuration file. For example, to pick up the broker
configuration file, activemg.xml, you would set brokerconfig as follows:

brokerConfig=xbean:activemqg.xml.

Broker options Table 16 on page 76 shows the broker options.

Table 16. Broker Options

Option Description

useJmx If true, enables JMX. Default is true.

persistent If true, the broker uses persistent storage. Default is true.
populateJMSXUserID If true, the broker populates the JMsxUserID message property with the

sender’s authenticated username. Default is false.

useShutdownHook If true, the broker installs a shutdown hook, so that it can shut down
properly when it receives a JVM kill. Default is true.

brokerName Specifies the broker name. Default is 1ocalhost.

deleteAllMessagesOnStartup If true, deletes all the messages in the persistent store as the broker starts
up. Default is false.

enableStatistics If true, enables statistics gathering in the broker. Default is true.

Example URIs You can construct the following example URIs using the simple syntax:

* Basic VM URI on page 77 .

e Simple URI with broker options on page 77 .

76

Basic VM URI

Simple URI with broker options

Simple URI with external
configuration file

Broker configuration URI

Introduction to the VM Protocol

* Simple URI with external configuration file on page 77 .

To connect to the embedded broker with broker name, broker1, you can use
the following URI:

vm://brokerl

To create and connect to the embedded broker, broker1, where you want
the broker to have a non-persistent message store, use the following URI:

vm://brokerl?broker.persistent=false

Evidently, the broker options (such as broker.persistent) can only be

taken into account, if the VM URI makes the first connection to the embedded
broker (thus causing the broker to be instantiated). If the VM URI connects
to an existing embedded broker, it is too late to change the broker
configuration.

To create and connect to the embedded broker, broker1, where the broker
is to be configured by the file, activemq.xml, use the following URI:
vm://brokerl?brokerConfig=xbean:activemqg.xml

Where the brokerconfig option enables you to specify the location of the
external configuration file, activemq.xml.

The broker configuration URI is the very same URI that you use on the
command line to configure the standalone broker, activemq. There are three

different URI schemes supported for broker configuration: broker:,
properties:, and xbean:. Of these URI schemes, the broker: URI is the
most useful one for constructing VM URIs.

The broker configuration URI has the following syntax:

77

VM Protocol

Advanced example URI

78

broker:// (TransportURI, ..., network:NetworkURI,
...)/BrokerName?BrokerOptions

Where the broker:// prefix is immediately followed by a list of URIs in
parentheses. Inside the URI list you can put URIs, TransportURI, for the
broker’s transport endpoints and URIs, network: NetworkURI, for the broker’s
network connectors. This is followed by the broker's name, BrokerName, and
any broker options from Table 16 on page 76 .

The following VM URI uses the advanced URI syntax to create and connect
to an embedded broker, where the broker is configured using a broker
configuration URI.

vm: (broker: (tcp://localhost:6000) ?persistent=false) ?mar
shal=false

Discovery Protocols

This chapter introduces the simplest kind of broker cluster: a collection of isolated broker instances (no network
connectors). When used in combination with the discovery protocols, such a cluster can be used as a simple
load balancing system.

Configuring @ Simple BroKer CIUSTEY ... et et e e e e e e e enen 80
=Y oY=t gl o] (ool | RPN 86
Dynamic DiSCOVENY PrOTOCOIt e ettt aens 90
B Rl YA Y= (=T | <SPPI 95

79

Discovery Protocols

Configuring a Simple Broker Cluster

Simple cluster architecture

Figure 10 on page 80 shows an example of the kind of simple broker cluster
that is the subject of discussion in this chapter, where the cluster shown in
Figure 10 on page 80 consists of just two brokers: broker A and broker B.

Figure 10. Simple Cluster Architecture

Producers
Consumers
P1 Broker A
So o
| TEST.FOO queue | Ame C1
|
P2

P3 . Broker B
| TEST.FOO queue | receive Cc2
59(\6

P4

The preceding figure illustrates the simplest type of cluster, where no network
connectors are enabled on the brokers and the brokers remain unaware of

each other (isolated brokers). Assuming that the producers do not care which
consumer processes the messages, this cluster architecture can be useful for

80

Failover protocols

Limitations of simple broker
clusters

Steps to create multiple broker
instance

Configuring a Simple Broker Cluster

balancing load across multiple hosts. There are, however, some serious
limitations with this type of cluster.

The cluster architecture shown in Figure 10 on page 80 can support some
simple modes of failover protection. In particular, if a producer or consumer
loses its connection to a broker, it can use one of the failover URIs to manage
reconnection to an alternative broker in the cluster. Currently, the following
failover protocols support reconnection logic:

* Failover Protocol on page 86 .
¢ Dynamic Discovery Protocol on page 90 .

* Discovery Agents on page 95 .

The cluster architecture shown in Figure 10 on page 80 suffers from the
following limitations:

* Each broker must have a consumer for each type of queue.

* |If a consumer for a particular queue on a particular broker becomes
unavailable, messages on that queue will accumulate in the broker without
being processed.

* Producers have no way of finding out whether a particular queue instance
has an associated consumer.

In principle, these limitations can be overcome by linking brokers together
using network connectors.

Perform the following steps to create multiple message broker instances:
1. Create a directory for the new broker configuration on page 82 .

2. Copy configuration files on page 82 .

3. Customize port numbers on page 82 .

4. Customize the broker name on page 83 .

5. (Optionally) Disable network connectors on page 83 .

6. Create a script to run the broker on page 84

81

Discovery Protocols

Create a directory for the new
broker configuration

Copy configuration files

Customize port numbers

82

7. Repeat as necessary on page 85 .

Create a new directory to hold the configuration files for a new broker instance.
For example, in your working directory, Fuselorking, create a directory,

broker_a, for broker A by entering the following command:

mkdir FuseWorking/broker a

From the FUSE Message Broker install directory, 71nstal1pir, copy the conf
and webapps directories into the broker a directory. For example:

Windows

mkdir FuseWorking\broker a\conf

copy InstallDir\conf FuseWorking\broker a\conf
mkdir FuseWorking\broker a\webapps

copy InstallDir\webapps FuseWorking\broker a\webapps

UNIX

cp InstallDir/conf FuseWorking/broker a/conf
cp InstallDir/webapps FuseWorking/broker a/webapps

Where the conf directory contains the basic configuration files for the broker
and the webapps directory contains the files required to run the Web console
management tool.

You must customize the port numbers used by broker A, in order to avoid
clashes with other brokers. To customize the port numbers, edit the
broker a/conf/activemq.xml configuration file. For example, you might

customize the transport connector ports as follows:

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://default"/>

Customize the broker name

(Optionally) Disable network
connectors

Configuring a Simple Broker Cluster

</transportConnectors>

Where the TCP connector port has been changed from 61616 to 61716. You

also need to customize the port for the servlet engine (which hosts the Web
console application), as follows:

<jetty xmlns="http://mortbay.com/schemas/jetty/1.0">
<connectors>
<nioConnector port="8171" />
</connectors>
</jetty>

Where the servlet engine port has been changed from 8161 to 8171.

You must also customize the broker name, by setting the brokerName attribute
of the broker element. For example, to set the broker name for broker A,
edit the broker a/conf/activemq.xml configuration file as follows:

<broker xmlns="http://activemg.org/config/1.0"
brokerName="brokera"
dataDirectory="${activemqg.base}/data">
</broker>

Where the broker name is set to broker_a.

,'] Note

It is important for each broker in a cluster to have a distinct name.
For example, discovery agents and network connectors require that
each broker in the cluster has a distinct name.

By default, the standard broker configuration comes with a network connector
enabled. For the basic cluster discussed in this chapter, however, each broker
is isolated and unaware of its peers. To configure this type of cluster, you

must edit the broker a/conf/activemq.xml configuration file, commenting

out any network connector elements, networkConnector, as shown in the
following example:

83

Discovery Protocols

Create a script to run the broker

84

<networkConnectors>
<!-- Comment out the network connectors ... -->
Ll==
<networkConnector name="default-nc"
uri="multicast://default"/>

-——>
</networkConnectors>
(® Note

Of course, network connectors are useful and a network of brokers
is much more responsive and flexible than a simple collection of
isolated broker instances. If you prefer, you can leave the network
connectors enabled, but you should be aware that the examples will
behave somewhat differently from the descriptions given in the text.

The standalone message broker, activemqg, reads the environment variable,
ACTIVEMQ BASE, to determine the location of its configuration directory.

Hence, in order to run a standalone broker using the broker A configuration,
you must set ACTIVEMO BASE to the directory, Fuseliorking/broker a

before running activema.

The easiest approach to take is to create a dedicated script to run broker A.
For example, you might create a script similar to the following:

Windows

Create a Windows .bat file, broker a.bat, according to the following

outline:

@echo off

REM Set generic FUSE Message Broker environment

REM ... (Not shown - for details, see install guide)

set ACTIVEMQ BASE=FuseWorking\broker a
echo Running Broker A...
activemg

UNIX

Assuming you are using a Bourne shell, create a shell script, broker a,
according to the following outline:

Repeat as necessary

Example broker cluster

Configuring a Simple Broker Cluster

#! /bin/sh
Set generic FUSE Message Broker environment
... (Not shown - for details, see install guide)

ACTIVEMQ BASE=FuseWorking/broker a; export ACTIVEMQ BASE
echo Running Broker A...
activemg

Repeat the preceding steps to create as many broker instances as required—for
example, broker B, C, D, and so on.

To run the examples described in this chapter, two brokers are required:
broker A and broker B. Broker A is configured with the following transport
connectors:

<transportConnectors>
<transportConnector
name="openwire" uri="tcp://localhost:61716" dis
coveryUri="multicast://default"/>
</transportConnectors>

And broker B is configured with the following transport connectors:

<transportConnectors>
<transportConnector
name="openwire" uri="tcp://localhost:61816" dis
coveryUri="multicast://default"/>
</transportConnectors>

Where the TCP ports are configured to have distinct values (61716 and 61816,

respectively). You must also ensure that any other port numbers are configured
to be distinct (for example, the servlet engine port inside the <jetty> tag).

85

Discovery Protocols

Failover Protocol

Overview

Configuration syntax

Transport options

The failover protocol overlays reconnect logic on top of any of the other
transports. The failover URI is composed of multiple URIs that represent
different broker endpoints. By default, the protocol randomly chooses a URI
from the list and attempts to establish a connection to it. If it does not succeed,
or if it subsequently fails, a new connection is established to one of the other
URIs in the list.

A failover URI must conform to the following syntax:

failover:// (uril, ..., uriN) ? TransportOptions

Where the URI list, uriz, ..., urin, is a comma-separated list containing

one or more broker endpoint URIs. The transport options,
?TransportOptions, are specified in the form of a query list (where the

supported options are described in Table 17 on page 86). If no transport
options are required, you can use the following alternative syntax:

failover://uril, ..., uriN

The failover protocol supports the transport options described in
Table 17 on page 86 .

Table 17. Failover Transport Options

Option Name Default Description

initialReconnectDelay |10 How long to wait before the first reconnect attempt (in ms).

maxReconnectDelay 30000 The maximum amount of time to wait between reconnect attempts
(in ms).

useExponentialBackOff |true If true, use an exponential back-off between reconnect attempts.

backOffMultiplier 2 The exponent used in the exponential back-off algorithm.

maxReconnectAttempts 0 If not 0, this is the maximum number of reconnect attempts before
an error is sent back to the client.

86

Failover Protocol

Option Name Default Description
randomize true If true, choose a URI at random from the list provided.
Sample URI

Example of using the failover
protocol

Start up broker A

Start up consumer A

The following is an example of a failover URI that randomly connects to one
of two message brokers:

failover:// (tcp://localhost:61616,tcp://remotehost:61616)2ini
tialReconnectDelay=100

To try out the failover protocol, perform the following steps:
1. Start up broker A on page 87 .

2. Start up consumer A on page 87 .

3. Start up broker B on page 88 .

4. Start up consumer B on page 88 .

5. Start up a producer with failover URL on page 88 .

6. Kill the active broker on page 89 .

Assuming that you have already configured a simple broker cluster as
described in Configuring a Simple Broker Cluster on page 80 , start broker A
by running the relevant script. For example:

broker a

Start a consumer that consumes messages from the TEST.F0o0 queue on
broker A. The consumer tool is located in the examp1e directory of the FUSE
Message Broker install directory, 1nsta11pir. Assuming that broker A's TCP
connector is listening on port 61716 on the local host, open a new command
window and start consumer A as follows:

87

Discovery Protocols

Start up broker B

Start up consumer B

Start up a producer with failover
URL

88

cd InstallDir/example
ant consumer -Durl=tcp://localhost:61716 -Dmax=100

The consumer tool should log output similar to the following as it starts up:

Buildfile: build.xmlinit:compile:consumer: [echo] Running
consumer

against server at S$Surl = tcp://localhost:61716 for subject
Ssubject = TEST.FOO

[java] Connecting to URL: tcp://localhost:61716 [Javal
Consuming
queue: TEST.FOO [javal Using a non-durable subscription
[javal We

are about to wait until we consume: 100 message(s) then we
will shutdown

Start broker B by running the relevant script. For example, open a new
command window and enter:

broker b

Start a consumer that consumes messages from the TEST.Foo queue on
broker B. Assuming that broker B's TCP connector is listening on port 61816

on the local host, open a new command window and start consumer B as
follows:

cd InstallDir/example
ant consumer -Durl=tcp://localhost:61816 -Dmax=100

Start a producer with a failover URL such that it can connect either to broker
A or to broker B. Open a new command window and start the producer as
follows:

cd InstallDir/example
ant producer -Durl="failover:// (tcp://localhost:61716,tcp://loc

Kill the active broker

Failover Protocol

alhost:61816)?initialReconnectbDelay=100"
-DsleepTime=5000

It is important to include the double quotes around the failover URL, otherwise
the comma-separated list would be parsed as two arguments. The sleep time
is set to 5 seconds between messages, in order to give you enough time to
perform the next step.

After starting the producer, observe which of the consumers is receiving
messages. If consumer A is receiving messages, the producer must be
connected to broker A, in which case broker A is the active broker. If consumer
B is receiving messages, broker B is the active broker.

To test the failover functionality on the producer side, kill the active broker
(not consumer!) by switching focus to the relevant broker window and typing
ctrl-c. If the producer is still producing messages (it produces ten in total),

it will attempt to reconnect to the other broker. You should see output similar
to the following in the producer log:

[javal 13:50:31 WARN Transport failed, attempting to
automatically reconnect due to: java.io.EOFException

[javal java.io.EOFException

[Javal at java.io.DatalnputStream.readInt (Datalnput
Stream.java:358)

[javal Sending message: Message: 7 sent at: Wed Oct 10
13:50:31 BST 2007

[java] 13:50:32 INFO Successfully reconnected to
tcp://localhost:61716

89

Discovery Protocols

Dynamic Discovery Protocol

Overview

Discovery agents

Configuring a transport connector
with a discovery agent

Configuration syntax

90

The dynamic discovery protocol combines reconnect logic with the capability
to auto-discover broker endpoints in the local network. The discovery protocol
invokes a discovery agent in order to build up a list of broker URIs. The
protocol then randomly chooses a URI from the list and attempts to establish
a connection to it. If it does not succeed, or if it subsequently fails, a new
connection is established to one of the other URIs in the list.

A discovery agent is a bootstrap mechanism that enables a message broker,
consumer, or producer to obtain a list of broker URIs, where the URIs
represent connector endpoints. The broker, consumer, or producer can
subsequently connect to one of the URIs in the list.

The following kinds of discovery agent are currently supported in FUSE
Message Broker:

» Simple (static) discovery agent.
* Multicast discovery agent.
* Rendezvous discovery agent.

For more details, see Discovery Agents on page 95 .

Before you can use the discovery protocol, you must make your broker’s
endpoints discoverable by adding a discovery agent to each transport
connector. For example, to make a TCP transport connector discoverable, set
the discoveryUri attribute on the transportConnector element as follows:

<transportConnectors>
<transportConnector
name="openwire" uri="tcp://localhost:61716" dis
coveryUri="multicast://default"/>
</transportConnectors>

Where the TCP transport connector is configured to use the multicast discovery
agent, multicast://default.

A discovery URI must conform to the following syntax:

Transport options

Dynamic Discovery Protocol

discovery:// (DiscoveryAgentUri) ? TransportOptions

Where the discovery agent URI, piscoveryagenturi, identifies a discovery

agent, as described in Discovery agents on page 90 above. The transport
options, ? TransportOptions, are specified in the form of a query list (where

the supported options are described in Table 18 on page 91). If no transport
options are required, you can use the following alternative syntax:

discovery://DiscoveryAgentUri

The discovery protocol supports the transport options described in
Table 18 on page 91

Table 18. Discovery Transport Options

Option Name Default Description

initialReconnectDelay |10 How long to wait before the first reconnect attempt (in ms).

maxReconnectDelay 30000 The maximum amount of time to wait between reconnect attempts
(in ms).

useExponentialBackOff |true If true, use an exponential back-off between reconnect attempts.

backOffMultiplier 2 The exponent used in the exponential back-off algorithm.

maxReconnectAttempts 0 If not o, this is the maximum number of reconnect attempts before
an error is sent back to the client.

Sample URI

Example of using the dynamic
discovery protocol

The following is an example of a discovery URI that uses a multicast discovery
agent:

discovery:// (multicast://default)?initialReconnectDelay=100

To try out the dynamic discovery protocol, perform the following steps:
1. Configure the brokers’ transport connectors on page 92 .
2. Start up broker A on page 92 .

3. Start up consumer A on page 92 .

91

Discovery Protocols

Configure the brokers’ transport
connectors

Start up broker A

Start up consumer A

Start up broker B

92

4. Start up broker B on page 92 .
5. Start up consumer B on page 93 .
6. Start up a producer with discovery URL on page 93 .

7. Kill the active broker on page 94

To run the current example you need a cluster of two brokers: broker A and
broker B. For details of how to set up the broker cluster, see Configuring a

Simple Broker Cluster on page 80 . In particular, you must ensure that each
broker configures its TCP transport connector with a discovery URI, as follows:

<transportConnectors>
<transportConnector
name="openwire" uri="tcp://localhost:61716" dis
coveryUri="multicast://default"/>
</transportConnectors>

Where the discoveryUri attribute on the transportConnector element
is initialized to multicast://default.

Assuming that you have already configured a simple broker cluster as
described in Configuring a Simple Broker Cluster on page 80 , start broker A
by running the relevant script. For example:

broker a

Start a consumer that consumes messages from the TEST.FoO queue on
broker A. Assuming that broker A's TCP connector is listening on port 61716

on the local host, open a new command window and start consumer A as
follows:

cd InstallDir/example
ant consumer -Durl=tcp://localhost:61716 -Dmax=100

Start broker B by running the relevant script. For example, open a new
command window and enter:

Start up consumer B

Start up a producer with
discovery URL

Dynamic Discovery Protocol

broker b

Start a consumer that consumes messages from the TEST.FOO queue on
broker B. Assuming that broker B's TCP connector is listening on port 61816

on the local host, open a new command window and start consumer B as
follows:

cd InstallDir/example
ant consumer -Durl=tcp://localhost:61816 -Dmax=100

Start a producer with a discovery URL such that it can connect either to
broker A or to broker B. Open a new command window and start the producer
as follows:

cd InstallDir/example
ant producer -Durl=discovery://(multicast://default) -Dsleep
Time=2000

The sleep time is set to 2 seconds between messages, in order to give you
enough time to perform the next step.

As the producer starts up, it should log the following lines to the screen:

Buildfile: build.xml
init:
compile:
producer:
[echo] Running producer against server at $url = discov
ery:// (multicast://default)
for subject $subject = TEST.FOO
[java] Connecting to URL: discovery:// (multicast://de
fault)
[java] Publishing a Message with size 1000 to queue:
TEST.FOO
[javal] Using non-persistent messages
[javal] Sleeping between publish 2000 ms
[javal 16:27:55 WARN brokerName not set
[javal 16:27:56 INFO Adding new broker connection URL:
tcp://fboltond820:61816
[javal 16:27:56 INFO Adding new broker connection URL:
tep://fboltond820:61716

93

Discovery Protocols

Kill the active broker

94

[javal 16:27:56 INFO Successfully reconnected to
tcp://fboltond820:61816

You can ignore the warning message, WARN brokerName not set. The next
two 1NFO messages show that the discovery mechanism is working: each of

the discovered URLs is logged here. Finally, the producer connects to one of
the discovered URLs and starts sending message to that broker.

After starting the producer, observe which of the consumers is receiving
messages. If consumer A is receiving messages, the producer must be
connected to broker A, in which case broker A is the active broker. If consumer
B is receiving messages, broker B is the active broker.

To test the failover functionality on the producer side, kill the active broker
(not consumer!) by switching focus to the relevant broker window and typing
ctrl-c. If the producer is still producing messages, it will attempt to reconnect

to the other broker. You should see output similar to the following in the
producer log:

[jJaval] 16:28:10 WARN Transport failed, attempting to
automaticallyreconnect due to: java.io.EOFException

[javal java.io.EOFException

[Javal at java.io.DatalInputStream.readInt (Datalnput
Stream.java:358)

[javal Sending message: Message: 7 sent at: Wed Oct 10
13:50:31 BST 2007

[javal 16:28:10 INFO Successfully reconnected to
tcp://fboltond820:61716

Discovery Agents

Discovery Agents

Overview

A discovery agent is a bootstrap mechanism that enables a client or message
broker to discover other broker instances on a network. On the client side,
the purpose of the discovery agent is simply to obtain a list of broker URlIs.
The list of URIs is then processed by the dynamic discovery protocol,
discovery:// (...), which opens a connection to one of the URIs in the

list.
Discovery agents typically use some form of ping mechanism to discover the

broker URIs. Hence, it is usually necessary to enable the discovery mechanism
on the server side as well (an exception to this requirement is the simple

discovery agent).

Configuring discovery agents on

the message broker For certain kinds of discovery agent (for example, multicast or rendezvous),

it is necessary to enable the discovery agent in the message broker
configuration. For example, to enable the multicast discovery agent on an
Openwire endpoint, you should edit the relevant transportConnector

element as follows:

<transportConnectors>
<transportConnector
name="openwire" uri="tcp://localhost:61716" dis
coveryUri="multicast://default"/>
</transportConnectors>

Where the discoveryUri attribute on the transportConnector element
is initialized tomulticast://default. You can associate multiple endpoints

with the same discovery agent. For example, to configure both an Openwire
endpoint and a Stomp endpoint to use the multicast://default discovery

agent:

<transportConnectors>
<transportConnector
name="openwire" uri="tcp://localhost:61716" dis
coveryUri="multicast://default"/>
<transportConnector
name="stomp" uri="stomp://localhost:61613" dis

95

Discovery Protocols

Using a discovery agent on the
client side

Configuring broker networks

Discovery agents

Simple (static) discovery agent

96

coveryUri="multicast://default"/>
</transportConnectors>

You cannot use a discovery agent URI directly, on the client side. A discovery
agent is not a transport protocol and it is not recognized as such by messaging
clients. To use a discovery agent on the client side, the agent

URI,piscoveryAgentUri, is embedded inside a discovery URL, as follows:

discovery:// (DiscoveryAgentUri) ? TransportOptions

The client recognizes the discovery URL as a transport. It first obtains a list
of available endpoint URLs using the specified discovery agent and then
connects to one of the discovered URLs. For more details about the discovery
protocol, see Dynamic Discovery Protocol on page 90 .

FUSE Message Broker currently supports the following discovery agents:
» Simple (static) discovery agent on page 96 .
* Multicast discovery agent on page 97 .

* Rendezvous discovery agent on page 97 .

The simple (static) discovery agent provides an explicit list of broker URLs
for a client to connect to. For example:

simple:// (tcp://localhost:61716,tcp://localhost:61816)

In general, the URI for a simple discovery agent must conform to the following
syntax:

simple:// (URI1,URI2, URI3, ...)

Or equivalently:

static:// (URI1, URI2, URI3, ...)

The two prefixes, simple: and static:, are exactly equivalent. In order to
use the agent URI, it must be embedded inside a discovery URL—for example:

Multicast discovery agent

Rendezvous discovery agent

Discovery Agents

discovery:// (static:// (tcp://localhost:61716,tcp://local
host:61816))

This discovery agent is only used on the client side. No extra configuration is
required in the broker.

The multicast discovery agent uses the IP multicast protocol to find any
message brokers currently active on the local network. In order for the protocol
to work, a multicast discovery agent must be enabled on each broker you
want to advertise and messaging clients must be configured to use a
discovery URI.

The URI for a multicast discovery agent must conform to the following syntax:

multicast://GroupID

Where the Group1pis an alphanumeric identifier. All participants in the same
discovery network must use the same Group1p. For example, the FUSE
Message Broker is usually configured to use the URI, multicast://default.

The rendezvous discovery agent is derived from Apple’s Bonjour Networking
[http://developer.apple.com/networking/bonjour/] technology, which defines
the rendezvous protocol as a mechanism for discovering services on a network.
To enable the protocol, a multicast discovery agent must be configured on
each broker you want to advertise and messaging clients must be configured
to use a discovery URL.

The URI for a rendezvous discovery agent must conform to the following
syntax:

rendezvous: //GroupID

Where the Group1pis an alphanumeric identifier. All participants in the same
discovery network must use the same GroupIp.

For example, to use a rendezvous discovery agent on the client side, where
the client needs to connect to the groupa group, you would construct a

discovery URL like the following:

97

http://developer.apple.com/networking/bonjour/
http://developer.apple.com/networking/bonjour/

Discovery Protocols

98

Peer-to-Peer Protocols

Peer-to-peer protocols enable messaging clients to communicate with each other directly, eliminating the
requirement to route messages through an external message broker.

TG S (0] (o oo]

99

Peer-to-Peer Protocols

Peer Protocol

Overview The peer protocol enables you to set up a peer-to-peer network by creating
an embedded broker inside each peer endpoint. Figure 11 on page 100
illustrates the peer-to-peer network topology for a simple two-peer network.

Figure 11. Peer Protocol Endpoints with Embedded Brokers

Producer Embedded broker1

RN

send TEST.FOO queue |

7

vm://brokerl

Network Connector

Consumer

| TEST.FOO queue | receive

Embedded broker2 vm://broker2

In this topology, a standalone broker is not required, because each peer
instantiates its own embedded broker. As shown in Figure 11 on page 100,
the producer sends messages to its embedded broker, broker1, by connecting

100

Discovering peer endpoints

URI syntax

Broker options

Table 19. Broker Options

Peer Protocol

to the local VM endpoint, vm: //brokeri—see VM Protocol on page 73 .
The embedded brokers, brokerl and broker2, are linked together using a

network connector, which allows messages to flow in either direction between
the brokers. When the producer sends a message to the queue, TEST. FoO,

the first embedded broker, broker1, automatically pushes the message across
the network connector and on to the remote embedded broker, broker2. The
consumer can then receive the message from its embedded broker, broker2.

Implicitly, the peer protocol uses multicast discovery to locate active peers
on the network. In order for this to work, you must ensure that the IP multicast
protocol is enabled on your operating system. See Dynamic Discovery
Protocol on page 90 for details.

A peer URI must conform to the following syntax:

peer://PeerGroup/BrokerName?BrokerOptions

Where the group name, reerGroup, identifies the set of peers that can

communicate with each other. That is, a given peer can connect only to the
set of peers that specify the same peerGroup name in their URLs. The

BrokerName specifies the broker name for the embedded broker. The broker
options, Brokeroptions, are specified in the form of a query list (for example,

?persistent=true).

The peer URL supports the broker options described in Table 19 on page 101

Option Description

useJmx If true, enables JMX. Default is true.

persistent If t rue, the broker uses persistent storage. Default is true.
populateJMSXUserID If true, the broker populates the JMsxuserID message property with the

sender’s authenticated username. Default is false.

101

Peer-to-Peer Protocols

Option Description

useShutdownHook If true, the broker installs a shutdown hook, so that it can shut down
properly when it receives a JVM kill. Default is true.

brokerName Specifies the broker name. Default is 1ocalhost.

deleteAllMessagesOnStartup

If true, deletes all the messages in the persistent store as the broker starts
up. Default is false.

enableStatistics

If true, enables statistics gathering in the broker. Default is true.

Sample URI

Example of using the peer
protocol

Start up consumer with
embedded broker

102

The following is an example of a peer URL that belongs to the peer group,
groupA, and creates an embedded broker with broker name, brokeri:

peer://groupA/brokerl?persistent=false

To try out the peer protocol, perform the following steps:
1. Start up consumer with embedded broker on page 102 .

2. Start up producer with embedded broker on page 103 .

Start a consumer that consumes messages from the TEST.F00 queue
belonging to the group peer group. To start the consumer, run the consumer
tool with a peer group URL as follows:

cd InstallDir/example
ant consumer -Durl="peer://group/brokerl?persistent=false" -
Dmax=100

Where the first component of the URL path, group, specifies that this peer
belongs to the group peer group. The second component, broker1, specifies
the name of the embedded broker and the setting, persistent=false, sets

a broker option. When the consumer starts up, you should see output like
the following in the command window:

consumer:

Start up producer with embedded
broker

Peer Protocol

[echo] Running consumer against server at $url =
peer://group/brokerl?persistent=false for subject Ssubject =
TEST.FOO

[java] Connecting to URL: peer://group/brokerl?persist
ent=false

[java]l Consuming queue: TEST.FOO

[javal Using a non-durable subscription

[java] 15:43:10 INFO ActiveMQ null JMS Message Broker
(brokerl) is starting

[javal 15:43:10 INFO For help or more information please
see:
http://activemq.apache.org/

[java]l 15:43:10 INFO Using Persistence Adapter: Memory
PersistenceAdapter

[javal 15:43:10 INFO Listening for connections at:
tecp://fboltond820:2399

[java] 15:43:10 INFO Connector tcp://fboltond820:2399
Started

[java] 15:43:10 INFO Network Connector org.apache.act
ivemg.transport.discovery.multicast.MulticastDiscoveryA
gent@da4db71 Started

[java] 15:43:10 INFO ActiveMQ JMS Message Broker
(brokerl, ID:fboltond820-2398-1192200190327-2:0) started

[jJava] 15:43:10 INFO Connector vm://brokerl Started

[java]l 15:43:10 INFO JMX consoles can connect to ser
vice:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

[javal We are about to wait until we consume: 100 mes
sage (s) then we will shutdown

While the consumer is starting up, it activates an embedded broker with
broker name, broker1, and attempts to connect to its peers using a multicast

discovery agent.

Start a producer that sends messages to the TEST. Foo queue on the group

peer group. To start the producer, run the producer tool with a peer group
URL as follows:

cd InstallDir/example
ant producer -Durl="peer://group/broker2?persistent=false" -
DsleepTime=1000

Where the name of the embedded broker is set to broker2 and the sleep

time (time between successive messages) is set to 1000 ms. When the
producer starts up, the output log should include some lines like the following:

103

Peer-to-Peer Protocols

[javal 15:43:27 INFO Establishing network connection
between from vm://broker2 to tcp://fboltond820:2399

[javal 15:43:28 INFO Network connection between
vm://broker2#2 and tcp://localhost/127.0.0.1:2399 (brokerl)
has been established.

These lines indicate that a peer-to-peer connection was successfully
established between the embedded brokers, brokerl and broker2. The

consumer should now be able to receive the messages sent by the producer.

104

	Connectivity Guide
	Table of Contents
	Preface
	The FUSE Message Broker Library
	Open Source Project Resources
	Document Conventions

	Protocol Summary
	Simple Connections
	Discovery Protocols
	Peer-to-Peer Protocols

	OpenWire Protocol
	Introduction to the OpenWire Protocol
	OpenWire Example

	Stomp Protocol
	Introduction to the Stomp Protocol
	Stomp Example
	Protocol Details
	Stomp Tutorial

	REST Protocols
	Introduction to the REST Protocol
	REST Example
	Protocol Details

	VM Protocol
	Introduction to the VM Protocol

	Discovery Protocols
	Configuring a Simple Broker Cluster
	Failover Protocol
	Dynamic Discovery Protocol
	Discovery Agents

	Peer-to-Peer Protocols
	Peer Protocol

