
FUSE™ Message Broker
Using FUSE™ Message Broker's Persistence Features

Version 5.2
December 2008

Using FUSE™ Message Broker's Persistence Features
Progress Software

Version 5.2

Published 02 Dec 2008
Copyright © 2008 IONA Technologies PLC , a wholly-owned subsidiary of Progress Software Corporation.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
Preface ... 11

The FUSE Message Broker Library ... 12
Open Source Project Resources ... 13
Document Conventions ... 14

Introduction to FUSE Message Broker Persistence .. 17
Using the AMQ Message Store ... 19
Using JDBC to Connect to a Database Store .. 25

Basics of Using the JDBC Persistence Adapter .. 26
Using JDBC with the High Performance Journal .. 32
Using JDBC without the Journal .. 35

Message Cursors ... 37
Types of Cursors .. 38
Configuring the Type of Cursor Used by a Destination .. 42

Index .. 45

3

4

List of Figures
1. Overview of the AMQ Message Store ... 19
2. AMQ Message Store Directory Layout .. 20
3. Store-based Cursors for a Fast Consumer 38
4. Store-based Cursors for a Slow Consumer 39
5. VM Cursors .. 40
6. File-based Cursors .. 41

5

6

List of Tables
1. Setting a Broker's Persistence .. 17
2. Configuration Attributes for the AMQ Message Store 22
3. Statements for Configuring the SQL Statements Used by the JDBC
Persistence Adapter ... 28
4. Attributes for Configuring the Journaled JDBC Persistence
Adapter ... 32
5. Attributes for Configuring the Plain JDBC Persistence Adapter 35
6. Elements for Configuring the Type of Cursor to Use for Durable
Subscribers .. 42
7. Elements for Configuring the Type of Cursor to Use for Transient
Subscribers .. 43
8. Elements for Configuring the Type of Cursor to Use for a
Queue .. 44

7

8

List of Examples
1. Turning Off a Broker's Persistence ... 18
2. Adding Persistence Adapter Configuration 18
3. Configuring the AMQ Message Store ... 22
4. Configuration for Using the Default Database 27
5. Configuration for the Oracle JDBC Driver 27
6. Fine Tuning the Database Schema .. 28
7. Configuring a Generic JDBC Provider .. 31
8. Configuring FUSE Message Broker to use the Journaled JDBC
Persistence Adapter ... 33
9. Configuring FUSE Message Broker to use the Plain JDBC Persistence
Adapter ... 36
10. Configuring a Topic's Cursor Usage ... 43
11. Configuring a Queue's Cursor Usage .. 44

9

10

Preface
The FUSE Message Broker Library ... 12
Open Source Project Resources ... 13
Document Conventions ... 14

11

The FUSE Message Broker Library
The FUSE Message Broker documentation library consists of the following
books:

• Installing FUSE™ Message Broker discusses the requirements and
procedures for installing FUSE Message Broker

• Getting Started with FUSE™ Message Broker provides an overview of the
central concepts behind FUSE Message Brokerand walks you through a
simple example.

• Connectivity Guide explains the different wire protocols and transports that
FUSE Message Broker supports.

• Using FUSE™ Message Broker's Persistence Features on page 1 describes
how to enable message persistence using the AMQ Message Store or a
relational database in FUSE Message Broker.

12

http://fusesource.com/docs/install_fuse_mb/install_fuse_mb.pdf
http://fusesource.com/docs/getting_started/getting_started.pdf
http://fusesource.com/docs/message_broker/persistence/connectivity_guide.pdf

Open Source Project Resources
Apache CXF

Web site: http://cxf.apache.org/

User's list: <user@cxf.apache.org>

Apache Tomcat
Web site: http://tomcat.apache.org/

User's list: <users@tomcat.apache.org>

Apache ActiveMQ
Web site: http://activemq.apache.org/

User's list: <users@activemq.apache.org>

Apache Camel
Web site:
http://activemq.apache.org/camel/enterprise-integration-patterns.html

User's list: <camel-user@activemq.apache.org>

Apache ServiceMix
Web site: http://servicemix.apache.org

User's list: <users@servicemix.apache.org>

13

http://cxf.apache.org/
http://tomcat.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/camel/enterprise-integration-patterns.html
http://servicemix.apache.org

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width (Courier font) in normal text represents portions of code and literal names of items
such as classes, functions, variables, and data structures. For example, text might refer to the
javax.xml.ws.Endpoint class.

fixed width

Constant width paragraphs represent code examples or information a system displays on the
screen. For example:

import java.util.logging.Logger;

Fixed width italic words or characters in code and commands represent variable values you
must supply, such as arguments to commands or path names for your particular system. For
example:

Fixed width

italic

% cd /users/YourUserName

Italic words in normal text represent emphasis and introduce new terms.Italic

Bold words in normal text represent graphical user interface components such as menu
commands and dialog boxes. For example: the User Preferences dialog.

Bold

Keying conventions
This book uses the following keying conventions:

When a command’s format is the same for multiple platforms, the command prompt is not
shown.

No prompt

A percent sign represents the UNIX command shell prompt for a command that does not require
root privileges.

%

A number sign represents the UNIX command shell prompt for a command that requires root
privileges.

#

The notation > represents the MS-DOS or Windows command prompt.>

Horizontal or vertical ellipses in format and syntax descriptions indicate that material has been
eliminated to simplify a discussion.

...

Brackets enclose optional items in format and syntax descriptions.[]

Braces enclose a list from which you must choose an item in format and syntax descriptions.{ }

14

In format and syntax descriptions, a vertical bar separates items in a list of choices enclosed
in {} (braces).

|

Admonition conventions
This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

Tips provide hints about completing a task or using a tool. They may also provide information about
workarounds to possible problems.

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be encountered. These errors are unlikely to cause
damage to your data or your systems.

Warnings display information about errors that may cause damage to your systems. Possible damage from
these errors include system failures and loss of data.

15

16

Introduction to FUSE Message Broker
Persistence
Message persistence allows for the recovery of undelivered messages in the event of a system failure. By default,
FUSE Message Broker's persistence features are activated. The default set up is fast and scalable. It is easy to
customize the set-up to use and JDBC compliant database.

Overview
Loss of messages is not acceptable in mission critical applications. FUSE
Message Broker reduces the risk of message loss by using a persistent message
store by default. Persistent messages are written to the persistent store when
they are sent. The messages persist in the store until their delivery is
confirmed. This means that in the case of a system failure, FUSE Message
Broker can recover all of the undelivered messages at the time of the failure.

Persistent message stores
The default message store is embeddable and transactional. It both very fast
and extremely reliable. In addition to the default message store, FUSE Message
Broker offers a number of other persistent message store options. These
include:

• AMQ Message Store

• a journaled JDBC adapter

• a non-journaled JDBC adapter

Activating and deactivating
persistence Persistence in FUSE Message Broker is controlled by a broker's XML

configuration file. To change a broker's persistence behavior you modify the
configuration's broker element's persistent attribute.

Table 1. Setting a Broker's Persistence

DescriptionValue

The broker will use message persistence.true

17

DescriptionValue

The broker will not use message persistence.false

Important
If you add persistence adapters to a broker's configuration,
this setting is ignored.

Tip
By default, a broker's persistent attribute is set to true.

Example 1 on page 18 shows a configuration snip-it for turning off a broker's
message persistence.

Example 1. Turning Off a Broker's Persistence

<broker persistent="false" ...>
...

</broker>

Configuring persistence adapter
behavior FUSE Message Broker offers a number of different persistence mechanisms

aside from the default message store. To use one of the alternative message
stores, or to modify the default behavior of the default message store, you
need to configure the persistence adapter. This is done by adding a
persistenceAdapter element to the broker's configuration file as shown in

Example 2 on page 18.

Example 2. Adding Persistence Adapter Configuration

<broker persistent="true" ...>
...
<persistenceAdapter>
<amqPersistenceAdapter ... />

</persistenceAdapter>
...

<broker>

The persistenceAdapter element has no attributes. The configuration for

the persistence adapter is specified using a child element for the desired
persistence adapter.

18

Introduction to FUSE Message Broker Persistence

Using the AMQ Message Store
The default message store used by FUSE Message Broker is a light-weight transactional store that is fast and
reliable. It is a hybrid system that couples a transactional journal for message storage and a reference store for
quick retrieval. The AMQ message store is highly configurable.

Overview
By default, FUSE Message Broker uses the AMQ Message Store to persist
message data. The AMQ message store is an embeddable, transactional
message store that is extremely fast and reliable. It is an evolution of the Kaha
system used by Active MQ 4.x. It uses a transactional journal to store message
data and a Kaha-based index to store message locations for quick retrieval.

Figure 1 on page 19 shows a high-level view of the AMQ message store.

Figure 1. Overview of the AMQ Message Store

Messages are stored in file-based data logs. When all of the messages in a
data log have been successfully consumed, the data log is marked as ready
to be deleted. At a predetermined clean-up interval, logs marked as deletable
are removed from the system.

19

Note
Message logs can also be archived.

An index of message locations is cached in memory to facilitate quick retrieval
of message data. At configurable checkpoint intervals, the references are
inserted into the persistent reference store.

Data structure
The AMQ message store is a file-based message store and uses a layered
directory structure to store its data. Figure 2 on page 20 shows the layout
of the AMQ message store's files.

Figure 2. AMQ Message Store Directory Layout

The top-level directory of a broker's message store is identified by the name
of the broker. For example a broker configured with the name JoeFred would

have a message store folder named JoeFred. Beneath the message store's

top-level folder are four folders:

20

Using the AMQ Message Store

archive

The archive folder stores archived message logs.

Note
This folder only exists when log archiving is activated.

Tip
You can change the name of this folder by setting the AMQ
persistence adapter's directoryArchive attribute. See

Configuration on page 22.

journal

The journal folder stores the active message logs.

kr-store

The kr-store folder is used by the Kaha reference store when it saves

message references to disk. It has two sub-folders:

data

The data folder stores the indexes for referencing the logged

messages.

state

The state folder maintains state information regarding the message

store. The information contained her includes the name of durable
subscribers and information about transactions.

Note
This folder is only used if the AMQ persistence adapter's
persistentIndex attribute is set to true. See

Configuration on page 22.

21

tmp-storage

The tmp-storage folder stores transient messages that are cached to

free up memory. For example non-persistent messages may be stored
here while awaiting consumption by an active, but slow consumer.

Configuration
FUSE Message Broker comes preconfigured to use the AMQ message store.
However, you can modify how the message store behaves by explicitly defining
its persistence adapter using the amqPersistenceAdapter element as shown

in Example 3 on page 22.

Example 3. Configuring the AMQ Message Store

<broker brokerName="broker" persistent="true" useShutdownHook="false">
...
<persistenceAdapter>
<amqPersistenceAdapter directory="activemq-data" maxFileLength="32mb"/>

</persistenceAdapter>
</broker>

Table 2 on page 22 describes all of the attributes that can be used to
configure the AMQ message store.

Table 2. Configuration Attributes for the AMQ Message Store

DescriptionDefault ValueAttribute

Specifies the path to the top-level folder used to hold the
message store's data files.

activemq-datadirectory

Specifies whether or not NIO is used to write messages to
the data logs.

trueuseNIO

Specifies whether or not to sync every write to a data log to
the disk.

falsesyncOnWrite

Sets the maximum size of the logs used to store message
data. Any string value provided, in kilobytes, megabytes, or

32mbmaxFileLength

gigabytes, is converted to a long value in bytes at runtime.
The conversion process ignores whitespace, is
case-insensitive, and accepts one- or two-letter acronyms
as units of measurement. Values written without units are
treated as bytes. For example, the following values are all
valid: 1024kb, 256 MB, 512m, 1G, 10000000.

22

Using the AMQ Message Store

DescriptionDefault ValueAttribute

Specifies whether or not to write the reference index to a
persistent store. If set this attribute is set to false the

reference index will be maintained in non-persistent memory.

truepersistentIndex

Specifies how often, in milliseconds, that data from the
journal is synchronized with the indexes.

6000checkpointInterval

Specifies the maximum number of messages to keep in a
transaction before automatically commiting them to the
message store.

4096maxCheckpointMessageAddSize

Specifies the interval, in milliseconds, between clean-up
sweeps of the message store.

30000cleanupInterval

Specifies the default number of bins used by the reference
index.

1024indexBinSize

Tip
Increasing the number of bins in use increases the
relative performance of the index.

Specifies the size of the index key to use.96indexKeySize

Note
The index key is the message id.

Specifies the size of the page file to use for the reference
index.

16kbindexPageSize

Tip
Increasing the page file size increases the index's
write performance.

Specifies whether or not old message logs are archived or
deleted. Setting this attribute to true specifies that old

falsearchiveDataLogs

message logs are copied to the message store's archive folder
instead of being deleted.

23

DescriptionDefault ValueAttribute

Specifies the name of the folder into which archived message
logs are stored.

archivedirectoryArchive

Failure recovery
If the message broker does not shutdown properly, the reference store indexes
are cleaned and the message data files are replayed to rebuild the message
store's state information. It is possible to force automatic recovery by deleting
the kr-store/state/index-store-state file.

24

Using the AMQ Message Store

Using JDBC to Connect to a Database
Store
FUSE Message Broker supports the use of relational databases as a message store through JDBC. You can use
the JDBC persistence adapter either coupled with a high performance journal or standalone.

Basics of Using the JDBC Persistence Adapter .. 26
Using JDBC with the High Performance Journal .. 32
Using JDBC without the Journal .. 35

25

Basics of Using the JDBC Persistence Adapter
Overview

For long term persistence you may want to use a relational database as your
persistent message store. FUSE Message Broker's default database when
using the JDBC persistence adapter is Apache Derby. FUSE Message Broker
also supports most major SQL databases. You can enable other databases
by properly configuring the JDBC connection in the broker's configuration file.

You can you use the JDBC persistence adapter either with or without
journaling. Using the journal provides two main benefits. First, it improves
the speed of the message store. Second, it provides support for JMS
transactions.

Supported databases
FUSE Message Broker is known to work with the following databases:

• Apache Derby

• Axion

• DB2

• HSQL

• Informix

• MaxDB

• MySQL

• Oracle

• Postgresql

• SQLServer

• Sybase

In addition, FUSE Message Broker supports a number of generic JDBC
providers.

Configuring your JDBC driver
FUSE Message Broker autodetects the JDBC driver that is in use at start-up.
For the supported databases, the JDBC adapter automatically adjusts the
SQL statements and JDBC driver methods to work with the driver. If you wish
to customize the names of the database tables or work with an unsupported

26

Using JDBC to Connect to a Database Store

database, you can modify both the SQL statements and the JDBC driver
methods. See Customizing the SQL statements used by the adapter on page 28
for information about modifying the SQL statements. See Using generic JDBC
providers on page 31 for information about changing the JDBC methods.

The default configuration shipped with FUSE Message Broker
(InstallDir/conf/activemq.xml) includes configuration examples for a

number of the supported databases. Example 4 on page 27 shows the
configuration for using the default database.

Example 4. Configuration for Using the Default Database

<beans ...>
<broker xmlns="http://activemq.org/config/1.0" brokerName="localhost">
...
<persistenceAdapter>
<jdbcPersistenceAdapter dataDirectory="activemq-data"/>

</persistenceAdapter<
...

</broker>
</beans>

Example 5 on page 27 shows the configuration for using the Oracle JDBC
driver. The persistence adapter configuration refers to the Spring bean element

that configures the JDBC driver.

Example 5. Configuration for the Oracle JDBC Driver

<beans ...>
<broker xmlns="http://activemq.org/config/1.0" brokerName="localhost">
...
<persistenceAdapter>
<jounraledJDBC dataSource="#oracle-ds" />

</peristenceAdapter>
...

</broker>
...
<bean id="oracle-ds" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">

<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@localhost:1521:AMQDB"/>
<property name="username" value="scott"/>
<property name="password" value="tiger"/>
<property name="poolPreparedStatements" value="true"/>

</bean>
...

</beans>

27

Basics of Using the JDBC Persistence Adapter

The JDBC drivers are configured using a Spring bean element. The id attribute

specifies the name by which you will refer to the driver when configuring the
JDBC persistence adapter. The class attribute specifies the class that

implements the data source used to interface with the JDBC driver. The
destroy-method attribute specifies the name of the method to call when

the JDBC driver is shutdown.

In addition to the bean element, the JDBC driver configuration includes a

number of property elements. Each property element specifies a property

required by the JDBC driver. For information about the configurable properties
refer to your JDBC driver's documentation.

Customizing the SQL statements
used by the adapter You can configure the SQL statements used to create the message store. This

is done by adding a statements element to your JDBC persistence adapters

configuration. Example 6 on page 28 shows a configuration snip-it that
specifies that long strings are going to be stored as VARCHAR(128).

Example 6. Fine Tuning the Database Schema

<persistenceAdapter>
<journaledJDBC ...>
<statements>
<statements stringIdDataType ="VARCHAR(128)"/>

</statements>
</journaledJDBC>

</persistenceAdapter>

The first statements element is a wrapper for one or more statements

elements. Each internal statements element specifies a single configuration

statement. Table 3 on page 28 describes the configurable properties.

Table 3. Statements for Configuring the SQL Statements Used by the JDBC Persistence Adapter

DescriptionDefaultAttribute

Specifies a prefix that is added to every table name.tablePrefix

Tip
The prefix should be unique per broker if multiple brokers
will be sharing the same database.

28

Using JDBC to Connect to a Database Store

DescriptionDefaultAttribute

Specifies the name of the table in which persistent messages are
stored.

ACTIVEMQ_MSGSmessageTableName

Specifies the name of the database table used to store
acknowledgment messages from durable subscribers.

ACTIVEMQ_ACKSdurableSubAcksTableName

Specifies the name of the lock table used to determine the master
in a master/slave scenario.

ACTIVEMQ_LOCKlockTableName

Specifies the data type used to store the messages.BLOBbinaryDataType

Specifies the data type used to store the destination name.VARCHAR(250)containerNameDataType

Specifies the data type used to store a message id.VARCHAR(250)msgIdDataType

Specifies the datatype used to store the sequence id of a message.INTEGERsequenceDataType

Specifies the data type used to store a Java long.BIGINTlongDataType

Specifies the data type used to store long strings like client ids,
selectors, and broker names.

VARCHAR(250)stringIdDataType

The properties listed in Table 3 on page 28 configure the default SQL
statements used by the JDBC adapter and work with all of the supported
databases. If you need to override the default statements to work with an
unsupported database, there are a number of other properties that can be
used. These include:

• addMessageStatement

• updateMessageStatement

• removeMessageStatement

• findMessageSequenceIdStatement

• findMessageStatement

• findAllMessagesStatement

• findLastSequenceIdInMsgsStatement

• findLastSequenceIdInAcksStatement

29

Basics of Using the JDBC Persistence Adapter

• createDurableSubStatement

• findDurableSubStatement

• findAllDurableSubsStatement

• updateLastAckOfDurableSubStatement

• deleteSubscriptionStatement

• findAllDurableSubMessagesStatement

• findDurableSubMessagesStatement

• findAllDestinationsStatement

• removeAllMessagesStatement

• removeAllSubscriptionsStatement

• deleteOldMessagesStatement

• lockCreateStatement

• lockUpdateStatement

• nextDurableSubscriberMessageStatement

• durableSubscriberMessageCountStatement

• lastAckedDurableSubscriberMessageStatement

• destinationMessageCountStatement

• findNextMessageStatement

• createSchemaStatements

30

Using JDBC to Connect to a Database Store

• dropSchemaStatements

Using generic JDBC providers
To use a JDBC provider not natively supported by FUSE Message Broker you
can typically configure the JDBC persistence adapter to work, by setting the
persistence adapter's adapter attribute to one of the following values:

• org.activemq.store.jdbc.adapter.BlobJDBCAdapter

• org.activemq.store.jdbc.adapter.BytesJDBCAdapter

• org.activemq.store.jdbc.adapter.DefaultJDBCAdapter

• org.activemq.store.jdbc.adapter.ImageJDBCAdapter

The different settings change how the JDBC adapter stores and accesses
BLOB fields in the database. To determine the proper setting consult the
documentation for your JDBC driver and your database.

Example 7 on page 31 shows a configuration snip-it configuring the journaled
JDBC persistence adapter to use the blob JDBC adapter.

Example 7. Configuring a Generic JDBC Provider

<broker persistent="true" ...>
...
<persistenceAdapter>
<journaledJDBC adapter="org.activemq.store.jdbc.adapter.BlobJDBCAdapter" ... />
</persistenceAdapter>
...
</broker>

31

Basics of Using the JDBC Persistence Adapter

Using JDBC with the High Performance Journal
Overview

Using the JDBC persistence adapter with FUSE Message Broker's high
performance journal boosts the performance of the persistence adapter in two
ways:

1. In applications where message consumers keep up with the message
producers, the journal makes it possible to lower the number of messages
that need to be committed to the data base. For example a message
producer could publish 10,000 messages between journal checkpoints.
If the message consumer pops 9,900 messages off of the queue during
the same interval, only 100 messages will be committed to the database
through the JDBC adapter.

2. In applications where the message consumers cannot keep up with the
message producers, or in applications where messages must persist for
long periods, the journal boosts performance by committing messages in
large batches. This means that the JDBC driver can optimize the writes to
the external database.

In addition to the performance gains, the high performance journal also makes
it possible to ensure the consistency of JMS transactions in the case of a
system failure.

Configuration
To configure FUSE Message Broker to use the JDBC persistence adapter with
the high performance journal you add the journaledJDBC element to the

persistenceAdapter element in your broker's configuration as shown in

Example 8 on page 33.

Table 4 on page 32 describes the attributes used to configure the journaled
JDBC persistence adapter.

Table 4. Attributes for Configuring the Journaled JDBC Persistence Adapter

DescriptionDefault ValueAttribute

Specifies the strategy to use when accessing a non-supported
database. For more information see Using generic JDBC
providers on page 31.

adapter

Specifies whether or not new database tables are created when
the broker starts. If the database tables already exist, the existing
tables are reused.

truecreateTablesOnStartup

32

Using JDBC to Connect to a Database Store

DescriptionDefault ValueAttribute

Specifies the directory into which the default Derby database
writes its files.

activemq-datadataDirectory

Specifies the id of the Spring bean storing the JDBC driver's
configuration. For more information see Configuring your JDBC
driver on page 26.

#derbydataSource

Specifies the directory used to store archived journal log files.journalArchiveDirectory

Specifies the number of log files to use for storing the journal.2journalLogFiles

Specifies the size for a journal's log file.20MBjournalLogFileSize

Specifies the thread priority of the thread used for journaling.10journalThreadPriority

Specifies whether or not an exclusive database lock should be
used to enable JDBC Master/Slave.

trueuseDatabaseLock

Specifies whether or not to use the journal.trueuseJournal

Example
Example 8 on page 33 shows a configuration snip-it that configures the
journaled JDBC adapter to use a MySQL database.

Example 8. Configuring FUSE Message Broker to use the Journaled JDBC Persistence Adapter

<beans ...>
<broker ...>
...

❶ <persistenceAdapter>
❷ <journaledJDBC journalLogFiles="5" dataSource="#mysql-ds" />

</persistenceAdapter>
...

<broker>
...

❸<bean id="mysql-ds" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://localhost/activemq?relaxAutoCommit=true"/>
<property name="username" value="activemq"/>
<property name="password" value="activemq"/>
<property name="poolPreparedStatements" value="true"/>

</bean>

The configuration in Example 8 on page 33 show three noteworthy elements:

33

Using JDBC with the High Performance Journal

❶ The persistenceAdapter element wraps the configuration for the

JDBC persistence adapter.
❷ The journaledJDBC element specifies that the broker will use the JDBC

persistence adapter with the high performance journal. The element's
attributes configure the following properties:

• The journal will span five log files.

• Quick journaling will be used. Therefore only message references will
be written to the JDBC database.

• The configuration for the JDBC driver is specified in a bean element

with the id mysql-ds.

❸ The bean element specified the configuration for the MySQL JDBC driver.

34

Using JDBC to Connect to a Database Store

Using JDBC without the Journal
Overview

For instances when journaling is not appropriate, or you wish to use your own
journaling system, you can used the JDBC persistence adapter without the
FUSE Message Broker high performance journal.

Configuration
To configure FUSE Message Broker to use the JDBC persistence adapter
without the high performance journal you add the jdbcPersistenceAdapter

element to the persistenceAdapter element in your broker's configuration

as shown in Example 9 on page 36.

Table 5 on page 35 describes the attributes used to configure the journaled
JDBC persistence adapter.

Table 5. Attributes for Configuring the Plain JDBC Persistence Adapter

DescriptionDefault ValueAttribute

Specifies the strategy to use when accessing a non-supported
database. For more information see Using generic JDBC
providers on page 31.

adapter

Specifies, in milliseconds, the interval at which acknowledged
messages are deleted.

300000cleanupPeriod

Specifies whether or not new database tables are created when the
broker starts. If the database tables already exist, the existing tables
are reused.

truecreateTablesOnStartup

Specifies the directory into which the default Derby database writes
its files.

activemq-datadataDirectory

Specifies the id of the Spring bean storing the JDBC driver's
configuration. For more information see Configuring your JDBC
driver on page 26.

#derbydataSource

Specifies whether or not an exclusive database lock should be used
to enable JDBC Master/Slave.

trueuseDatabaseLock

Example
Example 9 on page 36 shows a configuration snip-it that configures the JDBC
adapter to use the default database.

35

Using JDBC without the Journal

Example 9. Configuring FUSE Message Broker to use the Plain JDBC Persistence Adapter

<beans ...>
<broker ...>
...

❶ <persistenceAdapter>
❷ <journaledJDBC dataSource="derby-ds" />

</persistenceAdapter>
...

<broker>
...

❸<bean id="#derby-ds" class="org.apache.derby.jdbc.EmbeddedDataSource">
<property name="databaseName" value="derbydb"/>
<property name="createDatabase" value="create"/>

</bean>

The configuration in Example 9 on page 36 show three noteworthy elements:

❶ The persistenceAdapter element wraps the configuration for the

JDBC persistence adapter.
❷ The jdbcPersistenceAdapter element specifies that the broker will

use the plain JDBC persistence adapter and that the JDBC driver's
configuration is specified in a bean element with the id derby-ds.

❸ The bean element specified the configuration for the Derby JDBC driver.

36

Using JDBC to Connect to a Database Store

Message Cursors
FUSE Message Broker uses message cursors to improve the scalability of the persistent message store. By default,
a hybrid approach that uses an in memory dispatch queue for fast consumers and message cursors for slower
consumers is used. FUSE Message Broker also supports two alternative cursor implementations. The type of
cursor can be configured on a per-destination basis.

Types of Cursors .. 38
Configuring the Type of Cursor Used by a Destination .. 42

Message cursors provide a means for optimizing a persistent message store.
They allow the persistent store to maintain a pointer to the next batch of
messages to pull from the persistent message store. FUSE Message Broker
has three types of cursors that can be used depending on the needs of your
application:

• Store-based cursors are the default cursor implementation. They offer the
best all around performance.

• VM cursors are very fast, but cannot handle slow message consumers.

• File-based cursors are useful when the message store is slow and message
consumers are relatively fast.

37

Types of Cursors
Store-based cursors

Store-based cursors are the default cursor implementation used by FUSE
Message Broker. Store-based cursors are a hybrid implementation that offers
the robustness of typical cursor implementations and the speed of in-memory
message reference implementations.

Typically messaging systems will pull persistent messages from long-term
storage in a batch when a client is ready to consume them. A cursor will be
used to maintain the position for the next batch of messages. While this
approach scales well and provides excellent robustness, it does not perform
well when message consumers keep pace with message producers.

As shown in Figure 3 on page 38, store-based cursors address the fast
consumer case by skipping the message cursor. When a message consumer
is keeping pace with the message producers, persistent messages are written
to the message store and moved directly into a dispatch queue for the
consumer.

Figure 3. Store-based Cursors for a Fast Consumer

38

Message Cursors

When a consumer starts with a back log of messages or falls behind its
message producers, FUSE Message Broker changes the strategy used to
dispatch messages. As shown in Figure 4 on page 39, messages are held in
the message store and fed into the consumer's dispatch queue using the
pending cursor.

Figure 4. Store-based Cursors for a Slow Consumer

VM cursors
When speed is the top priority and the consumers can definitely keep pace
with the message producers, VM cursors could be the best approach. In this
approach, shown in Figure 5 on page 40, messages are written to the
persistent store and then also stored in the pending cursor which is held
completely in memory. The messages are fed into the dispatch queue from
the pending cursor.

39

Types of Cursors

Figure 5. VM Cursors

Because the message are dispatched from active memory when using VM
cursors, this method is exceptionally fast. However, if the number of
unconsumed messages gets large the producers will be throttled to avoid
exceeding the available memory.

File-based cursors
File-based cursors are a variation of VM cursors that provides a buffer against
running out of memory when a consumer falls behind. As shown in
Figure 6 on page 41, the broker pages messages out to a temporary file when
the broker's memory limit is reached.

40

Message Cursors

Figure 6. File-based Cursors

Using a temporary file cushions the broker against situations where a consumer
occasionally falls behind or messages are produced in a burst. The broker
uses the temporary file instead of resorting to using slower persistent storage.

File-based cursors do not scale well when consumers are frequently behind
by a large margin. It is also not ideal when a fast long term message store is
available.

41

Types of Cursors

Configuring the Type of Cursor Used by a Destination
Overview

By default, FUSE Message Broker uses store-based cursors. You can, however,
configure your destinations to use one of the alternative cursor implementations
by adding the appropriate policy entries into the destination's policy map.

You configure a destination's policy set using a destinationPolicy element.

The destinationPolicy element is a wrapper for a policyMap element.

The policyMap element is a wrapper for a policyEntries element. The

policyEntries element is a wrapper for one or more policyEntry elements.

The cursor policies are entered as children to a policyEntry element. The

configuration elements used to specify the type of destination you are
configuring. Topics use cursors for both durable subscribers and transient
subscribers, so it uses two sets of configuration elements. Queues only a
single cursor and only require a single set of configuration elements.

Configuring topics
Topics maintain a dispatch queue and a pending cursor for every consumer
subscribed to the topic regardless of whether the subscription is durable or
transient. You can configure the cursor implementation used by durable
subscribers separately from the cursor implementation used by transient
subscribers.

Important
If you want to use the store-based cursor implementation, you do
not add any extra elements to the configuration. FUSE Message
Broker uses store-based cursors by default.

You configure the cursor implementation used by durable subscribers by
adding PendingDurableSubscriberMessageStoragePolicy child element

to the topic's policyEntry element. Table 6 on page 42 describes the

possible children of PendingDurableSubscriberMessageStoragePolicy.

Table 6. Elements for Configuring the Type of Cursor to Use for Durable Subscribers

DescriptionElement

Specifies the VM cursors will be used. See VM cursors on page 39 for more
information.

vmDurableCursor

42

Message Cursors

DescriptionElement

Specifies that file-based cursors will be used. See File-based
cursors on page 40 for more information.

fileDurableSubscriberCursor

You configure the cursor implementation used by transient subscribers by
adding pendingSubscriberPolicy child element to the topic's policyEntry

element. Table 7 on page 43 describes the possible children of
pendingSubscriberPolicy.

Table 7. Elements for Configuring the Type of Cursor to Use for Transient Subscribers

DescriptionElement

Specifies the VM cursors will be used. See VM cursors on page 39 for more information.vmCursor

Specifies that file-based cursors will be used. See File-based cursors on page 40 for more
information.

fileCursor

Example 10 on page 43 shows a configuration snip-it that configures a topic
to use VM cursors for its transient subscribers and file-based cursors for its
durable subscribers.

Example 10. Configuring a Topic's Cursor Usage

<beans ... >
<broker ...>
...
<destinationPolicy>
<policyMap>
<policyEntries>
<policyEntry topic="com.iona.>">
...
<pendingSubscriberPolicy>
<vmCursor />

</pendingSubscriberPolicy>
<PendingDurableSubscriberMessageStoragePolicy>
<fileDurableSubscriberPolicy />

</PendingDurableSubscriberMessageStoragePolicy>
...

</policyEntry>
...

</policyEntries>
</policyMap>

</destinationPolicy>
...

</broker>

43

Configuring the Type of Cursor Used by a Destination

...
</beans>

Configuring queues
Queues use a single pending cursor and dispatch queue. You configure the
type of cursor to use by adding a pendingQueuePolicy element to the

queue's policyEntry element. Table 8 on page 44 describes the possible

children elements of the pendingQueuePolicy element.

Table 8. Elements for Configuring the Type of Cursor to Use for a Queue

DescriptionElement

Specifies the VM cursors will be used. See VM cursors on page 39 for more information.vmQueueCursor

Specifies that file-based cursors will be used. See File-based cursors on page 40 for more
information.

fileQueueCursor

Example 11 on page 44 shows a configuration snip-it that configures a queue
to use VM cursors.

Example 11. Configuring a Queue's Cursor Usage

<beans ... >
<broker ...>
...
<destinationPolicy>
<policyMap>
<policyEntries>
<policyEntry queue="com.iona.>">
...
<pendingQueuePolicy>
<vmQueueCursor />

</pendingQueuePolicy>
...

</policyEntry>
...

</policyEntries>
</policyMap>

</destinationPolicy>
...

</broker>
...

</beans>

44

Message Cursors

Index
A
AMQ message store

archive folder, 21
journal folder, 21
kr-store folder, 21
tmp-storage folder, 22

amqPersistenceAdapter, 22
archiveDataLogs attribute, 23
checkpointInterval attribute, 23
cleanupInterval attribute, 23
directory attribute, 22
directoryArchive attribute, 24
indexBinSize attribute, 23
indexKeySize attribute, 23
indexPageSize attribute, 23
maxCheckpointMessageAddSize attribute, 23
maxFileLength attribute, 22
syncOnWrite attribute, 22
useNIO attribute, 22

amqPersitenceAdapter
persistentIndex attribute, 23

B
broker element, 17

persistent attribute, 17

C
configuration

turning persistence on/off, 17
cursors

file-based, 40
store-based, 38
VM, 39

D
destinationPolicy, 42
durable subscribers

configuring cursors, 42

using file-based cursors, 43
using VM cursors, 42

F
fileCursor, 43
fileDurableSubscriberCursor, 43
fileQueueCursor, 44

J
JDBC

using generic providers, 31
jdbcPersistenceAdapter, 35

adapter attribute, 31, 35
cleanupPeriod attribute, 35
createTablesOnStartup attribute, 35
dataDirectory attribute, 35
dataSource attribute, 35
useDatabaseLock attribute, 35

journaledJDBC, 32
adapter attribute, 31, 32
createTablesOnStartup attribute, 32
dataDirectory attribute, 33
dataSource attribute, 33
journalArchiveDirectory attribute, 33
journalLogFiles attribute, 33
journalLogFileSize attribute, 33
journalThreadPriority attribute, 33
useDatabaseLock attribute, 33
useJournal attribute, 33

P
PendingDurableSubscriberMessageStoragePolicy, 42
pendingQueuePolicy, 44
pendingSubscriberPolicy, 43
persistenceAdapter, 18, 22
policyEntries, 42
policyEntry, 42
policyMap, 42

R
reference store, 21

45

S
SQL data types, 28
statements, 28

binaryDataType, 29
containerNameDataType attribute, 29
durableSubAcksTableName attribute, 29
lockTableName attribute, 29
longDataType attribute, 29
messageTableName attribute, 29
msgIdDataType attribute, 29
sequenceDataType attribute, 29
stringIdDataType attribute, 29
tablePrefix attribute, 28

T
transient subscribers

configuring cursors, 43
using file-based cursors, 43
using VM cursors, 43

V
vmCursor, 43
vmDurableCursor, 42
vmQueueCursor, 44

46

	Using FUSE™ Message Broker's Persistence Features
	Table of Contents
	Preface
	The FUSE Message Broker Library
	Open Source Project Resources
	Document Conventions

	Introduction to FUSE Message Broker Persistence
	Using the AMQ Message Store
	Using JDBC to Connect to a Database Store
	Basics of Using the JDBC Persistence Adapter
	Using JDBC with the High Performance Journal
	Using JDBC without the Journal

	Message Cursors
	Types of Cursors
	Configuring the Type of Cursor Used by a Destination

	Index

